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PREFACE  TO   THE   FIFTEENTH  EDITION
Questions asked in recent papers of GATE and various university examinations have been

inserted at appropriate places. This enriched inclusion of solved examples and variety of new
exercises at the end of each article and chapter makes this book more useful to the reader. While
revising this book I have been guided by following simple teaching philosophy : “An ideal text
book should teach the students to solve all types of problems”.

Any suggestion, remarks and constructive comments for the improvement of this book are
always welcome.

AUTHOR
PREFACE TO THE SIXTH EDITION

It gives me great pleasure to inform the reader that the present edition of the book has been
improved, well-organised, enlarged and made up-to-date in the light of latest syllabi. The following
major changes have been made in the present edition:

� Almost all the chapters have been rewritten so that in the present form, the reader will not
find any difficulty in understanding the subject matter.

� The matter of the previous edition has been re-organised so that now each topic gets its
proper place in the book.

� More solved examples have been added so that the reader may gain confidence in the
techniques of solving problems.

� References to the latest papers of various universities and I.A.S. examination have been
made at proper places.

� Errors and omissions of the previous edition have been corrected.
In view of the above mentioned features it is expected that this new edition will prove more

useful to the reader.
I am extremely thankful to the Managing Director, Shri Rajendra Kumar Gupta and the

Director, Shri Ravindra Kumar Gupta for showing keen interest throughout the publication of the
book.

Suggestions for further improvement of the book will be gratefully received.
AUTHOR

PREFACE  TO  THE  FIRST  EDITION
This book has been designed for the use of honours and postgraduate students of various

Indian universities. It will also be found useful by the students preparing for various competitive
examinations. During my long teaching experience I have fully understood the need of the students
and hence I have taken great care to present the subject matter in the most clear, interesting and
complete form from the student’s point of view.

Do not start this book with an unreasonable fear. There are no mysteries in Mathematics. It is
all simple and honest reasoning explained step by step which anybody can follow with a little effort
and concentration. Often a student has difficulty in following a mathematical explanation only
because the author skips steps which he assumes the students to be familiar with. If the student fails
to recount the missing steps, he may be faced with a gap in the reasoning and the author’s conclusion
may become mysterious to him. I have avoided such gaps by giving necessary references throughout
the book. I have been influenced by the following wise-saying.

‘‘My passion is for lucidity. I don’t mean simple mindedness. If people can’t understand
it, why write it.’’

AUTHOR
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PART-I
ELEMENTARY DIFFERENTIAL EQUATIONS

CHAPTERS PAGES
1. Differential equations. Their formation and solutions 1.3–1.35

1.1 Differential equation. Definition 1.3
1.2 Ordinary differential equation 1.3
1.3 Partial differential equation 1.3
1.4 Order of a differential equation 1.3
1.5 Degree of a differential equation 1.4
1.6 Linear and non-linear differential equations 1.4
1.7 Solution of a differential equation. Definition 1.4
1.8 Family of curves 1.5
1.9 Complete primitive (or general solution). Particular

solution and singular solution. Definitions 1.5
1.10 Formation of differential equations 1.6
1.11 Solved examples based on Art. 1.10 1.6
1.12 The Wronskian. Definition 1.10
1.13 Linearly dependent and independent set of functions 1.10
1.14 Existence and uniqueness theorem 1.11
1.14A  Some theorems related to Art. 1.14 1.12
1.15 Solved examples based on Art. 1.14 and 1.14A 1.13
1.16 Some important theorems 1.14
1.17 Solved examples based on Art. 1.16 1.22
1.18 Linear differetial equation and its general solution 1.28

Objective problems on chapter 1 1.31
2. Equations of first order and first degree 2.1–2.76

2.1 Introduction 2.1
2.2 Separation of variables 2.1
2.3 Examples of type-1 based on Art. 2.2 2.1
2.4 Transformation of some equations in the form in which variables

are separable 2.4
2.5 Examples of type-2 based on Art. 2.4 2.5
2.6 Homogeneous equations 2.7
2.7. Working rule for solving homogeneous equations 2.7
2.8 Examples of type-3 based on Art. 2.7 2.8
2.9 Equations reducible to homogeneous form 2.11
2.10 Examples of type-4 based on Art. 2.9 2.12
2.11 Pfaffian differential equation. Definition 2.16
2.12 Exact differential equation 2.16
2.13 Necessary and sufficient conditions for a differential

equation of frst order and first degree to be exact 2.16
2.14 Working rule for solving an exact differential equation 2.17
2.15 Solved examples of type-5 based on Art. 2.14 2.17

(v)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



(vi)

2.16 Integrating factor. Definition 2.22
2.17 Solved examples of type-6 based on rule I 2.23
2.18 Solved examples of type-7 based on rule II 2.25
2.19 Solved examples of type-8 based on rule III 2.26
2.20 Solved examples of type-9 based on rule IV 2.28
2.21 Solved examples of type-10 based on rule V 2.29
2.22 Solved examples of type-11 based on rule VI 2.30
2.23 Linear differential equation 2.32

Working rule for solving linear equations 2.33
2.24 Examples of type-12 based on Art. 2.23 2.33
2.25 Equations reducible to linear form 2.38
2.25A  Bernoulli’s equation 2.39
2.26 Examples of type-13 based on Art. 2.25 2.39
2.27 Examples of type-14 based on Art. 2.25A 2.43
2.28 Geometrical meaning of a differential equation

of the first order and first degree 2.46
2.29 Applications of equations of first order and first degree 2.46
2.30 List of important results for direct applications 2.46
2.31 Solved examples of type-15 based on Art. 2.30 2.48
2.32 Some typical examples on chapter 2 2.61

Objective problems on chapter 2 2.66
3. Trajectories 3.1–3.16

3.1 Trajectory. Definition 3.1
3.2 Determination of orthogonal trajectories in cartesian co-ordinates 3.1
3.3 Self orthogonal family of curves. Definition 3.2
3.4 Working rule for finding orthogonal trajectories of the given family of cuves

in cartesian co-ordinates 3.2
3.5 Solved examples of type-1 based on Art. 3.4 3.2
3.6 Determination of orthogonal trajecories in polar co-ordinates 3.8
3.7 Working rule for getting orthogonal trajectories in polar co-ordinates 3.9
3.8 Solved examples of type-2 based on Art. 3.7 3.9
3.9 Determination of oblique trajectories in cartesian co-ordinates 3.12
3.10 Working rule for finding the oblique trajectories 3.13
3.11 Solved examples of type-3 based on Art. 3.10 3.13

Objective problems on chapter 3 3.14
4. Equations of the first order but not of the first degree singular solutions

 and extraneous loci 4.1–4.47

PART I: Different methods of finding general solutions 4.1–4.26
4.1 Equations of the first order but not of the first degree 4.1
4.2 Method I: Equations solvable for p 4.1
4.3 Solved examples based on Art. 4.2 4.2
4.4 Method II: Equations solvable for x 4.6
4.5 Solved examples based on Art. 4.4 4.7
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(vii)

4.6 Method III: Equations solvable for y 4.11
4.7 Solved examples based on Art. 4.6 4.12
4.8 Method IV: Equations in Clairaut’s form 4.18
4.9 Solved examples based on Art. 4.8 4.19
4.10 Method V: Equations reducible to Clairaut’s form 4.20
4.11 Solved examples based on Art. 4.10 4.21
PART II: Singular solutions 4.26–4.39
4.12 Introduction 4.26
4.13 Relation between the singular solution of a differential equation and the

envelope of the family of curves represented by that differential equation 4.26
4.14 c-discriminant and p-discriminant relations 4.27
4.15 Determination of singular solutions 4.27
4.16 Working rule for finding the singular solution 4.28
4.17 Solved examples based on singular solutions 4.29
PART III: Extraneous loci 4.39–4.44
4.18 Extraneous loci. Definition 4.39
4.19 The tac locus 4.39
4.20 Node locus 4.39
4.21 Cusp locus4.40
4.22 Working rule for finding singular solutions and extraneous loci 4.40
4.23 Solved examples based on Art. 4.22 4.41

Objective problems on chapter 4 4.44
5. Linear differential equations with constant coefficients 5.1–5.70

PART I: Usual methods of solving linear differential equations with
            constant coefficients 5.1–5.52
5.1 Some useful results 5.1
5.2 Linear differential equations with constant coefficients 5.1
5.3 Determination of complementary function (C.F.) of the given equation 5.2
5.4 Working rule for finding C.F. of the given equation 5.4
5.5 Solved examples based on Art. 5.4 5.5
5.6 The symbolic function 1/f(D). Definition 5.9
5.7 Determination of the particular integral (P.I.) of the given equation 5.9
5.8 General method of getting P.I. 5.9

5.9 Corollary. If n is a positive integer, then 
1

!( )

n
ax ax

n
xe e
nD

!
�#

5.10

5.10 Working rule for finding P.I. 5.11
5.11 Solved examples based on Art. 5.10 5.11
5.12 Short methods for finding P.I. of f(D)y = X, when X is of certain special form 5.14
5.13 Short method of finding P.I. of f (D) y = X, when X = eax 5.14
5.14 Working rule for finding P.I. of f (D) y = X, when X = eax 5.14
5.15 Solved examples based on Art. 5.14 5.15
5.16 Short method of finding P.I. of f (D) y = X, when X = sin ax or cos ax 5. 20
5.17 Solved examples based on Art. 5.16 5. 22
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(viii)

5.18 Short method of finding P.I. of f (D) y = X, when X = xm, m being a
positive integer 5.28

5.19 Solved examples based on Art. 5.18 5.28
5.20 Short method of finding P.I. of f (D) y = X, when X = eaxV, where V

is any function of x 5.32
5.21 Solved examples based on Art. 5.20 5.32
5.22 Short method of finding P.I. of f (D) y = X,when X = xV, where V

is any function of x. 5.40
5.23 Solved examples based on Art. 5.22 5.42
5.24 More about particular integral 5.46
5.25 Solved examples based on Art. 5.25 and miscellaneous examples

on part I of this chapter 5.46
PART II: Method of undetermined coefficients 5.52–5.64
5.26 Method of undetermined coefficients for solving linear equations

with constant coefficients 5.52
5.27 Solved examples based on Art. 5.26 5.53

Objective problems on chapter 5 5.64
6. Homogeneous linear equations or Cauchy-Euler equations 6.1–6.24

6.1 Homogeneous linear equation (or Cauchy-Euler equation) 6.1
6.2 Method of solution of homogeneous linear differential equations 6.1
6.3 Working rule for solving linear homogeneous differential equations 6.2
6.4 Solved examples based on Art. 6.3 6.2

6.5 Definition of {1/f (D1)} X, where 1 / ,D d dz∃ x = ez and
X is any function of x 6.13

6.6A. An alternative method of getting P.I. of homogeneous equations 6.14
6.6B. Particular cases 6.14
6.7 Solved examples based on Art. 6.5 and 6.6A 6.15
6.8 Solved examples based on Art. 6.5 and 6.6B 6.16
6.9 Equations reducible to homogeneous linear form. Legendre’s linear equations 6.18
6.10 Working rule for solving Legendre’s linear equations 6.19
6.11 Solved examples based on Art. 6.10 6.19

Objective problems on chapter 6 6.23
7. Method of variation of parameters 7.1–7.26

7.1 Method of variation of parameters for solving dy/dx + P(x)y = Q(x) 7.1
7.2 Working rule for solving dy/dx + Py = Q by variation of parameters,

where P and Q are functions of x or constants. 7.1
7.3 Method of variation of parameters for solving

d2y/dx2 + P(x) (dy/dx) + Q(x) = R(x) 7.2
7.4A. Working rule for solving d2y/dx2 + P(dy/dx) + Qy = R by variation of

parameters,  where P, Q and R are functions of x or constants 7.3
7.5A. Solved examples based on Art. 7.4A 7.3
7.4B. Alternative working rule for solving d2y/dx2 + P(dy/dx) + Qy = R

by variation of parameters, where P, Q  and R are functions of x or constants. 7.17
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7.5B. Solved examples based on Art. 7.4B 7.17
7.6 Working rule for solving d3y/dx3+ P(d2y/dx2) + Q(dy/dx) + Ry = S by variation

of parameters, where P, Q, R and S are functions of x or constants 7.23
7.7 Solved examples based on Art. 7.6 7.23

8. Ordinary simultaneous differential equations 8.1–8.25
8.1 Introduction 8.1
8.2 Methods for solving ordinary simultaneous differential equations with

constant coefficients 8.1
8.3 Solved examples based on Art. 8.2 8.3
8.4 Solution of simultaneous differential equations involving operators

x(d/dx) or t(d/dt) etc 8.21
8.5 Solved examples based on Art. 8.4 8.21
8.6 Miscellaneous examples on chapter 8 8.22

Objective problems on chapter 8 8.24
9. Exact differential equations and equations of special forms 9.1–9.18

9.1 Exact differential equation. Definition 9.1
9.2 Condition of exactness of a linear differential equation of order n 9.1
9.3 Working rule for solving exact equations 9.2
9.4 Examples (Type-1) based on working rule of Art. 9.3 9.2
9.5 Integrating factor 9.7
9.6 Examples (type-2) based on Art. 9.5 9.7
9.7 Exactness of non-linear equations. Solutions by trial 9.9
9.8 Exactness (type-3) based on Art. 9.7 9.9
9.9 Equations of the form dny/dxn = f(x) 9.11
9.10 Examples (type-4) based on Art. 9.9 9.11
9.11 Equations of the form d2y/dx2 = f(y) 9.12
9.12 Examles (Type-5) based on Art. 9.11 9.12
9.13 Reduction of order. Equations that do not contain y directly 9.13
9.14 Examples (Type-6) based on Art. 9.13 9.13
9.15 Equations that do not contain x directly 9.15
9.16 Examples (type-7) based on Art. 9.15 9.15

Objective problems on chapter 9 9.17
10. Linear differential equations of second order 10.1–10.58

10.1 The general (standard) form of the linear differential equation of
 the second order 10.1

10.2 Complete solution of y Py Qy R%% %& & !  is terms of one known integral
belonging to the complementary function (C.F.)
Solution of y Py Qy R%% %& & !  by reduction of its order 10.1

10.3 Rule for getting an integral belonging to C.F. of y Py Qy R%% %& & ! 10.2
10.4 Working rule for finding complete primitive (solution) when an integral

of C.F. is known or can be obtained 10.2
10.4A. Theorem related to Art. 10.2 10.3
10.4B. Solved examples based on Art. 10.4A 10.4
10.5 Solved examples based on Art. 10.4 10.6
10.5A. Some typical solved examples 10.24
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10.6 Removal of first derivative. Reduction to normal form. 10.28
10.7 Working rule for solving problems by using normal form 10.29
10.8 Solved examples based on Art. 10.7 10.29
10.9 Transformation of the equation by changing the independent variable 10.39
10.10 Working rule for solving equations by changing the independent variable 10.39
10.11 Solved examples based on Art. 10.10 10.40
10.12 An important theorem 10.47
10.13 Method of variation of parameters 10.48
10.14 Solved examles based on Art. 10.13 10.48
10.15 Solutions by operators 10.55
10.16 Solved examles based on Art. 10.15 10.56

11. Applications of differential equations 11.1–11.27
PART I : Applications of first order differential equations 11.1–11.4
11.1 Introduction 11.1
11.2 Mixture problems 11.1
11.3 Solved examples based on Art. 11.2 11.2
PART II: Applications of second order linear differential equations 11.4–11.25
11.4 Introduction 11.4
11.5 Newton’s second law and Hooke’s law 11.5
116 The differential equation of the vibrations of a mass on a spring 11.5
11.7 Free, undamped motion 11.6
11.8 Free, damped motion 11.8
11.9 Solved examlpes based on Art. 11.8 11.9
11.10 Forced motion 11.12
11.11 Resonance phenomena 11.15
11.12 Elecric circuit problems 11.20
11.13 Solved examples based on Art. 11.12 11.21
PART III: Applications to simultaneous differential equations 11.25–11.27
11.14 Applications to mechanics 11.25
11.15 Solved examles based on Art 11.4 11.25

Miscellaneous problems based on this part of the book M.1-M.8

PART-II
ADVANCED ORDINARY DIFFERNTIAL EQUATIONS

AND SPECIAL FUNCTIONS
CHAPTERS PAGES

1. Picard’s iterative method. Uniqueness and existence theorem 1.3–1.25
1.1 Introduction 1.3
1.2A. Picard’s method of successive approximation (or Picard’s iteration method) 1.3
1.2B. Solved examples based on Art. 1.2A 1.4
1.3A. Working rule for Picard’s method of solving simulataneous differential equations

with initial conditions 1.10
1.3B. Solved examples based on Art. 1.3A 1.10
1.4 Problems of existence and uniqueness 1.14
1.5 Lipschitz condition 1.14
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1.6 Picard’s theorem. Existence and uniqueness theorem 1.15
1.7 An important theorem 1.18
1.8 Solved examples based on Articles 1.4 to 1.7 1.18

2. Simultaneous differential equations of the form (dx)/P = (dy)/Q = (dz)/R 2.1–2.24
2.1 Introduction 2.1
2.2 The nature of solution of (dx)/P = (dy)/Q = (dz)/R 2.1
2.3 Geometrical interpretation of (dx)/P = (dy)/Q = (dz)/R 2.1
2.4 Rule I for solving (dx)/P = (dy)/Q = (dz)/R 2.1
2.5 Solved examples based on Art. 2.4 2.1
2.6 Rule II for solving (dx)/P = (dy)/Q = (dz)/R 2.3
2.7 Solved examples based on Art. 2.6 2.3
2.8 Rule III for solving (dx)/P = (dy)/Q = (dz)/R 2.5
2.9 Solved examples based on Art. 2.8 2.5
2.10 Rule IV for solving (dx)/P = (dy)/Q = (dz)/R 2.12
2.11 Solved examples based on Art. 2.10 2.13
2.12 Orthogonal trajectories of a system of curves on a surface 2.23
2.12A. Solved examples based on Art. 2.12 2.23

3. Total (or Pfaffian) differential equations 3.1–3.32
3.1 Introduction 3.1
3.2 Total differential equation or Pfaffian differential equation 3.1
3.3 Necessary and sufficient conditions for integability of a single differential

equation Pdx + Qdy + Rdz = 0 3.1
3.4 The conditions for exactness of Pdx + Qdy + Rdz = 0 3.3
3.5 Method of solving Pdx + Qdy + Rdz = 0 3.4
3.6 Special method I. Solution by inspection 3.4
3.7 Solved examples based on Art. 3.6 3.4
3.8 Special method II. Solution of homogeneous equation 3.12
3.9 Solved examples based on Art. 3.8 3.13
3.10 Special method III. Use of auxiliary equations 3.17
3.11 Solved examples based on Art. 3.10 3.17
3.12 General method of solving Pdx + Qdy + Rdz = 0 by taking one variable

as constant 3.19
3.13 Solved examples based on Art. 3.12 3.20
3.14 Solution of Pdx + Qdy + Rdz = 0 when it is exact and homogeneous of

degree 1.n ∋ � 2.24
3.15 The non-integrable single equation 3.25
3.16 Working rule for finding the curves represented

by the solution of non-integrable total differential equation 3.25
3.17 Solved examples bsed on working rule 3.16 2.25
3.18 Geometrical interpretation of Pdx + Qdy + Rdz = 0 3.27
3.19 To show that the locus of Pdx + Qdy + Rdz = 0 is orthogonal to the locus

of (dx)/P = (dy)/Q = (dz)/R 3.27
3.20 Total differential equation containing more than three variables 3.27
3.21 Solved examples based on Art. 3.20 3.28
3.22 Working rule (based on Art. 3.3) for solving Pdx + Qdy + Rdz = 0 3.31
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4. Riccati’s equation 4.1–4.5
4.1 Introduction 4.1
4.2 General solution of Riccati’s equation 4.1
4.3 The cross-ratio of any four particular integrals of a Riccati’s equation

is independent of x 4.2
4.4 Method sof solving Riccati’s equation when three particular integrals are known 4.2
4.5 Method of solving Riccati’s equation when two particular integrals are known 4.3
4.6 Method of solving Riccati’s equation when one particular integral is known 4.4
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LIST OF SOME USEFUL RESULTS FOR DIRECT APPLICATIONS
I Table of elementary integrals
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2 2 1/ 2 2 2 1/ 2 2 1( ) ( / 2) ( ) ( / 2) sin ( / )a x dx x a x a x a�� ! , � ∃ ,#
2 2 1/ 2 2 2 1/ 2 2 2 2 1/2( ) ( / 2) ( ) ( / 2) log { ( ) }a x dx x a x a x a x∃ ! , ∃ ∃ , ∃ ∃#
2 2 1/ 2 2 2 1/ 2 2 2 2 1/ 2( ) ( / 2) ( ) ( / 2) log { ( ) }x a dx x x a a x x a� ! , � � , ∃ �#

Note. If x is replaced by ax + b (a and b being constants) on both sides of any formula of the
above table, then the standard form remains true, provided the result on R.H.S. is divided by a, the
coefficient of x. For examples,

sin( )
cos( ) ;

ax b
ax b dx

a
∃

∃ !#
ax b

ax b e
e dx

a

∃
∃ !#

II. 2 2
( sin cos )

sin ;
ax

ax e a bx b bx
e bx dx

a b
�

!
∃# 2 20

sinax b
e bx dx

a b

−
� !

∃#

2 2
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cos ;
ax

ax e a bx b bx
e bx dx

a b
∃

!
∃# 2 20

cosax a
e bx dx

a b

−
� !

∃#

          & ∋ 1
2 2 2 2

sin ( ) sin( ) cos( ) sin tan
ax ax

ax e e b
e bx c dx a bx c b bx c bx c

aa b a b

�. /∃ ! ∃ � ∃ ! ∃ �0 1∃ 2 3∃
#

& ∋ 1
2 2 2 2

cos ( ) cos( ) cos( ) cos tan
ax ax

ax e e b
e bx c dx a bx c b bx c bx c
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�. /∃ ! ∃ ∃ ∃ ! ∃ �0 1∃ 2 3∃
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III. Integration by parts

& ∋ & ∋1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )
d

f x f x dx f x f x dx f x f x dx dx
dx

4 56 7! � ,8 9: ;< => ?# # # #
In words, this formula states
The integral of the product of two functions

= Ist function × integral of 2nd – integral of (diff. coeff. of 1st × integral of 2nd)
The success of this method depends upon the choosing the first and second functions in

such a way that the second term on the R.H.S. is easily integrable.
Note. While choosing the first and second function, note carefully the following facts:
(i) The second function must be chosen in such a way that its integral is known
(ii) If the integrals of both the functions in the product to be integrated are known, then the

second function must be chosen in much a way that the new integral on the R.H.S. should be
integrable directly or it should the simpler than the original integral.

(iii) If the integrals of both the functions are known and if one them be of the form xn or a0xn

+ a1xn – 1 + ... + an–1 x + an (where n is a positive integers and a0, a1, ..., an are constants), then that

function must be chosen as the first function. For example, in 3 ,xx e dx# x3 must be chosen as the

first function.
(iv) If in the product of two functions the integral of one of the functions is not known, then

that function must be taken as the first function. For example, in 1tanx x dx�#  and logx x dx#
etc we do not know the integrals of tan–1 x and log x and hence we must choose tan–1x and log x
etc as first function.

(v) Sometimes we are to evaluate the integral of a single function by the method of integration
by parts. In such cases, unity (i.e., 1) must be taken as the second function. For example, to find
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1tan ,x dx�# log x dx#  etc, we always take 1 as the function. Thus, we write

1 1tan (tan ) 1 ,x dx x dx� �! ≅# # log (log ) 1x dx x dx! ≅# #  etc.

(vi) The formula of integration by parts can be applied more than once, if necessary.

BERNOULLI’S FORMULA OR GENERALISED RULE OF INTEGRATION BY PARTS
OR CHAIN RULE OF INTEGRATION BY PARTS.

Let u and v be two functions of x. Let dashes denote differentiation and suffixes integration
with respect to x. Thus, we have

,
du

u
dx

!(       
2

2 2 ,...,
du d u

u
dx dx

(
! !((       1 ,v v dx! #       2

2 1 ( ) ,v v dx v dx! !# ##    and so on.

Then 1 2 3 4 ...u v dx u v u v u v u v! � ∃ � ∃( (( (((#
The above rule is applied when u is of the form xn or a0xn + a1 xn–1 + .... + an–1 x + an (where

n is a positive integer) and v is a function of the forms eax, ax, sin ax or cos ax.
While applying the above rule, simplification should be done only when the whole process

of integration is over. Study the solutions of the following problems carefully.

Example 1. 4 4 3 2( )( ) (4 ) ( ) (12 )( ) (24 ) ( ) (24)( )x x x x x xx e dx x e x e x e x e e! � ∃ � ∃#
= ex (x4 – 4x3 + 12x2 – 24x + 24)

Example 2. 5 5 4 3

0
sin ( )( cos ) (5 ) ( sin ) (20 ) (cos )x x dx x x x x x x

)
4! � � � ∃>#

2
0

(60 ) (sin ) (120 ) ( cos ) (120) ( sin )x x x x x
)
5� ∃ � � � ?

    5 3 4 2
0

( 20 120 ) cos (5 60 120)sinx x x x x x x
)

4 5! � ∃ � ∃ � ∃> ?

    5 3 5 3 5 3( 20 120 ) cos ( 20 120 ) ( 1) 20 120! �) ∃ ) � ) ) ∃ �) ∃ ) � ) , � ! ) � ) ∃ )

Some useful direct results based on integration by parts

{ ( ) ( )} ( ).ax axe a f x f x dx e f x∃ !(#  Its particulars case are

{ ( ) ( )} ( );x xe f x f x dx e f x∃ !(# { ( ) ( )} ( )x xe f x f x dx e f x� �� ∃ !(#
IVProperties of definite integrals

(i) ( ) ( )
b b

a a
f x dx f t dt!# # (ii) ( ) ( )

b a

a b
f x dx f x dx! �# #

(iii) ( ) ( ) ( ) ,
b b b

a a c
f x dx f x dx f x dx! ∃# # #  where a < c < b

(iv) 
0

( ) 2 ( ) ,
a a

a
f x dx f x dx!# #  if f (–x) = f (x); ( ) 0,

a

a
f x dx

�
!#  if f (–x) = – f(x)
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(v) 
2

0 0
( ) 2 ( ) ,

a a
f x dx f x dx!# #  if f (2a – x) = f (x); 

2

0
( ) 0,

a
f x dx !#  if f (2a – x) = –f (x)

V Walli’s formulas
(i) If n is an even positive integer, then

/ 2 / 2

0 0

1 3 3 1
sin cos

2 4 2 2
n n n n

x dx x dx
n n

) ) � � )
! ! ≅ ≅≅≅ ≅ ≅

�# #

For example
/ 2 10

0

9 7 5 3 1
sin

10 8 6 4 2 2
x dx

) )
! ≅ ≅ ≅ ≅ ≅#

Note carefully that answer is written down very easily by beginning with the denominator.
We then have the ordinary sequence of natural numbers written down backwards. Thus, in the
above example, we write (10 under 9) × (8 under 7) × (6 under 5) .... etc. stopping at (2 under 1),
and writing a factor )/2 in the end.

(ii) If n is an odd positive integer, then

/ 2 / 2

0 0

1 3 4 2
sin cos

2 5 3
n n n n

x dx x dx
n n

) ) � �
! ! ≅ ≅≅≅≅ ≅

�# #

For example.        
/ 2 9

0

8 6 4 2
sin

9 7 5 3
x dx

)
! ≅ ≅ ≅#

Thus, as above, we begin with the denominator. We then have the ordinary sequence of
natural numbers written down backwards. Thus, in the above example, we write (9 under 8) × (7
under 6) × .... etc stopping at (3 under 2) and additional factor / 2)  is not written in the end.

(iii) If m and n are positive integers, then

/ 2

0

( 1) ( 3) ( 5)...( 1) ( 3)( 5)...
sin cos ,

( ) ( 2) ( 4)...
m n m m m n n n

x x dx k
m n m n m n

) � � � � � �
! ,

∃ ∃ � ∃ �#
where k is / 2)  if m and n are both both positive even integers otherwise k = l. The last factor in
each of the three products (namely, (m – 1) (m – 3) (m – 5) ..., (n – 1) (n – 3) (n – 5) .... and (m
+ n) (m + n – 2) (m + n – 1) ...) is either 1 or 2. In case any of m or n is 1, we simply write 1 as
the only factor to replace its product.

Example 1
/ 2 4 2

0

3 1 1
sin cos

6 4 2 2 32
x x dx

) ≅ ≅ ) )
! , !

≅ ≅#

Example 2
/ 2 4 3

0

3 1 2 2
sin cos 1

7 5 3 1 35
x x dx

) ≅ ≅
! , !

≅ ≅ ≅#

Example 3
/ 2 4

0

3 1 1 1
sin cos

5 3 1 5
x x dx

) ≅ ≅
! !

≅ ≅#
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1.3

1
Differential Equations

Their Formation And Solutions
1.1 Differential equation

Definition. An equation involving derivatives or differentials of one or more dependent
variables with respect to one or more independent variables is called a differential equation.

For examples of differential equations we list the following:
dy ! (x " sin x) dx, ... (1)

54 2

4 2 ,td x d x dx e
dtdt dt

! �# # ∃% &
∋ (

... (2)

y !
/

dy kx
dx dy dx

# , ... (3)

k (d2y/dx2) ! {1 " (dy/dx)2}3/2 ... (4)
)2v/)t2 ! k ()3v/)x3)2 ... (5)

and )2u/)x2 " )2u/)y2 " )2u/)z2 ! 0 ... (6)
Note. Unless otherwise stated, y∗ (or y1), y+ (or y2), ..., y(n) (or yn) will denote

2

2, , ...,
n

n
dy d y d y
dx dx dx

 respectively. Thus, for example equation (3) may be re-written as

y ! /x y k y∗ # ∗ or y ! 1 1/ .x y k y#

1.2 Ordinary differential equation
Definition. A differential equation involving derivatives with respect to a single independent

variable is called an ordinary differential equation.
In Art. 1.1 equations (1), (2), (3) and (4) are all ordinary differential equations.

1.3 Partial differential equation
Definition. A differential equation involving partial derivatives with respect to more than one

independent variables is called a partial differential equation.
In Art. 1.1 equations (5) and (6) are both partial differential equations.

1.4 Order of a differential equation
Definition. The order of the highest order derivative involved in a differential equation is

called the order of the differential equation.
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1.4 Differential Equations their Formation and Solutions

In Art. 1.1 equation (2) is of the fourth order, equations (1) and (3) are of the first order,
equations (4) and (6) are of the second order and equation (5) is of the third order.

1.5 Degree of a differential equation
Definition. The degree of a differential equation is the degree of the highest derivative which

occurs in it, after the differential equation has been made free from radicals and fractions as far as
the derivatives are concerned. Note that the above definition of degree does not require variables
x, t, u etc. to be free from radicals and fractions.

In Art 1.1 equations (1), (2) and (6) are of first degree. Making equation (3) free from
fractions, we obtain     y (dy/dx) ! 2( / ) ,x dy dx k#
which is of second degree. Again we must square both sides of (4) to make it free from radicals.
Then by definition, the degree of (4) and (5) is two.

1.6 Linear and non-linear differential equations
Definition. A differential equation is called linear if (i) every dependent variable and every

derivative involved occurs in the first degree only, and (ii) no products of dependent variables and/or
derivatives occur. A differential equation which is not linear is called a non-linear differential equation.

In Art 1.1 equations (1) and (6) are linear and equations (2), (3), (4) and (5) are all non-linear.

SOLVED EXAMPLES
Ex. 1. Find the order and degree of the following differential equations. Also classify them

as linear and non-linear.
(a) y ! x (dy/dx) " k/(dy/dx) (b) y ! x (dy/dx) " a {1 " (dy/dx)2}1/2

(c) dy ! (y " sin x) dx (d) (d2y/dx2)3 " x (dy/dx)5 " y ! x2

(e) {y + x (dy/dx)2}4/3 ! x(d2y/dx2) [Rajsthan 2010]
(f) (d2y/dx2)1/3 = (y + dy/dx)1/2 [Pune 2010]
Sol. (a) Multiplying both sides of the given equation by dy/dx, we get

y (dy/dx) ! 2( / ) ,x dy dx k# ... (1)
which is of the first order and second degree because the order of the highest differential
coefficient dy/dx is one and the highest degree of dy/dx is 2. Here (1) is non-linear differential
equation because degree of dy/dx is 2 and product y (dy/dx) of dependent variable y and its
derivative (dy/dx) occurs.

(b) Re-writing the given equation, y – x (dy/dx) ! a {1 " (dy/dx)2}1/2

To get rid of radicals, square both sides to obtain
y2 " x2 (dy/dx)2 – 2xy (dy/dx) ! a2 {1 " (dy/dx)2},

which is of the first order and second degree because the order of the highest differential
coefficient dy/dx is one and the highest degree of dy/dx is 2. Since degree of dy/dx is 2, the given
equation is non-linear.

(c) Ans. It is of first order, first degree and linear.
(d) Ans. It is of second order, third degree and non-linear.
(e) Order 2, degree 3, non-linear (f) order 2, degree 2, non-linear

1.7 Solution of a differential equation
Definition. Any relation between the dependent and independent variables, when substituted

in the differential equation, reduces it to an identity is called a solution or integral of the
differential equation. It should be noted that a solution of a differential equation does not involve
the derivatives of the dependent variable with respect to the independent variable or variables.
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Differential Equations their Formation and Solutions 1.5

For example, y ! ce2x is a solution of dy/dx ! 2y because by putting y ! ce2x and dy/dx ! 2ce2x,
the given differential equation reduces to the identity 2ce2x ! 2ce2x. Observe that y ! ce2x is a
solution of the given differential equation for any real constant c which is called an arbitrary
constant.

SOLVED EXAMPLES
Ex. 1. Show that y ! (A/x) " B is a solution of (d2y/dx2) + (2/x) × (dy/dx) ! 0.
Sol. Given that (d2y/dx2) " (2/x) × (dy/dx) ! 0. ... (1)
Also given that y ! (A/x) " B. ... (2)
Differentiating (2) w.r.t. ‘x’, dy/dx ! – (A/x2) ... (3)
Differentiating (3) w.r.t. ‘x’, d2y/dx2 ! 2A/x3 ... (4)
Substituting for dy/dx and d2y/dx2 from (3) and (4) in (1), we get

(2A/x3) " (2/x) × (– A/x2) ! 0            or            0 ! 0,
which is true. Hence (2) is a solution of (1).

Ex. 2. Show that y ! a cos (mx " b) is a solution of the differential equation d2y/dx2 " m2y ! 0.
Sol. Try yourself.

1.8 Family of curves
Definition. An n-parameter family of curves is a set of relations of the form

{(x, y) : f (x, y, c1, c2, ..., cn) ! 0},
where ‘f ’ is a real valued function of x, y, c1, c2, ..., cn  and each ci (i ! 1, 2, ..., n) ranges over an
interval of real values.

For example, the set of concentric circles defined by x2 " y2 ! c is one parameter family if c
takes all non-negative real values.

Again, the set of circles, defined by (x – c1)2 " (y – c2)2 ! c3 is a three-parameter family if c1,
c2 take all real values and c3 takes all non-negative real values.

1.9 Complete primitive (or general solution). Particular solution and singular solution.
Definitions
Let F (x, y, y1, y2, ..., yn) ! 0 ... (1)

be an nth order ordinary differential equation.
(i) A solution of (1) containing n independent arbitrary constants is called a general solution.

(ii) A solution of (1) obtained from a general solution of (1) by giving particular values to one
or more of the n independent arbitrary constants is called a particular solution of (1).

(iii) A solution of (1) which cannot be obtained from any general solution of (1) by any choice
of the n independent arbitrary constants is called a singular solution of (1).

The student can easily verify that y ! c1ex " c2e2x ... (2)
is the general solution of y+ – 3y∗ " 2y ! 0. ... (3)
Since c1 and c2 are independent arbitrary constants and the order of (3) is two, (2) is a general

solution of (3). Some particular solutions of (3) are given by y ! ex " e2x, y ! ex – 2e2x etc.
Again, the reader can verify that y ! (x " c)2 ... (4)

is the general solution of (dy/dx)2 – 4y ! 0. ... (5)
The reader can also verify that y ! 0 is also solution of (5). Moreover, y ! 0 cannot be

obtained by any choice of c in (4). Hence, y ! 0 is a singular solution of (5).
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1.6 Differential Equations their Formation and Solutions

1.10 Formation of differential equations
Suppose we are given a family of curves containing n arbitrary constants. Then we can

obtain an nth order differential equation whose solution is the given family as follows.
Working rule to form the differential equation from the given equation in x and y,

containing n arbitrary constants.
Step I. Write the equation of the given family of curves.
Step II. Differentiate the equation of step I, n times so as to get n additional equations

containing the n arbitrary constants and derivatives.
Step III. Eliminate n arbitrary constants from the (n " 1) equations obtained in steps I and

II. Thus, we obtain the required differential equation involving a derivative of nth order.

1.11 Solved examples based on Art. 1.10
Ex. 1. Find the differential equation of the family of curves y ! emx, where m is an arbitrary

constant.
Sol. Given that y ! emx. ... (1)
Differentiating (1) w.r.t. ‘x’, we get dy/dx ! memx. ... (2)
Now,  (1) and (2)   , dy/dx ! my   ,   m ! (1/y) × (dy/dx). ... (3)
Again, from (1), mx ! loge y so that m ! (loge y)/x. ... (4)
Eliminating m from (3) and (4), we get (1/y) × (dy/dx) ! (1/x) × loge y.
Ex. 2. (a) Find the differential equation of all straight lines passing through the origin.
(b) Find the differential equation of all the straight lines in the xy-plane.
Sol. (a) Equation of any straight line passing through the origin is

y ! mx, m being arbitrary constant. ... (1)
Differentiating (1) w.r.t. ‘x’, dy/dx ! m. ... (2)
Eliminating m from (1) and (2), we get y ! x (dy/dx).
(b) We know that equation of any straight line in the xy-plane is given by

y ! mx " c, m and c being arbitrary constants. ... (1)
Differentiating (1) w.r.t. ‘x’, we get dy/dx ! m. ... (2)
Differentiating (2) w.r.t. ‘x’, we get d2y/dx2 ! 0, ... (3)

which is the required differential equation.
Note. Equation (3) is free from m and c and so it is not necessary to eliminate m and c from

(1), (2) and (3) as usual.
Ex. 3. (a) Obtain a differential equation satisfied by family of circles x2 " y2 ! a2, a being an

arbitrary constant.
(b) Obtain a differential equation satisfied by the family of concentric circles.
Sol. (a) Given x2 " y2 ! a2. ... (1)
Differentiating (1) w.r.t. ‘x’, we get           2x " 2y (dy/dx) ! 0       or        x " y (dy/dx) ! 0,

which is the required differential equation.
(b) Let the centre of the given family of concentric circles be (0, 0). Then we know that the

equation of the family of concentric circles is given by x2 " y2 ! a2, a being arbitrary constant.
Now proceed as in part (a). Ans. x " y (dy/dx) ! 0.
Ex. 4. (a) Find the differential equation of all circles which pass through the origin and whose

centres are on the x-axis. [I.A.S. (Prel.) 2002]
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Differential Equations their Formation and Solutions 1.7

(b) Find the differential equation of the system of circles touching the y-axis at the origin.
[I.A.S. (Prel.) 1997]

(c) Find the differential equation of all circles touching a given straight line at a given point.
Sol. (a) We know that the equation of any circle passing through the origin and whose centre

is on the x-axis is given by
x2 " y2 " 2gx ! 0, g being an arbitrary constant. ... (1)

Differentiating (1) w.r.t. ‘x’, we get 2x " 2y (dy/dx) " 2g ! 0. ... (2)
From (1),          2gx ! – (x2 " y2)             so that             2g ! – (x2 " y2)/x ... (3)
Substituting for 2g from (3) in (2), we have

2x " 2y
2dy x y

dx x

−#! � .% &
∋ (

! 0 or 2xy dy
dx

" x2 – y2 ! 0.

(b) We note that any circle which touches the y-axis at the origin must have its centre on the
x-axis and so equation of any such circle is given by

x2 " y2 " 2gx ! 0, g being an arbitrary constant. ... (1)
Now proceed as in part (a) and obtain same answer.
(c) For the sake of simplification, without loss of any generality, take the given point as the

origin and the given straight line as the y-axis.
Now proceed as in part (b) and get the same answer.
Ex. 5. (a) Find the differential equation of all circles which pass through the origin and

whose centres are on the y-axis.
(b) Find the differential equation of the system of circles touching the x-axis at the origin.

[I.A.S. (Prel.) 1999]
Sol. Parts (a) and (b). Here in both parts the equation of any circle is

x2 " y2 " 2fy ! 0, f being an arbitrary constant. ... (1)
Proceed as in Ex. 4(a). Ans. (x2 – y2) (dy/dx) – 2xy ! 0.
Ex. 6. Find the differential equation which has y ! a cos (mx " b) for its integral, a and b

being arbitrary constants and m being a fixed constant.
Sol. Given that y ! a cos (mx " b). ... (1)
Differentiating (1) w.r.t. ‘x’, we get dy/dx ! – am sin (mx " b). ... (2)
Differentiating (2) w.r.t. ‘x’, we get  d2y/dx2 ! – am2 cos (mx " b). ... (3)

or d2y/dx2 ! – m2y, using (1)
Thus, the required differential equation is d2y/dx2 + m2y ! 0.
Ex. 7. Find the differential equation from the relation y ! a sin x " b cos x " x sin x, where

a and b are arbitrary constants.
Sol. Given y ! a sin x " b cos x " x sin x. ... (1)
Differentiating (1) w.r.t. ‘x’,   dy/dx  !   a cos x – b sin x " sin x " x cos x. ... (2)
Differentiating (2) w.r.t. ‘x’,   d2y/dx2  !   – a sin x – b cos x " 2 cos x – x sin x

or d2y/dx2 ! 2 cos x – (a sin x + b cos x + x sin x) ! 2 cos x – y, by (1).
/ (d2y/dx2) " y ! 2 cos x, which is the required differential equation.
Ex. 8. (a) Find the differential equation of the family of curves y ! ex (A cos x " B sin x),

where A and B are arbitrary constants. [G.N.D.U. Amritsar 2010]
(b) Form a differential equation of which y ! ex (A cos 2x " B sin 2x) is a solution, A and

B being arbitrary constants.
Sol. (a) Given that y ! ex (A cos x + B sin x). ... (1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1.8 Differential Equations their Formation and Solutions

Differentiating (1), y∗ ! ex (– A sin x " B cos x) " ex (A cos x " B sin x)
or y∗ ! ex (– A sin x " B cos x) " y, using (1). ... (2)

Differentiating (2) again with respect to x, we get
y+ ! – ex (A cos x " B sin x) " ex (– A sin x " B cos x) " y∗. ... (3)

Now from (2), we get    ex (– A sin x " B sin x) ! y∗ – y. ... (4)
Hence, eliminating A and B from (1), (3) and (4), we get

y+ ! – y " y∗ – y " y∗            or            y+ – 2y∗ " 2y ! 0.
(b) Proceed as in Ex. 8(a). Ans. y+ – 2y∗ " 5y ! 0
Ex. 9. By eliminating the constants a and b obtain the differential equation for which

xy ! aex " be–x " x2 is a solution. [I.A.S. 1992]
Sol. Given that xy ! aex " be–x " x2. ... (1)
Diff. (1) w.r.t. ‘x’, we get xy∗ " y ! aex – be–x " 2x. ... (2)
Diff. (2) w.r.t. ‘x’, we get xy+ " y∗ " y∗ ! aex " be–x " 2

or xy+ " 2y∗ ! (xy – x2) " 2, using (1)
or xy+ " 2y∗ – xy " x2 – 2 ! 0.

Ex. 10. Find the differential equation corresponding to the family of curves y ! c (x – c)2,
where c is an arbitrary constant. [I.A.S. (Prel.) 2009; Karnatak 1995]

Sol. Given that y ! c (x – c)2. ... (1)
Diff. (1) w.r.t. ‘x’, we get y∗ ! 2c (x – c). ... (2)
From (1) and (2),                y∗/y ! 2/(x – c)            so that              c ! x – (2y/y∗). ... (3)
Putting this value of c in (2), the required equation is

y∗ ! 2 {x – (2y/y∗)} × (2y/y∗)          or         (y∗)3 ! 4y (xy∗ – 2y).
Ex. 11. Find the differential equation of all circles of radius a. [Nagarjuna 2003]
Sol. The equation of all circles of radius a is given by

(x – h)2 " (y – k)2 ! a2, ... (1)
where h and k, are to be taken as arbitrary constants.

Diff. (1) w.r.t. ‘x’, we get  (x – h) " (y – k) y∗ ! 0. ... (2)
Diff. (2), 1 " (y∗)2 " (y – k) y+ ! 0 or y – k ! – {1 " (y∗)2}/y+. ... (3)
Putting this value of y – k in (2), we get

x – h ! – (y – k) y∗ ! {1 " (y∗)2} × (y∗/y+). ... (4)
Using (3) and (4), (1) gives the required equation as

2 2 2 2 2

2 2
{1 ( ) } ( ) {1 ( ) }

( ) ( )
y y y

y y
# ∗ ∗ # ∗

#
+ +

! a2                  or {1 " (y∗)2}3 ! a2 (y+)2.

Ex. 12. Show that Ax2 " By2 ! 1 is the solution of x [y (d2y/dx2) " (dy/dx)2] ! y (dy/dx).
[Gauhati 1996, Indore 1997]

Sol. Given that Ax2 " By2 ! 1. ... (1)
Diff. (1), 2Ax " 2By (dy/dx) ! 0 or Ax " By (dy/dx) ! 0.  ... (2)
Diff. (2), A " B {y (d2y/dx2) " (dy/dx) × (dy/dx)} ! 0. ... (3)
Multiplying (3) by x, we get Ax " Bx {y (d2y/dx2) " (dy/dx)2} ! 0.            ... (4)
Subtracting (2) from (4), we get           Bx {y (d2y/dx2) " (dy/dx)2} – By (dy/dx) ! 0

or x [y (d2y/dx2) " (dy/dx)2] ! y (dy/dx), as required.
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Differential Equations their Formation and Solutions 1.9

Ex. 13. Find the third order differential equation whose solution is the 3-parameter family
of curves defined by x2 " y2 " 2ax " 2by " c ! 0, where a, b, c are parameters.

Sol. Given x2 " y2 " 2ax " 2by " c ! 0. ... (1)
Differentiating (1) w.r.t. ‘x’ three times in succession, we have

x " y y(1) " a " b y(1) ! 0, where y(1) ! dy/dx ... (2)
1 " [y(1)]2 " y y(2) " b y(2) ! 0, where y(2) ! d2y/dx2 ... (3)

and 3y(1) y(2) " y y(3) " b y(3) ! 0., where y(3) ! d3y/dx3 ... (4)
We now eliminate a, b, c from (1), (2), (3) and (4). To do so, we simply eliminate b from (3) and

(4). Multiplying both sides of (3) by y(3) and (4) by y(2) and subtracting, we have
y(3) " y(3) [y(1)]2 " y y(2) y(3) – 3y(1) [y(2)]2 – y y(2) y(3) ! 0

or [1 " (y(1))2] y(3) – 3y(1) (y(2))2 ! 0.

EXERCISE 1(A)

1. Form the differential equations for the following:
(a) y ! Ae2x " Be–2x, A, B being arbitrary constants. Ans. y+ ! 4y

(b) y ! k sin–1 x, k parameter Ans. y ! y∗ 2(1 )x.  sin–1x

(c) y ! 0x " 1x2, 0, 1 parameters [Rajasthan 2010] Ans. x2y+ – 2xy∗ " 2y ! 0
(d) y ! A cos nt " B sin nt, (A, B parameters) Ans. (d2x/dt2) " n2x ! 0
(e) xy ! aex " be–x, (a, b parameters) [Behrampur 2010] Ans. xy+ + 2y∗ – xy ! 0

2. Find the differential equation of the family of curves y ! Ae3x " Be5x; for different values of A and B.
Ans. y+ – 8y∗ " 15y ! 0

3. Find the differential equation of all circles passing through origin and having their centres on the x-
axis. Ans. 2xy∗ ! y2 – x2

4. Show that v ! B " A/r is a solution of (d2v/dr2) " (2/r) × (dv/dr) ! 0.
5. Find a differential equation with the following solution: y ! aex " be–x " c cos x " d sin x,

where a, b, c and d are parameters. Ans. d4y/dx4 – y ! 0
6. Classify the following equations as linear and non-linear equations and write down their orders

(a) 
3 2

3 2
a y d y dy

dxdx dx
# 2 " y ! x.                   (b) x 

4 2

4 2
d y d y
dx dx

# ! ex. (c) 
dy
dx

" y2 ! x2.

Ans. (a) Non-linear; 3   (b) Linear, 4   (c) Non-linear, 1
7. Write down the order and degree of x2 (d2y/dx2)3 " y (dy/dx)4 " y4 ! 0. How many constants does the

general solution of the differential equation must contain. Ans. 2, 3, 2
8. Find the differential equation of the family of parabolas y2 ! 4ax. Ans. y ! 2x (dy/dx)
9. Show that the differential equation of the family of circles of fixed radius r with centre on y-axis is

(x2 – r2) (dy/dx)2 " x2 ! 0.
10. Find the differential equation of all

(a) parabolas of latusrectum 4a and axis parallel to y-axis.
(b) tangent lines to the parabola y ! x2.
(c) ellipses centered at the origin.
(d) circles through the origin.
(e) circles tangent to y-axis.
(f) parabolas with axis parallel to the axis of y.
(g) parabolas with foci at the origin and axis along x-axis.
(h) all conics whose axes coincide with axes of co-ordinates.
Ans. (a) 2ay2 – 1 ! 0 (b) 4 (y – xy1) " (y1)2 ! 0

(c) xyy2 " x (y1)2 – yy1 ! 0 (d) (x2 " y2) y2 ! 2 (xy1 – y) (1 " y1
2)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1.10 Differential Equations their Formation and Solutions

(e) x2 y1
2 – 2xy1y2 (1 " y1

2) – (1 " y1
2) ! 0 (f) y3 ! 0

(g) yy1
2 " 2xy1 – y ! 0 (h) xyy2 " xy1

2 ! xy1.
11. Form the differential equation of family of curves y ! cx " c2, c being a comitent [Pune 2010]

Ans. y ! xy∗ ! y∗∗2

1.12 The Wronskian [Delhi Maths (Hons) 2000]
Definition. The Wronskian of n functions y1 (x), y2 (x), ..., yn (x) is denoted by W (x) or

W (y1, y2, ..., yn) (x) and is defined to be the determinant

W (y1, y2, ..., yn) (x) ! W (x) !

1 2

1 2

( 1) ( 1) ( 1)
1 2

�
�

� � � �

�

n

n

n n n
n

y y y
y y y

y y y. . .

∗ ∗ ∗
.

1.13 Linearly dependent and independent set of functions
Definitions. n functions y1 (x), y2 (x), ..., yn (x) are linearly dependent if there exist constants

c1, c2, ..., cn (not all zero), such that
c1 y1 " c2 y2 " ... " cn yn ! 0. ... (1)

If, however, identity (1) implies that c1 ! c2 ! ... ! cn ! 0,
then y1, y2, ..., yn are said to be linearly independent.

SOLVED EXAMPLES
Ex. 1. Consider the two functions f1 (x) ! x3 and f2 (x) ! x2 | x | on the interval [– 1, 1].
(i) Show that their Wronskian W (f1, f2) vanishes identically.

(ii) Show that f1 and f2 are not linearly dependent.
(iii) Do (i) and (ii) contradict theorem III, Art. 1.16 If not, why not.

Sol. Left as an exercise.
Ex. 2. Define the concept of linear dependence and independence. Hence, show that
(i) sin x and cos x, – 3 < x < 3 are linearly independent.

(ii) ei4x, sin 4 x, cos 4 x, – 3 < x < 3, 4 being a real number, are linearly dependent.
(iii) 1, x, x2, ......, xn, – 3 < x < 3 are linearly independent.
(iv) x2 and x | x | are linearly independent on – 3 < x < 3.
(v) sin x, sin 2x, sin 3x are linearly independent on [0, 25].

(vi) ex, cos x, sin x are linearly independent on a real line.
(vii) sin x, sin (x + 5/8), sin (x – 5/8) are linearly dependent on ]– 3, 3[.

(viii) x4 and x3 | x | are linearly independent on [– 1, 1] but are linearly dependent on [– 1, 0]
and [0, 1]

(ix) f1 + f2 and f1 – f2 are linearly independent on an interval I whenever f1 and f2 are linearly
independent on the interval I.

(x) f and g are linearly independent on [– 1, 1], if functions f and g are defined on [– 1, 1]
as follows: ( )

( )
f x 0
g x 1

∃ 6
7∃ 8

if x 9 [– 1, 0];              
( )
( )

f x sin x
g x 1 x

∃ 6
7∃ . 8

if x 9 [0, 1]
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Sol. A set of n real or complex valued functions y1 (x), y2 (x), ......, yn (x), n : 2 defined on an
interval I are linearly dependent on I if there exist n constants, real or complex, c1, c2, ......, cn, not
all of them simultaneously zero such that

c1 y1 (x) + c2 y2 (x) + ...... + cn yn (x) ! 0 for each x in I.
The functions y1 (x), y2 (x), ......, yn (x) are linearly independent on I if they are not linearly

dependent on I.
(i) Consider c1 sin x + c2 cos x ! 0, – 3 < x < 3 ... (1)
Differentiating (1) w.r.t. ‘x’, we get c1 cos x – c2 sin x ! 0 ... (2)
Solving (1) and (2), c1 ! c2 ! 0. Hence, sin x and cos x are linearly independent on

– 3 < x < 3.
(ii) We have, ei4x ! cos 4x + i sin 4x, by Euler’s theorem
Hence, ei4x – cos 4x – i sin 4x ! 0,

showing that ei4x, cos 4x, sin 4x are linearly dependent.
(iii) Consider, c0 + c1x + c2 x2 + ...... + cn xn ! 0, – 3 < x < 3 ... (A1)
Differentiating (A1) w.r.t. ‘x’ successively on – 3 < x < 3 yields

c1 + 2c2x + 3c3x2 + ...... + n cnxn–1 ! 0 ... (A2)
2c2 + 6c3x + ...... + n (n – 1) cn xn–2 ! 0 ... (A3)

.......................................................................
n ! cn ! 0 ... (A4)

Solving (A1), (A2), ......, (An) yields c1 ! c2 ! c3 ! ...... ! cn–1 ! cn ! 0 and so the given
functions 1, x, x2, ......, xn are linearly independent

(iv) Here, c1 x2 + c2 x | x | ! 0 ... (1)
, c1 x2 + c2 x2 ! 0 for x : 0 ... (2)

and c1 x2 – c2 x2 ! 0 for x < 0 ... (3)
In order that (1) may hold, (2) and (3) should hold simultaneously. This is possible only when

c1 + c2 ! 0 and c1 – c2 ! 0, i.e., c1 ! c2 ! 0. Hence, x2 and x | x | are linearly independent on
– 3 < x < 3.

1.14 Existence and uniqueness theorem [Delhi B.Sc. (Hons) II 2011]
Consider a second order linear differential equation of the form

a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! r (x), ... (1)
where a0 (x), a1 (x), a2 (x) and r (x) are continuous functions on an interval (a, b) and a0 (x) ; 0
for each x 9 (a, b). Let c1 and c2 be arbitrary real numbers and x0 9 (a, b). Then there exists a
unique solution y (x) of (1) satisfying y (x0) ! c1 and y∗ (x0) ! c2. Moreover, this solution y (x) is
defined over the interval (a, b).

Note 1. The above theorem is an existence theorem because it says that the initial value
problem does have a solution. It is also a uniqueness theorem, because it says that there is only one
solution. Clearly, this theorem also applies to an associated homogenous equation

a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! 0. ... (2)
Note 2. In this chapter, we shall assume without proof, the above basic theorem for initial

value problems associated with linear differential equations.
Note 3. The conditions of existence and uniqueness theorem cannot be further relaxed. For

example, if a0 (x) ! 0 for some x 9 (a, b), then the solution of (1) may not be unique or may not exist
at all. For an example, refer solved example 1 of Art. 1.15.
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1.12 Differential Equations their Formation and Solutions

Note 4. Existence and uniqueness theorem can be extended to an nth order linear differential
equation.

Corollary. If y (x) be a solution of a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! 0 satisfying y (x0) ! 0 and
y∗ (x0) ! 0 for some x0 9 (a, b), then y (x) is identically zero on (a, b).

Proof. By definition, here y (x) is a solution of the given equation which satisfies y (x0) ! 0
and y∗ (x0) ! 0. Again, by existence and uniqueness theorem, y (x) is the unique solution satisfying
y (x0) ! 0 and y∗ (x0) ! 0. It follows that y (x) < 0 on (a, b), i.e., y (x) is identically zero on (a, b).

Note 1. A real valued function y (x) is said to be identically zero on an interval (a, b) written
as y (x) < 0, if y (x) ! 0 for each x 9 (a, b).

Note 2. A function u (x) is called a solution of the equation
a0 (x) y+ (x) " a1 (x) y∗ (x) " a2 (x) y (x) ! 0

if       a0 (x) u+ (x) " a1 (x) u∗ (x) " a2 (x) u (x) ! 0, for each x 9 (a, b).

1.14A (a) State the existence and uniqueness theorem for the nth order differential equation
L (y) (x) ! y(n) (x) + p1 (x) y(n–1) (x) + ...... + pn (x) y (x) ! 0, x 9 I,

which is a linear homogeneous equation.
(b) Show that there are three linearly independent solutions of the third order equation

y+∗ + p1 (x) y+ + p2 (x) y∗ + p3 (x) y ! 0, x 9 I where p1, p2 and p3 are functions, defined and
continuous on an interval I.

(c) Let = be any solution of y+∗ + p1 (x) y+ + p2 (x) y∗ + p3 (x) y ! 0, x 9 I. Here p1, p2 and p3
are functions defined and continuous on an interval I. Further, let =1, =2 and =3 be three linearly
independent solutions of the given equation. Prove that constants c1, c2 and c3 exist such that

= ! c1 =1 + c2 =2 + c3 =3, x 9 I.
Sol. (a) Statement of the existence and uniqueness theorem for

L (y) (x) ! y(n) (x) + p1 (x) y(n–1) (x) + ...... + pn (x) y (x) ! 0, x 9 I ... (1)
Let p1, p2, ......, pn be defined and continous on an interval I which contains a point x0. Let

a0, a1, ......, an–1 be n constants. Then, there exists a unique solution = on I of the nth order equation
(1) satisfying the initial conditions.

= (x0) ! a0, =∗ (x0) ! a1, ...... , =(n–1) (x0) ! an–1

Note. Suppose that =1 (x), ......, =n (x) are n solutions of L (y) (x) ! 0 given in (1) and suppose
that c1, c2, ......, cn are n arbitrary constants. Since L (=1) ! L (=2) ! ...... ! L (=n) ! 0, and L is a
linear operator, hence we have

L (c1 =1 + c2 =2 + ...... + cn =n) ! c1 L (=1) + ...... + cn L (=n) ! 0
In case n solutions =1, ......, =n are linerly independent and c1, c2, .... , cn are constants, then

c1=1 + c2=2 + ..... + cn=n ! 0, x 9 I , c1 ! c2 ! .... cn ! 0
(b) Given y+∗ + p1 (x) y+ + p2 (x) y∗ + p3 (x) y ! 0, x 9 I ... (1)
Using the existence and uniqueness theorem stated in part (a), we conclude that there exist

solutions =1 (x), =2 (x) and =3 (x) of (1) such that for x0 9 I.
=1 (x0) ! 0, 1 0( ) 0 ,x∗= ∃ 1 0( ) 0x∗∗= ∃

=2 (x0) ! 0, 2 0( ) 1,x∗= ∃ 2 0( ) 0x∗∗= ∃ ... (2)

and =3 (x0) ! 0, 3 0( ) 0,x∗= ∃ 3 0( ) 1x∗∗= ∃
We now proceed to prove that =1, =2 and =3 are linearly independent. Assume that

c1 =1 (x) + c2 =2 (x) + c3 =3 (x) ! 0, x 9 I ... (3)

6
>
7
>
8
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for some constants c1, c2 and c3. At x ! x0, from (3), we obtain
c1 =1 (x0) + c2 =2 (x0) + c3 =3 (x0) ! 0 ... (4)

Differentiating (3) w.r.t. ‘x’ and then replacing x by x0 yields

1 1 0 2 2 0 3 3 0( ) ( ) ( ) 0c x c x c x∗ ∗ ∗= # = # = ∃ ... (5)

Differentiating (3) twice w.r.t. ‘x’ and then replacing x by x0 yields

1 1 0 2 2 0 3 3 0( ) ( ) ( ) 0c x c x c x∗∗ ∗∗ ∗∗= # = # = ∃ ... (6)

Using (2) in (4), (5) and (6), we have c1 ! c2 ! c3 ! 0.
Hence, =1, =2 and =3 are linearly independent.
(c) Given y+ + p1 (x) y+ + p2 (x) y∗ + p3 (x) y ! 0, x 9 I ... (1)
Given that = is a solution of (1). Using the existence and uniqueness theorem stated in part

(a), at x ! x0 9 I, there exist constants a1, a2 and a3 such that
  =(x0) ! a1,             =∗(x0) ! a2                   and                   =∗∗(x0) ! a3

The solutions =1, =2 and =3 are as given by part (b). We now define a function ? on I such
that ?(x) ! a1=1(x) + a2 =2(x) + a3=3(x), x 9 I. Clearly ? satisfies (1) and

    ?(x0) ! a1,          ?∗(x0) ! a2              and             ?∗∗(x0) ! a3

Observe that two solutions = and ? of (1) have the same initial conditions. Hence by the
existence and uniqueness theorem, it follows that =(x) ! ?(x) for x 9 I.

Remark. From the parts (b) and (c), it follows that for a third order equation (1) of part (a)
and (b), there are three linearly independent solutions and that any other solution of that equation
is a linear combination of these solutions.

1.15 Solved examples based on Art 1.14 and 1.14A
Ex. 1. Show that the function y ! cx2 " x " 3 is a solution, though not unique, of the initial

value problem x2y+ – 2xy∗ " 2y ! 6 with y (0) ! 3, y∗ (0) ! 1 on (– 3, 3).
[Delhi Maths (Hons.) 1994, 2007]

Sol. Given equation is x2y+ – 2xy∗ " 2y ! 6 ... (1)
and given function is y (x) ! cx2 " x " 3. ... (2)

Differentiating (2), we get y∗ ! 2cx " 1         and         y+ ! 2c. ... (3)
/ L.H.S. of (1) ! x2 (2c) – 2x (2cx " 1) " 2 (cx2 " x " 3), by (2) and (3)

! 6 ! R.H.S. of (1),
showing that (2) is a solution of (1). Again, from (2) and (3), we get

y (0) ! (c × 0) " 0 " 3 ! 3   and   y∗ (0) ! (2c) × (0) " 1 ! 1.
Comparing (1) with a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! r (x),

here   a0 (x) ! x2,           a1 (x) ! – 2x,            a2 (x) ! 2             and             r (x) ! 6,
which are continuous functions on (– 3, 3).

Since a0 (x) ! x2 ! 0 for x ! 0 9 (– 3, 3), therefore, the solution y ! cx2 " x " 3 is not unique
(refer note 3 of Art 1.14). We see that y ! cx2 " x " 3 is solution for any real value of c. For
example, y ! 2x2 " x " 3 and y ! 3x2 " x " 3 are both solutions of (1) with y (0) ! 3 and y∗ (0) ! 1.

Ex. 2. Show that y ! 3e2x " e–2x – 3x is the unique solution of the initial value problem
y+ – 4y ! 12x, where y (0) ! 4. y∗ (0) ! 1. [Delhi Maths (Hons.) 1996]

Sol. Given equation is y+ – 4y ! 12x ... (1)
and the given function is y ! 3e2x " e–2x – 3x. ... (2)
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Differentiating (2), we get y∗ ! 6e2x – 2e–2x – 3      and      y+ ! 12e2x " 4e–2x. ... (3)
/ L.H.S. of (1) ! 12e2x " 4e–2x – 4 (3e2x " e–2x – 3x), using (2) and (3)

! 12x ! R.H.S. of (1),
showing that (2) is a solution of (1). Again, from (2) and (3), we get

y (0) ! 3 " 1 – (3 × 0) ! 4 and y∗ (0) ! 6 – 2 – 3 ! 1.
Comparing (1) with a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! r (x), here

a0 (x) ! 1,      a1 (x) ! 0,      a2 (x) ! – 4      and      r (x) ! 12x,
which are all continuous functions in (– 3, 3) and a0 (x) ! 1 ; 0 for each x 9 (– 3, 3). Therefore,
by existence and uniqueness theorem, it follows that (2) is the unique solution of (1), satisfying
y (0) ! 4 and y∗ (0) ! 1.

Ex. 3. Find the unique solution of y+ ! 1 satisfying y (0) ! 1 and y∗ (0) ! 2.
Sol. Given equation is y+ ! d2y/dx2 ! 1 ... (1)
Integrating (1), y∗ ! dy/dx ! x " c1 ... (2)
Integrating (2), y ! x2/2 " c1x " c2 ... (3)
Putting x ! 0 in (2) and (3) and using y (0) ! 1 and y∗ (0) ! 2, we get c1 ! 2 and c2 ! 1.
Hence (3) becomes y ! x2/2 " 2x " 1 ... (4)
Now, comparing (1) with a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! r (x), we have a0 (x) ! 1, a1 (x) ! 0,

a2 (x) ! 0 and r (x) ! 1. These are all continuous in (– 3, 3) and a0 (x) ; 0 for each x 9 (– 3, 3).
Hence, by existence and uniqueness theorem, the solution (4) is unique.

Exercise 1(B)

1. Show that y ! x " x log x – 1 is the unique solution of xy+ – 1 ! 0 satisfying y (1) ! 0 and y∗ (1) ! 2.
2. Show that y ! (1/4) × sin 4x is a unique solution of the initial value problem y+ " 16y ! 0 with y (0)

! 0 and y∗ (0) ! 1.
3. Show that y≅ < x and y2 < x3 are two different solutions of x2 y∗∗ – 3xy∗ + 3y ! 0 satisfying the initial

conditions y (0) ! y’ (0) ! 0. Explain why these facts do not contradict the existence and uniquenen
theorem. [Delhi B.Sc (Hons) II  2011]

4. Given that y ! c1 " c2x2 is a two parameter family of solutions of xy+ – y∗ ! 0 on the interval – 3 < x <
3. Show that constants c1 and c2 cannot be found so that a member of the family satisfies the initial
conditions y (0) ! 1, y∗ (0) ! 0. Explain why this does not violate existence and uniqueness theorem.

1.16 Some important theorems
Theorem 1. If y1 (x) and y2 (x) are any two solutions of

a0 (x) y+ (x) " a1 (x) y∗ (x) " a2 (x) y (x) ! 0,
then the linear combination c1 y1 (x) " c2 y2 (x), where c1 and c2 are constants, is also a solution of
the given equation. [Delhi Maths (G) 2001, 02]

Proof. Given a0 (x) y+ (x) " a1 (x) y∗ (x) " a2 (x) y (x) ! 0. ... (1)
Since y1 (x) and y2 (x) are solutions of (1), we have

0 1 1 1 2 1( ) ( ) ( ) ( ) ( ) ( ) 0a x y x a x y x a x y x∗∗ ∗# # ∃ ... (2)
and 0 2 1 2 2 2( ) ( ) ( ) ( ) ( ) ( ) 0.a x y x a x y x a x y x∗∗ ∗# # ∃ ... (3)

Let u (x) ! c1 y1 (x) " c2 y2 (x). ... (4)
Differentiating (4) twice w.r.t. ‘x’, we have

1 1 2 2 1 1 2 2( ) ( ) ( ) and ( ) ( ) ( ).u x c y x c y x u x c y x c y x∗ ∗ ∗ ∗∗ ∗∗ ∗∗∃ # ∃ # ... (5)
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Then, a0 (x) u+ (x) " a1 (x) u∗ (x) " a2 (x) u (x)
! 0 1 1 2 2 1 1 1 2 2( ) [ ( ) ( )] ( ) [ ( ) ( )]a x c y x c y x a x c y x c y x∗∗ ∗∗ ∗ ∗# # #

" a2 (x) [c1 y1 (x) " c2 y2 (x)], using (4) and (5)
! 1 0 1 1 1 2 1[ ( ) ( ) ( ) ( ) ( ) ( )]c a x y x a x y x a x y x# #∗∗ ∗

2 0 2 1 2 2 2[ ( ) ( ) ( ) ( ) ( ) ( )]c a x y x a x y x a x y x∗∗ ∗# # #
! c1 2 0 " c2 2 0 using (2) and (3)

Thus, a0 (x) u+ (x) " a1 (x) u∗ (x) " a2 (x) u (x) ! 0,
showing that u (x), i.e., c1 y1 (x) " c2 y2 (x) is also solution of (1).

Note. The result of the above theorem 1 can be generalised as follows: If y1 (x), y2 (x), ...,
yn (x) be n solutions of a0 (x) y+ (x) " a1 (x) y∗ (x) " a2 (x) y (x) ! 0, then their linear combination
c1 y1 (x) " c2 y2 (x) " ... " cn yn (x) is also solution of the given equation, c1, c2, ..., cn being
constants.

Theorem II. There exist two linearly independent solutions y1 (x) and y2 (x) of the equation
a0 (x) y+ (x) " a1 (x) y∗ (x) " a2 (x) y (x) ! 0

such that its every solution y (x) may be written as
y (x) ! c1 y1 (x) " c2 y2 (x), x 9 (a, b)

where c1 and c2 are suitable chosen constants. [Delhi Maths (Hons) 1996]
Proof. Given a0 (x) y+ (x) " a1 (x) y∗ (x) " a2 (x) y (x) ! 0. ... (1)
Let x0 9 (a, b) and y1 (x) and y2 (x) be two solutions of (1) satisfying

y1 (x0) ! 1 and 1 0( ) 0y x∗ ∃ ... (2)
and  y2 (x0) ! 0 and 2 0( ) 1.y x∗ ∃ ... (3)

To prove that y1 (x) and y2 (x) are linearly independent. Let, if possible y1 (x) and y2 (x)
be linearly dependent. Then, by definition, there must exist constants c1 and c2, not both zero, such
that

c1 y1(x) " c2 y2(x) ! 0 for each x 9 (a, b). ... (4)
Now (4)  , 1 1 2 2( ) ( ) 0c y x c y x∗ ∗# ∃  for each x 9 (a, b). ... (5)
By assumption, x0 9 (a, b). Hence (4) and (5) give

c1 y1 (x0) " c2 y2 (x0) ! 0 ... (6)
and 1 1 0 2 2 0( ) ( ) 0.c y x c y x∗ ∗# ∃ ... (7)

Using (2) and (3), (6)  ,  c1 ! 0 and (7)  ,  c2 ! 0. This is a contradiction of the fact that
c1 and c2 are not both zero. Hence, our assumption that y1 (x) and y2 (x) are linearly dependent is
not possible and so by definition, y1 (x) and y2 (x) must be linearly independent.

We now prove the last part of the theorem. Let y (x) be an any solution of (1) satisfying
       y (x0) ! c1 and y∗ (x0) ! c2.           ... (8)

Let u (x) ! y (x) – c1 y1 (x) – c2 y2 (x). ... (9)
(9) shows that u (x) is a linear combination of solutions y (x), y1 (x) and y2 (x) of (1) and

hence u (x) is also a solution of (1). [Refer note for generalisation of theorem I]
From (9), 1 1 2 2( ) ( ) ( ) ( ).u x y x c y x c y x∗ ∗ ∗ ∗∃ . . ... (10)
Now, (9)  ,  u (x0) ! y (x0) – c1 y1 (x0) – c2 y2 (x0) ! 0, by (2), (3) and (8).

and (10)  ,  0 0 1 1 0 2 2 0( ) ( ) ( ) ( ) 0,u x y x c y x c y x∗ ∗ ∗ ∗∃ . . ∃  by (2), (3) and (8).
Thus, we find that u (x) is a solution of (1) satisfying u (x0) ! 0 and u∗ (x0) ! 0. Hence,

u (x) < 0 on (a, b) [Refer corollary of Art. 1.14] and so by (9), we have
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y (x) – c1 y1 (x) – c2 y2 (x) ! 0         or         y (x) ! c1 y1 (x) " c2 y2 (x),
where c1 and c2 are suitable chosen constants and are given by (8).

Theorem III. Two solutions y1 (x) and y2 (x) of the equation,
a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! 0, a0 (x) ; 0, x 9 (a, b)

are linearly dependent if and only if their Wronskian is identically zero.
[Mumbai 2010; Delhi B.Sc. (Prog.) II 2007, 09; Delhi Maths Prog II 2007, 08]
[Delhi Maths (G) 2000; Delhi Maths (H) 2000, 01, 02, 06, 08; Lucknow 1995]

Proof. Condition is necessary. Let y1 (x) and y2 (x) be linearly dependent. Then, there must
exist two constants c1 and c2, not both zero, such that

c1 y1 (x) " c2 y2 (x) ! 0 for each x 9 (a, b). ... (1)
From (1), 1 1 2 2( ) ( ) 0c y x c y x∗ ∗# ∃  for each x 9 (a, b). ... (2)
Since c1 and c2 cannot be zero simultaneously, the system of simultaneous equation (1) and

(2) possess non-zero solutions for which the condition is

W (x) ! 1 2

1 2

( ) ( )
( ) ( )

y x y x
y x y x∗ ∗ ! 0 for each x 9 (a, b)

, W (x) < 0 on (a, b), i.e., Wronskian is identically zero.
Condition is sufficient. Suppose that Wronskian of y1 (x) and y2 (x) is identically zero on (a,

b), i.e., let

W (x) ! 1 2

1 2

( ) ( )
( ) ( )

y x y x
y x y x∗ ∗ < 0 on (a, b). ... (3)

Let x ! x0 9 (a, b). Then from (3), we have

1 0 2 0

1 0 2 0

( ) ( )
( ) ( )

y x y x
y x y x∗ ∗ ! 0. ... (4)

Now, (4) is the condition for existence of two constants k1 and k2, both not zero, such that
k1 y1 (x0) " k2 y2 (x0) ! 0 ... (5)

and 1 1 0 2 2 0( ) ( ) 0.k y x k y x∗ ∗# ∃ ... (6)
Let y (x) ! k1 y1 (x) " k2 y2 (x). ... (7)
Then y (x) being a linear combination of solutions y1 (x) and y2 (x) is also a solution of the

given equation. [Refer theorem 1 of Art. 1.16]
Again, from (8) y∗ (x) ! 1 1 2 2( ) ( ).k y x k y x∗ ∗# ... (8)
Now, (7)  , y (x0) ! k1 y1 (x0) " k2 y2 (x0) ! 0, using (5)

and (8)  , y∗ (x0) ! 1 1 0 2 2 0( ) ( ) 0,k y x k y x∗ ∗# ∃  using (6).
Thus, we find that y (x) is a solution of the given equation such that y (x0) ! 0 and y∗ (x0) ! 0.

Hence, y (x) # 0 on (a, b). [Refer corollary of Art. 1.14] and so by (7), we have
k1 y1 (x) " k2 y2 (x) ! 0 for each x 9 (a, b),

where k1 and k2 are constants, both not zero.
Hence, by definition, y1 (x) and y2 (x) are linearly dependent.
Corollary to theorem III. Two solutions y1 (x) and y2 (x) of the equation a0 (x) y+

" a1 (x) y∗ " a2 (x) y ! 0, a0 (x) ; 0, x 9 (a, b) are linearly independent if and only if their Wronskian
is not zero at some point x0 9 (a, b). [Delhi B.A. (Prog) II 2010; Delhi B.Sc. (Hons) II 2011]

Proof. Condition is necessary. Let y1 (x) and y2 (x) be linearly independent. Then, by definition,
y1 (x) and y2 (x) are not linearly dependent. Hence, by theorem III, we cannot have W (x) < 0 on
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(a, b), for otherwise y1 (x) and y2 (x) would become linearly dependent. It follows that there must
exist some x0 9 (a, b), such that W (x0) ; 0. Hence the result.

Condition is sufficient. Suppose there exist some x0 9 (a, b), such that W (x0) ; 0. Then, it
follows that W (x) ; 0 on (a, b) and hence y1 (x) and y2 (x) cannot be linearly dependent by theorem
III. So by definition, y1 (x) and y2 (x) must be linearly independent.

Theorem IV. The Wronskian of two solutions of the equation,
a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! 0, a0 (x) ; 0, x 9 (a, b)

is either identically zero or never zero on (a, b). [Delhi B.Sc. (Prog.) II 2009; 2010
Delhi Maths (Hons.) 2005, 07; Lucknow 2001;Nagpur 1997; Delhi Maths (G) 2005, 05]
Proof. Given differential equation is

a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! 0, a0 (x) ; 0, x 9 (a, b). ... (1)
Let y1 (x) and y2 (x) be two solutions of (1). Then their Wronskian W (x) is given by

W (x) ! 1 2
1 2 2 1

1 2

( ) ( )
( ) ( ) ( ) ( ).

( ) ( )
y x y x

y x y x y x y x
y x y x

∗ ∗∃ .
∗ ∗ ... (2)

Differentiating both sides of (2) with respect to ‘x’, we get

W ∗ (x) ! 1 2 2 1[ ( ) ( )] [ ( ) ( )]d dy x y x y x y x
dx dx

∗ ∗.

or W ∗ (x) ! 1 2 1 2 2 1 2 1[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]y x y x y x y x y x y x y x y x∗ ∗ ∗∗ ∗ ∗ ∗∗# . #

or W ∗ (x) ! 1 2 2 1( ) ( ) ( ) ( ).y x y x y x y x∗∗ ∗∗. ... (3)
Since a0 (x) ; 0, dividing by a0 (x) and re-writing, (1) becomes

y+ (x) ! – (a1/a0) y∗ (x) – (a2/a0) y (x). ... (4)
Since y1 (x) and y2 (x) are solutions of (4), we have

1 ( )y x∗∗ ! 1 0 1 2 0 1( / ) ( ) ( / ) ( )a a y x a a y x∗. . ... (5)
and 2 ( )y x∗∗ ! 1 0 2 2 0 2( / ) ( ) ( / ) ( ).a a y x a a y x∗. . ... (6)

Substituting the values of 1 ( )y x∗∗  and 2 ( )y x∗∗  given by (5) and (6) in (3), we get
W ∗ (x) ! 1 1 0 2 2 0 2( ) [ ( / ) ( ) ( / ) ( )]y x a a y x a a y x∗. .

– 2 1 0 1 2 0 1( ) [ ( / ) ( ) ( / ) ( )]y x a a y x a a y x∗. .

or W ∗ (x) ! 1 0 1 2 2 1( / ) [ ( ) ( ) ( ) ( )]a a y x y x y x y x∗ ∗. .
or W ∗ (x) ! – (a1/a0) W (x), using (2) ... (7)
or a0 (x) W ∗ (x) " a1 (x) W (x) ! 0. ... (8)

From (8), it follows that W (x) is a solution (8). Now, the following two cases arise:
Case I. Let W (x) ; 0 on (a, b). Then the second part of the theorem is proved.
Case II. If possible, let W (x0) ! 0 for some x0 9 (a, b).
Then, (7)  ,  W ∗ (x0) ! – (a1/a0) W (x0) ! 0.
Thus, W (x) is a solution of (8), such that W (x0) ! 0 and W ∗ (x0) ! 0. Hence, W (x) < 0 on

(a, b), i.e., Wronskian is identically zero on (a, b). [Refer corollary of Art. 1.14] This proves the
first part of the theorem.

Theorem V. The nth order homogeneous linear equation,
a0 (x) (dny/dxn) " a1 (x) (dn–1y/dxn–1) " ... " an–1 (x) (dy/dx) " an (x) y ! 0

always possesses n independent solutions y1 (x), y2 (x), ..., yn (x) and its general solution is given
by y ! c1 y1 (x) " c2 y2 (x) " ... " cn yn (x), where c1, c2, ..., cn are n arbitrary constants.

Proof. Left for the reader.
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Theorem VI. Let p1 (x), p2 (x), ......, pn (x) be real or complex valued functions defined and
continuous on an internal I and =1, =2, ......, =n are n solutions of the equation

L (y) (x) = y(n) (x) + p1 (x) y(n–1) (x) + ...... + pn (x) y (x) = 0, x 9 I
existing on I. Then n solutions are linearly independent on I if and only if W (x) ; 0 for every x 9 I.

[Himachal 2008]
Sol. The condition is necessary. Let there be a point x0 9 I such that

W (=1, =2, ......, =n) (x0) ! W (x0) !

1 0 2 0 0

1 0 2 0 0

( 1) 1 ( 1)
0 2 0 01

( ) ( )...... ( )
( ) ( )...... ( )

...................................................

( ) ( )...... ( )

n

n

n n n
n

x x x
x x x

x x x. . .

= = =
∗ ∗ ∗= = =

= = =

; 0 ... (1)

Let there exist constants c1, c2, ......, cn such that
c1 =1 (x) + c2=2(x) + ...... + cn =n (x) ! 0; for each x 9 I ... (2)

In order to prove that =1, =2, ......, =n are linearly independent, we must show that
c1 ! c2 ! ...... ! cn ! 0. ... (3)

Differentiating (2) successively w.r.t. ‘x’, we have

1 1 2 2

1 1 2 2

( 1) ( 1)
1 21 2

( ) ( ) ...... ( ) 0; for each
( ) ( ) ...... ( ) 0; for each

.......................................................................

( ) ( ) ......

n n

n n

n n

c x c x c x x I
c x c x c x x I

c x c x c. .

∗ ∗ ∗= # = # # = ∃ 9
∗∗ ∗∗ ∗∗= # = # # = ∃ 9

= # = # # ( 1) ( ) 0; for eachn
n n x x I.

6
>
>
7
>
>= ∃ 9 8

... (4)

At x ! x0 9 I, (2) and (4) yield

1 1 0 2 2 0 0

1 1 0 2 2 0 0

( 1) ( 1) ( 1)
1 0 2 0 01 2

( ) ( ) ...... ( ) 0
( ) ( ) ...... ( ) 0

...............................................................

( ) ( ) ...... ( ) 0

n n

n n

n n n
n n

c x c x c x
c x c x c x

c x c x c x. . .

= # = # # = ∃ 6
>∗ ∗ ∗= # = # # = ∃ >
7
>
>= # = # # = ∃ 8

... (5)

(5) represents a system of n simultaneous homogeneous equations in c1, c2, ......, cn as n
unknown constants. The determinant of the coefficients of the above n equations (5) is clearly
W (=1, =2, ......, =n) (x0) or W (x0), which is non-zero by (1). Hence, there is only one solution of
the system (5), namely c1 ! c2 ! ...... ! cn ! 0. Hence, =1, =2, ......, =n are linearly independent on I.

The condition is sufficient. Suppose, that solutions =1, =2, ......, =n of
L (y) (x) ! y(n) (x) + p1 (x) y(n–1) (x) + ...... + pn (x) y (x) ! 0, x 9 I ... (6)

are linearly independent. Suppose, if possible, there is an x0 9 I such that
W (=1, =2, ......, =n) (x0) ! W (x0) ! 0 ... (7)

Then (7) implies that the system (5) has a solution c1, c2, ......, cn where not all the constants
c1, ......, cn are zero. Let c1, c2, ......, cn be such a non-trivial solution of (5) and consider the function
? (x) such that

? (x) ! c1 =1 (x) + c2=2(x) + ...... + cn =n (x), for each x 9 I ... (8)
Since, =1, =2, ......, =n are solutions of (6), we have

L (=1) ! L (=2) ! ...... ! L (=n) ! 0. ... (9)
Then, from (8) and (9), L (?) ! 0, ... (10)
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showing that ? is a solution (6). From (5) and (8), we have
? (x0) ! 0, ?∗ (x0) ! 0, ......, ?(n–1) (x0) ! 0 ... (11)

Thus, ? (x) is a solution of (6) satisfying the initial conditions (11). From the existence and
uniqueness theorem (refer part (a) of Art. 1.14A), it follows that             ? (x) ! 0 for all x in I,
and hence from (8), c1 =1 (x) + ...... + cn =n (x) ! 0 for all x 9 I.
where all c1, c2, ......, cn are not simultaneously zero, leading to conclusion that =1, =2, ......, =n are
linearly dependent which contradicts the fact that =1, ......, =n are linearly independent on I. Thus,
the supposition that there was a point x0 9 I such that (1) holds must be false. Consequently, we
must have W (=1, =2, ......, =n) (x) ; 0 for all x in I

Theorem VII. Abel’s formula
Let functions p1 (x) and p2 (x) in L (y) (x) ! y+ (x) + p1 (x) y∗ (x) + p2 (x) y (x) ! 0, x 9 I ... (i)

be defined and continuous on an interval I. Let =1, any =2 be two linearly independent solutions
of (1) existing on I containing a point x0. Then,

W (=1, =2) (x) ! Α Β
0

1exp ( )
x

x
p x dx. Χ W (=1, =2) (x0) ... (ii)

[Note that here  exp A stands for eA] [Delhi B.Sc. (Hons) II  2011]
Proof. Given y+ (x) + p1 (x) y∗ (x) + p2 (x) y (x) ! 0, x 9 I

Here, 1 2
1 2 1 2 1 2

1 2
( , )W

= =
∗ ∗= = ∃ ∃ = = . = =

∗ ∗= =
... (iii)

From (iii), 1 2 1 2 1 2 1 2 1 2( , ) ( )W ∗ ∗ ∗∗ ∗∗ ∗ ∗∗ = = ∃ = = # = = . = = # = =

or 1 2 1 2 1 2( , )W ∗∗ ∗∗∗ = = ∃ = = . = = ... (iv)
Since =1 and =2 satisfy (i), we have

1 1 1 2 1 1 1 1 2 10p p p p∗∗ ∗ ∗∗ ∗= # = # = ∃ , = ∃ . = . =

and 2 1 2 2 2 2 1 2 2 20p p p p∗∗ ∗ ∗∗ ∗= # = # = ∃ , = ∃ . = . =

Substituting the above values of 1∗∗=  and 2∗∗=  in (iv), we get

W ∗ (=1, =2) ! 1 1 1 2 1 2 1 2 2 2( ) ( )p p p p∗ ∗= . = . = . = . = . =
or   1 2( , )W ∗ = = ∃ 1 1 2 2 1 1 1 2( ) ( , )p p W∗ ∗. = = . = = ∃ . = = , by (iii)

Thus, W (=1, =2) satisfies a first order linear homogeneous equation W ∗ + p1 W ! 0, x 9 I

or
0

1 1 1or or log log
x

x

dW dWp W p dx W c p dx
dx W

∃ . ∃ . . ∃ . Χ

so that Α Β
0

1 2 1( , ) ( ) exp ( )
x

x
W x c p x dx= = ∃ . Χ ... (v)

where c is a constant. By putting x ! x0 in (v), we get c ! W (=1, =2) (x0). Substituting this value of
c in (v), we get the required result.

We now state and prove Abel’s formula for general case:
Statement. Let the functions p1 (x), p2(x),......, pn (x) in

L (y) (x) ! y(n) (x) + p1 (x) y(n–1) (x) + p2(x)y(n–2) (x) + ...... + pn (x) y (x) ! 0, x 9 I ... (1)
be defined and continous on an interval I. Let =1, =2 ,......, =n be n linearly independent solutions
of (1) existing on I containing a point x0. Then, we have

Α Β
0

1 1 1 0( , ......, ) ( ) exp ( ) ( , ......, ) ( )
x

n nx
W x p x dx W x= = ∃ . = =Χ ... (2)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



1.20 Differential Equations their Formation and Solutions

Proof. We let W (x) ! W (=1, =2, ......, =n) (x) for brevity. We have,

1 2

1 2

1 21

( 1) ( 1) ( 1)
1 2

......

......

......( ) ( ............., ) ( )
...... ...... ...... ......

......

n

n

nn

n n n
n

W x W x

. . .

= = =
∗ ∗ ∗= = =
∗∗ ∗∗ ∗∗= = =∃ = = ∃

= = =

... (3)

Differentiating W (x) w.r.t. ‘x’, we see that W ∗ is a sum of n determinants.
W ∗ (x) ! V1 + V2 + ...... + Vi + ...... + Vn, ... (4)

where Vi differs from W (x) only in the i th row, and the i th row of Vi is obtained by differentiating
the i th row of W (x). Thus, we arrive at

     

1 2 1 2

1 2 1 2

1 2 1 2

( 1) ( 1) ( 1) ( 1)( 1)
1 2 1 2

...... ......

...... ......

...... ......( )
...... ...... ...... ...... ...... ...... ...... ......

...... ......

n n

n n

n n

n n n nn
n n

W x

. . . ..

∗ ∗ ∗= = = = = =
∗ ∗ ∗ ∗∗ ∗∗ ∗∗= = = = = =
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= = = = = =∗ ∃ #

= = = = = =

1 2

1 2

1 2

( ) ( )( 1) ( )
1 2

......

......

.......
...... ...... ...... ......

......

n

n

n

n nn n
n

.

= = =
∗ ∗ ∗= = =
∗∗ ∗∗ ∗∗= = =# #

= = =

The first n – 1 determinants V1, ......, Vn–1 are all zero, since they each have two identical
rows. Thus, we obtain

1 2

1 2

( 2) ( 2) ( 2)
1 2

( ) ( ) ( )
1 2

......

......
...... ...... ...... ......

( )
......

......

n

n

n n n
n

n n n
n

W x . . .

= = =
∗ ∗ ∗= = =

∗ ∃
= = =

= = =

... (5)

Now, since =1, =2, ......, =n are solutions of (1), we have
( ) ( 1) ( 2)

1 2 ...... 0 for 1, 2, ......,n n n
i i i n ip p p i n. .= # = # = # # = ∃ ∃

, ( ) ( 1) ( 2)
1 2 ...... for 1, 2, ......,n n n

i i i n ip p p i n. .= ∃ . = . = . . = ∃ ... (6)
Putting i ! 1, 2, ......, n in (6), get values of =1

(n), =2
(n), ......, =n

(n) and substitute these values in
(5) and obtain

1 2

1 2

1 2

( 2) ( 2) ( 2)
1 2

( 1) ( 2) ( 1) ( 2) ( 1) ( 2)
1 2 1 1 2 2 1 21 1 2 2

...... ...... ......

...... ...... ......

n

n

n

n n n
n

n n n n n n
n n n n n n

W

p p p p p p p p p

. . .

. . . . . .

= = =
∗ ∗ ∗= = =
∗∗ ∗∗ ∗∗= = =

∗ ∃

= = =

. = . = . = . = . = . = . = . = . =

From the properties of a determinant, we know that the value of the above determinant is
unchanged, if we multiply any row by a number and add to the last row. Multiplying the first row
by pn, the second row by pn–1, ......, the (n – 1) – st row by p2 and adding these to the last row, we
obtain
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1 2

1 2

1
( 2) ( 2) ( 2)
1 2

( 1) ( 1) ( 1)
1 1 11 2

......

......

......( ) ( ), by (3)

......

......

� � �

n

n

n n n
n

n n n
n

W x p W x

p p p

. . .

. . .

= = =
∗ ∗ ∗= = =

∗ ∃ ∃ .
= = =

. = . = . =

Thus, W satisfies a first order linear differential equation
dW/dx ! – pW or (1/W) dW ! – p1 dx

Integrating, log W – log c !
0

1
x

x
p dx. Χ

so that Α Β
0

1( ) exp ( )
x

x
W x c p x dx∃ . Χ , ... (7)

where c is an arbitrary constant. By putting x ! x0 in (4), we get c ! W (x0). Substituting this value
of c in (4), we get

Α Β
0

1 0( ) exp ( ) ( )
x

x
W x p x dx W x∃ . Χ

i.e., Α Β
0

1 2 1 1 2 0( , , ....., ) ( ) exp ( ) ( , , ......, ) ( )
x

n nx
W x p x dx W x= = = ∃ . = = =Χ ... (8)

Corollary. If the coefficients p1 (x), p2 (x), ......, pn (x) of equation (1) are constants, then

W (=1, =2, ......, =n) (x) ! ( )1 0p x xe. . W (=1, =2, ......, =n)(x0)

Proof. If p1 is constant, then we have                      
0 0

1 1 1 0( )
x x

x x
p dx p dx p x x∃ ∃ .Χ Χ

/ (8) yields, W (=1, =2,......, =n) (x) ! exp [– p1 (x – x0)] W (=1, =2, ......, =n) (x0)

i.e., W (=1, =2, ......, =n) (x) ! ( )1 0p x xe. . W (=1, =2 , ......, =n) (x0)
An important application of Abel’s formula. A consequence of Abel’s formula is that

n solutions =1, =2, ......, =n of equation (1) on an interval I are linearly independent there if and
only if W (=1, =2, ......, =n) (x0) ; 0 for any particular x0 in interval I.

From (5), it is clear that if W (=1, =2, ......, =n) (x0) ; 0, then W (=1, =2, ......, =n) (x) ; 0 for
x 9 I. Hence, it is enough to show that W (=1, =2, ......, =n) (x) ; 0 only at just one point of I. This
criterion yields the linear independence of n solutions of (1).

We now given a simple illustration of the use of Abel’s formula.
Example. To show that solutions =1 (x) ! e2x, =2 (x) ! xe2x and =3 (x) ! x2 e2x are linearly

independent solutions of y+∗ – 6y+ + 12y∗ – 8y ! 0 on an interval 0 ∆ x ∆ 1.
Solution. We have

2 2 2 2

2 2 2 2
1 2 3

2 2 2 2 2 2 2 2 2 2

( , , ) ( ) ( ) / ( ) / ( ) /

( ) / ( ) / ( ) /

x x x

x x x

x x x

e xe x e

W x d e dx d x e dx d x e dx

d e dx d x e dx d x e dx

= = = ∃

or

2 2 2 2

2 2 2 2
1 2 3

2 2 2 2

( , , ) ( ) 2 (1 2 ) (2 2 )

4 (4 4 ) (2 8 4 )

x x x

x x x

x x x

e xe x e

W x e x e x x e

e x e x x e

= = = ∃ # #

# # #

... (1)
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Clearly, it is not very easy to evaluate R.H.S. of (1). We chose 0 9 [0, 1]. Then, from (1),

1 2 3

1 0 0
( , , ) (0) 2 1 0 2

4 4 2
W = = = ∃ ∃ ... (2)

By corollary of Abel’s formula, we have

W (=1, =2, =3) (x) ! 1 0( )p x xe. . W (=1, =2, =3) (x0) ... (3)
Here p1 ! – 6 and x0 ! 0. Hence, (3) reduces to W (=1, =2, =3) (x) ! 2e6x, using (2).

1.17 Solved examples based on Art. 1.16
Ex. 1. If y1 (x) ! sin 3x and y2 (x) ! cos 3x are two solutions of y+ " 9y ! 0, show that y1 (x)

and y2 (x) are linearly independent solutions. [Delhi Maths (Hons) 1996]
Sol. The Wronskian of y1 (x) and y2 (x) is given by

W (x) ! 1 2

1 2

( ) ( ) sin 3 cos 3
( ) ( ) 3 cos 3 3 sin 3

y x y x x x
y x y x x x

∃
∗ ∗ .

! – 3 sin2 3x – 3 cos2 3x ! – 3 (sin2 3x " cos2 3x) ! – 3 ; 0.
Since W (x) ; 0, y1 (x) and y2 (x) are linearly independent solutions of y+ " 9y ! 0.
Ex. 2. Prove that sin 2x and cos 2x are solutions of y+ " 4y ! 0 and these solutions are

linearly independent. [Delhi Maths (G) 1998]
Sol. Given equation is y+ " 4y ! 0. ... (1)
Let                    y1 (x) ! sin 2x    and    y2 (x) ! cos 2x. ... (2)
Now,                   1y∗ (x) ! 2 cos 2x      and 1y∗∗ (x) ! – 4 sin 2x. ... (3)
/ 1 1( ) 4 ( )y x y x∗∗ # ! – 4 sin 2x " 4 sin 2x ! 0, by (2) and (3)
Hence, y1 (x) ! sin 2x is a solution of (1). Similarly, we can prove that y2 (x) is a solution of

(1). Now, the Wronskian W (x) of y1 (x) and y2 (x) is given by

W (x) ! 1 2

1 2

( ) ( ) sin 2 cos 2
( ) ( ) 2 cos 2 2 sin 2

y x y x x x
y x y x x x

∃
∗ ∗ .

! – 2 sin2 2x – 2 cos2 2x ! – 2 (sin2 2x " cos2 2x) ! – 2 ; 0.
Since W (x) ; 0, sin 2x and cos 2x are linearly independent solutions of (1).
Ex. 3. Show that linearly independent solutions of y + – 2y∗ " 2y ! 0 are ex sin x and ex cos x.

What is the general solution? Find the solution y (x) with the property y (0) ! 2, y∗ (0) ! 3.
[Delhi B.A. (Prog.) 2009; Delhi Maths (Hons) 2002; Delhi Maths (G) 2006]

Sol. Given equation is                               y + – 2y∗ " 2y ! 0. ... (1)
Let y1 (x) ! ex sin x    and y2 (x) ! ex cos x. ... (2)
From (2), 1 ( )y x∗ ! ex sin x " ex cos x ! ex (sin x " cos x) ... (3)
From (3), 1 ( )y x∗∗ ! ex (sin x " cos x) " ex (cos x – sin x) ! 2ex cos x. ... (4)
/             1 1 1( ) 2 ( ) 2 ( )y x y x y x∗∗ ∗. # ! 2ex cos x – 2ex (sin x " cos x) " 2ex sin x ! 0,

showing that y1 (x) ! ex sin x is a solution of (1).
Similarly, we can show that y2 (x) ! ex cos x is a solution of (1).
Now, the Wronskian W (x) of y1 (x) and y2 (x) is given by
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W (x) ! 1 2

1 2

( ) ( ) sin cos
( ) ( ) (sin cos ) (cos sin )

x x

x x

y x y x e x e x
y x y x e x x e x x

∃
∗ ∗ # .

! e2x (sin x cos x – sin2 x) – e2x (sin x cos x " cos2 x) ! – e2x ; 0,
showing that W (x) ; 0, and hence y1 (x) and y2 (x) are linearly independent solutions of (1). The
general solution of (1) is [Refer theorem V, Art. 1.16]

y (x) ! c1 y1 (x) " c2 y2 (x) ! ex (c1 sin x " c2 cos x), ... (5)
where c1 and c2 are arbitrary constants.

From (5), y∗(x) ! ex (c1 sin x " c2 cos x) " ex (c1 cos x – c2 sin x). ... (6)
Putting x ! 0 in (5) and using the given result y (0) ! 2, we get     y (0) ! c2     or       c2 ! 2
Putting x ! 0 in (6) and using the given result y∗ (0) ! – 3, we get

y∗ (0) ! c2 " c1         or   – 3 ! 2 " c2       or    c1 ! – 5, as c2 ! 2
/ From (5), solution of (1)satisfying the given properties is y ! ex (2 cos x – 5 sin x).
Ex. 4. Show that e2x and e3x are linearly independent solutions of y+ – 5y∗ " 6y ! 0. Find the

solution y (x) with the property that y (0) ! 0 and y∗ (0) ! 1. [Delhi Maths (G) 98, 2006]
Sol. Given equation is y+ – 5y∗ " 6y ! 0. ... (1)
Let                            y1 (x) ! e2x              and              y2 (x) ! e3x. ... (2)
From (2),                    1 ( )y x∗ ! 2e2x              and           1 ( )y x∗∗ ! 4e2x. ... (3)
/ 1 1 1( ) 5 ( ) 6 ( )y x y x y x∗∗ ∗. # ! 4e2x – 5 (2e2x) " 6e2x ! 0,

showing that y1 (x) is a solution of (1). Similarly, y2 (x) ! e3x is a solution of (1).
Now, the Wronskian W (x) of y1 (x) and y2 (x) is given by

W (x) !
2 3

1 2
2 3

1 2

( ) ( )
( ) ( ) 2 3

x x

x x

y x y x e e
y x y x e e

∃
∗ ∗ ! 3e5x – 2e5x ! e5x ; 0,

showing that e2x and e3x are linearly independent solutions of (1).
The general solution of (1) is given by

y (x) ! c1e2x " c2e3x, c1 and c2 being arbitrary constants. ... (4)
From (4), y∗ (x) ! 2c1e2x " 3c2e3x. ... (5)
Putting x ! 0 in (4) and using y (0) ! 0, c1 " c2 ! 0. ... (6)
Putting x ! 0 in (5) and using y∗ (0) ! 1, 2c1 " 3c2 ! 1. ... (7)
Solving (6) and (7), c1 ! – 1 and c2 ! 1 and so from (4), we have

y (x) ! e3x – e2x as the required solution.
Ex. 5. (a) Show that y1 (x) ! sin x and y2 (x) ! sin x – cos x are linearly independent

solutions of y+ " y ! 0. Determine the constants c1 and c2, so that the solution
sin x " 3 cos x < c1 y1 (x) " c2 y2 (x). [Delhi Maths (P) 2002]

Sol. Given equation is y+ " y ! 0. ... (1)
Here y1 (x) ! sin x, so that 1 ( )y x∗ ! cos x and 1 ( )y x∗∗ ! – sin x. ... (2)
Hence, 1 1( ) ( )y x y x∗∗ # ! – sin x " sin x ! 0, showing that y1 (x) is a solution of (1). Similarly,,

we can show that y2 (x) is also a solution of (1).
Now, the Wronskian of y1 (x) and y2 (x) is given by

W (x) ! 1 2

1 2

( ) ( ) sin sin cos
( ) ( ) cos cos sin

y x y x x x x
y x y x x x x

.
∃

∗ ∗ #
! sin x (cos x " sin x) – cos x (sin x – cos x) ! 1 ; 0,
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showing that y1 (x) and y2 (x) are linearly independent solutions of (1).
Given that sin x " 3 cos x < c1 y1 (x) " c2 y2 (x)

or sin x " 3 cos x < c1 sin x " c2 (sin x – cos x). ... (3)
Comparing the coefficients of sin x and cos x on both sides of (3), we have

c1 " c2 ! 1 and – c2 ! 3 so that c1 ! 4 and c2 ! – 3.
Ex. 5. (b) Define Wronskian. Evaluate Wronskian of the functions y1(x) ! sin x and y2(x)

! sin x – cos x and hence conclude whether or not they are linearly independent. Also, form the
differential equation. [Meerut 2003]

Sol. For definition of Wronskian, refer Art. 1.12
For second part, refer Ex. 5(a)
For the last part, proceed as follows: Since sin x and sin x – cos x are linearly independent

functions, these will form solution of a differential equation of the form
y = A sin x  + B (sin x – cos x), A, B being parameters. ...(1)

Differentiating (1) w.r.t. ‘x’, we have
y' ! A cos x + B (cos x  + sin x) ...(2)

From (2),    y'' ! – A sin x + B (–sin x + cos x) ...(3)
Adding (1) and (3), y + y'' ! 0, which in the desired differential equation.
Ex. 6. Show that x and xex are linearly independent on the x-axis.
Sol. The Wronskian W (x) of x and xex is given by

W (x) !
/ ( ) / 1

x x

x x x

x xe x xe

dx dx d xe dx e xe
∃

#
! x (ex " xex) – xex ! x2ex.

Thus, W (x) ; 0 for x ; 0 on the x-axis. Hence, x and xex are linearly independent on the
x-axis [Refer corollary to theorem III of Art. 1.16]

Ex. 7. Show that the Wronskian of the functions x2 and x2 log x is non-zero. Can these
functions be independent solutions of an ordinary differential equation. If so, determine this
differential equation. [Meerut 1998]

Sol. Let y1 (x) ! x2 and y2 (x) ! x2 log x.
The Wronskian W (x) of y1 (x) and y2 (x) is given by,

W (x) !
2 2

1 2

1 2

log
2 2 log

y y x x x
y y x x x x

∃
∗ ∗ #

! x2 (2x log x " x) – 2x3 log x.

/ W (x) ! x3, which is not identically equal to zero on (– 3, 3). Hence, functions y1 (x) and
y2 (x), i.e., x2 and x log x can be linearly independent solutions of an ordinary differential equation.

To form the required differential equation. The general solution of the required differential
equation may be written as, y ! A y1 (x)" B y2 (x) ! Ax2 " Bx2 log x, ... (1)
where A and B are arbitrary constants.

Differentiating (1), we get y∗ ! 2Ax " B (2x log x " x). ... (2)
Differentiating (2), we get y+ ! 2A " B (2 log x " 2 " 1). ... (3)
We now eliminate A and B from (1), (2) and (3). To this end, we first solve (2) and (3) for A

and B. Multiplying both sides of (3) by x, we get
xy+ ! 2Ax " B (3x " 2x log x). ... (4)

Subtracting (2) from (4), xy+ – y∗ ! 2Bx or B ! (xy+ – y∗)/2x.
Substituting this value of B in (3), we have

2A ! y+ – (1/2x) × (xy+ – y∗) (3 " 2 log x)     or A ! (1/4x) × [2xy+ – (xy+ – y∗) (3 " 2 log x)].
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Substituting the above values A and B in (1), we have
y ! (x/4) × [2xy+ – 3xy+ " 3y∗ – 2xy+ log x " 2y∗ log x] " (x/2) × (xy+ – y∗) log x

or 4y ! x (– xy+ " 3y∗ – 2xy+ log x " 2y∗ log x) " 2x (xy+ – y∗) log x
or x2y+ – 3xy∗ " 4y ! 0, which is the required equation.

Ex. 8. Find the Wronskian of x and xex. Hence, conclude whether or not these are linearly
independent. If they are independent, set up the differential equation having them as its independent
solutions. [Meerut 1997]

Sol. Let y1 ! x and y2 ! xex. Then their Wronskian W (x) is given by

W (x) ! 1 2

1 2 1

x

x x

y y x xe
y y e xe

∃
∗ ∗ #

! xex " x2ex – xex ! x2ex,

which is not identically equal to zero on (– 3, 3). Hence, y1 and y2 are linearly independent.
To form the required differential equation. The general solution of the required differential

equation may be written as y ! Ay1 " By2 ! Ax " Bx ex, ... (1)
where A and B are arbitrary constants.

Differentiating (1), we get y∗ ! A " B (ex " xex) ! A " B (1 " x) ex. ... (2)
Differentiating (2), we get y+ ! B [ex " (1 " x) ex] ! Bex (2 " x). ... (3)
We now eliminate A and B from (1), (2) and (3). From (3),         B ! y+/[ex (2 " x)].
Substituting this value of B in (2), we have

A ! y∗ – B (1 " x) ex ! y∗ – 
1
2

x
x

#
#

y+ !
(2 ) (1 )

2
x y x y

x
# ∗ . # +

#
.

Substituting the above values of A and B in (1), we get

y !
(2 ) (1 )

2 (2 )
x

x
x y x y yx xe

x e x
Ε ΦΕ Φ# ∗ . # + +

# Γ ΗΓ Η# #Ι ϑ Ι ϑ

or    (2 " x) y ! x (2 " x) y∗ – x (1 " x) y+ " xy+
or x2y+ – x (2 " x) y∗ " (2 " x) y ! 0, which is required equation.

Ex. 9. (a) Show that the solutions ex, e–x, e2x of (d3y/dx3) – 2 (d2y/dx2) – (dy/dx) " 2y ! 0 are
linearly independent and hence or otherwise solve the given equation.

[Delhi Maths (G) 1993, 98; Meerut 1998]
Sol. Given equation is                          y+∗ – 2y+ – y∗ " 2y ! 0. ... (1)
Let y1 ! ex, y2 ! e–x   and   y3 ! e2x ... (2)
Here 1y∗ ! ex, 1y∗∗ ! ex and 1y∗∗∗ ! ex. ... (3)
/ 1 1 12y y y∗∗∗ ∗∗ ∗. . " 2y1 ! ex – 2ex – ex " 2ex ! 0, by (2) and (3)
Hence, y1 ! ex is a solution of (1). Similarly, show that e–x and e2x are also solutions of (1).
Now, the Wronskian W (x) of y1, y2, y3 is given by

W (x) !

2
1 2 3

2
1 2 3

2
1 2 3

2

4

x x x

x x x

x x x

e e ey y y
y y y e e e
y y y e e e

.

.

.

∗ ∗ ∗ ∃ .
∗∗ ∗∗ ∗∗

! 2 2
2 2 1

3 3 1

1 1 1 1 0 0 [using operations
( ) 1 1 2 1 2 1

1 1 4 1 0 3 ]

x x x xe e e e C C C
C C C

.2 2 . ∃ . Κ .
Κ .

! – 6e2x, which is not identically zero on (– 3, 3)
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Hence, y1, y2, y3 are linearly independent solutions of (1) [Refer corollary of theorem III of Art.
1.16]. Since the order of the given equation (1) is three, it follows that the general solution of (1)
will contain three arbitrary constants c1, c2, c3 and is given by [Refer Theorem V of Art. 1.16]

y ! c1 y1 " c2 y2 " c3 y3, i.e., y ! c1ex " c2e–x " c3e2x.
Ex. 9. (b) Show that the e–x, e3x, e4x are linearly independent solutions of d3y/dx3

– 6(d2y/dx2) + 5 (dy/dx) + 12y = 0 on the interval – 3 < x < 3 are write the general solution.
[Delhi B.A (Prog) II 2011]

Hint. Try yourself as in Ex. 9. (a) Ans. y ! c1e–x " c2e3x " c4e4x.
Ex. 10. Prove that the functions 1, x, x2 are linearly independent. Hence, form the differential

equation whose solutions are 1, x, x2. [Meerut 1997]
Sol. Let y1 (x) ! 1, y2 (x) ! x and y3 (x) ! x2. ... (1)
Then the Wronskian W (x) of y1, y2, y3 is given by

2
1 2 3

1 2 3

1 2 3

1

( ) 0 1 2 , using (1)
0 0 2

x xy y y
W x y y y x

y y y
∗ ∗ ∗∃ ∃
∗∗ ∗∗ ∗∗

or W (x) ! 2 ; 0 for any x 9 (– 3, 3).
Hence, y1, y2 and y3 are linearly independent.
To form the required differential equation. The general solution of the required differential

equation may be written as y ! Ay1 " By2 " Cy3 ! A " Bx " Cx2, ... (1)
where A, B, C are arbitrary constants.

Differentiating (1) w.r.t. ‘x’, we get y∗ ! B " 2Cx. ... (2)
Differentiating (2) w.r.t. ‘x’, we get y+ ! 2C. ... (3)
Differentiating (3) w.r.t. ‘x’, we get y+∗ ! 0, i.e., d3y/dx3 ! 0. ... (4)
Since (4) is free from arbitrary constants hence (4) is the required differential equation.
Ex. 11. Use Wronskian to show that x, x2, x3 are independent. Determine the differential

equation with these as independent solutions. [Meerut 1995, 2001, 2002]
Sol. Let y1 (x) ! x, y2 (x) ! x2 and y3 ! x3. ... (1)
The Wronskian W (x) of y1, y2 and y3 is given by

2 3
1 2 3

2
1 2 3

1 2 3

( ) 1 2 2 ,using (1)
0 2 6

x x xy y y
W x y y y x x

y y y x
∗ ∗ ∗∃ ∃
∗∗ ∗∗ ∗∗

or W (x) ! x (12x2 – 6x2) – (1) × (6x3 – 2x3) ! 2x3,
which is not identically equal to zero. Hence, the functions y1, y2 and y3 are linearly independent.

To form the differential equation. The general solution of the required differential equation
may be written as y ! Ay1 " By2 " Cy3 ! Ax " Bx2 " Cx3. ... (2)

Differentiating (2) w.r.t. ‘x’, we get y∗ ! A " 2Bx " 3Cx2. ... (3)
Differentiating (3) w.r.t. ‘x’, we get y+ ! 2B " 6Cx. ... (4)
Differentiating (4) w.r.t. ‘x’, we get y+∗ ! 6C. ... (5)
From (5), C ! y+∗/6. Then, from (4), B ! (y+ – xy+∗)/2. ... (6)
Multiplying both sides of (3) by x, xy∗ ! Ax " 2Bx2 " 3Cx3. ... (7)
Subtracting (7) from (2), we get y – xy∗ ! – Bx2 – 2Cx3

or y – xy∗ ! – (1/2) × x2 (y+ – xy+∗) – (2x3) × (y+∗/6), using (5) and (6)

3
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or 6y – 6xy∗ ! – 3x2y+ " 3x3y+∗ – 2x3y+∗ or x3y+∗ – 3x2y+ " 6xy∗ – 6y ! 0,
which is the required differential equation.

Ex. 12. If y1 (x) and y2 (x) are linearly independent solutions of the differential equation
a0 (x) y+ " a1 (x) y∗ " a2 (x) y ! 0, then show that any other solution of the equation can be written
in the form y (x) ! C1 y1 (x) " C2 y (x), where C1 and C2 are suitably chosen constants.

Sol. Refer theorem I of Art. 1.16. [Delhi Maths (G) 2004]
Ex. 13. If y1 (x) and y2 (x) are linearly independent solutions of

a0 (x) y+ " a1 (x) 2 y∗ (x) " a2 (x) y ! 0,
then prove that every other solution of the equation is a linear combination of two solutions
y1 (x) and y2 (x). Hence, show that every solution of d2y/dx2 " y ! 0 is a linear combination of
cos x " sin x and cos x – sin x. [Delhi Maths (H) 2004]

Sol. Ist part. See theorem I of Art. 1.16.
Second part. Given d2y/dx2 " y ! 0 or (D2 " 1) y ! 0, D < d / dx ... (1)
/ Solution of (1) is y ! A cos x " B sin x, A, B being constants. ... (2)
Let y1 (x) ! cos x " sin x and y2 (x) ! cos x – sin x ... (3)
From (3), dy1/dx ! – sin x " cos x

and d2y1/dx2 ! – cos x – sin x ... (4)
From (3) and (4), d2y1/dx2 " y1 (x) ! – cos x – sin x " cos x " sin x ! 0,

showing that y1 (x) is a solution of (1). Similarly, y2 (x) is also a solution of (1).
Now, the Wronskian W (x) of y1 (x) and y2 (x) is given

W (x) ! 1 2

1 2

( ) ( ) cos sin cos sin
( ) ( ) sin cos sin cos

y x y x x x x x
y x y x x x x x

# .
∃

∗ ∗ . # . .

! – (cos x " sin x)2 – (cos x – sin x)2 ! – 2 ; 0.
Since the Wronskian of y1 (x) and y2 (x) is non-zero, it follows that y1 (x) and y2 (x) are

linearly independent solutions of (1). Hence by the first part, every solution of (1) will be of the
form y ! C1 y1 (x) " C2 y2 (x), i.e.,

y ! C1 (cos x " sin x) " C2 (cos x – sin x) ! (C1 " C2) cos x " (C1 – C2) sin x
or y ! A cos x " B sin x,         taking A ! C1 " C2 and B ! C1 – C2

which is the same as (2). Hence, the required result follows.
Ex. 14. Show that sin x, cos x and sin x – cos x are solutions of the differential equation

y+ + y ! 0, where y∗ ! dy/dx. Prove that these solutions are linearly dependent. (Use the idea of
Wronskian) [Delhi Maths (Prog) 2007 ]

Sol. Given differential equation is                              y+ + y ! 0 ... (1)
Let y1 ! sin x, y2 ! cos x and y3 ! sin x – cos x ... (2)

Then, ' " "
1 1 1 1cos and sin and so 0,y x y x y y∃ ∃ . # ∃

showing that y1 is a solution of (1). Similary, we find that y2 and y3 are also solutions of (1).

Now, W (y1, y2, y3) !
1 2 3

1 2 3

1 2 3

sin cos sin cos
cos sin cos sin
sin cos sin cos

y y y x x x x
y y y x x x x
y y y x x x x

.
∗ ∗ ∗ ∃ . #
∗∗ ∗∗ ∗∗ . . . #

!
sin cos sin cos
cos sin cos sin

0 0 0

x x x x
x x x x

.
. # , by operating R3 Κ R3 + R1

Hence, W (y1, y2, y3) ! 0 and therefore y1, y2, y3 are linearly dependent as desired.
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Exercise 1(C)
1. Prove that the Wronskian of the functions 31 2, , ,m xm x m xe e e  is equal to (m1 – m2) (m2 – m3) (m3 – m1)

1 2 3( ) .m m m xe # #  Are these functions linearly independent.
Ans. Given functions are linearly independent if m1 ; m2 ; m3.

2. Test the linear independence of the following sets of functions:
(i) sin x, cos x. Ans. Linearly independent

(ii) 1 " x, 1 " 2x, x2. Ans. Linearly independent
(iii) x2 – 1, x2 – x " 1, 3x2 – x – 1. Ans. Linearly dependent
(iv) sin x, cos x, sin 2x.   [Meerut 2010] Ans. Linearly independent
(v) ex, e–x, sin ax. Ans. Linearly independent

(vi) ex, xex, sinh x. Ans. Linearly independent
(vii) sin 3x, sin x, sin3 x. Ans. Linearly dependent

3. Show that the functions ex cos x and ex sin x are linearly independent. Form the differential equation
of second order having these two functions as independent solutions. Ans. y+ – 2y∗ " 2y ! 0

4. Evaluate the Wronskian of the functions ex and xex. Hence, conclude whether or not they are linearly
independent. If they are independent set up the differential equation having them as its independent
solutions. Ans. y+ – 2y∗ " y ! 0

5. Show that linearly independent solutions of y+ – 3y∗ " 2y ! 0 are ex and e2x. Find the solution y (x)
with the property that y (0) ! 0, y∗ (0) ! 1. [Delhi Maths (G) 2000] Ans. y (x) ! e2x – ex

6. Show that the y1 (x) ! x and y2 (x) ! | x | are linearly independent on the real line, even though the
Wronskian cannot be computed.

7. Show graphically that y1 (x) ! x2 and y2 (x) ! x | x | are linearly independent on – 3 < x < 3, however,
Wronskian vanishes for every real value of x.

8. Show that ex and e–x are linearly independent solutions of y+ – y ! 0 on any interval.
[Lucknow 2001; Nagpur 1996]

9. Show that y1 (x) ! e–x/2 sin ( 3 / 2)x  and y2 (x) ! e–x/2 cos ( 3 / 2)x  are linearly independent
solutions of the differential equation y+ " y∗ " y ! 0. [Delhi Maths (G) 1999, 2000]

10. Using the idea of Wronskian, show that ex cos x and ex sin x are linearly independent solution of
y+ – 2y∗ " 2y ! 0. Find the solution with the property that y (0) ! 1 and y∗ (0) ! 2.

[Delhi Maths (H) 2004]
Hint. Proceed like Ex. 3 of Art. 1.17. Ans. y ! ex (cos x " sin x)

11. Define the Wronskian of two solutions y1 (x) and y2 (x) of the equation a0 (x) y+ + a1 (x) y∗ + a2 (x) y ! 0.
[Delhi Maths (G) 2006]

Ans. Refer Art. 1.12. Accordingly, the Wronskian W (y1, y2) of y1 and y2 is given by

1 2
1 2

1 2

( ) ( )
( , )

( ) ( )
y x y x

W y y
y x y x

∃
∗ ∗

1.18 Linear differential equation and its general solution
Linear differential equation contains dependent variable and its derivative in their first

degree. The most general form of linear differential equation of order n is
y(n) " P1 y(n–1) " ... " Pn y ! Q, ... (1)

where P1, P2, ..., Pn, Q are functions of x and are assumed to be continuous on interval I.
The differential equation y(n) " P1 y(n–1) " ... " Pn y ! 0 ... (2)

is said to be associated homogeneous equation of (1).
We now state an important theorem without proof. (Proof follows from the well known

existence uniqueness theorem of differential equation of nth order, refer Art. 1.14A) In what
follows we shall use the following notations     y(1) ! dy/dx,        y(2) ! d2y/dx2,         y1

(1) ! dy1/dx,
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(2) (1) (2)2 2 2 2 (1)
1 2 21 2 2/ , / and / , / and so ony d y dx y dy dx y d y dx W dW dx∃ ∃ ∃ ∃

Theorem I. A solution y (x) of (2), satisfying the initial conditions y (x0) ! y(1) (x0) ! ......
! y(n–1) (x0) ! 0, is identically zero.

As a particular case (n ! 1), we have
Theorem II. If a solution of a first-order equation y(1) " Py ! 0 ... (3)

vanishes at a single point x0, the solution is identically zero.
Theorem III. The Wronskian of two solutions of differential equation

y(2) " P y(1) " Q y ! 0, ... (4)
where P, Q are either constants or functions of x alone, is either identically zero or never zero.

[Delhi Maths (Hons.) 1997, 2000]
Proof. Let y1 (x) and y2 (x) be two solutions of (4). Then, we have

(2) (1)
11 1 0y P y Q y# # ∃ and (2) (1)

22 2 0y P y Q y# # ∃

, (2) (1)
11 1( )y P y Q y∃ . # and (2) (1)

22 2( ).y P y Q y∃ . # ... (5)
Now, the Wronskian W of y1 and y2 is given by

W ! 1 2 (1) (1)
1 22 1(1) (1)

1 2
.

y y
y y y y

y y
∃ . ... (6)

(6) , W (1) ! (1) (1) (2) (1) (1) (2) (2) (2)
1 2 1 21 2 2 2 1 1 2 1y y y y y y y y y y y yΕ Φ# . # ∃ .Ι ϑ

or W (1) ! Λ Μ Λ Μ(1) (1)
1 2 2 12 1 ,y Py Qy y Py Qy. # # #  using (5)

or W (1) ! Λ Μ(1) (1)
1 22 1 ,P y y y y PW. . ∃ .  using (6)

, W (1) " PW ! 0,
showing that W is identically zero or never zero (refer theorem II).

Theorem IV. Consider the linear differential equation y(2) " P y(1) " Q y ! 0, ... (7)
where P, Q are either constants or functions of x alone. Then two solutions of (7) are linearly
dependent if and only if their Wronskian vanishes identically.

Proof. Let y1 (x) and y2 (x) be solutions of (7). Let W be the Wronskian of y1, y2, so that

W (x) !
1 2

(1) (1)
1 2

( ) ( )

( ) ( )

y x y x

y x y x

Assume that W (x) < 0. If x0 be any point, then we have

W (x0) < 0,            so that            
1 0 2 0

(1) (1)
0 01 2

( ) ( )

( ) ( )

y x y x

y x y x
! 0

, There exist constants c1 and c2, not both zero, such that
(1) (1)

1 1 0 2 2 0 1 0 2 01 2( ) ( ) 0 and ( ) ( ) 0.c y x c y x c y x c y x# ∃ # ∃

Let y (x) ! c1 y1 (x) " c2 y2 (x). ... (8)
Then (8) shows that y (x) is a solution of (7) satisfying the conditions y (x0) ! 0, y(1) (x0) ! 0.
/ y (x) ! 0 for all x (using Theorem I)
, There exist constants c1 and c2 not both zero, such that c1 y1 (x) " c2 y2 (x) ! 0, for all x.
, y1 and y2 are linearly dependent, by definition.
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Conversely, let y1, y2 be linearly dependent. Then, there exist constants c1, c2 not both zero,
such that c1 y1 (x) " c2 y2 (x) ! 0, for all x. ... (9A)

Differentiating (9A) w.r.t. ‘x’, we get (1) (1)
1 21 2( ) ( ) 0,c y x c y x# ∃  for all x. ... (9B)

Eliminating c1, c2 from (9A) and (9B), we have

1 2
(1) (1)
1 2

( ) ( )

( ) ( )

y x y x

y x y x
! 0, for all x.

, W (x) ! 0, for all x  ,  Wronskian of y1, y2 vanishes identically.
Corollary. Two solutions of (7) are linearly independent if their Wronskian does not vanish

identically.
Proof. Left as an exercise for the reader.
Theorem V. The general solution of differential equation  y(2) " P y(1) " Q y ! 0, ... (10)

where P, Q are either constants or functions of x alone, can be put in the form
c1 y1 (x) " c2 y2 (x), ... (11)

where c1, c2 are constants and y1, y2 are any pair of linearly independent solutions of (10).
Proof. Clearly c1 y1 " c2 y2 is a solution of (10). To prove the required result, it is sufficient

to prove that every solution of (10) can be put in the form (11). To this end, we assume that
y ! c1 y1 " c2 y2, ... (12)

where y is any solution of (1) and c1, c2 are constants.

(12)  , (1) (1) (1)
1 21 2 .y c y c y∃ # ... (13)

Solving (12) and (13) for c1, c2, we have

Λ Μ Λ Μ(1) (1)(1) (1)
1 2 2 12 1(1/ ) , (1 / ) ,c W yy y y c W y y yy∃ Ν . ∃ Ν . ... (14)

where W ! Wronskian of y1 and y2 !
1 2

(1) (1)
1 2

y y

y y

! (1) (1)
1 22 1{ } 0,y y y y. ;  for all x (! y1, y2 are linearly independent)

For c1, c2 given by (14), y and c1 y1 " c2 y2 have the same value at a point x and the same result
applies to their derivatives. The required result now follows by the existence theorem of solution
of differential equation.

Theorem VI. If y1 (x), y2 (x) be any two linearly independent solutions of the homogeneous
differential equation y(2) " P y(1) " Q y ! 0 ... (15)
and y0 is any particular solution of the non-homogeneous differential equation

y(2) " P y(1) " Q y ! R, ... (16)
the general solution of (16) is y0 " c1 y1 " c2 y2, ... (17)
where c1, c2 are arbitrary constants.

Proof. Since y0 is a solution of (16), we have (2) (1)
00 0 .y P y Q y R# # ∃ ... (18)

Let y be any arbitrary solution of (16). Then, we have
y(2) " P y(1) " Q y ! R. ... (19)

Let                 u ! y – y0. ... (20)

(20)  , (1) (2)(1) (1) (2) (2)
0 0and .u y y u y y∃ . ∃ . ... (21)

Subtracting (18) from (19), we have (2) (2) (1) (1)
00 0{ } ( ) 0y y P y y Q y y. # . # . ∃
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or u(2) " P u(1) " Q u ! 0, using (20) and (21)
showing that u is a solution of (15) and so we have u ! c1 y1 " c2 y2, (c1, c2 are some constants)
or y – y0 ! c1 y1 " c2 y2, using (20)
so that y ! y0 " c1 y1 " c2 y2,
showing that (17) is the general solution of (16).

All theorems of the present article have natural generalization to equation of higher order. We
close this article by giving extension of Theorem VI without proof.

Theorem VII. If y1, y2, ..., yn be any n linearly independent solutions of the homogeneous
linear differential equation of the nth order y(n) " P1 y(n–1) " ... " Pn y ! 0 ... (22)
and y0 is any particular solution of the non-homogeneous differential equation

y(n) " P1 y(n–1) " ... " Pn (y) ! Q, ... (23)
the general solution of (23) is y0 " c1 y1 " c2 y2 " ... " cn yn, ... (24)
where c’s are arbitrary constants.

Remark. The general solution c1 y1 " c2 y2 " ... " cn yn of (22) is called complementary
function (C.F.) and the particular solution y0 of (23) is called particular integral (P.I.).

Example. Show that y ! C1e2x " C2xe2x is the general solution of y+ – 4y∗ " 4y ! 0 on any
interval. [Nagpur 2002]

Sol. Given                   y+ – 4y∗ " 4y ! 0 ... (1)
Let y ! e2x so that y∗ ! 2e2x and y+ ! 4e2x

Then, L.H.S. of (1) ! 4e2x – 8e2x " 4e2x ! 0 ... (2)
Again, let y ! xe2x, so that y∗ ! e2x " 2xe2x,           y+ ! 2e2x " 2e2x " 4xe2x

Then, L.H.S. of (1) ! 4e2x " 4xe2x – 4 (e2x " 2xe2x) " 4xe2x ! 0 ... (3)
From (2) and (3), it follows that e2x and xe2x are solutions of (1).

Again, Wronskian of e2x, xe2x !
2 2

2 2 22 2

x x

x x x

e xe

e e xe#
! e4x ; 0 for all x.

Hence by theorem V, Art. 1.18, it follows that y ! C1e2x " C2xe2x is the general solution of (1)
in any interval.

OBJECTIVE PROBLEMS ON CHAPTER 1
Ex. 1. The differential equation of the family of circles of radius ‘r’ whose centre lie on the x-axis,

is   (a) y (dy/dx) " y2 ! r2 (b) y {(dy/dx) " 1} ! r2

(c) y2 {(dy/dx) " 1} ! r2 (d) y2 {(dy/dx)2 " 1} ! r2 [I.A.S. (Prel.) 1993]
Sol. Ans. (d). Equation of a family of circles of radius r whose centre lie on the x-axis is

given by                    (x – Ο)2 " y2 ! r2, where Ο is a parameter ... (1)
Differentiating w.r.t. ‘x’, (1) gives

2 (x – Ο) " 2yy∗ ! 0,   so that x – Ο ! – yy∗            ... (2)
Then, (1) and (2)  , y2y∗2 " y2 ! r2 or y2 {(dy/dx)2 " 1} ! r2.
Ex. 2. The equation of the curve, for which the angle between the tangent and the radius

vector is twice the vectorial angle is r2 ! A sin 24. This satisfies the differential equation
(a) r (dr/d4) ! tan 24 (b) r (d4/dr) ! tan 24
(c) r (dr/d4) ! cos 24 (d) r (d4/dr) ! cos 24. [I.A.S. (Prel.) 1993]
Sol. Ans. (b). Given that r2 ! A sin 24 ... (1)
Differentiating w.r.t. ‘4’, (1) gives
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2r (dr/d4) ! 2A cos 24 or r (dr/d4) ! A cos 24 ... (2)
Dividing (1) by (2), r (d4/dr) ! tan 24.
Ex. 3. The maximum number of linearly independent solutions of the differential equation

d4y/dx4 = 0 with the condition y (0) = 1 is
(a) 4 (b) 3 (c) 2 (d) 1          [GATE 2010]                  Ans. (a)
Ex. 4. The order and degree of differential equation {1 + (dy/dx)2}3/2 = k (d2y/dx2) is
(a) 3c1 (b) 3c2
(c) 3, 3 (d) 2, 2 [Garhwal 2010]
Sol. Ans. (d). See Art. 1.4, 1.5 and 1.6
Ex. 5. Consider the following differential equations:

1. 

1/ 26 5 2 / 32 3 2 2
2 2/ 3

2 3 2 21 0d y d y d d yx y
dx dx dx dx

.
.

Π 6 Π 6! � ! � ! �> > > ># # # ∃% & % & % &Θ 7 Θ 7
∋ ( ∋ ( ∋ (> > > >Ρ 8 Ρ 8

2. dy/dx – 6x ! {ay " bx (dy/dx)}–3/2, b ; 0.
The sum of the order of the first differential equation and degree of the second differential

equation is (a) 6 (b) 7 (c) 8 (d) 9. [I.A.S. (Prel.) 2002]
Sol. Ans. (d). Re-writing the last term of the first equation

2/32 2

2 2
d d y
dx dx

.Π 6! �> >
% &Θ 7% &> >∋ (Ρ 8

!
5/32 3

2 3
2
3

d d y d y
dx dx dx

.Π 6! �> >! �. % &Θ 7% &% &∋ (> >∋ (Ρ 8
!

5/32 3

2 3
2
3

d d y d y
dx dx dx

.Π 6! �> >. % &Θ 7% &> >∋ (Ρ 8

!
8/3 2 5/33 3 2 4

2 3 2 4
2 5 ,
3 3

d y d y d y d y
dx dx dx dx

. .Π 6! � ! � ! � ! �> >! �. . #% & % & % & % &Θ 7% &% & % & % & % &∋ (> >∋ ( ∋ ( ∋ ( ∋ (Ρ 8
which involves fourth order derivative d4y/dx4. So, by definition of order of a differential equation
(see Art 1.4), the order of the first equation is 4.

Next, re-writing the second differential equation, we get
(dy/dx – 6x) {ay " bx (dy/dx)}3/2 ! 1

Squaring both sides, we get (dy/dx – 6x)2 {ay " bx (dy/dx)}3 ! 1
or {(dy/dx)2 – 12x (dy/dx) " 36x2} × {a3y3 " 3a2y2bx (dy/dx)

" 3ayb2x2 (dy/dx)2 " b3x3 (dy/dx)3} ! 1 ... (1)
On multiplying the two factors on the L.H.S. of (1), we find that (dy/dx)5 occurs in the resulting

equation. Hence by definition of degree of a differential equation (see Art. 1.5), the degree of the
given second equation is 5. Hence, the sum of the order of the first equation and the degree of the
second equation is (4 " 5), i.e., 9.

Ex. 6. The degree of the equation (d3y/dx3)2/3 " (d3y/dx3)3/2 ! 0 is
(a) 3 (b) 5 (c) 4 (d) 9. [I.A.S. (Prel.) 2004]
Sol. Ans. (d). Re-writing the given equation, we have

(d3y/dx3)2/3 ! – (d3y/dx3)3/2                   or (d3y/dx3)4 ! (d3y/dx3)9

So, by the definition, the degree of the given equation is 9.
Ex. 7. Linear combinations of solutions of an ordinary differential equation are solutions if

the differential equation is (a) Linear non-homogeneous (b) Linear homogeneous
(c) Non-linear homogeneous (d) Non-linear non-homogeneous [GATE 2002]
Sol. Ans. (b). Refer theorem V of Art. 1.18.
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Ex. 8. Which of the following pair of functions is not a linearly independent solutions of
y+ " 9y ! 0? (a) sin 3x, sin 3x – cos 3x (b) sin 3x " cos 3x, 3 sin x – 4 sin3 x

(c) sin 3x, sin 3x cos 3x (d) sin 3x " cos 3x, 4 cos3 x – 3 cos x. [GATE 2001]
Sol. Ans. (c). Use theorem IV of Art. 1.18.
Ex. 9. Let y ! = (x) and y ! ? (x) be solutions of y+ – 2xy∗ " (sin x2) y ! 0, such that

= (0) ! 1, =∗ (0) ! 1 and ? (0) ! 1, ?∗ (0) ! 2. The value of Wromhian W (=, ?) at x ! 0 is
(a) 0 (b) 1 (c) e (d) e2 [GATE 2004]
Sol. Ans. (b). We know that

W (=, ?) !
( ) ( )
( ) ( )
x x
x x

= =∗
? ?∗

 and hence its value at x ! 0 is given by

    
(0) (0)
(0) (0)

= =∗
? ?∗

, i.e., 
1 1
1 2

, i.e., 2 – 1, i.e., 1.

Ex. 10. What are the order and degree respectively of the differential equation
3 / 22 2

2 2 0d d y
dx dx

.
! �

∃% &
∋ (

(a) 1, 4 (b) 4, 1 (c) 4, 4 (d) 1, 1. [I.A.S. (Prel.) 2006]

Sol. Ans. (b) Re-writing the given differential equation, we have
3 / 22

2
d d d y
dx dx dx

.Π 6! �> >
% &Θ 7
∋ (> >Ρ 8

! 0 or
5 / 22 3

2 3
3
2

d d y d y
dx dx dx

.Π 6! �> >. % &Θ 7
∋ (> >Ρ 8

! 0

or
7 / 2 2 5/ 22 3 2 4

2 3 2 4
3 5
2 2

d y d y d y d y
dx dx dx dx

. .Π 6! � ! � ! �> >. . #% & % & % &Θ 7
∋ ( ∋ ( ∋ (> >Ρ 8

! 0

or
7/2 2 5/22 3 2 4

2 3 2 4
5
2

d y d y d y d y
dx dx dx dx

. .
! � ! � ! �

∃% & % & % &
∋ ( ∋ ( ∋ (

                  or
23 2 4

3 2 45 2d y d y d y
dx dx dx

! �
∃% &

∋ (
By definitions, its order is 4 and degree is 1.
Ex. 11. What is the degree of the differential equation for a given curve in which

(subtangent)m ! (subnormal)n in cartesian form, where 0 < n < m, m, n, m/n are integers?
(a) m " n (b) m – n (c) mn (d) m/n. [I.A.S. (Prel.) 2006]
Sol. Ans. (a) From calculus, we know that
subtangent ! y/(dy/dx) ! y (dy/dx)–1,                      and subnormal ! y (dy/dx)
Hence, the relation (subtangent)m ! (subnormal)n

,
1

or ,
m n m n

m ndy dy dyy y y
dx dx dx

. #
.Π 6> >! � ! � ! �∃ ∃Θ 7% & % & % &

∋ ( ∋ ( ∋ (> >Ρ 8
which is a differential equation of order m " n.

Ex. 12. What are the order and degree respectivels of the differental equation of the family

of curves y2 ! 2 ( )c x c# ,
(a) 1, 1 (b) 1, 2 (c) 1, 3 (d) 2, 1 [I.A.S. Prel. 2007]

Sol. Ans. (c) Given                                        y2 ! 2 ( )c x c# ... (1)

Differentiating (1) w.r.t. ‘x’ 2yy∗ ! 2c so that c ! yy∗ ... (2)
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Substituting the value of c given by (2) in (1), we have
2 1/ 22 { ( ) }y yy x yy∗ ∗∃ # or 2 1/ 22 2 ( )y xyy yy yy∗ ∗ ∗. ∃ ...(3)

Squaring both sies of (3), we get                       4 3 2 2 2 3 34 4 4y xy y x y y y y∗ ∗ ∗. # ∃

which is a differential equation whose order is one and degree is three.
Ex. 13. Which one of the following statement is correct ? The differential equation

2 1/ 3( / ) 5dx dy y x# ∃ is  (a) linear equation of order 2 and degree 1 (b) nonlinear equation of order
1 and degree 2 (c) non-linear equation of order 1 and degree 6 (d) linear equation of order 1 and
degree 6. [I.A.S. (Prel.) 2008]

Sol. Ans. (b). Refer  Art. 1.4 and Art. 1.5

Miscellaneous problems on chapter 1
Ex.1. Show that sin 3x, cos 3x and sin 3x + cos 3x are solutions of differential equation

9 0y y∗∗ # ∃ . Are these solutions linearly dependent ? Use the idea of Wronskian. [Delhi 2008]
Hint. Proceed like solved Ex. 14, page 1.27.
Ex. 2. Show that e2x and e3x are linearly independent solutions of the equation

5y + 6 = 0 on < x .∗∗ . . 3 Σ 3y What is the general solution ? Find the solution y(x) that satisfies

the conditions : (0)= 2, (0) = 3.y y∗ [Delhi B.A. (Prog) II 2010]

Hint:  Proceed as in Ex. 4, page 1.23. General solution is y (x) ! c1e2x + c2 e3x. The solution
satisfying the given initial conditions is y(x) ! 3e2x – e3x.

Ex. 3. If y1 (x) ! 1 + x and y2 (x)! ex be two solution of  ( ) ( ) = 0y x x y x Q x y x∗∗ ∗( )+ ( ) ( )+P ,
then P (x) ! (a) 1 + x (b) –1 – x  (c) (1 + x) /x (d ) (–1 – x)/ x [GATE 2009]

Ex. 4. Consider the differential equation  ( ) + ( ) ( ) + ( ) ( ) = 0∗∗ ∗y x P x y x Q x y x . The set of inital
conditions for which the above differential equation has no solution is

(a)  y (0) ! 2;  (0) 1∗ ∃y (c) y(1) ! 0,  (1) 1∗ ∃y

(c) y (1) ! 1, (1) 0∗ ∃y (d) y (2) ! 1, (2) 2∗ ∃y [GATE 2009]
Ex. 5. If y1 (x) and y2 (x) are linearly independent solutions of the homogeneous differential

equations y∗∗ + P (x) y∗ + Q (x) y = 0, then show that P (x) ! {(y1 y2∗∗ – y2 y1∗∗ )/W (y1, y2)} and
Q(x) ! (y1∗ y2∗∗  – y2∗ y1∗∗ )/W (y1, y2). Hence construct the differential equation having two linearly
independent solution e2x and xe2x. [Mumbai 2010]  Ans.  y∗∗ – 4 y∗ + 4 ! 0

Ex. 6. Let y1 and y2 be two solution of the differential equation y∗∗ + p(x) y∗ + Q (x) y ! 0.
on [a, b]. If y1 and y2 have a maxima at x0 9 (a, b), then show that y2 is a constant multiple of y1
or y1 is a constant multiple of y2 on [a, b]. [Mumbai 2010]

Ex. 7. Let y1 and y2 be two linearly independent solutions of the second order differential
equation y∗∗ + p (x) y∗ + q (x) y ! 0. and W [y1, y2] be their Wronkian. Show that dW/dx = – p (x)
W. Hence deduce that W ! k exp ( ( ) ),p x dx.Χ where k in constant.[Delhi B.Sc. (Hons) II 2011]

Hint. Proceed as in theorem vii, page 1.19. Here note that, we have =1 ! y1, =2 ! y2, p1 (x) !
p (x), p2 (x) ! q (x), W 1 2( , )= = = W  1 2( , )y y and c ! k.

Thus, we get dW/dx = – p (x) W so that (1/W) dW = – p (x) dx. Integrating,

                         log W – log K = – ( )p x dxΧ    W = K esp Α Β( )p x dx.Χ .
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Ex. 8. Which one of the following equations has the same order and degree?
(a) d4y/dx4 " 8 (dy/dx)4 " 5y ! ex (b) 5 (d3y/dx3)4 " 8 (dy/dx " 1)2 " 5y ! x3

(c) {1 " (dy/dx)3}2/3 ! 4 (d3y/dx3) (d) y ! x2 (dy/dx) " {(dy/dx)2 " 1}1/2.[I.A.S. (Prel.) 2005]
Sol. Ans. (c). Refer Art. 1.4 and Art. 1.5.
Ex. 9. Let y1 and y2 be any two solutions of a second order linear non-homogeneous

ordinary differential equation and c be any arbitrary constant. Then, in general
(a) y1 " y2 is its solution, but cy1 is not   (b) cy1 is its solution, but y1 " y2 is not
(c) both y1 " y2 and cy1 are its solutions (d) neither y1 " y2 nor cy1 is its solution.

[I.A.S. (Prel.) 2005]
Sol. Ans. (d). Refer Art. 1.18.
Ex. 10. Consider the following statements regarding the differential equation

| dy/dx | " | y | ! 0, 0 < x < 1 satisfying y (0) ! 1: 1. It is a linear differential equation 2. It has a
unique solution. Which of the statements given above is/are correct?

(a) 1 only (b) 2 only (c) both 1 and 2 (d) neither 1 nor 2. [I.A.S. (Prel.) 2005]
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2.1

2
Equations of First Order

And First Degree
2.1 Introduction

There are two standard forms of differential equations of first order and first degree, namely,
(i) dy/dx ! f (x, y) (ii) M (x, y) dx " N (x, y) dy ! 0.
In what follows we shall see that an equation in one of these forms may readily be written in

the other form. It will be assumed that the necessary conditions for the existence of solutions are
satisfied. We now discuss various methods to solve such equations.

2.2 Separation of variables
If in an equation, it is possible to get all the functions of x and dx to one side and all the

functions of y and dy to the other, the variables are said to be separable.
Working rule to solve an equation in which variables are separable.
Step 1: Let dy/dx ! f1 (x) f2 (y), ... (1)

be given equation. f1 (x) is a function of x alone and f2 (y) is a function of y alone.
Step 2: From (1), separating variables, [1/f2 (y)] dy ! f1 (x) dx. ... (2)
Step 3: Integrating both sides of (2), we have

2 1[1/ ( )] ( ) ,f y dy f x dx c! �# # ... (3)

where c is constant of integration, is the required solution.
Note 1. In all solutions (3), an arbitrary constant c must be added in any one side only. If c

is not added, then the solution obtained will not be a general solution of (1).
Note 2. To simplify the solution (3), the constant of integration can be chosen in any suitable

form so as to get the final solution in a form as simple as possible. Accordingly, we write log c,
tan–1 c, sin c, ec, (1/2) × c, (– 1/3) × c etc. in place of c in some solutions.

Note 3. The students are advised to remember by heart the following formulas. These will help
them to write solution (3) in compact form

(i) log x " log y ! log xy. (ii) log x – log y ! log (x/y).
(iii) n log x ! log xn. (iv) tan–1 x " tan–1 y ! tan–1 [(x " y)/(1 – xy)]
(v) tan–1 x – tan–1 y ! tan–1 [(x – y)/(1 " xy)] (vi) elog f (x) ! f (x).

2.3 Examples of Type 1 based on Art 2.2
Ex. 1. (a) Solve dy/dx ! ex–y " x2e–y

[Agra 1995; Lucknow 1998; Mysore 2004;Punjab 1994; Meerut 2009; Agra 2005]
(b) Solve dy/dx ! ex"y ! x2ey

Sol. (a) For separating variables, we re-write the given equation as
dy/dx ! e–y (ex " x2) or eydy ! (x2 " ex) dx.
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2.2 Equations of First Order and First Degree

Integrating, ey ! x3/3 " ex " c, c being an arbitrary constant.
(b) Do like part (a). Ans. – e–y ! x3/3 " ex " c.
Ex. 2. Find the curves passing through (0, 1) and satisfying sin (dy/dx) ! c.

[I.A.S. (Prel.) 2005]
Sol. Re-writing the given equation, we have
dy/dx ! sin–1 c or dy ! (sin–1 c) dx.
Integrating, y ! x sin–1 c " c∃, c∃ being arbitrary constant. ... (1)
Since, (1) must pass through (0, 1), we put x ! 0 and y ! 1 in (1) and obtain c∃ ! 1. Hence, (1)

reduces to              y ! x sin–1 c " 1 or (y – 1)/x ! sin–1 c
or sin {(y – 1)/x} ! c, which gives the desired curves.

Ex. 3. Solve (dy/dx) tan y ! sin (x " y) " sin (x – y).
Sol. Using formula sin C " sin D ! 2 sin {(C " D)/2} cos {(C – D)/2}, the given equation can

be rewritten as
(tan y) (dy/dx) ! 2 sin x cos y         or         sec y tan y dy ! 2 sin x dx.

Integrating,                    sec y ! – 2 cos x " c, c being an arbitrary constant.
Ex. 4. Solve the following differential equations:

(i) 
sin cos

(2 log 1)
dy x x x
dx y y

�
!

�
   (ii) 

(2 log 1)
sin cos

dy x x
dx y y y

�
!

�
. [I.A.S. (Prel.) 2009]

Sol. (i) Re-writing the given equation, (sin x " x cos x) dx ! (2y log y " y) dy.

Integrating, 2cos cos 2 log ( / 2) .x x x dx y y dy y c% � ! � �# # ... (1)

Now, cosx x dx# ! sin sin ,x x x dx% #  integrating by parts

or cosx x dx# ! x sin x " cos x. ... (2)

Also, logy y dy# ! 2 2(log ) ( / 2) {(1/ ) ( / 2)} ,y y y y dy& % &#  integrating by parts

or 2 2log ( / 2) log / 4y y dy y y y! & %# ... (3)

Using (2) and (3), (1) reduces to
– cos x " x sin x " cos x ! 2 {(y2/2)& log y – y2/4 } " y2/2 + c.

or x sin x ! y2 log y " c, c being an arbitrary constant.
(ii) Proceed exactly as in part (i). Ans. x2 log x ! y sin y " c.
Ex. 5. Solve log (dy/dx) ! ax " by.
Sol. Re-writing the given equation, we get dy/dx ! eax"by ! eaxeby     or     e–by dy ! eax dx.
Integrating, – (1/b) e–by ! (1/a) eax " c, c being an arbitrary constant.
Ex. 6. Solve y – x (dy/dx) ! a (y2 + dy/dx). [Meerut 1993; Delhi Maths (G) 1994;

Purvanchal 2006, Rajasthan 1995; Agra 1993; Indore 1993]
Sol. The given equation can be re-written as

(a " x) 
dy
dx

! y – ay or      
(1 )

dx dy
x a y ay

!
� %

or
dx

x a�
!

1
1

a
ay y

∋ (
�) ∗%+ ,

dy, on resolving into partial fractions.
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Equations of First Order and First Degree 2.3

Integrating, log (x " a) ! – log (1 – ay) " log y " log c,

or log (x " a) ! log 
1

cy
ay

∋ (
) ∗%+ ,

or x " a !
1

cy
ay%

or (x " a) (1 – ay) ! cy, which is the required solution.
Ex. 7. Solve 3ex tan y dx " (1 – ex) sec2 y dy ! 0. [Meerut 2008; Kanpur 1997]

Sol. Separating the variables, we get                            
23 sec 0.

tan1

x

x
e ydx dy

ye
� !

%

Integrating,     – 3 log (1 – ex) " log (tan y) ! log c, c being an arbitrary constant.
or log (tan y) ! log (1 – ex)3 " log c or tan y ! c (1 – ex)3.

Ex. 8. Solve ( ) ( / ) .2 2 2 21 x y x y xy dy dx 0� � � � !

Sol. Re-writing the given differential equation, we have
2 2[(1 ) (1 )] ( / ) 0x y xy dy dx� � � ! or 2 2(1 ) (1 ) ( / ) 0x y xy dy dx� � � !

or          
2 2

2 2 2

(1 ) (1 )0 or 0.
(1 ) (1 ) (1 )

x dx y dy x dx y dy
x y x x y

� �
� ! � !

� � �

Integrating, 2 1/ 2 2 1/ 2 2 1\2(1 ) (1 ) (1 )
dx x dx y dy

x x x y
� �

� � �# # # ! C. ... (1)

Now, 2 1/ 2(1 )
dx

x x�# !
2

2

( 1/ )

(1/ ) 1 (1/ )

t dt

t t

%

�
# , putting x !

1
t

! 2
2

log { 1}
( 1)

dt t t
t

% ! % � �
�

#

!
2

2
1 (1 )1 1log 1 log

x
x xx

− .− . � �/ / / /0 1% � � ! %2 3 2 34 5
6 7/ / / /8 9 8 9

! log x – log {1 + (1 + x2)1/2} ... (2)

Again, 2 1/ 2(1 )
x dx
x�# !

2
t dt

t# , putting 1 " x2 ! t

! 1/ 2 1/ 2 2 1/ 21 (1 ) .
2

t dt t x% ! ! �# ... (3)

Similarly, 2 1/ 2(1 )
y dy
y�# ! (1 " y2)1/2. ... (4)

Using (2), (3) and (4), (1) gives the required solution as
log x – log {1 + (1 + x2)1/2} + (1 + x2)1/2 + (1 + y2)1/2 ! C.

Ex. 9. Solve dy/dx ! .
3x y 2 x ye x e� ��

Sol. From given equation, we get dy/dx !
32( ).y x xe e x e�

or e–y dy !
32( ) .x xe x e dx� ... (1)
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2.4 Equations of First Order and First Degree

Integrating (1), ye dy%# !
32x xe dx x e dx�# #

or – e–y ! (1/ 3) ,x te e dt c� �#  putting x3 ! t

or – e–y ! ex " (1/3) et " c ! ex " (1/3) 
3xe " c.

Ex. 10. If dy/dx ! ex"y and it is given that for x ! 1, y ! 1; find y when x ! – 1.
Sol. Rewriting the given equation, we get e–y dy ! ex dx.
Integrating it, – e–y ! ex " c. ... (1)
Putting x ! 1, y ! 1 in (1),         – e–1 ! e " c           so that c ! – e–1 – e.
Hence (1) becomes – e–y ! ex – e–1 – e. ... (2)
Putting x ! – 1 in (2), we obtain – e–y ! e–1 – e–1 – e         so that         y ! – 1.

Exercise 2(A)

1. (ex " 1) y dy ! (y " 1) ex dx. [Agra 1996] Ans. (ex " 1) (y " 1) ! c ey

2. (dy/dx) – y tan x ! – y sec2 x. Ans. y cos x ! c e– tan x

3. 2 2(1 ) (1 ) 0.x y dx y x dy� � � ! [Bangalore 1996] Ans. 2 2(1 ) (1 )x y C� � � !

4. (2ax " x2) (dy/dx) ! a2 " 2ax. [Kanpur 1996] Ans. x (x " 2a)3 ! Ce (2y/a)

5. dr ! a (r sin : d: – cos : dr). Ans. r (1 " a cos :) ! c
6. (ey " 1) cos x dx " ey sin x dy ! 0. [Lucknow 1992] Ans. (sin x) (ey " 1) ! c

7. (a) ( ) ( / ) 0.a x dy dx x� � ! [Rohilkhand 1995; Bundelkhand 1998]
Ans. y " (2/3) (x – 2a) (a " x)1/2 ! c

(b) dy/dx " 2 2(1 ) /(1 )y x% % !0    [Pune 2010; Bangalore 1996] Ans. sin–1 x " sin–1 y ! c
8. (x2 – yx2) dy " (y2 " xy2) dx ! 0. Ans. log (x/y) – (x " y)/(xy) ! c
9. (xy2 " x) dx " (yx2 " y) d y ! 0.  [Agra 2005,  Rajsthan 2010] Ans. (x2 " 1) (y2 " 1) ! c

10. sec2 x tan y dx " sec2 y tan x dy ! 0. [Agra 2006] Ans. tan x tan y ! c
11. (1 " x) y dx " (1 " y) x dy ! 0. Ans. x " y " log (xy) ! c
12. Find the function ‘f’ which satisfies the equation df/dx ! 2f, given that f (0) ! e3. Ans. f ! e2x"3

13. (1 – x2) (1 – y) dx ! xy (1 " y) dx. Ans. log [x (1 – y)2] ! 1
2 (x2 – y2) – 2y " c

[Jabalpur 1993; Guwahati 1996; Vikram 1992; Nagpur 2005; Agra 1992; Meerut 1995]
14. x2 (y " 1) dx " y2 (x – 1) dy ! 0. Ans. x2 " y2 " 2 (x – y) " 2 log {(x – 1) (y " 1)} ! c
15. (dy/dx) tan y ! sin (x " y) " sin (x – y). Ans. 2 cos x " sec y ! c
16. x dy – y dx ! (a2 " y2)1/2 dx. Ans. 2a2 log (xc) ! y (a2 " y2)1/2 " a2 log {y " (a2 " y2)1/2} – y2

17. 23 1dy dyy x x
dx dx

0 1% ! �4 5
6 7

. Ans. (y – 3) (1 " 3x) ! cx

18. cos y log (sec x " tan x) dx ! cos x log (sec y " tan y) dy. [Kanpur 1994]

Ans. log 
sec tan
sec tan

x x
y y

�
�

 log {(sec x " tan x) (sec y " tan y)} ! c

2.4 Transformation of some equations in the form in which variables are separable
Equations of the form [Nagpur 2003]
dy/dx ! f (ax " by " c) or dy/dx ! f (ax " by)

can be reduced to an equation in which variables can be separated. For this purpose, we use the
substitution ax " by " c ! v or ax " by ! v.
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Equations of First Order and First Degree 2.5

2.5 Examples of Type 2 based on Art 2.4
Ex. 1. (a) Solve dy/dx ! (4x " y " 1)2. [I.A.S. (Prel.) 2006]
(b) dy/dx ! (4x " y " 1)2 if y (0) ! 1. [Delhi Maths (G) 2006]
Sol. Let 4x " y " 1 ! v. ... (1)
Differentiating (1) with respect to x, we get
4 + (dy/dx) ! dv/dx or dy/dx ! (dv/dx) – 4... (2)
Using (1) and (2), the given equation becomes
(dv/dx) –4 ! v2 or dv/dx ! 4 + v2

Now, separating variables x and v, dx ! (dv) / (4 + v2)
Integrating, x " c∃ ! (1/2) &  tan–1 (v/2), where c∃ is an arbitrary constant.

or 2x " c ! tan–1 (v/2)  or v ! 2 tan (2x " c), where c ! 2c∃
or 4x " y " 1 ! 2 tan (2x " c), using (1) ... (2)

(b) Putting x ! 0, y ! 1 in (2), we get tan c ! 1, so that c ! ;/4.
< Required solution is 4x " y " 1 ! 2 tan (2x " ;/4).
Ex. 2. Solve (x " y)2 (dy/dx) ! a2. [Meerut 1997; Indore 1998; I.A.S. (Prel.) 1994;

Delhi Maths (G) 1997; Ravishankar 1992]
Sol. Let x " y ! v. ... (1)
Differentiating,     1 " (dy/dx) ! dv/dx or dy/dx ! dv/dx– 1... (2)
Using (1) and (2), the given equation becomes

2 2 2 2 21 ordv dvv a v a v
dx dx

0 1% ! ! �4 5
6 7

or
2 2

2 2 2 2
or 1 .v adx dv dx dv

v a a v

∋ (
! ! %) ∗

� �) ∗+ ,
Integrating,          x " c ! v – a2 × (1/a) & tan–1 (v/a), where c is arbitrary constant

or x " c ! x " y – a tan–1 x y
a
�0 1

4 5
6 7

or y – a tan–1 x y
a
�0 1

4 5
6 7

! c.

Ex. 3. Solve dy/dx ! sec (x " y) [Delhi Maths (P) 2005]
or    cos (x " y) dy ! dx. [Kanpur 1992]

Sol. Let                 x " y ! v  so that dy/dx ! (dv/dx) – 1.... (1)
Using (1), the given equation becomes

dv
dx

 – 1 ! sec v or
dv
dx

! 1 "
1

cos v

or
2 1

22 1 1
2 22 1

2

2 cos 1cos or (1 sec ) .
1 cos 1 2 cos 1

vvdx dv dv dx v dv
v v

%
! ! ! %

� � %

Integrating, x " c ! v – tan 1
2 v or y – tan 1

2 (x " y) ! c, by (1).
Ex. 4. Solve dy/dx ! sin (x " y) " cos (x " y). [Guwahati 2007; Garhwal 1994]
Sol. Let x " y ! v ... (1)

Differentiating (1) w.r.t ‘x’, 1 " dy
dx

! dv
dx

           or dy
dx

! dv
dx

 – 1... (2)
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Using (1) and (2), the given equation becomes
dv
dx

 – 1 ! sin v " cos v or
dv
dx

! 1 " sin v " cos v.... (3)

But 1 " sin v " cos v!1 " 2 sin (v/2) cos (v/2) " 2 cos2 (v/2) – 1! 2 cos2 (v/2) [1 " tan v/2].

< (3) reduces to
21

2
2

sec ( / 2)
1 tan ( / 2)2 cos ( / 2) [1 tan ( / 2)]

v dvdvdx
vv v

! !
��

.

Integrating, x " c ! log [1 " tan (v/2)], c being an arbitrary constant
or x " c ! log [1 + tan {(x " y)/2}], on using (1).

Ex. 5. Solve (x " y) (dx – dy) ! dx " dy. [Calcutta 1995]
Sol. Re-writing the given equation, we get

(x " y – 1) dx ! (x " y " 1) dy or      
1
1

dy x y
dx x y

� %
!

� �
.         ... (1)

Let x " y ! v. ... (2)
(2) =     1+ dy/dx ! dv/dx        so that dy/dx ! (dv/dx) – 1.       ... (3)
Using (2) and (3), (1) becomes

1 2 11 or or 2 1 .
1 1

vdv dv v dx dv
dx v dx v

% 0 1% ! ! ! �4 5� � >6 7
< Integrating,              2x " c ! v " log v           or x – y " c ! log (x " y), by (2)
Ex. 6. Solve dy/dx ! (4x + 6y + 5) / (3y + 2x + 4) [Delhi Maths (G) 2005;

Calcutta 1995; Delhi Maths (H) 2002; Karnataka 1995 Rajasthan 2010]

Sol. The given equation may be re-written as
dy
dx

!
2 (2 3 ) 5
(2 3 ) 4

x y
x y

� �
� �

.        ... (1)

< We take 2x " 3y ! v. ... (2)

Differentiating, (2) w.r.t. ‘x’ 2 " 3 
dy
dx

!
dv
dx

         or         
1 2
3

dy dv
dx dx

0 1! %4 5
6 7

. ... (3)

Using (2) and (3), (1) gives

2 5 3 (2 5) 8 231 2 or 2
3 4 4 4

v v vdv dv
dx v dx v v

� � �0 1% ! ! � !4 5 � � �6 7

or
? ≅(1/ 8) (8 23) 4 23 / 84 1 9

8 23 8 23 8 8 (8 23)
vdx v

dv v v v
& � � % ∋ (�

! ! ! �) ∗� � �+ ,

Separating variables, 1 9 .
8 8 (8 23)

dx dv
v

∋ (
! �) ∗�+ ,

Integrating,             x " c ! (v/8) " (9/64) log (8v " 23), c being an arbitrary constant
or 8x " 8c ! 2x " 3y " (9/8) log (16x " 24y " 23), using (2) and multiplying by 8
or 3y – 6x " (9/8) log (16x " 24y " 23) ! 8c    or      y – 2x " (3/8) log (16x " 24y " 23) ! c∃,
where c∃ (! 8c/3) is an arbitrary constant.

Ex.7 Solve (x + 2y – 1) dx ! (x + 2y + 1) dy [Delhi Maths (H) (2007)
Sol. Rewritting  the given equation,       dy/dx ! (x + 2y – 1) / (x + 2y + 1) ...(1)
Let x + 2y ! v      so that      1+ 2 (dy/dx) ! dv/dx          or              dy/dx ! (dv/dx–1)/2
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Equations of First Order and First Degree 2.7

< (1) reduces to            
1 11
2 1

dv v
dx v

%0 1% !4 5 �6 7
                     or

12 1
1

dv v
dx v

%0 1! �4 5�6 7

or 3 1
1

dv v
dx v

%
!

�
or 1

3 1
vdx dx
v
�

!
%

! 1 3 3
3 3 1

v dv
v

�
%

or                dx ! ? ≅3 1 41
3 3 1

v
dv

v
% �

%
                        or 43 1

3 1
dx dv

v
0 1! �4 5%6 7

Intergrating ? ≅ ? ≅ ? ≅3 4 / 3 log 3 1 4 / 3 logx v v c! � & % % & , c being an arbitrary constant.

or           4 3 1log
3

v
c
% ! 3x – v or ? ≅3 2 14 log

3
x y

c
� % ! 3x – (x + 2y)

or log ? ≅3 6 1 3 2 2
4

x y
x y

c
� %

! & % or 3( ) / 23 6 1 x yx y ce %� % !

Exercise 2(B)

Solve the following differential equations:
1. dy/dx ! (x " y)2. [Nagpur 2002] Ans. x " c ! tan–1 (x " y)
2. dy/dx " 1 ! ex"y. [Calcutta 1996] Ans. x " e– (x " y) ! c
3. (2x " y " 1) dx " (4x " 2y – 1) dy ! 0. Ans. 2y " x " log (2x " y – 1) ! c
4. (x – y – 2) dx – (2x – 2y – 3) dy ! 0. Ans. x – 2y – log (x – y – 1) ! c
5. (x " y " 1) (dy/dx) ! 1. [Meerut 1995; Delhi Maths (G) 1991; Dibrugarh 1995]

Ans. x + y + 2 ! c ey

6. sin–1 (dy/dx) ! x " y. [Mysore 2004] Ans. – 2/(x " c) ! 1 " tan 1
2  (x " y)

7. (2x " 4y " 3) (dy/dx) ! 2y " x " 1. Ans. 4x " 8y " 5 ! ce4(x – 2y)

8.
4 6 5
3 2 4

x y dy
y x dx

� �
Α

� �
! 1. Ans. (2/7) (2x " 3y) – (9/49) log (14x " 21y " 22) ! x " c

9. dy/dx ! (x – y " 3)/(2x – 2y " 5). Ans. x – 2y " log (x – y " 2) ! c
10. (2x " 2y " 3) dy – (x " y " 1) dx ! 0  or                    dy/dx ! (x " y " 1)/(2x " 2y " 3).

[Lucknow 1998; Agra 1995; Meerut 1994] Ans. x " y " (4/3) ! ce3(x – 2y)

11. (x – y)2 (dy/dx) ! a2. [Delhi Maths (G) 1999] Ans. y " c ! (a/2) log {(x – y – a)/(x – y " a)}

12.
x y a dy x y a
x y b dx x y b

� % � �
Α !

� % � �
. Ans. (b – a)2 log {(x " y)2 – ab} ! 2 (x – y) " c

13. dy/dx ! cos (x " y). Ans. x " c ! tan {(x " y)/2}
14. If dy/dx ! ex"y and it is given that for x ! 1, y ! 1, prove y (– 1) ! – 1.
15. dy/dx ! (x " y " 1)/(x " y – 1) when y ! (1/3) at x ! (2/3). Ans. log (x " y) ! y – x – (1/3)
16. (x " y – 1) dy ! (x " y) dx. Ans. 2 (y – x) – log (2x " 2y – 1) ! c
17. dy/dx ! (x – y " 3)/(2x – 2y " 5).   [Garhwal 2010] Ans. x – y " 2 ! ce2y–x

2.6 Homogeneous equation Definition.  A differential equation of first order and first degree is
said to be homogeneous if it can be put in the form dy/dx ! f (y/x)

2.7 Working rule for solving homogeneous equations
Let the given equation be homogeneous. Then, by definition, the given equation can be put

in the form dy/dx ! f (y/x). ... (1)
To solve (1), let                y/x ! v,                   i.e., y ! vx.                ... (2)
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2.8 Equations of First Order and First Degree

Differentiating with respect to x, (2) gives dy/dx ! v " x (dv/dx). ... (3)
Using (2) and (3), (1) becomes

( )dvv x f v
dx

� ! or ( )dvx f v v
dx

! %

Separating the variables x and v, we have

( )
dx dv
x f v v

!
%

 so that log x " c !
( )

dv
f v v%#

where c is an arbitrary constant. After integration, replace v by y/x.

2.8 Examples of Type 3 based on Art. 2.7
Ex. 1. Solve (x3 " 3xy2) dx " (y3 " 3x2y) dy ! 0. [I.A.S. (Prel.) 2004]

Sol. Given
dy
dx

!
3 2 2

3 2 3
3 1 3 ( / )
3 ( / ) 3 ( / )

x xy y x
y x y y x y x

� �
% ! %

� �
. ... (1)

Take  y/x ! v,      i.e.,      y ! vx. so that                 dy/dx ! v " x (dv/dx). ... (2)

From (1) and (2),
2

3
1 3

3
dv vv x
dx v v

�
� ! %

�

or    
2 4 2 3

3 3 4 2
1 3 6 1 4 12

or 4 .
3 3 6 1
v v v v vdv dxx v dv

dx xv v v v v v
� � � �

! % % ! % ! %
� � � �

Integrating, 4 log x ! – log (v4 " 6v2 " 1) " log c, c being an arbitrary constant.
or         log x4 ! log [c/(v4 " 6v2 " 1)], i.e.,   x4 (v4 " 6v2 " 1) ! c
or                 y4 " 6x2y2 " x4 ! c         or (x2 " y2)2 " 4x2y2 ! c, as y/x ! v.

Ex. 2. Solve: x dy – y dx !  (x2 + y2) 1/2 dx [Meerut 2008; Delhi Maths (G) 1999]

Sol. Here,               ? ≅Β Χ
1

2
2 2 1/ 2

2( ) 1 / ) .dy y x y y y x
dx x x

� �
! ! � � ... (1)

Take        y/x ! v,           i.e.,         y ! vx.          so that dy/dx ! v " x (dv/dx).... (2)

From (1) and (2),  2
2

(1 ) or .
(1 )

dv dx dvv x v v
dx x v

� ! � � !
�

Integrating,            log x " log c ! log 2[ ( 1)]v v� �              or                xc ! 2( 1)v v� �

or x2c ! 2 2( ) , /y y x as v y x� � !

Ex. 3. Solve dy y ytan
dx x x

! � . [Patna 2003, I.A.S. 2001]

Sol. Since the R.H.S. of the given equation is function of y/x alone, we conclude that it must
be a homogeneous equation.

Take    y/x ! v,         i.e.,            y ! vx,       so that         dy/dx ! v " x (dv/dx). ... (1)

Using (1), the given equation becomes
costan or .
sin

dv dx vv x v v dv
dx x v

� ! � !

Integrating,                log x " log c ! log sin v, c being  an arbitrary constant.
or                  cx ! sin v,                        i.e.,               cx ! sin (y/x), as v ! y/x
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Equations of First Order and First Degree 2.9

Ex. 4. Solve: x cos (y/x) (y dx " x dy) ! y sin (y/x) (x dy – y dx) ... (1)

or                  .y y y y dyx cos y sin y y sin x cos x 0
x x x x dx

0 1 0 1� % % !4 5 4 5
6 7 6 7

... (2)

[Mysore 2004; Kanpur 1996; Lucknow 1997]
Sol. Rewriting (1), we get (2). So (1) and (2) are the same equations.

From (2),
dy
dx

!
{ cos ( / ) sin ( / )}
{ sin ( / ) cos ( / )}
x y x y y x y
y y x x y x x

�
%

or
dy
dx

!
[cos ( / ) ( / ) sin ( / )] ( / )

[( / ) sin ( / ) cos ( / )]
y x y x y x y x
y x y x y x

�
%

... (3)

Take      y/x ! v,       i.e.,           y ! vx,          so that dy/dx ! v + x (dv/dx).... (4)

Using (4), (3) becomes v " x
(cos sin )

sin cos
dv v v v v
dx v v v

�
!

%

or x
dv
dx

!
(cos sin ) 2 cos

sin cos sin cos
v v v v v vv

v v v v v v
�

% !
% %

or 2
dx
x

!
sin cos sin 1 .

cos cos
v v v vdv dv

v v v v
∋ (%

! %) ∗
+ ,

Integrating,          2 log x ! – log cos v – log v " log c, c being an arbitrary constant.
or log x2 ! log (c/v cos v) or x2v cos v ! c       or       xy cos (y/x) ! c. [!  v ! y/x]

Ex. 5. Solve (4y " 3x) dy " (y – 2x) dx ! 0.[Delhi Maths (H) 1994]

Sol. Re-writing the given equation,
dy
dx

!
2 2 ( / )

4 3 3 4 ( / )
y x y x
y x y x
% %

% !
� �

. ... (1)

Let            y/x ! v   so that     y ! xv.                ... (2)
From (2), dy/dx ! v " x (dv/dx). ... (3)
Using (2) and (3), (1) reduces to

              v " x
dv
dx

!
2
3 3

v
v

%
�

or                          x
2

3 4
dv v
dx v

%
!

�
 – v

or                 x
dv
dx

!
22 4 4

3 4
v v

v
% %

�
or 2

2 3 4
1 2 2

dx v
x v v

�
!

% %
.

Integrating, 2 log x ! 2 2
(3 4 ) ( 2 4 ) 1

1 2 2 1 2 2
v dv v

v v v v
� % % % �

!
% % % %# # dv

or log x2 " log c ! – log (1 – 2v – 2v2) " 2(1/ 2)
(1/ 2)

dv
v v

&
% %#

or log {cx2 (1 – 2v – 2v2)} ! 2
1
2 (3/ 4) ( 1/ 4)

dv
v v% � �# ! 2 2

1
2 ( 3 / 2) ( 1/ 2)

dv
v% �#

! 1 1 ( 3 / 2) ( 1/ 2)log
2 2 ( 3 / 2) ( 3 / 2) ( 1/ 2)

v
v

� �
&

% �
! 1 3 2 1log

2 3 3 1
v

v
� �
% %

or
2

2
2

2 2log 1 y ycx
x x

∋ (0 1
% %) ∗4 5

) ∗6 7+ ,
! 1 ( 3 1) 2 ( / )log , as

2 3 ( 3 1) 2 ( / )
y x yv

xy x
� �

!
% %

or c (x2 – 2xy – 2y2) ! 
1/ 2 3

( 3 1) 2
( 3 1) 2

x y
x y

− .� �/ /
2 3

% %/ /8 9
, c being an arbitrary constant.
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2.10 Equations of First Order and First Degree

Ex. 6. Solve (a) x (dy/dx) ! y {log y – log x " 1} [I.A.S. (Prel.) 2005]

(b) ( )2 xy x dy y dx 0% � !

Sol. (a) Given log 1dy y y
dx x x

0 1! �4 5
6 7

. ... (1)

Putting y/x ! v or y ! xv, we have dy/dx ! v " x (dv/dx). ... (2)

From (1) and (2),              v " x
dv
dx

! v (log v " 1)              or
log

dx dv
x v v

! .

Integrating,                      log x " log c ! log log v              or xc ! log v.
< v ! exc              or                (y/x) ! exc                or y ! xexc.

Part (b). Given
/ .

2 1 2 ( / )
dy y y x
dx xy x y x

! % !
% %

... (1)

Putting y/x ! v        or        y ! xv, we have dy/dx ! v " x (dv/dx). ... (2)

From (1) and (2),              v " x
dv
dx

!
1 2

v
v%

               or x 2
1 2

dv v v
dx v

!
%

or                    
dx
x

!
1 2

2
v

v v
%

dv                   or 3 / 21 1
2

dx v
x v

%0 1! %4 5
6 7

dv.

Integrating,            log x ! – v–1/2 – log v " log c           or  log 
1xv

c v
0 1 ! %4 5
6 7

.

or                     log 
xy
cx

0 1
4 5
6 7

!
1

( / )y x
%

                    or log (y/c) ! ( / )x y%

or                              y/c ! ( / )x ye%                   so that y ! ( / )x yce%

Ex. 7. Solve (x3 " y3) dx ! (x2y " xy2) dy [Delhi Maths (H) 2002]
Sol. Re-writing the given equation, dy/dx ! (x3 " y3)/(x2y " xy2)                ... (1)
Putting y ! xv and dy/dx ! v " x (dv/dx), (1) becomes

v " x
3

2
1dv v

dx v v
�

!
�

or
3

2
1 (1 ) (1 )

(1 )
dv v v vx v
dx v vv v

� % �
! % !

��

or                    0
1

dx v dv
x v

� !
%

                or 11 0
1

dx dv
x v

0 1
� � !4 5%6 7

Integrating,          log x " v " log (v – 1) – log c ! 0, c being an arbitrary constant.
or log {x (v – 1)/c} ! – v or x (v – 1) ! ce–v or x (y/x) – x ! ce–y/x

or y – x ! ce–y/x, c being an arbitrary constant.
Ex. 8. Solve (x2 – 4xy – 2y2) dx " (y2 – 4xy – 2x2) dy ! 0. [Delhi Maths (G) 2005, 06]
Sol. Re-writing the given differential equation, we have

dy/dx ! (x2 – 4xy – 2y2)/(2x2 " 4xy – y2) ... (1)
Putting y ! xv and dy/dx ! v " x (dv/dx), (1) reduces to

v " x
2

2
1 4 2
2 4

dv v v
dx v v

% %
!

� %
or

2

2
1 4 2
2 4

dv v vx v
dx v v

% %
! %

� %

5 4 2 4� � !x y x y x c

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Equations of First Order and First Degree 2.11

or           
2 3

2
1 6 6

2 4
dv v v vx
dx v v

% % �
!

� %
or

2

3 2
3 ( 4 2)3 0

6 6 1
dx v v dv
x v v v

% %
� !

% % �
Integrating,  3 log x " log (v3 – 6v2 – 6v " 1) ! log c, being an arbitrary constant

or          x3 (v3 – 6v2 – 6v " 1) ! c              or  x3 {(y/x)3 – 6 (y/x)2 – 6 (y/x) " 1} ! c
or y3 – 6xy2 – 6x2y " x3 ! c, c being an arbitrary constant.

Exercise 2(C)

Solve the following differential equations:
1. (x2 " y2) dx – 2x dy ! 0. [Delhi Maths (H) 1992] Ans. x2 – y2 ! c x
2. y2 " x2 (dy/dx) ! xy (dy/dx). Ans. y ! c ey/x

3. (x2 " xy) dy ! (x2 " y2) dx. Ans. (x – y)2 ! c x e–y/x

4. dy/dx ! y/x " sin (y/x). Ans. tan (y/2x) ! c x
5. (x2 " y2) (dy/dx) ! xy. [Kerala 2001] Ans. y ! 2 2/ 2x yce
6. (x2 – y2) dy ! 2xy dx. Ans. y ! c (x2 " y2)

7. (x3 – y3) dx " xy2 dy ! 0. [Kanpur 2005] Ans. x ! 3 3/ 3y xce%

8. y2 dx " (xy " x2) dy ! 0. Ans. 2y " x ! cxy2

9. x (dy/dx) " (y2/x) ! y. [Delhi Maths 1997; Dibrugarh 1996] Ans. x ! cex/y

10. x2y dx – (x3 " y3) dy ! 0. [Andhra 2003; Bangalore 1995] Ans. y3 !
3 3/x yce

11. (x " y) dy " (x – y) dx ! 0   or   y – x (dy/dx) ! x " y (dy/dx)         or       y – xp ! x " yp, p ! dy/dx.
[Delhi Maths (H) 1994; Rajpur 1995] Ans. tan–1 (y/x) " (1/2) & log (x2 " y2) ! c

12. x (x – y) dy " y2 dx ! 0. Ans. y ! cey/x

13. x (x – y) dy ! y (x " y) dx. [Dibrugarh 1995] Ans. xy ! ce–x/y

14. x sin (y/x) (dy/dx) ! y sin (y/x) – x. [Nagpur 2002] Ans. x ! cecos (y/x)

15. x2 dy " y (x " y) dx ! 0. Ans. y " 2x ! cx2y
16. (x3 – 3xy2) dx ! (y3 – 3x2y) dy. (Delhi Maths (Prog) 2007) Ans. x2 – y2 ! c (x2 " y2)2

17. 2 (dy/dx) ! [y (x " y)/x2]  or  2 (dy/dx) – (y/x) ! y2/x2. Ans. (y – x)2 ! cxy2

18. (x3 – 2y3) dx " 3xy2 dy ! 0. Ans. x3 " y3 ! cx2

19. dy/dx ! (xy2 – x2y)/x3. Ans. x2y ! c (y – 2x)
20. (x2 + y2) dx + 2xy dy ! 0  (Guwahati 2007) Ans. x(x2 + 3y2) ! c

21. 2 2 3( 2 ) ( 2 ) 0∆% % % !x y xy dx x x y dy   [Delhi B.Sc. (Prog) II 2010; Pune] Ans. 3 2 /x yy Cx e%!
2.9 Equations reducible to homogeneous form

Equations of the form   
dy ax by c
dx a x b y c

� �
!

∃ � ∃ � ∃
,          where           

a b
a b

Ε
∃ ∃

,    ... (1)

can be reduced to homogeneous form as explained below.
Take x ! X " h  and y ! Y " k,... (2)

where X and Y are new variables and h and k are constants to be so chosen that the resulting
equation in terms of X and Y may become homogeneous.

From (2),          dx ! dX and         dy ! dY, so that           dy/dx ! dY/dX.... (3)
Using (2) and (3), (1) becomes

( ) ( ) ( )
( ) ( ) ( )

dY a X h b Y k c aX bY ah bk c
dX a X h b Y k c a X b Y a h b k c

� � � � � � � �
! !

∃ � � ∃ � � ∃ ∃ � ∃ � ∃ � ∃ � ∃
. ... (4)

In order to make (4) homogeneous, choose h and k so as to satisfy the following two
equations              ah " bk " c ! 0     and          a∃h " b∃k " c∃ ! 0. ... (5)

5 4 2 4/4� � !x y x y x c
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2.12 Equations of First Order and First Degree

Solving (5),         h ! bc b c
ab a b

∃ % ∃
∃ % ∃

     and          k ! ca c a
ab a b

∃ % ∃
∃ % ∃

. ... (6)

Given that a/a∃ Ε b/b∃. Therefore, (ab∃ – a∃b) Ε 0. Hence, h and k given by (6) are meaningful,
i.e., h and k will exist. Now, h and k are known. So from (2), we get

   X ! x – h and Y ! y – k.                  ... (7)

In view of (5), (4) reduces to                 
( / ) ,
( / )

dY aX bY a b Y X
dX a X b Y a b Y X

� �
! !

∃ � ∃ ∃ � ∃

which is surely homogeneous equation in X and Y and can be solved by putting Y/X ! v as usual.
After getting solution in terms of X and Y, we remove X and Y by using (7) and obtain solution in
terms of the original variables x and y.

2.10 Examples of Type 4 based on Art. 2.9
Ex. 1. Solve dy/dx ! (x + 2y – 3)/(2x " y – 3). [Agra 1996; Bangalore 2005;

Delhi Maths (G) 1993; Mysore 2004]
Sol. Take         x ! X " h,           y ! Y " k,             so that dy/dx ! dY/dX.... (1)

< Given equation becomes
2 ( 2 3)

2 (2 3)
dY X Y h k
dX X Y h k

� � � %
!

� � � %
. ... (2)

Choose h, k so that               h " 2k – 3 ! 0               and 2h " k – 3 ! 0. ... (3)
Solving (3), we get h ! 1, k ! 1 so that from (1), we have

               X ! x – 1, and Y ! y – 1.              ... (4)

Using (3) in (2), we get
2 1 (2 / )

2 2 ( / )
dY X Y Y X
dX X Y Y X

� �
! !

� �
. ... (5)

Take         Y/X ! v,       i.e.,     Y ! vX.         Therefore,    dY/dX ! v " X (dv/dX).   ... (6)
From (5) and (6), we have

dvv X
dX

� !
21 2 1 2 1or

2 2 2
v dv v vX v
v dX v v

� � %
! % !

� � �

or         
dX
X

! (2 ) 1 1 3 1
(1 ) (1 ) 2 1 2 1

v dv dv
v v v v

∋ (0 1 0 1�
! �) ∗4 5 4 5% � � %6 7 6 7+ ,

, resolving into partial fractions

Integrating, log X " log c ! (1/2) [log (1 " v) – 3 log (1 – v)]

or               2 log (cX) ! log 3
1

(1 )
v
v

�
%

or X 2c2 ! 3
1

(1 )
v
v

�
%

or X 2c2 ? ≅31 /Y X% ! 1 " /Y X , as v ! /Y X
or c2 (X – Y)3 ! X " Y           or             c2 {x – 1 – (y – 1)}2 ! x – 1 " y – 1, by (4)

or c∃ (x – y)2 ! x " y – 2, taking c∃ ! c2. c∃  being an arbitrary constant
Ex. 2. Solve dy/dx " (x – y – 2)/(x – 2y – 3) ! 0. [Ravishankar 1993]
Sol. Given equation is dy/dx ! – (x – y – 2)/(x – 2y – 3).
Take         x ! X " h,               y ! Y " k so that                 dy/dx ! dY/dX,... (1)

The given equation becomes
2

2 2 3
dY X Y h k
dX X Y h k

% � % %
! %

% � % %
. ... (2)

Choose h, k so that            h – k – 2 ! 0              and h – 2k – 3 ! 0.... (3)
Solving (3), we get h ! k, k ! – 1 so that from (1), we have
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Equations of First Order and First Degree 2.13

                X ! x – 1  and Y ! y " 1.           ... (4)

and (2) becomes
1 ( / )

2 1 2 ( / )
dY X Y Y X
dX X Y Y X

% %
! % ! %

% %
. ... (5)

Take     Y/X ! v, i.e.,    Y ! vX.             so that dY/dX ! v " X ! dv/dX. ... (6)

From (5) and (6),          v " X dv
dX

!
21 1 2

or
1 2 2 1

v vdvX dv
v dX v

% %
% !

% %

or      dX
X

! 2 2 2
2 1 ( 4 )1 1or .

21 2 1 2 1 ( 2)
v vdXdv dv

Xv v v

∋ (% %
! % %) ∗

% % %) ∗+ ,

Integrating, log X ! – 
1
2

 log (1 – 2v2) – 
1

2 2
 log 1 2 1

21 2
v
v

�
%

%
 log c

or 2 log X " log (1 – 2v2) " log c ! – 
1
2

 log 
1 2
1 2

v
v

0 1�
4 5

%6 7
or log {cX 2 (1 – 2v2)} ! log 

1/ 2
1 2
1 2

v
v

0 1%
4 5

�6 7

or    
1/ 22

2
2

1 ( / ) 21 2
1 ( / ) 2

Y Y XcX
X Y X

− .0 1 %/ /% !4 5 2 3
�/ /8 96 7

        or
1/ 2

2 2 2( 2 )
2

X Yc X Y
X Y

0 1%
% ! 4 5

�6 7

or
1/ 2

2 1 ( 1) 2{( 1) 2 ( 1) }
1 ( 1) 2

x yc x y
x y

∆ − .% % �/ /% % � ! 2 3
% � �/ /8 9

or
1/ 2

2 2 2 2 1( 2 2 4 1)
2 1 2

x yc x y x y
x y

0 1% % %
% % % % ! 4 5

� % �6 7
, c being an arbitrary constant.

Ex. 3. Solve dy/dx ! (x " y " 4)/(x – y – 6).[I.A.S. 2002]
Sol. Given dy/dx ! (x " y " 4)/(x – y – 6) ... (1)
Let      x ! X " h,            Y ! y " k                   so that  dy/dx ! dY/dX ... (2)

Using (2), (1) reduces to
( ) ( 4)
( ) ( 6)

dy X Y h k
dx X Y h k

� � � �
!

% � % %
... (3)

We choose h and k, such that         h " k " 4 ! 0,            and h – k – 6 ! 0 ... (4)
Solving (4), h ! 1, k ! – 5 and so by (2),           X ! x – 1,              Y ! y " 5. ... (5)

Using (4), (3) reduces to 1 ( / )
1 ( / )

dY X Y Y X
dX X Y Y X

� �
! !

% %
... (6)

Putting Y ! xV and dY/dX ! v " X (dv/dX), (6) becomes

2 2 2
1 1or
1 1 1 1

dv v dX v dv v dvv X dv
dX v X v v v

� %
� ! ! ! %

% � � �

Integrating, log X ! tan–1 v – (1/2) log (1 " v2) " (1/2) log c
or 2 log X " log (1 " Y 2/X 2) – log c ! 2 tan–1 (Y/X), as v ! Y/X

or             log {(X 2 " Y 2)/c} ! 2 tan–1 (Y/X) or X 2 " Y 2 !
12 tan ( / )Y Xce

%

or (x – 1)2 " (y " 5)2 !
12 tan {( 5) /( 1)}y xce

% � % , c being an arbitrary constant.
Ex. 4. Solve dy/dx ! (x – 2y " 5)/(2x " y – 1). [Delhi Maths (H) 2002]
Sol. Let           x ! X " h,             y ! Y " k            so that dy/dx ! dY/dX ... (1)
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2.14 Equations of First Order and First Degree

Then given equation becomes
2 2 5

2 2 1
dY X Y h k
dX X Y h k

% � % �
!

� � � %
... (2)

Choose h and k so that             h – 2k " 5 ! 0             and  2h " k – 1 ! 0 ... (3)
(3)  =  h ! – 3/5, k ! 11/5 so by (1)             X ! x " 3/5 and Y ! y – 11/5... (4)

Using (3), (2) becomes
2 1 2 ( / )

2 2 ( / )
dY X Y Y X
dX X Y Y X

% %
! !

� �
... (5)

Putting Y ! Xv and dY/dX ! v " X (dv/dX), (5) gives

2

1 2 2 41or 0
2 2 4 1

v vdv dXv X dv
dX v X v v

% �
� ! � !

� � %

Integrating, log X ! (1/2) log (v2 " 4v – 1) ! (1/2) log C
or          X 2 (v2 " 4v – 1) ! C or X 2 (Y 2/X 2 " 4Y/X – 1) ! C, as v ! Y/X
or                Y 2 " 4XY – X 2 ! C       or  (y – 11/5)2 " 4 (x " 3/5) (y – 11/5) – (x " 3/5)2 ! C
or x2 – y2 – 4xy " 10x " 2y ! C1, where C1 is another arbitrary constant.

Ex. 5. Solve dy/dx ! (x " y – 2)/(y – x – 4)[Delhi Maths (G) 2004]
Sol. Let        x ! X " h       and           y ! Y " k       so that dy/dx ! dY/dX... (1)

Then given equation gives
( 2)
( 4)

dY X Y h k
dX Y X k h

� � � %
!

% � % %
... (2)

Choose h, k such that             h " k – 2 ! 0          and        k – h – 4 ! 0.            .. (3)
Solving (3), h ! – 1, k ! 3. Then (1) gives          X ! x " 1            and Y ! y – 3... (4)

Using (3), (2) becomes
1 ( / )
( / ) 1

dY X Y Y X
dX Y X Y X

� �
! !

% %
... (5)

Let          Y/X ! v,         i.e.,       Y ! vX so that dY/dX ! v " X (dv/dX)... (6)

From (5) and (6),
21 1 2or

1 1
dv v dv v vv X X
dX v dX v

� � %
� ! !

% %

or 2 2
( 1) (2 2 )

or 2
1 2 1 2

v dv v dvdX dX
X Xv v v v

% %
! ! %

� % � %
Integrating,          log (1 " 2v – v2) " 2 log X ! log C          or            X 2 (1 " 2v – v2) ! C

or                 X 2 {1 " 2 (Y/X) – (Y/X)2} ! C           or X 2 " 2XY – Y 2 ! C
or (x " 1)2 " 2 (x " 1) (y – 3) – (y – 3)2 ! C, using  (3)

Ex. 6. Solve (2x2 " 3y2 – 7) x dx – (3x2 " 2y2 – 8) y dy ! 0 [I.A.S. 1995]
Sol. Given (2x2 " 3y2 – 7) x dx – (3x2 " 2y2 – 8) y dy ! 0. ... (1)
Let       x2 ! u     and      y2 ! v       so that       2x dx ! du       and 2y dy ! dv.... (2)
From (1) and (2), (2u " 3v – 7) du – (3u " 2v – 8) dv ! 0

or dv/du ! (2u " 3v – 7)/(3u " 2v – 8). ... (3)
Taking             u ! U " h,         v ! V " k              so that dv/du ! dV/dU, ... (4)

the given equation becomes
2 3 (2 2 7)
3 2 (3 2 8)

dV U V h k
dU U V h k

� � � %
!

� � � %
. ... (5)

Choose h, k so that             2h " 3k – 7 ! 0            and 3h " 2k – 8 ! 0.... (6)
Solving (3), we get h ! 2, k ! 1 so that from (4), we have
                   U ! u – 2      and                           V ! v – 1.
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Equations of First Order and First Degree 2.15

or                    U ! x2 – 2     and V ! y2 – 1, by (2)... (7)

Then (5) becomes
2 3 2 3 ( / )
3 2 3 2 ( / )

dV U V V U
dU U V V U

� �
! !

� �
. ... (8)

Take      V/U ! w,      i.e.,   V ! wU            so that dV/dU ! w " U (dw/dU)... (9)

From (8) and (9),            
22 3 2 (1 )

or
3 2 3 2

w wdw dww U U
dU w dU w

� %
� ! !

� �

or 2 2 2
2 3 2 3 2 .

1 1 1
dU w wdw dw
U w w w

∋ (� %
! ! %) ∗

% % %+ ,

Integrating, 2 log U !
3
2

 log 
1
1

w
w

�
%

 – log (1 – w2) "
1
2

 log c, c being an arbitrary constant

or 4 log U ! 3 log 
1
1

w
w

0 1�
4 5%6 7

 – 2 log (1 – w2) " log c

or    log 
4U

c
! log 

3
1
1

w
w

0 1�
4 5%6 7

 – log (1 – w2)2      or log 
4U

c
! log 

3

2 2
1 1
1 (1 )

w
w w

∋ (0 1�) ∗Α4 5% %) ∗6 7+ ,

or                
4U

c
!

3

5 2
(1 )

(1 ) (1 )
w

w w
�

% �
                     or                   (1 – w)5 U4 ! c (1 " w)

or                
5

41 V U
U

0 1%4 5
6 7

! 1 Vc
U

0 1�4 5
6 7

                 or (U – V)5 ! C (U " V)

or (x2 – y2 – 1)5 ! c (x2 " y2 – 3), by (7).

Exercise 2(D)

Solve the following differential equations:
1. dy/dx ! (x " 2y " 3)/(2x " 3y " 4).

Ans. 1/ 3( 3 2 3 1)c y x� � % ! 1/ 3 2 2 1/ 2( 3 2 3 1) (3 12 12 11)y x y x y x% � � % % � �

2. dy/dx ! (y – x – 1)/(y " x " 5). [Delhi Maths (H) 1995]
Ans. log (x2 " y2 " 4x " 6y " 13) " 2 tan–1 {(y " 3)/(x " 2)} ! c

3. dy/dx ! (2x " 2y – 2)/(3x " y – 5). Ans. (y – x " 3)4 ! c (2x " y – 3)
4. dy/dx ! (2x – y " 1)/(x " 2y – 3). Ans. (5y – 7)2 " (5x – 1) (5y – 1) – (5x – 1)2 ! c
5. (x " 2y – 2) dx " (2x – y " 3) dy ! 0. [Calicut 2004] Ans. x2 " 4xy – y2 – 4x " 6y ! c
6. (2x " 3y – 5) (dy/dx) " (3x " 2y – 5) ! 0. Ans. 3x2 " 4xy " 3y2 – 10x – 10y ! c
7. (x – y) dy ! (x " y " 1) dx. Ans. log {c (x2 " y2 " x " y " 1/2)} ! 2 tan–1 {(2y " 1)/(2x " 1)}
8. (6x " 2y – 10) (dy/dx) – 2x – 9y " 20 ! 0. Ans. (y – 2x)2 ! c (x " 2y – 5)
9. (6x – 2y – 7) dx ! (2x " 3y – 6) dy. Ans. 3y2 " 4xy – 6x2 " 14x – 12y – (9/2) ! 0

10. (3y – 7x " 7) dx " (7y – 3x " 3) dy ! 0.[Delhi Maths (H) 1995, 2008]
Ans. (y – x " 1)2 (y " x – 1)5 ! c

11. (x – y – 1) dx " (4y " x – 1) dy ! 0. [I.A.S. (Prel.) 2005]
Ans. log {4y2 " (x – 1)2} " tan–1 {2y/(x – 1)} ! c

12. (2x " 3y " 4) dy ! (x " 2y " 3) dx. Ans. 2 3 2 3{( 1) ( 2) 3} {( 1) ( 2) 3}x y c x y% �% � � ! % % �

13. (x + 2y – 3) dx – ## (2x – y " 1) dy = 0 [G.N.D.U., Amritsar 2010]
Ans. 5(x2 " y$ " xy) – 9x – 15y ! c
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2.16 Equations of First Order and First Degree

2.11 Pfaffian differential equation
Definition. Pfaffian differential form is an expression of the form

1 2
1

( , , ..., ) ,
n

i n i
i

f x x x dx
!
Φ

where fi are functions of some or all of the n variables x1, x2, ..., xn.

Again, the equation 1 2
1

( , , ..., ) 0
n

i n i
i

f x x x dx
!

!Φ
is known as Pfaffian differential equation.

M (x, y) dx " N (x, y) dy ! 0 and P (x, y, z) dx " Q (x, y, z) dy " R (x, y, z) dz ! 0 are examples of
Pfaffian equations in two and three variables.

2.12 Exact differential equation [Dibrugarh 1996]
Definition. If M and N are functions of x and y, the equation M dx " N dy ! 0... (1)

is called exact when there exists a function f (x, y) of x and y, such that
d [f (x, y)] ! M dx " N dy, ... (2)

i.e., (Γf /Γx) dx " (Γf /Γy) dy ! M dx " N dy. ... (3)
Remarks. The differential equation y2 dx " 2xy dy ! 0, ... (4)
is an exact differential equation, for there exists a function xy2, such that

2 2 2 2 2( ) ( ) ( ) or ( ) 2 .d xy xy dx xy dy d xy y dx xy dy
x y

Γ Γ
! � ! �

Γ Γ
... (5)

So, (4) may be rewritten as d (xy2) ! 0. This on integration yields xy2 ! c, where c is an arbitrary
constant. Thus general solution of (4) is xy2 ! c.

In practice, however, we shall not be able to determine f (x, y) so easily. But the method
outlined here will be often useful. Note that if xy2 ! c is merely differentiated, then it gives rise to
(4). Thus exact equations have the following important property : An exact differential equation
can always be derived from its general solution directly by differentiating without any
subsequent multiplication, elimination, etc.

2.13 Theorem. To determine the necessary and sufficient condition for a differential equation of
first order and first degree to be exact

[Guwahati 2007; Pune 2010, Agra 1995]
Statement. The necessary and sufficient condition for the differential equation

M dx " N dy ! 0 ... (1)
to be exact is ΓM/Γy ! ΓN/Γx. ... (2)

Proof. The condition (2) is necessary. Let (1) be exact. Hence by definition, there must exist
a function f (x, y) of x and y, such that

d [f (x, y)] ! (Γf /Γx) dx " (Γf /Γy) dy ! M dy " N dy. ... (3)
Equating coefficients of dx and dy in (3), we get

M ! Γf /Γx ... (4)
and N ! Γf /Γy. ... (5)

To remove the unknown function f (x, y), we differentiate partially (4) and (5) with respect to
y and x respectively giving

M
y

Γ
Γ

! 
2f f

y x y x
Γ Γ Γ0 1 !4 5Γ Γ Γ Γ6 7

... (6)
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Equations of First Order and First Degree 2.17

and N
x

Γ
Γ

!
2f f

x y y x
0 1Γ Γ Γ

!4 5Γ Γ Γ Γ6 7
... (7)

Since Γ2f /Γy Γx ! Γ2f /Γx Γy, (6) and (7) give ΓM/Γy ! ΓN/Γx.
Thus, if (1) is exact, M and N satisfy condition (2).
The condition is sufficient. We assume that (2) holds and show that (1) is an exact equation.

For this we must find a function f (x, y), such that                d [f (x, y)] ! M dx " N dy.

Let g (x, y) ! M dx# ... (8)

be the partial integral of M, that is, the integral obtained by keeping y fixed. We first prove that
(N – Γg/Γy) is a function of y only. This is clear because

gN
x y

0 1Γ Γ
%4 5Γ Γ6 7

!
2 2N g N g

x x y x y x
Γ Γ Γ Γ

% ! %
Γ Γ Γ Γ Γ Γ

  as  
2 2g g

x y y x
Γ Γ

!
Γ Γ Γ Γ

!
N g N M
x y x x y

Γ Γ Γ Γ Γ0 1% ! %4 5Γ Γ Γ Γ Γ6 7
, using (8)

! 0, using (2)

Take, f (x, y) ! g (x, y) " { ( / )} .N g y dy% Γ Γ# ... (9)

Hence on total differentiation of (9), we get

df ! g g g gdg N dy dx dy N dy dy
y x y y

0 1 0 1Γ Γ Γ Γ
� % ! � � %4 5 4 5Γ Γ Γ Γ6 7 6 7

! (Γg/Γx) dx " N dy ! M dx " N dy, using (8)
Thus, if (2) is satisfied, (1) is surely an exact equation.

2.14 Working rule for solving an exact differential equation [Meerut 2008]
Compare the given equation with M dx " N dy ! 0 and find out M and N. Then find out

ΓM/Γy and ΓN/Γx. If ΓM/Γy ! ΓN/Γx, we conclude that the given equation is exact. If the equation
is exact, then

Step 1. Integrate M with respect to x treating y as a constant.
Step 2. Integrate with respect to y only those terms of N which do not contain x.
Step 3. Equate the sum of these two integrals [found in steps 1 and 2] to an arbitrary

constant and thus we obtain the required solution. In short the solution of exact equation M dx "
N dy ! 0 is

[Treating as constant]

(terms in not containing ) ,
y

M dx N x dy c� !# #
where c is an arbitrary constant.

2.15 Solved Examples of type 5 based on Art. 2.14
Ex. 1. Solve (x2 – 4xy – 2y2) dx " (y2 – 4xy – 2x2) dy ! 0. [Delhi Maths (H) 1995, 2005]
Sol. Comparing the given equation with M dx " N dy ! 0, we have
M ! x2 – 4xy – 2y2 and N ! y2 – 4xy – 2x2.
< ΓM/Γy ! – 4x – 4y and ΓN/Γx ! – 4y – 4x so that ΓM/Γy ! ΓN/Γx.
Hence, the given equation is exact and hence its solution is

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� ! ∃# #
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2.18 Equations of First Order and First Degree

or 2 2 2

[Treating asconstant]

( 4 2 )
y

x xy y dx y dy c∃% % � !# #

or x3/3 – 4y & (x2/2) – 2y2x " y3/3 ! c/3, taking c∃ ! c/3
or x3 " y3 – 6xy (x " y) ! c, c being an arbitrary constant.

Ex. 2. Test whether the equation (x " y)2 dx – (y2 – 2xy – x2) dy ! 0 is exact and hence solve
it. [I.A.S. 1995]

Sol. The given equation can be re-written as (x2 " 2xy " y2) dx " (x2 " 2xy – y2) dy ! 0 ..(1)
Comparing (1) with      M dx " N dy ! 0,    here       M ! x2 " 2xy " y2, N ! x2 " 2xy – y2.
<   ΓM/Γy ! 2x " 2y and ΓN/Γx ! 2x " 2y   so that      ΓM/Γy ! ΓN/Γx.
Hence (1) is exact and hence its solution is

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� ! ∃# #

or 2 2 2

[Treating asconstant]

( 2 ) ( )
y

x xy y dx y dy c∃� � � % !# #

or x3/3 " 2y & (x2/2) " y2x – y3/3 ! c/3, taking c∃ ! c/3
or x3 " y3 " 3xy (x " y) ! c, c being an arbitrary constant.

Ex. 3. Solve (a) (2x – y " 1) dx " (2y – x – 1) dy ! 0.
[Delhi Maths. (G) 1996, Delhi Maths. (H) 1996, 1998]

(b) (4x " 3y " 1) dx " (3x " 2y " 1) dy ! 0.
(c) dy/dx ! (2x – y " 1)/(x " 2y – 3).
Sol. (a) Given equation is (2x – y " 1) dx " (2y – x – 1) dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0, here              M ! 2x – y " 1, N ! 2y – x – 1.

< ΓM/Γy ! – 1 ! ΓN/Γx and hence (1) is exact and its solution is given by

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� !# #

or              
[Treating as constant]

(2 1) (2 1) 0
y

x y dx y dt% � � % !# #   or x2 – xy + x – y2 –y ! c

(b) Do as in part (a). Ans. 2x2 " 3xy " y2 " x " y ! c.
(c) Do yourself. Ans. x2 – xy " x " 3y – y2 ! c.
Ex. 4. Solve (1 " ex/y) dx " ex/y {1 – (x/y)} dy ! 0. [I.A.S. Prel. 2007;Osmania 2005]
Sol. Comparing the given equation with M dx " N dy ! 0, M ! 1 " ex/y, N ! ex/y {1 – (x/y)}.

<               ΓM/Γy ! ex/y (– x/y2), ΓN/Γx ! ex/y (– 1/y) " (1 – x/y) ex/y (1/y) ! (– x/y2) ex/

y

Thus, ΓM/Γy ! ΓN/Γx and so the given equation is exact.

Its solution is            
[Treating as constant]

(terms in not containing )
y

M dx N x dy c� !# #

or                   /

[Treating as constant]

(1 )x y

y

e dx c� !#                             or x + yex/y ! c.

Ex. 5. Solve ( ) ( ) .
2 22 xy 3 xy 2y e 4x dx 2xy e 3y dy 0� � % !

Sol. Comparing the given equation with M dx " N dy ! 0, here
2 22 3 24 and 2 3 .xy xyM y e x N xye y! � ! %

&
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ΓM/Γy !
2 222 2 / ,xy xyye y xye N x� Α ! Γ Γ

Hence, the given equation is exact and so its solution is

[Treating asconstant]

(termsin N not containing )
y

M dx x dy c� !# #

or ? ≅22 3 2

[Treating as constant]

4 ) 3xy

y

y e x dx y dy c� � % !# #

or y2 × (1/y2) ×
2xye " 4 × (1/4) × x4 – 3 × (y3/3) ! c               or

2xye " x4 – y3 ! c.
Ex. 6. Solve (ax " by " g) dx " (hx " by " f) dy ! 0

or
dy ax hy g
dx hx by f

� �
�

� �
! 0 [Delhi Maths. 1994, 1997]

Sol. Comparing the given equation with M dx " N dy ! 0, here
M ! ax " hy ! g                and N ! hx " by " f
< ΓM/Γy ! h ! ΓN/Γx and hence the given equation is exact and so its solution is given by

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� !# #

or
[Treating asconstant]

( ) ( )
y

ax hy g dx by f dy c� � � � !# #

or (1/2) × ax2 " hxy " gx " (1/2) × by2 " fy ! c
or ax2 " 2hxy " by2 " 2gx " 2fy " c∃ ! 0, where c∃ ! – 2c.

Ex. 7. Solve {y (1 " 1/x) " cos y} dx " (x " log x – x sin y) dy ! 0
[Delhi Maths. (G) 1993; I.A.S. 1993; Osmania 2005]

Sol. Comparing the given equation with M dx " N dy ! 0, here
M ! y (1 " 1/x) " cos y and N ! x " log x – x sin y
< ΓM/Γy ! 1 " (1/x) – sin y ! ΓN/Γx
Hence, the given equation is exact and so its solution is

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� !# #

or    
[Treating as constant]

( / cos ) 0 or log cos
y

y y x y dx c yx y x x y c� � � ! � � !#

Ex. 8(a) Solve x dx " y dy " 2 2
x dy y dx

x y
%
�

! 0.

[Agra 2006; Bangalore 1995; Kanpur 1998; Lucknow 1995]
Sol. Re-writing the given equation,     {x – y/(x2 " y2)} dx " {y " x/(x2 " y2)} dy ! 0 ... (1)
Comparing (1) with M dx " N dx ! 0,      M ! x – y/(x2 " y2),      and      N ! y " x/(x2 " y2)

<
M
y

Γ
Γ

!
2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
1 ( ) 20

( ) ( ) ( )
x y y y x y y x

x y x y x y
Α � % Α % %

% ! % !
� � �

and
N
x

Γ
Γ

!
2 2 2 2

2 2 2 2 2 2
1 ( ) 20

( ) ( )
x y x x y x

x y x y
Α � % Α %

� !
� �

. Thus, 
M N
y x

Γ Γ
!

Γ Γ
.
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2.20 Equations of First Order and First Degree

Hence (1) is exact and therefore its solution is

[Treating as constant]

1(terms in not containing )
2y

M dx N x dy c� !# #

or 2 2

[Treating asconstant]

1{ /( )}
2

y

x y x y dx y dy c% � � !# #

or          x2/2 – y &  (1/y)& tan–1 (x/y) " y2/2 ! c/2            or x2 " y2 – 2 tan–1 (x/y) ! c.

Ex. 8(b). Solve x dx " y dy ! a2
2 2

x dy y dx
x y

%
�

[Meerut 2007; Kanpur 1998; Lucknow 1995; Purvanchal 1995]
Ans. x2 " y2 " 2a2 tan–1 (x/y) ! c, c being an arbitrary constant.

Ex. 8(c). Solve (x dy " y dy) (x2 " y2) ! a2 (x dy – y dx).
Sol. Dividing both sides of given equation by (x2 " y2), we get

x dx " y dy ! a2 (x dy – y dx)/(x2 " y2)
which is same as in Ex. 8(b). So proceed yourself as before.

Ex. 8(d). Solve (x3 " xy2 " a2y) dx " (y3 " yx2 – a2x) dy ! 0 [Guwahati 2007]
Sol. The given equation can be re-written as

x (x2 " y2) dx " a2y dx " y (y2 " x2) dy – a2x dy ! 0     or (x dx " y dy) (x2 " y2) ! a2 (x dy – y dx),
which is same as in Ex. 8(c). So proceed yourself as before.

Ex. 8(e). Solve (x2 " y2) (x dx " y dy) ! x dy – y dx. [Delhi Maths. (H) 1996]
Hint. This question is same as Ex. 8(c) with a ! 1. Proceed as before taking a ! 1 in whole

solution.
Ans. x2 " y2 " 2 tan–1 (x/y) ! c.

Ex. 9. Solve (r " sin : – cos :) dr " r (sin : " cos :) d: ! 0. [Allahabad 1996]
Sol. Here we have r and : in place of usual variables x and y.
Comparing the given equation with M dr " N d: ! 0, M ! r " sin : – cos :ΗN ! r (sin : " cos :).
< ΓM/Γ: ! cos : " sin : ! ΓN/Γr. So equation is exact with solution

[Treating as constant]

(terms in not containing )M dx N r c
:

� !# #

or                
[Treating asconstant]

( sin cos )r dr c
:

� :% : !#                    or r2 / 2 + r (sin : – :) ! c.

Ex. 10(a). Solve y sin 2x dx – (1 " y2 " cos2 x) dy ! 0. [ I.A.S. 1996; Lucknow 1994]

Sol. Re-writing the given equation,       y sin 2x dx – {1 " y2 " 1
2 (1 " cos 2x)} dy ! 0. ... (1)

Comparing (1) with     M dx " N dy ! 0,       M ! y sin 2x,     N ! – (3/2) – y2 – (1/2) cos 2x,
< ΓM/Γy ! 2 cos 2x ! ΓN/Γx. Hence (1) is exact and its solution is

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� ! ∃# #

or 2

[Treating asconstant]

sin 2 {( 3 / 2) }
y

y x dx y dy c� % % ! ∃# #
or                     y & (– 1/2) &  cos 2x – (3/2)& y – y3/3 ! – c/6, taking c∃ ! – c/6
< Required solution is 3y cos 2x " 9y " 2y3 ! c, c being an arbitrary constant.
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Ex. 10(b). Solve y sin 2x dx – (y2 " cos2 x) dy ! 0.
Sol. Proceed as in Ex. 10(a). Ans. 3y cos 2x " 3y " 2y3 ! c
Ex. 11. Solve (x2 " y2 " x) dx – (2x2 " 2y2 – y) dy ! 0. [Lucknow 1997]
Sol. Re-writing the given equation,  {(x2 " y2) " x} dx " {y – 2 (x2 " y2)} dy ! 0

or [1 " {x/(x2 " y2)}] dx " [{y/(x2 " y2)} – 2] dy ! 0 ... (1)
Comparing (1) with M dx " N dy ! 0, we get

2 2 2 2
1 , 2 Therefore,y yM N

x y x y
! � ! %

� � 2 2
2M xy N

y xx y
Γ Γ

! !
Γ Γ�

.

Hence (1) is exact and so its solution is

[Treating as constant]

(terms in not containing )
y

M dx N x dy c� !# #

or 2 2 2 2

[Treating as constant]

{1 /( )} ( 2) or (1 / 2) log ( ) 2 .
y

x x y dx dy c x x y y c� � � % ! � & � % !# #
Ex. 12. Show (4x " 3y " 1) dx " (3x " 2y " 1) dy ! 0 is a family of hyperbolas with a common

axis and tangent at the vertex. [I.A.S. 2000]
Sol. Given (4x " 3y " 1) dx " (3x " 2y " 1) dy ! 0 ... (1)
Comparing (1) with M dx " N dy ! 0 here,           M ! 4x " 3y " 1, N ! 3x " 2y " 1.
Here ΓM/Γy ! 3 ! ΓN/Γx and so (1) is exact. Its solution is

[Treating as constant] [Integrating terms free from ]

(4 3 1) (3 2 1) 0
y x

x y dx x y dy� � � � � !# #

or 2x2 " 3xy " x " y2 " y " k ! 0, where k is an arbitrary constant. ... (2)
Comparing (2) with standard form of conic section ax2 " 2hxy " by2 " 2gx " 2fy " c ! 0, here
a ! 2,       b ! 1,            h ! 3/2,                 g ! 1/2,         f ! 1/2,       c ! k ... (3)
Then h2 – ab ! (9/4) – 2 ! positive quantity,
showing that (2) represents a family of hyperbolas, k being the parameter, with common axis
and tangent at vertex.
Ex. 13. Find the values of constant Ι such that (2xey " 3y2) (dy/dx) " (3x2 " Ιey) ! 0 is exact.

Further, for this value of Ι, solve the equation. [I.A.S. 2002]
Sol. Re-writing the given equation,             (3x2 " Ιey) dx " (2xey " 3y2) dy ! 0  .     .. (1)
Comparing (1) with M dx " N dy ! 0, here     M ! 3x2 " Ιey    and       N ! 2xey " 3y2.
Now, for (1) to be exact we must have

ΓM/Γy ! ΓN/Γx               so that               Ιey ! 2ey                 giving Ι ! 2.
< (1) becomes                      (3x2 " 2ey) dx " (2xey " 3y2) dy ! 0                        ... (3)
Equation (3) in exact and hence  its solution is its solution is

[Treating asconstant]

(termsin N not containing )
y

M dx x dy c� !# #

or                2 2(3 2 ) (3 )xx e dx y dy c� � !# # or x3 + 2ex + y3 ! c

Exercise 2(E)
Solution the following differential equations:

1. (x " 2y – 2) dx " (2x – y " 3) dy ! 0. Ans. x2 " 4xy – 4x – y2 " 6y ! c
2. (2ax " by) y dx " (ax " 2by) x dy ! 0. Ans. ayx2 " by2x ! c
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3. (x2 – ay) dx ! (ax – y2) dy. [Delhi Maths. (G) 1996] Ans. x3 – 3axy " y3 ! c
4. dy/dx ! (2x – y)/(x " 2y – 5). Ans. x2 – xy " y2 " 5y ! c
5. (x2 " y2 " a2) y dy " (x2 " y2 – a2) x dx ! 0. [S.V. University (A.P.) 1997]

Ans. x4 + y4 + 2x2y2 " 2a2 (y2 – x2) ! c
6. (ey " 1) cos x dx " ey sin x dy ! 0.  [Agra 2006] Ans. (ey " 1) sin x ! c
7. x (x2 " 3y2) dx " y (y2 " 3x2) dy ! 0. Ans. x4 " 6x2y2 " y4 ! c
8. (a2 – 2xy – y2) dx – (x " y)2 dy ! 0. [Delhi B.A. (Prog) II 2011]

Ans. a2x – x2y – xy2 – (1/3) y3 ! c
9. (3x2 " 6xy2) dx " (6x2y2 " 4y3) dy ! 0. [Delhi Maths (G) 2006] Ans. x3 " 3x2y2 " y4 ! c

10. Verify that the equation (x4 – 2xy2 " y4) dx – (2x2y – 4xy2 " sin y) dy ! 0 is exact and solve it
Ans. x5/5 – x2y2 + xy4 + cos y ! c

11. (3x2 + 4xy)dx + (2x2 + 2y)dy ! 0([Delhi  Maths (Prog) 2007] Ans. x3 + 2x2y + y2 ! c.
2.16 Integrating factor. [Osmania 2005]
Definition. If an equation of the form M dx + N dy ! 0 is not exact, it can always be made exact

by multiplying by some function of x and y. Such a multiplier is called an integrating factor. We
shall write I.F. for integrating factor.

Although an equation of the form M dx " N dy ! 0 always has integrating factors, there is no
general method of finding them. It should be remembered that there are an infinite number of
integrating factors for an equation of the form M dx " N dy ! 0 as established in the following
theorem.

Theorem. The differential equation M dx " N dy ! 0 possess an infinite number of
integrating factors.

Proof. Given M dx " N dy ! 0. ... (1)
Let ϑ (x, y) be an I.F. of (1). Then, by definition

ϑ (M dx " N dy) ! 0
must be an exact differential equation and so there must exist a function V (x, y), such that

dV ! ϑ (M dx " N dy) ... (2)
<                                  V ! constant is a solution of  (1).
Assume that f (V) be any function of V. So, by (2), we have

f (V) dV ! ϑ f (V) (M dx " N dy). ... (3)
Since the expression on L.H.S. of (3) is an exact differential, it follows that the expression on

R.H.S. of (3) must also be an exact differential. Hence, by definition, it follows that ϑ f (V) is an I.F.
of (1). Since f (V) is an arbitrary function of V, it follows that (1) has an infinite number of integrating
factors.

Remark. Although an equation of the form M dx " N dy ! 0 always has integrating factors,
there is no general method of finding them. We now explain rules for finding integrating factors.

Rule I. By inspection. Often an I.F. of given equation M dx " N dy ! 0 can be found out by
inspection as explained below.

By rearranging the terms of the given equation and/or by dividing by a suitable function of
x and y, the equation thus obtained will contain several parts integrable easily. In this connection,
the following list of exact differentiable should be noted carefully.

(i) 2
y x dy y dxd
x x

%0 1 !4 5
6 7

(ii) 2
x y dx x dyd
y y

0 1 %
!4 5

6 7
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(iii)
2 2

2
2y xy dy y dxd

x x
0 1 %

!4 5
6 7

(iv)
2 2

2
2x yx dx x dyd

y y
0 1 %

!4 5
6 7

(v)
2 2 2

2 4
2 2y x y dy xy dxd

x x
0 1 %

!4 5
6 7

(vi)
2 2 2

2 4
2 2x y x dx yx dyd

y y
0 1 %

!4 5
6 7

(vii) [log ( )] x dy y dxd xy
xy
�

! (viii) d (xy) ! x dy " y dx

(ix) 1
2 2tan y x dy y dxd

x x y
% %0 1 !4 5 �6 7

(x) 1
2 2tan x y dx x dyd

y x y
%0 1 %

!4 5 �6 7

(xi) log y x dy y dxd
x xy

%∋ (0 1 !4 5) ∗6 7+ ,
(xii) log x y dx x dyd

y xy
∋ (0 1 %

!) ∗4 5
6 7+ ,

(xiii) 2 21
2 2 2log ( ) x dx y dyd x y

x y
�∋ (� !+ , �

 (xiv) 2 2
1 x dy y dxd
xy x y

0 1 �
% !4 5

6 7

(xv) 2

x x xe y e dx e dyd
y y

0 1 %
!4 5

6 7
(xvi) d (sin–1 xy) ! 2 2 1/ 2(1 )

x dy y dx
x y

�
%

2.17 Solved examples of Type 6 based on Rule 1 of Art. 2.16
Ex. 1. Solve y dx – x dy " (1 " x2) dx " x2 sin y dy ! 0. [Allahabad 1996]
Sol. Dividing each term of the given equation by x2, we get

2

2 2
1 sin 0y dx x dy x dx y dy

x x
% �

� � !           or           2 2
1 1 sin 0x dy y dx dx y dy

x x
% 0 1% � � � !4 5

6 7
or                   – d (y/x) " (1 " 1/x2) dx " sin y dy ! 0.

Integrating, – (y/x) " x – (1/x) – cos y ! c
or – y " x2 – 1 – x cos y ! cx, where c is an arbitrary constant.

Ex. 2. Solve y (2xy " ex) dx ! ex dy. [Agra 1995; Lucknow 1998]
Sol. Re-writing, 2xy2 dx " y ex dx – ex dy ! 0

or 22 0 or 2 0.
x x xy e dx e dy ex dx x dx d

yy
0 1%

� ! � !4 5
6 7

Integrating,         x2 " ex/y ! c                        or     yx2 " ex ! cy.
Ex. 3.  Solve y sin 2x dx ! (1 " y2 " cos2 x) dy.
Sol.  Re-writing, – 2y sin x cos x dx " cos2 x dy " (1 " y2) dy ! 0

or d (y cos2 x) " (1 " y2) dy ! 0. [Note Carefully]
Integrating,                  y cos2 x " y " y3/3 ! c, c being an arbitrary constant.
Ex. 4. Solve (x3 " xy2 " a2y) dx " (y3 " yx2 – a2x) dy ! 0.
Sol. Re-writing, the given equation, x (x2 " y2) dx " y (x2 " y2) dy " a2 (y dx – x dy) ! 0

or x dx " y dy " a2
2 2

y dx x dy
x y

%
�

! 0       or x dx " y dy " a2d 1tan x
y

%0 1
4 5
6 7

! 0.

Integrating,        x2/2 " y2/2 " a2 tan–1 (x/y) !c/2        or        x2 " y2 " 2a2 tan–1 (x/y) ! c.

Ex. 5. Solve (a) x2 (dy/dx) " xy ! 2 21 x y% . [Delhi Maths (H) 1993]

(b) x2 (dy/dx) " xy " 2 21 x y% ! 0. [Delhi Maths (H) 2006]
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Sol. (a) Re-writing given equation, we have                    
2 21

x dy y dx dx
xx y

�
%

%
! 0.

Integrating,                    sin–1 (xy) – log x ! c, c being an arbitrary constant.
(b) Proceed as in Part (a). Ans. sin–1 (xy) " log x ! c

Exercise 2(F)
Solve the following differential equations:

1. ey dx " (xey " 2y) dy ! 0. Ans. xey " y2 ! c
2. x dx " y dy " (x2 " y2) dy ! 0. Ans. x2 " y2 ! ce–2y

3. x dy – y dx ! (x2 " y2) dx. Ans. tan–1 (y/x) ! x " c
4. y dx – x dy " log x dx ! 0. Ans. cx " y " log x " 1 ! 0
5. e2y dx " 2 (xe2y – y) dy ! 0. Ans. xe2y – y2 ! c
6. y (2x2y " ex) dx – (ex " y3) dy ! 0. Ans. 4x3y – 3y3 " 6ex ! 6cy
7. (x3 ex – my2) dx " m xy dy ! 0. Ans. ex " (my2)/(2x2) ! c
8. x dy – y dx ! xy2 dx. Ans. yx2 " 2x ! 2cy
9. y (axy " ex) dx – ex dy ! 0. Ans. ax2y " 2ex ! cy

10. { cos 1/(2 )} ( sin 1) 0.y y x dx x x y dy� � � % % ! Ans. xy " x cos y " x1/2 – y ! c
11. (x2 " y2 – a2) x dx " (x2 – y2 – b2) y dy ! 0. Ans. (x2 – a2)2 – (y2 " b2)2 " 2x2y2 ! c
12. a (x dy " 2y dx) ! xy dy. Ans. a log (yx2) – y ! c

[Hint. Divide by xy, i.e., take 1/(xy) as an I.F.]
13.  dx " y dy ! m (x dy – y dx). [Delhi Maths(H) 2000]

[Hint. Re-writing, d (x2 " y2) ! 2mx2d (y/x)

or
2 2

2 2
( )d x y
x y

�
�

! 2m 2
( / )

1 ( / )
d y x

y x�
                    or              d log (x2 " y2) ! 2m d 1tan y

x
%0 1

4 5
6 7

.

Integrating,    log (x2 " y2) – 2m tan–1 (y/x) ! c, c being an arbitrary constant.]
14. (x4 ex – 2m xy2) dx " 2mx2y dy ! 0.

[Hint. Re-writing, the given equation is x4 ex dx " 2m (x dy – y dx) xy dy ! 0

or    x4 ex dx " 2mx3y d y
x

0 1
4 5
6 7

! 0                 or   ex dx " 2m y
x

0 1
4 5
6 7

d y
x

0 1
4 5
6 7

! 0

or              d {ex + m (y/x)2} ! 0                       or                    ex + m (y/x)2 ! c]
15. (1 " xy) y dx " x (1 – xy) dy ! 0.

[Calcutta 1995; I.A.S. 1994; Meerut 1993; Kanpur 1994;
Ravishankar 1996; G.N.D.U. Amritsar 2010]

[Hint.  Re-writing, the given equation is y dx " x dy " xy (y dx – x dy) ! 0

or d (xy) " x2y2 dx dy
x y

0 1
%4 5

6 7
! 0                or d (xy) " x2y2 d log x

y
0 1
4 5
6 7

! 0

or                 2 2
1

x y
d (xy) " d log x

y
0 1
4 5
6 7

! 0   or                            d 1log x
y xy

0 1
%4 5

6 7
! 0,

Integrating,  log (x/y) – 1/(xy) ! c, where c is an arbitrary constant.
Rule II. If the given equation M dx " N dy ! 0 is homogeneous and (Mx " Ny) Ε 0, then

1/(Mx " Ny) is an integrating factor.

Proof. Re-writing M dx " N dy, we have
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M dx " N dy ! 
1 ( ) ( )
2

dx dy dx dyMx Ny Mx Ny
x y x y

− .0 1 0 1
� � � % %2 34 5 4 5

6 7 6 78 9

=
M dx N dy

Mx Ny
�
�

! 
1
2

dx dy Mx Ny dx dy
x y Mx Ny x y

− .0 1 0 1%
� � %2 34 5 4 5�6 7 6 78 9

                ... (1)

Since M dx + N dy ! 0 is a homogeneous equation, M and N must be of the same degree in
variables x and y and hence we may write

Mx Ny
Mx Ny

%
�

! some function of 
x
y

! f
x
y

0 1
4 5
6 7

, say                                 ... (2)

Using (2), (1) reduces to

M dx N dy
Mx Ny

�
�

! 
1
2

dx dy x dx dyf
x y y x y

− .0 1 0 1 0 1
� � %2 34 5 4 5 4 5

6 7 6 7 6 78 9

! log ( / )1 1(log ) ( ) log (log ) log log
2 2

x y x x xd xy f e d d xy g d
y y y

− . − .0 1 0 1 0 1
� ! �2 3 2 34 5 4 5 4 5

6 7 6 7 6 78 9 8 9
[on assuming f (elog (x/y)) ! g {log (x/y)}]

! [(1/ 2) log (1/ 2) {log ( / )} {log ( / )}]d xy g x y d x y& � & #
showing that 1/(Mx " Ny) is an I.F. for the given equation M dx " N dy ! 0.
2.18 Solved example of type 7 based on rule II of Art. 2.16

Ex. 1. Solve (x2y – 2xy2) dx – (x3 – 3x2y) dy ! 0. [Delhi Maths (G) 1994; Garhwal 2010]
Sol. Given (x2y – 2xy2) dx – (x3 – 3x2y) dy ! 0.                             ... (1)
Clearly (1) is a homogeneous differential equation. Comparing (1) with M dx " N dy ! 0,
M ! x2y – 2xy2 and                               N ! – (x3 – 3x2y) ....(2)
< Mx " Ny ! x (x2y – 2xy2) – y (x3 – 3x2y) ! x2y2 Ε 0,

showing that I.F. of (1) ! 1/(Mx " Ny) ! 1/(x2y2). On multiplying (1) by 1/(x2y2),
           (1/y – 2/x) dx – (x/y2 – 3/y) dy ! 0, which is exact where solution is

{(1 / ) (2 / )} (3 / ) 0 or ( / ) 2 log 3 log logy x dx y dy x y x y c% � ! % � !# #
    [Treating y as constant]

or             log y2 – log x2 – log c ! – x/y                      or log (y2/cx2) ! – x/y
or y2 ! cx2 e–x/y, where c is an arbitrary constant.
Note. All questions based on rule II can also be solved as explained in Art 2.7. Refer solved
examples of type 3 in Art. 2.8.

Ex. 2. Solve x2y dx – (x3 – y3) dy ! 0.  [Calicut 1993] Ans. y !
3 3/3x yce

Rule III. If the equation M dx " N dy ! 0 is of the form f1 (xy) y dx " f2 (xy) x dy ! 0, then
1/(Mx – Ny) is an integrating factor of M dx " N dy ! 0 provided (Mx – Ny) Ε 0. [I.A.S. 1991]
Proof. Suppose that            M dx " N dy ! 0 ... (1)
is of the form            f1 (xy) y dx " f2 (xy) x dy ! 0.  ... (2)

Comparing (1) and (2), we have

? ≅1

M
)y f xy

!
? ≅2

N
x f xy

! ϑ (say)
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=          M ! ϑ y f1 (xy)  and N ! ϑ x f2 (xy).              ... (3)
Re-writing M dx " N dy, we have

M dx " N dy ! 
1 ( ) ( )
2

dx dy dx dyMx Ny Mx Ny
x y x y

− .0 1 0 1
� � � % %2 34 5 4 5

6 7 6 78 9

=
M dx N dy

Mx Ny
�
%

! 
1
2

Mx Ny dx dy dx dy
Mx Ny x y x y

− .0 1 0 1�
� � %2 34 5 4 5% 6 7 6 78 9

! 1 2

1 2

1 ( ) ( ) (log ) log ,
2 ( ) ( )

f xy f xy xd xy d
f xy f xy y

− .0 1�
�2 34 5% 6 78 9

using (3)

!  1 2

1 2

1 ( ) ( )( ) (log ) log , where ( )
2 ( ) ( )

x f xy f xyf xy d xy d f xy
y f xy f xy

− .0 1 �
� !2 34 5 %6 78 9

!  log1 1( ) (log ) log (log ) (log ) log
2 2

xy x xf e d xy d g xy d xy d
y y

− . − .0 1 0 1
� ! �2 3 2 34 5 4 5

6 7 6 78 9 8 9
[on assuming that f (elog xy) ! g (log xy)]

! {(1/ 2) log ( / ) (1/ 2) (log ) (log )},d x y g xy d xy& � & #
showing that Mx – Ny is an I.F. of M dx " N dy ! 0.
2.19 Solved examples of type 8 based on Rule III of Art. 2.16

Ex. 1. Solve (xy sin xy " cos xy) y dx " (xy sin xy – cos xy) x dy ! 0.
[Purvanchal 1996; Kanpur 1993; Lucknow 1993, 1997

Sol. Given (xy sin xy " cos xy) y dx " (xy sin xy – cos xy) x dy ! 0               ... (1)
Comparing (1) with M dx " N dy ! 0, we have
M ! y (xy sin xy " cos xy) and N ! x (xy sin xy – cos xy),

showing that (1) is of the form                      f1 (xy) y dx " f2 (xy) x dy ! 0.
Again,   Mx – Ny ! xy (xy sin xy " cos xy) – xy (xy sin xy – cos xy)
< Mx – Ny ! 2xy cos xy Ε 0. Hence I.F. of (1) ! 1/(Mx – Ny) ! 1/(2xy cos xy).
On multiplying (1) by 1/(2xy cos xy), we have

(1/2)& (y tan xy " 1/x) dx " (1/2) &  (x tan xy – 1/y) dy ! 0                        ... (2)
which must be exact and so by the usual rule, solution of (2) is

{(1/ 2) ( tan 1/ )} ( 1/ 2 ) (1/ 2) logy xy x dx y dy c& � � % ! &# #
[Treating y as constant]

or (1/2) &  (log sec xy " log x) – (1/2) &  log y ! (1/2) log c
or                    log sec xy " log (x/y) ! log c                 or (x/y) sec xy ! c.

Ex. 2. Solve y (1 " xy) dx " x (1 – xy) dy ! 0. [I.A.S. (Prel.) 2006; Meerut 1993;
G.N.D.U. Amritsar 2010]

Sol. Given       (1 " xy) y dx " (1 – xy) x dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0, M ! (1 " xy) y and N ! (1 – xy) x, showing that (1) is of

the form   f1 (xy) y dx " f2 (xy) x dy ! 0.
Again,        Mx – Ny ! xy (1 " xy) – xy (1 – xy) ! 2x2y2 Ε 0,

showing that I.F. of (1) ! 1/(Mx – Ny) ! 1/(2x2y2).

On multiplying (1) by 1/(2x2y2), we have 2 2
1 1 1 1 1 1 0,
2 2

dx dy
x yx y xy

0 1 0 1
� � % !4 5 4 5

6 7 6 7
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which must be exact and so by the usual rule, solution of (2) is

2
1 1 1 1 1 1 1 1log or log log log

2 2 2 2 2 2 22
dx dy c x y c

x y xyx y
0 1 0 1

� � % ! � % !4 5 4 54 5 %6 76 7
# #

[Treating y as constant]

or       log (x/y) – log c ! 1/(xy)          or          log (x/cy) ! 1/(xy)          or        x ! cy e1/(xy).
Ex. 3. Solve (x3y3 " x2y2 " xy " 1) y dx " (x3y3 – x2y2 – xy " 1) x dy ! 0.
Sol. Comparing the given equation with M dx " N dy ! 0, we get
M! y (x3y3 " x2y2 " xy " 1) and                      N ! x (x3y3 – x2y2 – xy " 1).
< Mx – Ny ! xy (x3y3 " x2y2 " xy " 1) – xy (x3y3 – x2y2 – xy " 1).

! 2xy (x2y2 " xy) ! 2x2y2 (xy " 1) Ε 0,
showing that I.F. of the given equation ! 1/(Mx – Ny) ! 1/{2x2y2 (xy " 1)}.

On multiplying the given equation by its I.F., we have
2 2 2 2

2 2 2 2
( 1) ( 1) ( 1) ( 1) ( 1) 0

2 ( 1) 2 ( 1)
x y xy xy xy x y xy xy xyy dx x dy

x y xy x y xy
� � � � % � % �

� !
� �
2 2 2 2

2 2 2 2
1 ( 1) 0x y x y xy xyy dx x dy

x y x y
� % � %

� !

or         (y dx " x dy) "
2

2 2 2 2
2y dx x dy x y

x y x y
�

% dy ! 0           or d (xy) " 2
( ) 2

( )
d xy

yxy
% dy ! 0

or d (xy) " (1/z2) dz – (2/y) dy ! 0, putting xy ! z.
Integrating,           xy – (1/z) – 2 log y ! c               or xy – (1/xy) – 2 log y ! c
Ex. 4. Solve y (x2y2 " 2) dx " x (2 – 2x2y2) dy ! 0 [Delhi Maths (H) 2001]
Sol. Comparing the given equation with M dx " N dy ! 0, here M ! y (x2y2 " 2) and

N ! x (2 – 2x2y2), showing that the given equation is of the form f1 (xy) y dx " f2 (x, y) x dy ! 0.
Again,                 Mx – Ny ! xy (x2y2 " 2) – xy (2 – x2y2) ! 3x3y3 Ε 0,

showing that I.F. of given equation ! 1/(Mx – Ny) ! 1/(3x3y3).
Multiplying the given equation by 1/(3x3y3), we get

3 3 2 3
1 2 2 2 0,
3 33 3

dx dy
x yx y x y

0 1 0 1
� � % !4 5 4 5

6 7 6 7
 which is exact.

As usual, its solution is (1/3) &  log x – (1/3x2y2) – (2/3) &  log y ! (1/3) &  log c

or       log (x/cy2) ! 1/x2y2             or x !
2 22 1/ x ycy e , c being an arbitrary constants.

Exercise 2(G)
Solve the following differential equations:

1. (x2y2 " xy " 1) y dx " (x2y2 – xy " 1) x dy ! 0. Ans. xy – (1/xy) " log (x/y) ! c
2. (x4y4 " x2y2 " xy) y dx " (x4y4 – x2y2 " xy) x dy ! 0. Ans. (1/2)& x2y2 – (1/xy) " log (x/y) ! c
3. y (1 – xy) dx – x (1 " xy) dy ! 0. [Agra 1994; I.A.S. 1969] Ans. log (x/y) – xy ! c
4. (xy2 " 2x2y3) dx " (x2y – x3y2) dy ! 0. [I.A.S. 2004] Ans. log (x2/y) – (1/xy) ! c

Rule IV. If
1 M N
N y x

0 1Γ Γ
%4 5Γ Γ6 7

is a function x alone say f (x), then ( )f x dxe# is an integrating

factor of M dx " N dy ! 0. [I.A.S. 1977, 94]
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Proof. Given equation is    M dx " N dy ! 0                                 ... (1)

and
1 M N
N y x

0 1Γ Γ
%4 5Γ Γ6 7

! f (x)                  so that                 N f (x) !
M N
y x

Γ Γ
%

Γ Γ
... (2)

Multiplying both sides of (1) by ( )f x dxe# ,  we have           M1 dx " N1 dy ! 0, ... (3)

where                 M1 ! M ( )f x dxe#            and N1 ! N ( )f x dxe# ... (4)

From (4),
( )1 f x dxM M e

y y
Γ Γ #!
Γ Γ

... (5)

and 1N
x

Γ
Γ

! ( ) ( ) ( )( ) ( )f x dx f x dx f x dxN Ne Ne f x e N f x
x x

Γ Γ− .# # #� ! �2 3Γ Γ8 9

! ( ) ( / / / )f x dxe N x M y N x# Γ Γ � Γ Γ % Γ Γ , by (2)

so that
( )1 f x dxN Me

x y
Γ Γ#!
Γ Γ

. ... (7)

< From (6) and (7),                  ΓM1/Γdy ! ΓN1/Γx,

showing the M1dx " N1dy ! 0 must be exact and hence ( )f x dxe#  is its I.F..
2.20 Solved examples of type 9 based on Rule IV of Art. 2.16

Ex. 1. Solve (x2 " y2 " x) dx " xy dy ! 0. [Delhi B.Sc. (Prog) II,  2009]
Sol.Given                         (x2 " y2 " x) dx " xy dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0, here           M ! x2 " y2 " x       and N ! xy.
Here ΓM/Γy ! 2y and ΓN/Γx ! y.   So ΓM/Γy Ε ΓN/Γx. We have

1 1 1(2 1) ,M N y
N y x xy x

0 1Γ Γ
% ! % !4 5Γ Γ6 7

 which is a function of x alone.

< I.F. of (1) ! (1/ ) log .x dx xe e x# ! !
Multiplying (1) by x, we have (x3 " xy2 " x2) dx " x2y dy ! 0,

which must be exact equation and so its solution as usual is
3 2 2 4 2 2 3( ) (1/ 6) or (1/ 4) (1/ 2) (1/3) / 6x xy x dx c x x y x c� � ! & & � & � & !#

[Treating y as constant]

or 3x4 " 6x2y2 " 4x3 ! c, where c is an arbitrary constant.
Ex. 2. Solve (y " y3/3 " x2/2) dx " (1/4) × (x " xy2) dy ! 0. [Allahabad 1994]
Sol. Given (y " y3/3 " x2/2) dx " (1/4) × (x " xy2) dy ! 0. ... (1)

Comparing (1) with   M dx " N dy ! 0,       M ! y " y3/3 " x2/2      and      N ! (1/4) × (x " xy2).
Here ΓM/Γy ! 1 " y2                      and ΓN/Γx ! (1/4) × (1 + y2).

< 2 2
2

1 4 1 4 1 3(1 ) (1 ) 1 ,
4 4(1 )

M N y y
N y x x xx y

0 1Γ Γ − . 0 1% ! � % � ! % !2 3 4 54 5Γ Γ � 8 9 6 76 7

which is a function of x alone. So I.F. !
3(3/ ) 3 log log 3.x dx x xe e e x# ! ! !

Multiplying (1) with x3, we have
{x3y " (1/3) x3y3 " (1/2) x5} dx " (1/4) (x4 " x4y2) dy ! 0 whose solution as usual is
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3 3 3 5{ (1/ 3) (1/ 2) } /12x y x y x dx c� � !#      or        (1/4)& x4y " (1/12)& x4y3 " (1/12)& x6 ! c/6
[Treating y as constant]

or 3x4y " x4y3 " x6 ! c, where c is an arbitrary constant.
Exercise 2(H)

Solve the following differential equations:
1. (x2 " y2 " 2x) dx " 2y dy ! 0. Ans. ex (x2 " y2) ! c
2. (x3 – 2y2) dx " 2xy dy ! 0. Ans. x " (y2/x2) ! c
3. (x2 " y2) dx – 2xy dy ! 0.   (Pune 2010) Ans. x2 – y2 ! cx
4. (x2 " y2 " 1) dx – 2xy dy ! 0.   (Delhi B.Sc. (Prog.) II 2008) Ans. x2 – 1 – y2 ! cx
5. (x2 " y2 " 1) dx " x (x – 2y) dy ! 0. Ans. x " y – (y2 " 1)/x ! c

6. 2 2(5 4 1) ( 2 ) 0� � � � !xy y dx x xy dy [Delhi B.A. (Prog.) II 2010]  Ans. 5 4 2 4 / 4� � !x y x y x c

Rule V. If
1 N M
M x y

0 1Γ Γ
%4 5Γ Γ6 7

is function of y alone, say f (y), then ( )f y dye# is an integrating factor of

M dx " N dy ! 0.
Proof. Proceed exactly as for rule IV.
2.21 Solved example of type 10 based on Rule V of Art. 2.16

Ex. 1. Solve (2xy4ey " 2xy3 " y) dx " (x2y4 ey – x2y2 – 3x) dy ! 0. ... (1)
Sol. Comparing (1) with M dx " N dy ! 0, we get
M ! 2xy4ey " 2xy3 " y  and N ! x2y4ey – x2y2 – 3x. ... (2)
Here    ΓM/Γy ! 8xy3ey " 2xy4ey " 6xy2 " 1            and ΓN/Γx ! 2xy4ey – 2xy2 – 3.

< 3 2 4 34 44(2 2 1) (2 2 )y yN M Mxy e xy xy e xy y
x y y y

Γ Γ
% ! % � � ! % � � ! %

Γ Γ

=
1 4N M
M x y y

0 1Γ Γ
% ! %4 5Γ Γ6 7

, which is a function of y alone.

= I.F. of (1) ! ( 4 / ) 4log 4(1/ ).y dy ye e y% %# ! !

Multiplying (1) by 1/y4, we have
{2xey " (2x/y) " (1/y3)} dx " {x2ey – (x2/y2) – 3 (x/y4)} dy ! 0 whose solution as usual is

3 2 2 3{2 (2 / ) (1 / )} or ( / ) ( / ) .y yxe x y y dx c x e x y x y c� � ! � � !#
[Treating y as constant]

Ex. 2. Solve (xy2 – x2) dx " (3x2y2 " x2y – 2x3 " y2) dy ! 0.
Sol. Given (xy2 – x2) dx " (3x2y2 " x2y – 2x3 " y2) dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0, M ! xy2 – x2, N ! 3x2y2 " x2y – 2x3 " y2.
< ΓM/Γy ! 2xy and ΓN/Γx ! 6xy2 " 2xy – 6x2.

<  
2

2 2
2 2 2

1 1 6 ( ){(6 2 6 ) 2 } 6,
( )

N M x y xxy xy x xy
M x y xy x x y x

0 1Γ Γ %
% ! � % % ! !4 5Γ Γ % %6 7

which being a constant can be treated as a function of y alone.

< I.F. of (1) ! 6 6 .dy ye e# !  Multiplying (1) by e6y, we have
e6y (xy2 – x2) dx " e6y (3x2y2 " x2y – 2x3 " y2) dy ! 0 whose solution is

6 2 2 6 2( )y ye xy x dx e y dy c% � !# #
[Treating y as constant]
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or 6 2 2 3 2 6 6[(1/ 2) (1/ 3) ] (1/ 6) (2 )(1/ 6)y y ye x y x y e y e dy c% � % !#
or ? ≅6 2 2 3 2 6 6 61 1 1 1

2 3 6 3
1 11
6 6

y y y ye x y x y e y e e dy c∋ (0 1% � % & % & !4 5) ∗6 7+ ,#

or                        ? ≅6 2 2 3 2 6 6 61 1 1 1 1 1
2 3 6 3 6 36

y y y ye x y x y e ye e c∋ (% � � % !+ ,

or ? ≅6 2 2 3 21 1 1 1 1
2 3 6 18 108 .ye x y x y y c% � % � ! c being an arbitrary constant.

Exercise 2(I)
Solve the following differential equations:

1. (xy3 " y) dx " 2 (x2y2 " x " y4) dy ! 0.  (Delhi 2009)  Ans. 3x2y4 " 6xy2 " 2y ! c
2. (2xy2 #%&  2y) dx " (3x2y – 4x) dy ! 0.  [Delhi B.A (Prog) II 2011] Ans. x2y3 " 2xy2 ! c
3. (y4 " 2y) dx " (xy3 " 2y4 – 4x) dy ! 0   [Delhi Maths (H) 2007, 08;

                       Delhi B.Sc. (Prog) II 2011]
Ans. x {y " (2/y2)} " y2 ! c

Rule VI. If the given equation M dx " N dy ! 0, is of the form xΚ yΛ (my dx " nx dy) ! 0, then
its integrating factor is xkm–1–Κ ykn–1–Λ, where k can have any value.

Proof. By assumption, the given equation can be written as
xΚ yΛ (my dx " nx dy) ! 0. ... (1)

Multiplying (1) by xkm–1–Κ ykn–1–Λ, we have                   xkm–1 ykn–1 (my dx " nx dy) ! 0
or                     km xkm–1 ykn dx " kn ykn–1 xkm dy ! 0              or d (xkm ykn) ! 0,

showing that xkm–1–Κ ykn–1–Λ is an I.F. of the given equation (1).
Remark 1. Using rule VI, we now find the rule for finding an I.F. of the equation of the form

                  xΚ yΛ (my dx " nx dy) " xΚ∃ yΛ∃ (m∃ ydx " n∃ xdy) ! 0 ... (2)
By virtue of rule VI, we see that the factor that makes the first term of (2) exact differential is

xkm–1–Κ ykn–1–Λ and that for the second term of (2) is xk∃m∃–1–Κ∃ yk∃n∃–1–Λ∃ where k and k∃ can have any
value.

The above mentioned two factors will be identical if we choose k and k∃, such that
km – 1 – Κ ! k∃m∃ – 1 – Κ∃             ... (3)

and kn– 1 – Λ ! k∃n∃ – 1 – Λ∃. ... (4)

Solving (3) and (4), we evaluate the values of k and k∃. Substituting these values in the factor
xkm–1–Κ ykn–1–Λ        or                           xk∃m∃–1–Κ∃ yk∃n∃–1–Λ∃, we obtain the required I.F. of (2).

2.22 Solved examples of Type 11 based on rule VI of Art. 2.16
Example: Solve (y2 " 2x2y) dx " (2x3 – xy) dy ! 0. ... (1)
Sol. Re-writing (1) in the standard form

  xΚ yΛ (my dx " nx dy) xΚ∃ yΛ∃ (m∃y dx " n∃x dy) ! 0,      ... (2)
we have y (y dx – x dy) " x2 (2y dx " 2x dy) ! 0. ... (3)

Comparing (2) and (3), we have
Κ ! 0,       Λ ! 1,       m ! 1,       n ! – 1;       Κ∃ ! 2,       Λ∃ ! 0,       m∃ ! 2,       n∃ ! 2.
Hence, the I.F. for the first term on L.H.S. of (3) is  xk–1 y–k–1–1,     i.e.,      xk–1 y–k–2... (4)

and the I.F. for the second term on L.H.S. of (3) is      22k∃–1–2 y2k∃–1,    i.e.,      x2k∃–3 y2k∃–1 ...(5)
For the integrating factors (4) and (5) to be identical, we have

k – 1 ! 2k∃ – 3 and – k – 2 ! 2k∃ – 1
= k – 2k∃ ! – 2 and k " 2k∃ ! – 1 = k ! – 3/2 and k∃ ! 1/4 ... (6)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Equations of First Order and First Degree 2.31

Substituting the value of k in (4) or k∃ in (5), the integrating factor of (3) or (1) is x–5/2 y–1/2.
Multiplying (1) by x–5/2 y–1/2, we have

(x–5/2 y3/2 " 2x–1/2 y1/2) dx " (2x1/2 y–1/2 – x–3/2 y1/2) dy ! 0,
which must be exact and so by the usual rule its solution is given by

3 / 2 3/2 1 /2 1/ 22 2
( 3/ 2) (1/ 2) 3

x y x y C%
� !

%
or 6x1/2 y1/2 – x–3/2 y3/2 ! C.

Remark 2. Sometimes the Rule VI of Art. 2.16 for finding I.F. is modified as given below:
If the given equation M dx " N dy ! 0 can be put in the form

xΚ yΛ (my dx " nx dy) " xΚ∃ yΛ∃ (m∃y dx " n∃x dy) ! 0,
where Κ, Λ, m, n, Κ∃, Λ∃, m∃, n∃ are constants, then the given equation has an I.F. xh yk, where h and
k are obtained by applying the condition that the given equation must become exact after
multiplying by xh yk.

Illustrative solved examples based on the above remark 2
Ex. 1. Solve (y2 " 2x2y) dx " (2x3 – xy) dy ! 0. [Allahabad 1993; Lucknow 1993]
Sol. Given     (y2 " 2x2y) dx " (2x3 – xy) dy ! 0. ... (1)
Re-writing (1),                (y2dx – xy dy) " (2x2y dx " 2x3 dy) ! 0

or y (y dx – x dy) " x2 (2y dx " 2x dy) ! 0. [Delhi 2009]
which is of the form         xΚyΛ (my dx + nx dy) " xΚ∃yΛ∃ (m∃y dx " n∃x dy) ! 0.

So, let xh yk be an I.F. (1). Multiplying (1) by xh yk, we have
(xh yk"2 " 2xh"2 yk"1) dx " (2xh"3 yk – xh"1 yk"1) dy ! 0, ... (2)

which must be exact. Comparing (2) with M dx " N dy ! 0, we get
M ! xh yk"2 " 2xh"2 yk"1    and N ! 2xh"3 yk – xh"1 yk"1.
Since (2) is exact, we must have ΓM/Γy ! ΓN/Γx,

i.e.,                 (k " 2) xh yk"1 " 2 (k " 1) xh"2 yk ! 2 (h " 3) xh"2 yk – (h " 1) xh yk"1.
Now equating the coefficients of xh yk"1 and xh"2 yk, we get
k " 2 ! – (h " 1) and 2 (k " 1) ! 2 (h " 3),

i.e., h " k ! – 3 and h – k ! – 2 giving h ! – (5/2), k ! – (1/2)
< I.F. ! x–5/2 y–1/2. Multiplying (1) by I.F. x–5/2 y–1/2, we get

(x–5/2 y3/2 " 2x–1/2 y1/2) dx " (2x1/2 y–1/2 " x–3/2 y1/2) dy ! 0
which must be exact. For this new equation, as usual its solution is

5 / 2 3 /2 1/ 2 1/ 2 3 /2 3/ 2 1/ 2 1/ 22
3( 2 ) or 4 .x y x y dx c x y x y c% % %� ! % � !#

       [Treading y as constant]

Ex. 2. Solve (2y dx " 3x dy) " 2xy (3y dx " 4x dy) ! 0. [Kanpur 1998]
Sol. Given                   x0 y0 (2y dx " 3x dy) " xy (6y dx " 8x dy) ! 0. ... (1)
Since (1) is of the form xΚ yΛ (my dx " nx dy) " xΚ∃ yΛ∃ (m∃y dx " n∃x dy) ! 0, where Κ, Λ, m, n, Κ∃,

Λ∃, m∃, n∃ are constants. So xh yk can be taken as I.F. of (1).
Re-writing (1), (2y " 6xy2) dx " (3x " 8x2y) dy ! 0.                             ... (2)
Multiplying (2) by I.F. xh yk, we have

(2xh yk"1 " 6xh"1 yk"2) dx " (3xh"1 yk " 8xh"2 yk"1) dy ! 0,                  ... (3)
which must be exact. Comparing (3) with M dx " N dy ! 0, we get

  M ! 2xh yk"1 " 6xh"1 yk"2                     and                               N ! 3xh"1 yk " 8xh"2 yk"1
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< ΓM/Γy ! 2 (k " 1) xh yk " 6 (k " 2) xh"1 yk"1

and ΓN/Γx ! 3 (h " 1) xh yk " 8 (h " 2) xh"1 yk"1.
For (3) to be exact, ΓM/dy ! ΓN/dx.
< 2 (k "1) xh yk " 6 (k " 2) xh"1 yk"1 ! 3 (h " 1) xh yh " 8 (h " 2) xh"1 yk"1

Equating the coefficients of xh yk and xh"1 yk"1 on both sides, we get
2 (k " 1) ! 3 (h " 1) and 6 (k " 2) ! 8 (h " 2)

i.e., 3h – 2k ! – 1 and 4h – 3k ! – 2,
Solving these, h ! 1, k ! 2 and so I.F. ! xh yk ! xy2.
Multiplying (2) by xy2 or putting h ! 1 and k ! 2 in (3), we get

(2xy3 " 6x2y4) dx " (3x2y2 " 8x3y3) dy ! 0,
which must be exact. Hence, as usual, the required solution is

3 2 4 2 3 3 4(2 6 ) or 2xy x y dx c x y x y c� ! � !#
[Treating y as constant]

Ex. 3. Given that the differential equation (2x2y2 " y) dx – (x3y – 3x) dy ! 0 has an I.F. of the
form xh yk, find its general solution. [Kakitiya 1997; G.N.D.U. Amritsar 2010]

Sol. Given (2x2y2 " y) dx " (3x – x3y) dy ! 0. ... (1)
Multiplying both sides of (1) by I.F. xh yk, we get

(2xh"2 yk"2 " xh yk"1) dx " (3xh"1 yk – xh"3 yk"1) dy ! 0, ... (2)
which must be exact. Comparing (2) with M dx " N dy ! 0, we have
M ! 2xh"2 yk"2 " xh yk"1 and        N ! 3xh"1 yk – xh"3 yk"1.    ... (3)

For (2) to be exact, ΓM/Γy ! ΓN/Γx
= 2 (k " 2) xh"2 yk"1 " (k " 1) xh yk ! 3 (h " 1) xh yk – (h " 3) xh"2 yk"1

= 2 (k " 2) ! – (h " 3)      and      k " 1 ! 3 (h " 1)
= h " 2k ! – 7  and  3h – k ! – 2  =  h ! – 11/7  and  k ! – 19/7.

Hence an I.F. of (1) is x–11/7 y–19/7. Multiplying (1) by x–11/7 y–19/7, we have
(2x3/7 y–5/7 " x–11/7 y–12/7) dx " (3x–4/7 y–19/7 – x10/7 y–12/7) dy ! 0,

which must be exact. Hence, as usual, the required solution is

   
10 / 7 5 / 7 4 / 7 12 / 7

10 / 7 5 / 7 4 / 7 12 / 72 7 or 4 5 .
(10 / 7) ( 4 / 7) 20

x y x y c x y x y c
% % %

% % %� ! % !
%

Exercise 2(J)
Solve the following differential equations:

1. (2x2y – 3y4) dx " (3x3 " 2xy3) dy ! 0. Ans. 12x–10/13 y15/13 " 5x–36/13 y24/13 ! c
2. (3x " 2y2) y dx " 2x (2x " 3y2) dy ! 0. Ans. x3y4 " x2y6 ! c
3. x (3y dx " 2x dy) " 8y4 (y dx " 3x dy) ! 0. Ans. x2y3 (x " 4y4) ! c
4. x (4y dx " 2x dy) " y3 (3y dx " 5x dy) ! 0. [Delhi Maths (G) 1999] Ans. x4y3 " x3y5 ! c
5. xy3 (y dx " 2x dy) " (3y dx " 5x dy) ! 0. Ans. x3y5 (xy3 " 4) ! c
6. (8x2y3 – 2y4) dx " (5x3 y2 – 8xy3) dy ! 0 by first finding integrating factor of the form xh yk.

[Delhi, B.Sc. (Prog) II 2011]   Ans. x8/3 y5/3 – x2/3 y8/3 ! c
2.23 Linear differential equation

Definition. A first order differential equation is called linear if it can be written in the form
(dx/dy) " Py ! Q,                                                ... (1)

where P and Q are constants or functions of x alone (i.e., not of y).
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A method of solving (1). Suppose R (which is taken as function of x alone) is an integrating
factor of (1). Multiplying (1) by R, we get

R(dy/dx) " RPy ! RQ, ... (2)

which must be exact. Suppose, we wish that the L.H.S. of (2) is the differential coefficient of some

product. But the term R (dy/dx) can only be obtained by differentiating the product Ry.

Accordingly, we take

                                  R
dy
dx

" RPy !
d
dx

 (Ry) ... (3)

or            R
dy
dx

" RPy ! R
dy
dx

" y
dR
dx

                 or             
dR
R

! Pdx.

Integrating, log R ! P dx# ,taking constant of integration equal to the zero for sake of simplicity..

Thus, an integrating factor of (1) is P dxR e#!  and (2) reduces to
d
dx  (Ry) ! RQ, using (3)                 or d (Ry) ! RQ dx.

Integrating,              Ry ! RQ dx c�# or                   P dxye# ! { } ,P dxQe dx c# �#
which is the required solution of given linear differential equation (1).

Working rule for solving linear equations. First put the given equation in the standard form
(1). Next find an integrating factor (I.F.) by using formula

I.F. ! P dxe# ... (5)
Two formulas em log A ! Am and e–m log A ! 1/Am will be often used in simplifying I.F.
Lastly, the required solution is obtained by using the result

         y × (I.F.) ! [ (I .F .)] ,Q dx c& �# where c is an arbitrary constant. ... (6)

Remarks. Sometimes a differential equation cannot be put in the form (1) of a linear equation.
Then, we regard y as the independent variable and x as the dependent variable and obtain a
differential equation of the form

dx/dy " P1 x ! Q1, ... (7)
where P1 and Q1 are constants or functions of y alone. In this, we modify the above working rule

as follows. I.F. ! 1P dye# ... (8)

and the required solution is                       x × (I.F.) ! 1[ ( . .)] .Q I F dy c& �#
2.24 Examples of Type 12 based on Art. 2.23

Ex. 1. Solve x cos x (dy/dx) " y (x sin x " cos x) ! 1. [Agra 1994]

Sol. Re-writing given equation, we have             
1 sectandy xx y

dx x x
0 1� � !4 5
6 7

... (1)

I.F. of (1) ! (tan 1/ ) log sec log log sec sec .x x dx x x x xe e e x x� �# ! ! !

Hence the required solution is                     2sec secyx x x dx c! �# ,

or sec tanyx x x c! � , c being arbitoary constants.
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Ex. 2. (a) Solve ( ) ( / ) ( ) .2 21 x dy dx 2xy x 1 x% � ! % [Kerala 2001]

(b) solve 2 2(1 )( / ) 2 1 , (0) 1x dy dx xy x x y% � ! % ! [Delhi Maths (Prog) 2007]

Sol. The given equation is                      2 2 1/ 2
2

1 (1 )
dy x xy
dx x x

� !
% %

. ... (1)

Comparing (1) with dy/dx + Py ! Q, here                     P ! 2x/(1 – x2)

Here     2
2 2

2 1log (1 ) hence I .F.of (1)
1 1

P dxxP dx dx x e
x x

#! ! % % ! !
% %# #

So the required solution is

21
y
x%

! 22

1
1(1 )

x dx
xx

&
%%

# ! 3/21
2

t dt c%% �# , putting 1 – x2 ! t and – 2x dx ! dt

or 21
y
x%

! 1/ 2 1t c c
t

% � ! � or 21
y
x%

! 2 1/ 2
1

(1 )x%
" c, as t ! 1 – x2 ... (2)

(b) First do upto equation (2) as in Ex. 2(a). Putting x ! 0 and y ! 1 in (2), we have 1 ! 1 + c
so that c ! 0. Hence (2) becomes

y/(1– x2)  ! 2 1/ 21/(1 )x% or y ! (1 – x2)1/2

Ex. 3. Solve sin x (dy/dx) " 3y ! cos x. [Rohilkhand 1993]
Sol. Re-writing, we have,                         dy/dx " (3 cosec x) y ! cot x. ... (1)
Comparing (1) with dy/dx + Py ! Q,  here                P ! 3 cosec x

Here 33 cosec 3 log tan ( / 2) so I.F. (1) tan / 2P dxP dx x dx x of e x#! ! ! !# #
Hence, the required solution is given by

y tan3 (x/2) ! 3cot tan ( / 2)x x dx c�# !
2

31 tan ( / 2) tan
2 tan ( / 2) 2

x x dx c
x

%
�#

or                          3 2 21tan ( / 2) {1 tan ( / 2)} tan ( / 2)
2

y x x x dx c! % �#

or         y tan3
2
x

! 2 2
2

1 2(1 ) ,
2 1

dtt t c
t

% & �
�# c being an arbitrary constant

     
21Put tan so that sec

2 2 2
x xt dx dt∋ ! !)+ 2 2 2

2 2 2
sec ( / 2) 1 tan ( / 2) 1

dt dt dtdx
x x t

(
= ! ! ! ∗

� � ,

or y tan3
2
x

! 
2 4

3 2
2 2

2or tan 2
21 1

t t xdt c y t dt
t t

% ∋ (� ! % � %) ∗� �+ ,# #
or                            y tan3 (x/2)  !  – (1/3) t3 " 2t – 2 tan–1 t " c

or                               y tan3
2
x

! 3 11 tan 2 tan 2 tan tan
3 2 2 2

x x x c% 0 1% � % �4 5
6 7

or               (y " 1/3) tan3 (x/2) ! 2 tan (x/2) – x " c. c being an arbitrary constant.
Ex. 4. Integrate (1 " x2) (dy/dx) " 2xy – 4x2 ! 0. Obtain equation of the curve satisfying this
equation and passing through the origin. [Agra 1993]
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Sol. Re-writing the given equation,                 
2

2 2
2 4

1 1
dy x xy
dx x x

� !
� �

. ... (1)

Comparing (1) with   dy/dx " Py ! Q,           here          P ! (2x)/(1 " x2)

Here 2 2
2

2 log (1 ) so I.F.of (1) (1 ).
1

P dxxP dx dx x e x
x

#! ! � ! ! �
�# #

Hence the required solution is                   y (1 " x2) !
2

2
2

4 (1 )
1

x x dx c
x

Α � �
�#

or                          y (1 " x2) ! (4/3) x3 " c, c being an arbitrary constant. ... (1)
Since the required curve passes through origin, (1) must satisfy the condition x ! 0, y ! 0.

Putting these in (1), we get c ! 0. Hence the required curve is            4x3 ! 3y (1 " x2).
Ex. 5. Solve (x " 2y3) (dy/dx) ! y. [Rohilkhand 1993; Agra 1995; Delhi Maths. (G) 1995,

2002; Lucknow 1995; Rajasthan 2010]
Sol. Here it is possible to put the equation in form                 dx/dy " P1x ! Q1.

where P1 and Q1 are function of y or constants

Thus, we have               
3

22 1,                or                2 .dx x y dx x y
dy y dy y

�
! % ! ... (1)

For (1), log
1 (1 / ) log so I.F.of (1) 1 / .yP dy y dy y e y%! % ! % ! !# #

Hence, the required solution is                     x/y ! 22 (1/ ) .y y dx cΑ �#
or x/y ! y2 " c, where c is an arbitrary constant.

Ex. 6. (a) Solve (1 " y2) dx ! (tan–1 y – x) dy. [Delhi Maths 2007]
[Agra 2005; Delhi Maths(G) 2004; Lucknow 1996; Calicut 2004; Utkal 2003]

Sol. Re-writing the given equaion,                   
1

2 2
tan

1 1
dx x y
dy y y

%
� !

� �
. ... (1)

which is of the form dx/dy + P1x ! Q1. Comparing it with (1) here P1 ! 1/(1 + x2)

<
1

11 tan
1 2

1 tan and hence I .F.of (1) .
1

P dy yP dy dy y e e
x

%% #! ! ! !
�# #

Hence the required solution is                
1tan yxe

%

!
1 1

tan
2

tan .
1

y ye dy c
y

%
%

Α !
�#

or                 
1tan yxe

%

! te t dt cΑ �# , ? ≅ ? ≅1putting tan and / 1y t dy y dt% ! � !

or             
1tan yxe

%

! tet – et " c or               
1tan yxe

%

!
1tan 1(tan 1)ye y c

% % % �

or x ! tan–1 y – 1 "
1tan ,yce

%
 c being an arbitrary constant.

Ex. 6. (b) Solve ( ) ( ) ( / ) .
12 tan y1 y x e dy dx 0

%%� � % ! [I.A.S. 2006]

Sol. Re-writing the given equation, we have
1 1tan tan

2 2 2
10 or

1 1 1

y ydx x e dx ex
dy dyy y y

% %% %%
� ! � !

� � �
... (1)
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Its I.F. !
2 1{1/(1 )} tany dy ye e

%�# !  and so its solution is
1

1 1 1tan
tan tan tan 1

2
or tan

1

y
y y yexe e dy c xe y c

y

%
% % %

%
%

0 1
4 5! & � ! �
4 5�6 7

# ... (2)

Ex. 6(c). Solve (1 + y2) dx + 
1tan( ) 0, (1) 0yx e dy y

%%% ! ! [Dehil Maths (Prog) 2007]
Sol. First do as in Ex. 6(b) upto equation (2). Putting x ! 1, y ! 0, in (2), we get c ! 1. Hence

the required solution is                                
1tan 1tan 1yxe y

% %! �

Ex. 7. Solve
/

/
( )

( ) ( )

2 1 2

2 3 2 2 2
dy y x 1 x
dx 1 x 1 x

� %
� !

% %
. [I.A.S. (Prel.) 2005]

Sol. Comparing the given equation with (dy/dx) " Py ! Q, here

P ! 2 3/ 2
1

(1 )x%
                             and Q !

2 1/ 2

2 2
(1 )

(1 )
x x

x
� %

%
... (1)

Hence, P dx# ! 2 3/ 2 3
1 cos

(1 ) cos
ddx

x
: :

!
% :# # , putting x ! sin :

           ! 2
2 1/ 2

sinsec tan
cos (1 )

xd
x

:
: : ! : ! !

: %# .

Hence, I.F. of (1) !
2 1/ 2/(1 )P dx x xe e %# ! ... (2)

Solution of the given differential equation is            y (I.F.) ! (I.F.) .Q dx c�# ... (3)

Now,                     (I.F.)Q dx# !
2 1/ 22 1/ 2

/(1 )
2 2

(1 )
(1 )

x xx x e dx
x

%� %
%# ... (4)

Put                               x/(1 – x2)1/2 ! t. ... (5)

From (5),                     
2 1/ 2 2 1/ 2

2
(1 ) 1 (1/ 2) (1 ) ( 2 )

1
x x x x

x

%% Α % % Α %

%
dx ! dt

or         
2 1/ 2 2 2 1/ 2

2
(1 ) [ /(1 ) ]

1
x x x dx dt

x
% � %

!
%

            or            2 3/ 2
1 .

(1 )
dx dt

x
!

%
... (6)

Re-writing (4), we have

(I.F.)Q dx# !
2 1/ 22 1/ 2

/(1 )
2 3 / 2

[ /(1 ) ] 1
(1 )

x xx x e dx
x

%% �
%#   ! ( 1) ,tt e dt�#  using (5) and (6)

< (I.F.)Q dx# ! ( 1) ( 1)t t t t tt e e dt t e e te� % ! � % !# Β Χ 2 1/ 22 1/ 2 /(1 )/(1 ) x xx x e %! % & ...(7)

Using (2) and (7) in (3), the required solution is
2 1/ 2/(1 )x xye % !

2 1/ 2/(1 )
2 1/ 2(1 )

x xx e c
x

% �
%

            or y !
2 1/ 2/(1 )

2 1/ 2(1 )
x xx c e

x
% %�

%
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Ex. 8. Solve x (1 – x2) dy " (2x2y – y – ax3) dx ! 0.
Sol. Re-writing the given equation, we have

2 2
2 2 3

2 2
2 1(1 ) (2 1) or .
(1 ) 1

dy dy x axx x y x ax y
dx dx x x x

%
% � % ! � !

% %
... (1)

Comparing (1) with (dy/dx) " Py ! Q, we have

P !
2 2

2 2
2 1 1 1 1 and

2 ( 1) 2 ( 1)(1 ) 1
x axQ

x x xx x x
%

! % % % !
� %% %

... (2)

P dx# ! 1 1 1
2 ( 1) 2 ( 1)

dx
x x x

∋ (
% � �) ∗� %+ ,

# ! – [log x + 
1
2

 × log (x + 1) + 
1
2

 × log (x – 1)]

! 2 2 1/ 2 2 1/2 1log (1/ 2) log ( 1) log[ ( 1) ] log[ ( 1) ]x x x x x x %∋ (% � & % ! % % ! %+ ,

< Integrating factor 
2 1/ 2 1log{ ( 1) } 2 1/ 2 1 2 1 /2{ ( 1) } 1/{ ( 1) }Pdx x xe e x x x x

%% %#! ! ! % ! %

Solution of (1) is y (I.F.) ! (I.F.)Q dx c�# , c being an arbitrary constant

or                    2 1/ 2( 1)
y

x x %
! 

2

2 2 1/ 2 2 3/ 2
1

1 ( 1) ( 1)
ax x dxdx c c a

x x x x
& � ! %

% % %# #

      2 1/ 2( 1)
y

x x %
! c – 3/22

a dt
t# , putting x2 – 1 ! t and 2x dx = dt

or 2 1/ 2( 1)
y

x x %
 ! 

1/ 2

2 1/ 22 (1/ 2) ( 1)
a t a ac c c

t x

%∋ (
% ! � ! �) ∗% %+ ,

or y ! ax " cx (x2 – 1)1/2.

Ex. 9. Solve (x " 1) (dy/dx) – ny ! ex (x " 1)n"1. [Delhi Maths. (H) 2002]

Sol. Re-writing the given equation,                   ( 1)
1

x ndy n y e x
dx x

% ! �
�

... (1)

which is linear equation whose I.F. ! { /( 1)} log ( 1) ( 1)n x dx n x ne e x% � % � %# ! ! �  and solution is

                y (x " 1)–n ! ( 1) ( 1) .x n n xe x x c e c%� � � ! �# , c being an arbitrary constant.

Ex. 10. Solve (1 " x " xy2) dy " (y " y3) dy ! 0. [Delhi Maths. (G) 2001]

Sol. Re-writing,    
2

2 2
1 (1 ) 1 10 or

(1 ) (1 )
dx x y dx x
dy dy yy y y y

� �
� ! � ! %

� � ,

whose I.F.! (1/ ) logy dy ye e y# ! !  and solution is

       xy ! 1
2

1 or tan .
(1 )

y dy c xy y c
y y

%% Α � ! % �
�# , c being an arbitrary constant.

Ex. 11. Solve dy/dx " y cos x ! (1/2) × sin 2x [I.A.S. 2004]

Sol. Integrating factor of the given equation ! cos sinx dx xe e# ! and solution is

yesin x ! ? ≅ ? ≅sin sin1/ 2 sin 2 sin cosx xc x e dx c x e x dx� & ! �# #
! ,tc t e dt� #  on putting sin x ! t and cos x dx ! dt,

! ( 1)t t tc t e e dt c e t� % ! � %#
or            yesin x ! c " esin x (sin x – 1)                 or y ! ce– sin x " sin x – 1.
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Exercise 2(K)
Solve the following differential equations:

1. (1 " x2) (dy/dx) " y ! 1tan .xe
% Ans. 1 1tan 2 tan(1/ 2)x xye e c

% %
! & �

2. (dy/dx) " y cot x ! 2 cos x.[Bangalore 1994] Ans. y sin x ! – (1/2) & cos 2x " c
3. x log x (dy/dx) " y ! 2 log x. [Delhi (Maths (G) 2005] Ans. y log x ! c " (log x)2

4. dy/dx ! y tan x – 2 sin x. Ans. y ! cos x " c sec x
5. (dy/dx) " 2y tan x ! sin x, given that y ! 0 when x ! ;/3. Ans. y ! cos x – 2 cos2 x

6. cos2 x (dy/dx) " y ! tan x. Ans. y ! tan x – 1 " 1tan xce
%

7. dy/dx " 2 (y/x) ! sin x. Ans. yx2 ! c – x2 cos x " 2x sin x " 2 cos x
8. (2x – 10y3) (dy/dx) " y ! 0. Ans. xy2 ! c " 2y5

9. (x log x) (dy/dx) " y ! 2 log x. [Delhi Maths. (G) 1996] Ans. y log x ! c " (log x)2

10. cos x (dy/dx) " y ! sin x   or   (dy/dx) " y sec x ! tan x.
Ans. y (sec x " tan x) ! sec x " tan x – x " c

11. (1 " y2) "
1tan( )yx e

%
% (dy/dx) ! 0. Ans. 1 1tan 2 tan(1/ 2)y yxe e c

% %
! & �

12. x (dy/dx) – y ! 2x2 cosec x. [Kanpur 1996] Ans. y ! cx " x log (tan x)
13. x2 (x2 – 1) (dy/dx) " x (x2 " 1) y ! x2 – 1. Ans. {y (x2 – 1)}/x ! log x " (1/2) & x–2 " c

14. x (x – 1) (dy/dx) – (x – 2) y ! x3 (2x – 1). Ans. {y (x – 1)}/x2 ! x2 – x " c
15. (1 " x2) (dy/dx) " 2xy ! cos x. [Meerut 2009] Ans. y (1 " x2) ! c " sin x
16. (dy/dx) – y tan x ! ex sec x. Ans. y cos x ! c " ex

17. sec x (dy/dx) ! y " sin x. Ans. y ! cesin x – (1 " sin x)
18. y log y dx " (x – log y) dy ! 0. Ans. x log y ! (1/2)& (log y)2 " c

19. 2 2 2
4 1

1 ( 1)
dy x y
dx x x

� !
� �

. Ans. y (x2 " 1)2 ! x " c

20. sin 2x (dy/dx) ! y " tan x. Ans. tan (tan )y x c x! �

21. (x " 3y " 2) (dy/dx) ! 1. Ans. x " 3y " 5 ! cey

22. (1 – x2) (dy/dx) – xy ! 1. Ans. 2 1/ 2 2 1/2( 1) log [ ( 1) ]y x c x x% ! % � %

23. (dy/dx) " (y/x) ! x2, if y ! 1 when x ! 1. Ans. 4xy ! x4 " 3

24. 2 2 2
2 1

1 (1 )
dy x y
dx x x

� !
� �

if y ! 0, when x ! 1. Ans. y (1 " x2) ! tan–1 x – (;/4)

25. Solve ( )dy d dy x
dx dx dx

Μ Μ
� ! Μ , where Μ is some function of x. Ans. y e e dx cΜ Μ! Μ �#

26. 2( / ) 2 logx dy dx y x x� ! [Guwahati 2007]. Ans. 2 4( /16) (4log 1)x y x x c! & % �

27. 2( 1) ( / ) 2 1% � !x dy dx xy [Meerut 2010]. Ans. 2( 1)% ! �y x x c

2.25 Equations reducible to linear form

An equation of the form                         ( ) ( ) ,dyf y P f y Q
dx

∃ � ! ... (1)

where P and Q are constants or functions of x alone (and not of y) can be reduced to linear form
as follows. Putting f (y) ! v so that f ∃(y) (dy/dx) ! dv/dx, (1) becomes

dv/dx " Pv ! Q, ... (2)

2( 1)% ! �y x x c
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which is linear in v and x and its solution can be obtained by using working rule of Art. 2.23. Thus,

we have I.F. ! P dxe#  and solution is                           .P dx P dxv e Qe dx c# #Α ! �#
Finally, replace v by f (y) to get solution in terms of x and y alone.

Another form. An equation of the form              f ∃ (x) 
dx
dy

" P1 f (x) ! Q1, ... (1)'

where P1 and Q1 are constants or functions of y alone can be reduced to linear form again as
follows: Putting f (x) ! v so that f ∃ (x) (dx/dy) ! dv/dy, (1)∃ gives     dv/dy " P1 v ! Q1, ... (2)'
which is linear in variables v and y.

Integrating factor of (2)∃ is 1P dye#  and hence solution of (2)∃ is 1 1
1 .P dy P dyv e Q e dx c# #! �#

Replacing v by f (x), we obtain the required solution of (1).
2.25A Bernoulli’s equation A particular case of Art. 2.25.

An equation of the form                               (dy/dx) " Py ! Qyn ... (1A)
where P and Q are constants or functions of x alone (and not of y) and n is constant except 0 and
1, is called a Bernoulli’s differential equation.

We first multiply by y–n, thereby expressing it in the form (1) of Art. 2.25
y–n (dy/dx) " Py1–n ! Q. ... (2 A)

Let y1–n ! v ... (3 A)

Differentiating w.r.t. x, (3 A) gives (1 – n) y–n
dy
dx !

dv
dx ,  or   

1
1

n dy dvy
dx n dx

% !
%

... (4 A)

Using (3 A) and (4 A), (2 A) reduces to
1 or (1 ) (1 ) ,

1
dv dvPv Q P n v Q n

n dx dx
� ! � % ! %

%

which is linear in v and x. Its I.F. ! (1 ) (1 )P n dx n P dxe e% %# #!  and hence the required solution is

          (1 )n P dxv e % #Α ! (1 )n P dxQ e dx c% #Α �# , c being an arbitrary constant

(1 )1 n P dxny e %% # ! (1 )n P dxQ e dx c% #Α �# , using (3A)

Remark. Equation dx/dy " P1 x ! Q1 xn is also in the Bernoulli’s form. Here P1 and Q1 are
functions of y alone. Method of solution is similar to that of form (1A) above.
2.26 Example of Type 13 based on Art. 2.25

Ex. 1. Solve (dy/dx) " x sin 2y ! x3 cos2 y.
[I.A.S. (Prel.) 2005; I.A.S. 1994; Calcutta 1995; Kanpur 1997; Lucknow 1996]

Sol. Dividing by cos2 y,                       sec2 y (dy/dx) " 2x (tan y) ! x3. ... (1)
Put tan y ! v so that sec2 y (dy/dx)!dv/dx Hence the above eqn. becomes dv/dx " 2xv ! x3,

which is linear in v and x. Hence its I.F. !
22x dx xe e# !  and its solution is given by

                        
2xv eΑ !

23 xx e dx c�# , c being an arbitrary constant

            vex2 ! (1/ 2) tt e dt c& �# , putting x2 ! t  and  2x dx ! dt

           ! (1/ 2) [ (1 ) ]t tt e e dt c& & % & �# ! (1/2) × (t et – et) " c

2( 1)% ! �y x x c
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or
2

tan xy eΑ ! (1/2) × 
2xe  (x2 – 1) " c, as v ! tan y and t ! x2

or        tan y ! (1/2) × (x2 – 1) "
2xce% , dividing by 

2xe
Ex. 2. Solve (dy/dx) ! ex–y (ex – ey). [Agra 1995; Delhi Maths (G) 1997;

Kanpur 1997; Rohilkhand 1997]
Sol. Re-writing,          dy/dx ! e2x Α e–y – ex        or            dy/dx " ex ! e2x Α e–y.
Now dividing by e–y, we get                              ey (dy/dx) " ex Α ey ! e2x.
Putting ey ! v so that ey (dy/dx) ! dv/dx we get                dv/dx " ex v ! e2x.

Its I.F. !
x xP dx e dx ee e e# #! !  and the solution is

xev eΑ ! 2 x xx e x e xe e dx c e e e dx cΑ � ! Α �# # ! tt e dt c�# , putting ex ! t so that ex dx ! dt

! 1t tt e e dt cΑ % Α �# # ! t Α et – et " c ! et (t – 1) " c

i.e.,     
xy ee e ! ( 1) or ( 1)

x xe x e y xe e c e e e c% � % � ! , as v ! ey and t ! ex

Ex. 3. Solve 2 ( ) .2dz z zlog z log z
dx x x

� ! Α [I.A.S. 2001; Calcutta 1994]

Sol. Here we have z in place of y and so the method of solution will remain similar. Dividing

by z (log z)2, we get                           2 2
1 1 1 1

(log )(log )
dz
dx x zz z x

� ! . ... (1)

Putting          
1

log z
! v         so that         2

( 1)
(log )

dz dv
dx dxz z

%
! ,         (1) becomes

2 2
1 1 1 1or ,dv dvv v

dx x dx xx x
% � ! % ! % ... (2)

whose I.F. ! (1/ ) log 1/x dx xe e x% %# ! !  and so solution is

3 2 2
1 1 1 1or .

(log )2 2
v dx c c c
x x zx x x

0 1! % � ! � ! �4 5
6 7#

Ex. 4. x (dy/dx) " y log y ! xy ex. [Agra 1994]

Sol. Dividing by xy, the given equation reduces to              
1 1dy
y dx x

�  log y ! ex. ... (1)

Let               log y ! v               so that               (1/y)& (dy/dx) ! dv/dx ... (2)
Using (2), (1) gives                         (dv/dx) + (1/x) v ! ex.                                  ... (3)
Comparing (3) with dv/dx " Pv ! Q, we have         P ! 1/x     and         Q ! ex.    ... (4)

Since log(1 / ) log ; I .F .of (3) .P dx xP dx x dx x e e x#! ! ! ! !# #  Hence solution of (3) is

.(I.F.) .(I.F.) or orx x x x xv Q dx c vx x e dx c vx x e e dx c x e e c! � ! � ! % � ! % �# # #
or                       x log y ! ex (x – 1) " c, by (2); c being an arbitrary constant.

Ex. 5. Solve (x2 – 2x " 2y2) dx " 2xy dy ! 0. [I.A.S. 1991]
Sol. Re-writing the given equation, we have

2 2
2 2 2 22 2 2 0 or 2 0dy dy x x yxy x x y y

dx dx x x
%

� % � ! � � !
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or
2

22 22 dy x xy y
dx x x

%
� ! . ... (1)

Putting             y2 ! v                 so that                    2y (dy/dx) ! dv/dx ... (2)

Using (2), (1) gives             
22 2dv x xv

dx x x
%

� ! ... (3)

Comparing (3) with (dv/dx) " Pv ! Q, we have    P ! 2/x    and    Q ! (2x – x2)/x ...(4)

< Since (2 / )P dx x dx!# # ! 2 log x ! log x2, hence I.F. of (3) !
2log 2P dx xe e x# ! ! .

and solution of (3) is              y (I.F.) ! (I.F.)Q dxΑ# + c, c being an arbitrary constant.

or     
2

2 2 2 2 32 (2 )x xy x x dx x x dx
x

0 1%
! ! %4 5

6 7
# # + c       or        

3 4
2 2 2

3 4
x xy x c! % �

Ex. 6. (a) Solve 2xy dy – (x2 " y2 " 1) dx ! 0. [Delhi Maths 2008]

(b) Solve
2 2dy x y 1

dx 2xy
� �

! , given y ! 1 when x ! 1.

Sol. (a) Re-writing the given equation,    2xy
dy
dx

! x2 " y2 " 1   or   2xy
dy
dx

 – y2 ! 1 " x2.

Dividing by x,                21 12 dyy y x
dx x x

0 1% ! �4 5
6 7

. ... (1)

Putting                 y2 ! v                 so that                 2y (dy/dx) ! dv/dx, ... (2)

Using (2), (1) gives               1 1 .dv v x
dx x x

% ! � ... (3)

Comparing (3) with (dv/dx) " Pv ! Q, here      P ! – (1/x)      and      Q ! x " (1/x). ... (4)

<    Since P dx# ! 
1log 1(1/ ) log so I.F. of (3) .P dx xx dx x e e x

% %#% ! % ! ! !#
and solution of (3) is                               v Α (I.F.) ! { (I.F.)}Q dx c& �#
or         y2x–1 ! 1 2 1 1( 1 / ) orx x x dx y x x x c% % %� ! % �#
or                          y2 ! (c " x) x – 1, c being an arbitrary constant. ... (5)

(b) Proceed as in part (a) and obtain (5). Given that y ! 1 when x ! 1. Hence (5) yields
1 ! c " 1 – 1 or c ! 1. Therefore, from (5), the required solution is y2 ! x (x " 1) – 1.

Ex. 7. Solve dy/dx " (1/x) sin 2y ! x2 cos2 y. [Delhi Maths (H) 2001]
Sol. On dividing by cos2 x, the given equation reduces to

sec2 y (dy/dx) " (2/x) tan y ! x2 ... (1)
Putting tan y ! v                 and           sec2 y (dy/dx) ! dv/dx, (1) reduces to

dv/dx " (2/x) v ! x2, which is linear equation

Its I.F. ! (2 / ) 2 log 2x dx xe e x# ! !  and solution is

    2 2 2 2 5( ) or tan ( / 5)v x x x dx c x y c x! & � ! �#
Ex. 8. Solve (sec x tan x tan y – ex) dx " sec x sec2 y dy ! 0 [Delhi Maths (H) 2004]
Sol. Re-writing the given equation, we get sec x sec2 y (dy/dx) " sec x tan y ! ex

or               sec2 y (dy/dx) " tan x tan y ! ex cos x. ...(1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



2.42 Equations of First Order and First Degree

Putting tan y ! v and sec2 y (dy/dx) ! dv/dx, (1) reduces to
dv/dx " (tan x) Α v ! ex cos x which is linear equation ...(2)

I.F. of (2) ! tan log secx dx xe e# ! ! sec x and so its solution is

sec cos sec or tan sec .x xv x e x x dx C y x e C! � ! �#
Ex. 9. Solve 

32 1/ 2( ) 0.xxy e dx x y dy%� % ! [I.A.S. 2006]
Sol. Re-writing the given equation, we have

3 32 2 1/ 2 1/
2

2 2or 2x xdy dy
x y xy e y y e

dx dx x x
% %! � % ! ... (1)

Putting y2 ! v and 2y (dy/dx) ! dv/dx, (1) reduces to

               
32 1// (2 / ) (2 / ) ,xdv dx x v x e%% !  which is linear equation ... (2)

It I.F.  !
2( 2 / ) 2 log log 2x dx x xe e e x

%% % %# ! ! !  and solution is
3 32 2 2 2 4( ) (2 ) or 2x xvx x x e dx c vx x e dx c

% %% % % % % % %! & � ! �# # ... (3)

Putting    – x–3 ! u        so that        3x–4 dx ! du        or         x–4 dx ! (1/3) × du

< (3) reduces to  2 2(2 / 3) or (2 / 3)u uvx e du c vx e c% %! & � ! & �#
or y2 x–2 ! (2/3) & (– x–3) + c, as v ! y2     and     u ! – x–3

or                    y2/x2 ! (2/3) & 
31/ ,xe c% �  c being an arbitrary constant.

Ex. 10. Solve (x2 + y2 + 2y) dy + 2x dx ! 0
Sol. Given x2 + y2 + 2y + 2x (dx/dy) ! 0 or 2x (dx/dy) + x2 ! – (y2 + 2y) ... (1)
Putting x2 ! v and 2x (dx/dy) ! dv/dy, (1) reduces to

dv/dy + v ! – (y2 + 2y), which is linear ... (2)
I.F. of (2)  dy ye e#! !  and hence solution of (2) is

2( 2 ) ,y yve e y y dy c c! % � �#  being an arbitrary constant

or 2[ ( 2 ) (2 2) ] ,y y yve e y y e y dy c! % � % � �#  integrating by parts

or 2( 2 ) (2 2)y y yve e y y e y dy c! % � � � �#
or                       2( 2 ) (2 2) ( 2) ,y y y yve e y y e y e dy c! % � � � % & �#  integrating by parts

or 2 2 22 2 2 2 , asy y y y y yx e y e y e y e e e c v x! % % � � % � !

or 2 2( ) yx y e c� !

Exercise 2(L)
1. sin y (dy/dx) ! cos y (1 – x cos y). Ans. sec y ! x " 1 " cex

2. (dy/dx) " (1/x) tan y ! (1/x2) tan y sin y. Ans. x cosec y ! c " log x
3. (dy/dx) " 1 ! ex–y. Ans. ev ! ce–x " (1/2) & ex

4. (dy/dx) – (tan y)/(1 " x) ! (1 " x) ex sec y. [Kanpur 1998; Lucknow 1996]
Ans. sin y ! (1 " x) (c " ex)

5. (dy/dx) " (1/x) ! ey/x2. [Kerala 2001] Ans. 2x e–y ! 1 " 2cx2

6. (x2 " y2 " 2x) dx " 2y dy ! 0. Ans. ex (x2 " y2) ! c
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2.27 Examples of Type 14 based on Art. 2.25A
Ex. 1. Solve x (dy/dx) " y ! y2 log x. [Delhi Maths (H) 2009; Kanpur 2006]

Sol. Re-writing the given equation ? ≅2 1( / ) (1/ ) 1/ log .y dy dx x y x x% %� & ! &      ... (1)
Putting y–1 ! v so that – y–2 (dy/dx) ! dv/dx. Then (1) gives

           1 1 1 1log or logdv dvv x v x
dx x x dx x x

% � ! % ! % ... (2)

I.F. of (2) ! (1/ ) log 1 1/ .x dx xe e x x% % %# ! ! !  and hence solution of (2) is

vx–1 ! 2 logx x dx c%% �# , c being an arbitrary constant

or        
1 1

1 1 1 1log or log 1 .
( 1) ( 1)
x xy x x dx c x cx

x y

% %
% % ∋ (

! % & % & � ! � �) ∗% %+ ,
#

Ex. 2. Solve (dy/dx) – y tan x ! – y2 sec x or cos x dy ! (sin x – y) y dx. [Kanpur 1995]
Sol. Dividing by y2, the given equation gives y–2 (dy/dx) – tan x Α y–1 ! – sec x    ... (1)
Putting y–1 ! v so that – y–2 (dy/dx) ! dv/dx, (1) becomes

tan secdv x v x
dx

% % Α ! %       or tan secdv x v x
dx

� Α ! ... (2)

which is linear whose I.F. ! tan logsec sec .x dx xe e x# ! !

Hence solution of (2) is       sec sec secv x x x dx cΑ ! Α �# , c being an arbtritray constant.

or        v sec x ! tan x " c             or              y–1 sec x ! tan x " c, as v ! y–1

Ex. 3. Solve the following differential equations:
(a) (x3y2 " xy) dx ! dy. [Guwahati 2007; Delhi Maths (G) 1996; Delhi Maths (H) 1988]
(b) x3 (dy/dx) – x2y " y4 cos x ! 0. [Delhi Maths (H) 1993]
(c) 2x2 (dy/dx) ! xy " y2. [Delhi Maths (H) 1992
(d) x (dy/dx) " y2x ! y. [Delhi Maths (H) 1994]

Sol. (a) Re-writing the given equation, we have

3 2dy x y xy
dx

! � or 2 1 3dyy xy x
dx

% %% ! ... (1)

Putting y–1 ! v  so that  – y–2 (dy/dx) ! dv/dx, Hence (1) reduces to
– (dv/dx) – xv ! x3   or  (dv/dx) " xv ! – x3,

which is linear whose I.F. !
2 / 2.x dx xe e# ! and hence its solution is

2 2 2/ 2 3 / 2 2 / 2 .x x xv e x e dx c x e x dx c! % � ! % Α �# # , c being an arbitrary constant ... (2)

Putting x2/2 ! t so that x dx ! dt, (2) gives
2 / 2xv e ! 2 2 [ ]t t tt e dx t e e dt c% ! % % �# # ! – 2 (t et – et) " c ! – 2et (t – 1) " c

21 / 2xy e% ! 2 2/ 2 2 1 2 / 22 {( / 2) 1} or (2 ) .x xe x c y x ce% %% % � ! % �

(b) Dividing by x3y4, the given equation becomes        4 3
3

1 cosdy xy y
dx x x

% %% ! % . ... (1)

Putting  y–3 ! v  so that  – 3y–4 (dy/dx) ! (dv/dx)   or   y–4 (dy/dx) ! {(1/ 3) ( / )}dv dx% &
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(1) gives              3 3
cos 3 cos1 1 3or

3
x xdv dvv v

dx x dx xx x
% % ! % � !

which is linear whose I.F. ! (3/ ) 3 log 3,x dx xe e x# ! ! and hence its solution is

        
3

3 3
3 3

3 cos
or 3 sin .

x xv x x dx x c
x y

0 1! ! �4 5
6 7#

(c) Do yourself. Ans. x/y ! 1 c x�

(d) Do yourself. Ans. y–1 x ! (x2/2) " c
Ex. 4. Solve x (dx/dy) " 3y ! x3y2. [I.A.S. 2002]
Sol. Dividing by xy2, the given equation reduces to

(1/y2) (dy/dx) " (3/x) (1/y) ! x2 ... (1)
Putting 1/y ! v and (– 1/y2) (dy/dx) ! dv/dx, (1) reduces to

2 23 3or ,dv dvv x v x
dx x dx x

% � ! % ! % which is linear equation

Its I.F. ! ( 3/ ) 3 log 3x dx xe e x% % %# ! !  and its solution is
3 2 3 3 1( ) ( ) or log .x v x x dx c x y x c% % % %! % � ! % �#

Ex. 5. Solve dy/dx " y cos x ! y4 sin 2x. [Delhi Maths (P) 2001]
Sol. Re-writing,                            y–4 (dy/dx) " (cos x) y–3 ! sin 2x ... (1)
Putting y–3 ! v and – 3y–4 (dy/dx) ! dv/dx, (1) gives
–{(1/3)& (dv/dx)} " (cos x) v ! sin 2x              or dv/dx – (3 cos x) v ! – 3 sin 2x

Its I.F. ! ( 3cos ) 3sinx dx xe e% %# !  and solution is v e–3 sin x ! 3sin ( 6 sin cos )xe x x dx c% % �#
or v e–3 sin x! 6 ( 1/ 3) ( 1 / 3) (2 / 3)t te t dt t e dt% % % ! % &# # , put – 3 sin x ! t  and  – 3 cos xdx !

dt
or                               v e–3 sin x ! – (2/3)& [t et – et] ! (– 2/3) &  et (t " 1) " c
or                        y–3 e–3 sin x! – (2/3)& e–3 sin x (1 – 3 sin x) " c, as v ! y–3, t ! – 3 sin x
or                    y–3 ! 2 sin x – (2/3) " ce3 sin x, c being an arbitrary constant.

Ex. 6. Solve dy/dx + y sin x ! y3 cos 2x. [Delhi Maths (P) 2004]
Sol. Re-writing, the given equation,            y–3 (dy/dx) " (sin x) y–2 ! cos 2x ... (1)

Let y–2 ! v    so that    –2y–3  (dy/dx) ! (dv/dx)    or    3( / ) {(1/ 2) ( / )}y dy dx dv dx% ! % &
(1) gives,                             –{(1/2)& (dv/dx)} + (sin x) v ! cos 2x

or dv/dx – (2 sin x) v ! – 2 cos 2x, which is linear equation

whose I.F. ! ( 2sin ) 2cosx dx xe e%# !  and its solution is
2 cos 2 cos 2 2 cos 2 cos( 2 cos 2 ) or (1 / ) 2 cos 2x x x xv e C e x dx y e C x e dx! � % ! %# #

[Note: Since the integral on R.H.S. cannot be evaluated, the required solution is given in the
above form involving an integral]

Ex. 7. Solve dy/dx " y cos x ! yn sin 2x. [Bangalore 2004]
Sol. Re-writing the given equation, we have         y–n (dy/dx) " y1–n cos x ! sin 2x ... (1)

Putting y1– n ! v   so that   (1 – n) y–n dy dv
dx dx

!            or               y–n 1
1

dy dv
dx n dx

!
%

... (2)
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Using (2), (1) reduces to
1

1
dv

n dx%
" v cos x ! sin 2x              or              

dv
dx

" {(1 – n) cos x} v ! (1 – n) sin 2x ... (3)

I.F. of (3) ! (1 )cos (1 )sinn x dx n xe e% %# !  and hence its solution is

v e(1–n) sin x ! (1 )sin(1 ) sin 2 n xn x e dx c%% �# ! (1 )sin2 (1 ) sin cosn xn x e x dx c%% �#
!

2 2 ( )
1 1

t t tt e dt c t e e c
n n

� ! % �
% %# , putting (1 – n) sin x ! t and (1 – n) cos x dx ! dt

Thus,           y1–n e(1–n) sin x ! {2 / (1 – n)}& e(1–n) sin x {(1 – n) sin x – 1} " c
or               y1–n ! 2 sin x – {2/(1 – n)} " ce–(1–n) sin x, c being an arbitrary constant

Ex. 8. Solve (x2y3 " xy) (dy/dx) ! 1. [Calcutta 1995]
Sol.  Re-writing, (dx/dy) ! x2y3 " xy               or                (dx/dy) – yx ! y3x2

or x–2 (dx/dy) – x–1 y ! y3. ... (1)
Putting, x–1 ! v, and – x–2 (dx/dy) ! dv/dy, (1) becomes,

? ≅ 3/ ,dv dy yv y% % !                 or 3( / ) ,dv dy yv y� ! %

which is linear in v and y and I.F. !
2 / 2 .y dy ye e# !  and its solution is

2 / 2yv eΑ !
23 / 2yy e dy c% �# ! 2 tt e dt c% �# , putting  y2/2 ! t  and  y dy ! dt

! 2 [ 1 ] 2 ( ) .t t t tt e e dt c t e e c% Α % Α � ! % % �#
or                                   

21 / 2yx e% !
2 / 2 22 ( / 2 1)ye y c% % � , as v ! x–1

<     Required soution is 1/x !
22 / 22 .yy ce%% � , c being an arbitrary constant.

Exercise 2(M)
1. (dy/dx) – 2y tan x ! y2 tan2 x. Ans. (– 1/y) sec2 x ! c " (1/2)& tan3 x
2. 2 (dy/dx) – y sec x ! y3 tan x. Ans. – (sec x " tan x)/y2 ! c " sec x " tan x – x

3. (dy/dx) (x3y3 " xy) ! 1 Ans.
22 2(1 ) 1yx y ce%% % !

4. xy – (dy/dx) !
23 .xy e% [I.A.S. 1998; Nagpur 2005] Ans.

22 2xy e x c% ! �

5. (1 – x2) (dy/dx) " xy ! xy2.[Purvanchal 2007] Ans. 2(1 ) (1 )cy y x! % %

6. dy/dx ! x3y3 – xy. [Rohilkhand 1995] Ans. y–2 ! x2 " 1 " 2xce
7. (dy/dx) – y sec x ! y2 sin x cos x. Ans. y–1 (sec x " tan x) ! cos x – (x/2) " (1/4) sin 2x " c
8. dy/dx " y = xy3. [Delhi B.Sc. (Hons) II 2011] Ans. y = x + 1/2 + c e2x

9. (x – y2) dx " 2xy dy ! 0. Ans. y2 " x log (cx) ! 0
10. y (2xy " ex) dx – ex dy ! 0. [Delhi Maths (G) 1995] Ans. ex/y " x2 " c ! 0

11. 2 .
1

dy xy x y
dx x

� !
%

[Delhi Maths (H) 2004] Ans. 2 2 1/41 (1 ) (1 )
3

y x c x! % % % %

12. 3 (dy/dx) " 2y/(x " 1) ! x3/y2. Ans. y3 (x " 1)2 ! c " (1/6) & x6 " (2/5) & x5 " (1/4) & x4

13. x (dy/dx) " y ! x3y6. [Delhi Maths (G) 2006] Ans. y–5 x–5 ! (5/2) & x–2 " c

14.
22 /2( / ) sin .xdy dx xy y e x� ! [Agra 2006] Ans.

2 /21/ ( ) xy x c e! �
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2.28 Geometrical meaning of a differential equation of the first order and first degree
Let dy/dx ! f (x, y), ... (1)

be a differential equation of the first order and first degree. Let P1 (x1, y1) be any point on the xy-
plane. Substituting the co-ordinates of P1 in (1), we obtain a corresponding particular value of dy/dx,
say m1, which is slope (or direction) of the tangent at P1. Suppose it moves from P1 in the direction
m1 (i.e., along the tangent at P1) for an infinitesimal distance, to a point P2 (x2, y2). Let m2 be the
slope of the tangent at P2, determined by equation (1). Suppose it moves from P2 in the direction
of m2 for an infinitesimal distance, to a point P3 (x3, y3). Let m3 be the slope of the tangent at P3,
determined by equation (1). Let the point move from P3 in the direction of m3 for an infinitesimal
distance, to a point P4 (x4, y4) and so on through successive points.

Proceeding likewise, the point will describe a curve, the co-ordinates of every point of which,
and the direction of the tangent there at, will satisfy the differential equation (1). If the moving
point starts at any other point, not on the curve already described, and proceeds as before, it will
describe another curve, the co-ordinates of whose points and the direction of the tangents thereat
satisfy the equation.

Thus, through every point on the xy-plane, there will pass a particular curve, for every point
of which x, y, dy/dx, will satisfy (1). The equation of each curve is thus a particular solution of (1);
the equation of the system of such curves is the general solution; and all curves represented by
the general solution, taken together, make the locus of the differential equation. Since there is one
arbitrary constant in the general solution of an equation of the first order, it follows that the latter
is made up of a single infinity of curves.
2.29 Applications of equation of first order and first degree (Meerut 2008)

We now discuss some problems which give rise to differential equations of first order and
first degree. By using given data of the problem, we shall first prepare a differential equation which
will then be solved by a suitable method. In forming differential equation, we shall use the
following results which must be remembered by heart.
2.30 List of important results for direct applications:

List A. Facts for cartesian curve y ! f (x) as studied in chapter on tangent and normal in
differential calculus.

Let P (x, y) be any point on the curve UPV whose equation is
y ! f (x). Let the tangent PT and the normal PG at P meet the x-axis
in T and G respec-tively. Let PN be the ordinate of P. Let Ν be the
angle which the tangent at P makes with x-axis. Then, from figure
ΟGPN ! Ν ! ΟPTG. Now, we have
A:1. dy/dx ! tan Ν ! gradient (or slope) of tangent PT.

A:2. NG ! subnormal ! y (dx/dy).

A:3. NT ! subtangent ! y (dx/dy).

A:4. PG ! The length of normal at (x, y) ! y {1 " (dy/dx2)}1/2.

A:5. PT ! The length of tangent at (x, y) ! y {1 " (dx/dy)2}1/2.

A:6. Equation of tangent at (x, y) is Y – y ! (dy/dx) (X – x).

A:7. Equation of normal at (x, y) is (dy/dx) (Y – y) " X – x ! 0.

A:8.
intercept of the tangent at ( , ) ( / ).
intercept of the tangent at ( , ) ( / ).

x OT x y x y dx dy
y OK x y y x dy dx

% ! %−
2 % ! %8

Sub  TangentT N Sub G
Normal

Y∃

Y

X∃ X

L

V
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90°
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A:9.
intercept of the normal at ( , ) ( / ).
intercept of the normal at ( , ) ( / ).

x OG x y x y dy dx
y OL x y y x dx dy

% ! �−
2 % ! �8

A:10. If ‘s’ denotes the length of the arc of a curve from a fixed point on the curve.

Then,  ds/dx ! 2 21 ( / ) and / 1 ( / )dy dx ds dy dx dy� ! �

A11. Π ! radius of curvature ! [1 " (dy/dx)2]3/2/(d2y/dx2).
Note. In results A6 and A7, (X, Y) denote the current coordinates of any point on tangent or

normal as the case may be.
List B. Facts for polar curve r ! f (:) as studied in chapter on tangent and normal in

differential calculus.
Let P (r, :) be any point on the curve UPV whose

equation is r ! f (:). Through the pole O, draw GOT
perpendicular to the radius vector OP meeting the tangent
PT in T and the normal PG in G. Let OM be perpendicular to
the tangent PT. Here ΟPOX ! :, ΟOPT ! Μ and ΟPKX ! Ν.
Then, we have

B1. Ν ! : " Μ.
B2. tan Μ ! r (d:/dr).
B3. Polar subtangent ! OT ! r tan Μ ! r2 (d:/dr).
B4. Polar subnormal ! OG ! r cot Μ ! dr/d:.
B5. Length of polar tangent ! PT ! r {1 " r2 (d:/dr)2}1/2

B6. Length of polar normal ! PG ! {r2 " (dr/d:)2}1/2.
B7. If ‘p’ is the perpendicular PM from the pole O on the tangent PT at the point

P (r, :), then     p ! r sin Μ and           1/p2 ! (1/r2) " (1/r4) × (dr/d:)2.
B8. If ‘s’ denotes the length of the arc of a curve from a fixed point the curve

Then              ds/dr ! {1 " r2 (d:/dr)2}1/2                    and ds/d: ! {r2 " (dr/d:)2}1/2.
B9. If cartesian coordinates of P be (x, y), then we have

r2 ! x2 " y2,            tan : ! y/x,              x ! r cos :               and                 y ! r sin :.
List C. Some important results of dynamics of a particle
C1. If a particle is moving in a straight line OX where O is a fixed point on the line, then

velocity v of the particle at any time t is given by dx/dt. Remember that the velocity dx/dt is along
the line OX itself and is taken with positive or negative sign according as the particle is moving
in the direction of x increasing or x decreasing.

C2. If a particle is moving in a straight line OX where O is a fixed point on the line, then
acceleration of the particle at any time t is given by d2x/dt2.Remember that that acceleration
d2x/dt2 is along OX itself and is taken with positive or negative sign according as the particle is
moving in the direction of x increasing or x decreasing.

Other expressions for acceleration f are given by                 f ! d2x/dt2 ! dv/dt ! v (dv/dx).
Note. Some authors use s for x and a for f.
List D. Population growth problems. Rate of growth of population is proportional to the

population. For example, the bacteria population grows at a rate proportional to the population, i.e.,
the growth rate dx/dt is proportional to x, where x ! x (t) denotes the number of bacteria present
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at time t. Mathematically, the above fact can be expressed as dx/dt ! kx, k being a positive
constant of proportionality.

List E. Radioactive decay problems. Rate of decay of a certain radioactive material is
proportional to the amount present. If x ! x (t) represents the amount of radioactive material
present at time t, then dx/dt ! kx, k being a negative constant of proportionality.

List F. Newton’s law of cooling problems. According to this law, the rate at which the temperature
T ! T (t) changes in a cooling body is proportional to the difference between the temperature T of
the body and the constant temperature. T0 of the surrounding medium. Thus, dT/dt ! – k (T – T0),
T > T0 and k being a positive constant of proportionality. Note that negative sign is taken due to
the reduction in the temperatuer of the hot body, when it cools.
2.31 Solved examples of Type 15 based on Art. 2.30

Ex. 1. Show that the curve in which the slope of the tangent any point equals the ratio of
the abscissa to the ordinate of the point is a rectangular hyperbola.

Sol. Given,                   dy/dx ! slope of tangent at (x, y) ! x/y.
< 2x dx – 2y dy ! 0 so that x2 – y2 ! c2,

which is a rectangular hyperbola, c being an arbitrary constant.
Ex. 2(a). Show that the parabola is the only curve in which the subnormal is constant.

[I.A.S (Prel.) 2009]
Sol. Given that,                  subnormal ! y (dy/dx) ! constant ! k, (say).
< 2y dy ! 2k dx   so that y2 ! 2kx " c, ... (1)

where c is an arbitrary constant. (1) is the equation of a parabola, since second degree terms of this
quadratic equation form a perfect square.

Ex. 2(b). Find the equation to the curve for which cartesian subtangent is constant. What
would be its equation if it passes through (0, 1)?

Sol. Given that,       the subtangent ! y (dx/dy) ! constant ! k, (say)
< dx ! (k/y) dy so that     x ! k log y – k log c

or         k log (y/c) ! x             or             log (y/c) ! x/k             or              y ! cex/k ... (1)
If (1) passes through (0, 1), we have 1 ! ce0      or      c ! 1.
Then from (1), the required curve is y ! ex/k.
Ex. 2(c). Find curve in which the cartesian subnormal is equal to abscissa.
Sol. Do yourself. Ans. y2 ! x2 " c.
Ex. 2(d). Find the curve for which the cartesian subnormal varies as the square of its radius

vector.
or The normal at any point P of a curve cuts OX in G and N is the foot of the ordinate of P. If
NG varies as the square of the radius vector from O, find the curve.

Sol. Given that subnormal NG ! k r2, where r is radius vector and r2 ! x2 " y2. Refer figure 2.1
of Art. 2.30.

< y (dy/dx) ! k (x2 " y2) or 2y (dy/dx) – 2k y2 ! 2k x2.... (1)
Putting y2 ! v   so that   2y (dy/dx) ! dv/dx, (1) becomes

(dv/dx) – 2k v ! 2k x2, which is linear. ... (2)

Its integrating factor ! ( 2 ) 2kx dx kxe e% %# !  and hence its solution is

v e–2kx ! 2 2 2 2(2 ) 2kx kxkx e dx c c k x e dx% %� ! �# #
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! 2 2 22 { ( 1/2 ) (2 )( 1/2 ) },kx kxc k x k e x k e dx% %� % % %# integrating by parts

! 2 2 2kx kxc x e x e dx% %% � # ! 2 2 2 22{ ( 1/2 ) 1 ( 1/2 ) },kx kx kxc x e x k e k e dx% % %% � % % Α %#
or                             v e–2kx ! c – x2 e–2kx – (x/k) e–2kx – (1/2k2) e–2kx

or                   y2 ! ce2kx – x2 – (x/k) – (1/2k2), as v ! y2., c being an arbitrary constant.
Ex. 2(e). Determine the curve in which the subtangent is n times the subnormal.
Sol. Try yourself. Ans. y n1/2 ! x " c.
Ex. 2(f). Find the curve for which the product of the subtangent at any point and the

abscissa of that point is constant.                   Ans.
2 / 2x ky ce! .

Ex. 2(g). Determine the curve whose subtangent is n times the abscissa of the point of
contact and find the particular curve which passes through the point (2, 3). What is the curve
when (a) n ! 1 (b) n ! 2.

Sol. Do yourself. Ans. 2yn ! 3n x.  (a) 2y ! 3x  (b) 2y2 ! 9x.
Ex. 2(h). Find the curve in which the length of the subnormal is proportional to the square

of the abscissa. Ans. 3y2 ! 2kx2 " c.
Ex. 2(i). Find the curve in which the length of the subnormal is proportional to the

square of the ordinate. Ans. y ! cekx.
Ex. 3(a). Show that the curve for which the normal at every point passes through a fixed

point is a circle.
(b) Find the curve for which the normal at any point passes through origin.
Sol. (a) The equation of the normal at any point (x, y) of the curve is

(dy/dx) (Y – y) " X – x ! 0. ... (1)
Let (h, k) be the coordinates of the fixed point. Since the required curve (1) passes through

(h, k), we have
(dy/dx) (k – y) " (h – x) ! 0 or 2 (k – y) dy " 2 (h – x) dx ! 0.
Integrating,      2ky – y2 " 2hx – x2 " c ! 0, where c is an arbitrary constant

or                        x2 " y2 – 2hx – 2ky – c ! 0, which represents a circle. ...(2)
(b) Proceed as above. Here h ! k ! 0. So (2) gives x2 " y2 ! c, c which is a circle.
Ex. 4. Find the curve in which the subtangent is always bisected at origin.
Sol. Refere Figure 2.1 of Art. 2.30. PT is the tangent to the curve at P (x, y), meeting x-axis in T and

PN is the ordinate of P. Then TN is the subtangent. Now, the equation of PT is
                                           Y – y ! (dy/dx) (X – x). ... (1)

Let (1) meet x-axis in T whose coordinates are (h, 0).
< 0 – y ! (dy/dx) (h – x)   so that   h ! x – y (dx/dy).
Then, the coordinates of T are [x – y (dx/dy), 0]. Also, the coordinates of N are (x, 0).
< x-coordinate of middle point of TN ! [x – y (dx/dy) " x]/2.
But according to the given problem origin (0, 0) is middle point of TN.
< [2x – y (dx/dy)]/2 ! 0            or            2x ! y (dx/dy)      or (2/y) dy ! (1/x) dx.
Integrating, 2 log y ! log x " log c or y2 ! xc, c being an arbitrary constant.
Ex. 5. The normal PG to a curve meets x-axis in G. If distance of G from the origin is twice

the abscissa of P, prove that curve is a rectangular hyperbola. [I.A.S. (Prel.) 2009]
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Sol. Refer Figure 2.1 of Art. 2.30. Let coordinates of P be (x, y) and let PN be perpendicular
from P to x-axis.

Given that      OG ! 2x      or      ON " NG ! 2x      or      x " NG ! 2x or NG ! x. ... (1)
ButNG ! the length of the subnormal ! y (dy/dx).
< (1)  =                 y (dy/dx) ! x               or 2x dx – 2y dy ! 0.
Integrating, x2 – y2 ! c2 which is a rectangular hyperbola.
Ex. 6. The normal PG to a curve meets the x-axis in G. If OP ! PG, find the equation to the

curve.
or Find the equation of the family of curves for which the length of the normal is equal to the
radius vector.
or A curve is such that any point P on it is as far from the origin as from the point in which
the normal at P meets the axis. Show that it must be an equilateral hyperbola (rectangular
hyperbola) or a circle.

Sol. Refer Figure 2.1 of Art. 2.30. Then, if the coordination of P be (x, y), then
OP ! (x2 " y2)1/2 and      PG ! length of normal ! y {1 " (dy/dx)2}1/2.

Given that                 OP ! PG                           or                           OP2 ! PG2.
<                 x2 " y2 ! y2 {1 " (dy/dx)2}              or 2x dx ! ± 2y dx.
Integrating, x2 ! c2 ± y2 where c is an arbitrary constant. It represents a circle or rectangular

hyperbola according as we take the – ve or " ve sign.
Ex. 7. The normal at each point of the curve and the line from that point to the origin form

an isosceles triangle with the base on the x-axis. Find the equation of the curve.
Sol. Refer Figure 2.1 of Art 2.30. Let the coordinate of P be (x, y) and PG be the normal at P

and OP be the line joining O and P. Then, according to given problem Θ OPG is an isosceles
triangle so that,

ON ! NG, where NG is subnormal  =     x ! y (dy/dx)               or              2x dx – 2y dy ! 0.
Integrating, x2 – y2 ! c, where c is an arbitrary constant.
Ex. 8. Find the curve which is such that portion of x-axis cut off between origin and the

tangent at any point is proportional to the ordinate of the point.
Sol. Refer Figure 2.1 of Art 2.30. Here OT is the portion of the x-axis cut off between the origin

O and the tangent PT at any point P (x, y). Clearly OT is x-intercept of the tangent at P. According
to the problem, we have

        OT ! ky                    or                     x – y (dx/dy) ! ky, where k is a constant
or                (dx/dy) – (1/y) x ! – k, which is linear equation. ... (1)

Its integrating factor of (1) !
1(1/ ) log log 1 1/y dy y ye e e y y

%% % %# ! ! ! ! and solution is

x/y ! ( ) (1 / ) log or / log log ,k y dy k c x y k y k c% � ! % �#
or              log (y/c) ! – x/(ky)                                    or                           y ! ce–x/(ky)

Ex. 9. Find the curve for which the portion of y-axis cut off between the origin and the
tangent varies as the cube of the abscissa of the point of contact. [I.A.S. 1992]

Sol. Refer Fig. 2.1 of Art 2.30. Here OK is the portion of the y-axis cut off between the origin
O and the tangent PK at any point P (x, y). Clearly OK is y-intercept of the tangent at P. According
to the problem, we have

              OK ! kx3                       or                y – x (dy/dx) ! kx3, where k is a constant
or              (y/x) – (dy/dx) ! kx2             or     (dy/dx) – (1/x) y ! – kx2. ... (1)
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(1) is linear equation whose integrating factor ! (1/ ) log 1 1/ .x dx xe e x x% % %# ! ! !

< Solution is        y/x ! 2( ) (1/ ) / 2kx x dx c% �#           or y/x ! – (kx2)/2 " c/2

or     2y ! – kx3 " cx, where c is an arbitrary constant.
Ex. 10. Find the equation to the family of curves in which the length of the tangent between the

point of contact and x-axis is of constant length equal to k.
Sol. Refer Fig. 2.1 of Art 2.30. Let the point of contact be P (x, y). Given that
PT ! k               or   {1 " (dx/dy)2}1/2 ! k             or (dx/dy)2 ! (k2 – y2)/y2

or dx ! {(k2 – y2)1/2/y} dy Integrate it and get the final solution yourself.
Ans. (k2 – y2)1/2 – k log [{k " (k2 – y2)1/2}/y] ! c " x.

Ex. 11. Find the curve for which the intercept cut off by a tangent on the x-axis is equal to 4 times
the ordinate of the point of contact.

Sol. Refer Fig. 2.1 of Art. 2.30. Here, given that
OT ! 4 PN                or                x – y (dx/dy) ! 4y                or                dy/dx ! y (x – 4y),
which is homogeneous. Get its solution as cy4 ! e–x/y.

Ex. 12. Find the equation of the curve in which the perpendicular from the origin on any
tangent is equal to the abscissa of the point of contact.

Sol. The equation of the tangent to the curve at any point (x, y) is
Y – y ! (dy/dx) (X – x)                        or (dy/dx) X – Y " {y – x (dy/dx)} ! 0.... (1)

Given         x ! the length of the perpendicular from (0, 0) on (1)

or                 
2 2 2

2 2

( / )
or {( / ) 1} { ( / )}

( / ) ( 1)

y x dy dx
x x dy dx y x dy dx

dy dx

%
! � ! %

� %

or       x2 (dy/dx)2 " x2 ! y2 – 2xy (dy/dx) " x2 (dy/dx)2            or 2xy (dy/dx) ! y2 – x2

Solve this homogeneous equation to get the required curve  x2 " y2 ! cx.
Ex. 13. Find the cartesian equation of the curve in which the perpendicular from the foot of

the ordinate on the tangent is of constant length.
Sol. Let P (x, y) be any point on the required curve UPV, PN is the ordinate and NM is the

perpendicular from the foot N of the ordinate on the tangent at PT at P.
From Fig. 2.3,          PN ! y           and             MN ! y cos Ν.
Given that MN ! constant ! k, say = y cos Ν ! k   or   y ! k sec Ν

or 2 21 tan 1 ( / ) ,y k k dy dx! � Ν ! � as  tan Ν ! dy/dx

or y2 ! k2 [1 " (dy/dx)2]          or          k2 (dy/dx)2 ! y2 – k2

or k 2 2
2 2

1or .dy dyy k dx
dx ky k

! % !
%

Integrating, cosh–1 (y/k) ! x/k " c/k, c being an arbitrary constant

< y ! k cosh {(x " c)/k} is the required curve.
Ex. 14. A curve passes through (2, 1) and is such that the square of the ordinate is twice the

rectangle contained by the abscissa and x-intercept of the normal. Find its equation.
Sol. Refer Fig. 2.1 of Art. 2.30. By problem, we have

y2 ! 2x Α OG                       or      y2 ! 2x [x " y (dy/dx)]

X

Y

T N

M
y

P (x, y)U

Ν Ν
90°

Fig. 2.3

V

O
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or                       2 22 2
dyxy y x
dx

! % or
2 2 22 ( / ) 2
2 2 ( / )

y x y xdy
dx xy y x

% %
! ! ...(i)

Now solve this homogeneous equation. Ans. 2y2 " 4x2 – 9x ! 0.
Ex. 15. The tangent at a point P of a curve meets the axis of y in K and a line through P parallel

to the axis of y meets the axis of x at N, O is the origin. If the area of triangle KON is constant, show
that the curve is a hyperbola.

Sol. Refer Figure 2.1  of Art. 2.30. Given that, area of triangle KON ! constant ! a, (say)
<    (1/2) × OK × ON ! a   or  (1/2) × {y – x (dy/dx)} × x ! a.

or xy – x2 (dy/dx) ! 2a  or (dy/dx) – (1/x) y ! – (2a/x2),... (1)

which is linear. Its integrating factor !
1( 1/ ) log log 1 1/x dx x xe e e x x

%% % %# ! ! ! !  and solution is

y(1/x) ! 2 2( 2 / )(1/ ) 2 { /( 2)}c a x x dx c a x%� % ! % %#
or xy ! cx2 " a or cx2 – xy " a ! 0. ... (2)

Comparing (2) with Ax2 " 2Hxy " By2 " 2Gx " 2Fy " C ! 0, here, we have
A ! c,      H ! – 1/2,        B ! 0,   and therefore             H2 – AB ! (1/4) – 0 ! (1/4) > 0,
and hence (2) must represent a hyperbola.

Ex. 16. Find the curve in which the length of the arc measured from a fixed point A to any point
P is proportional to the square root of the abscissa of P.

Sol. Let P (x, y) be any point on the curve UPV as show in Fig. 2.1 of Art. 2.30. Then, if arc
UP ! s, we have s Ρ x1/2 so that                                s ! kx1/2, where k is a constant. ... (1)

Differentiating (1),           ds/dx ! k/2x1/2                  or {1 " (dy/dx)2}1/2 ! k/2x1/2

or 1 " (dy/dx)2 ! k2/4x ! a/x, where a ! k2/4
or         (dy/dx)2 ! (a – x)/x or dy ! {(a – x)/x}1/2 dx. ... (2)

Putting x ! a sin2 :  so that  dx ! 2a sin : cos : d:, (1) gives
dy ! {a (1 – sin2 :)/a sin2 :}1/2 (2a sin : cos :) d: ! a (2 cos2 :) d:

< (1 cos 2 ) or { (1 / 2) sin 2 }dy a d y c a! � : : ! � : � :# #
or         y ! c " a (: " sin : cos :) ! c " a [: " sin : (1 – sin2 :)1/2]
or         y ! c " a [sin–1 (x/a)1/2 " (x/a)1/2 (1 – x/a)1/2], as sin : ! (x/a)1/2

or                 y ! c " a sin–1 (x/a)1/2 " (ax – x2)1/2., c being an arbitrary constant.
Ex. 17. Find the equation of curve for which the cartesian subtangent varies as the

reciprocal of the square of the abscissa.
Sol. Here the sub-tangent varies as 1/x2. So (Sub-tangent) x2 ! k, where k is a constant

or        ? ≅ 2/y dx dy x k!                                  or 2 ( / )x dx k y dy!
Integrating, x3/3 ! k log y " c, where c is an arbitrary constant.This gives the desired curve.
Ex. 18. Find the curve in which the length of the portion of the normal intercepted between

the curve and the x-axis varies as the square of the ordinate.
Sol. We know that the length of the portion of the normal intercepted between the curve and

the x-axis is also called the length of normal. Thus, the length of normal varies as y2, i.e.,
y{1 " (dy/dx)2}1/2 ! ky2                      or  1 " (dy/dx)2 ! k2 y2

2 2 1/ 2( 1)dy k y
dx

! Σ %                      or 2 2 1/ 2( 1)
dydx

k y
! Σ

%
Integrating,                 x ! c ± (1/k) cosh–1 (ky), c being an arbitrary constants.
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Ex. 19. Find the family of curves whose tangent form an angle ;/4 with the hyperbolas xy !
c. [I.A.S. 1994, 2006]

Sol. Here the required angle is given by

       1 1 2 1 2

1 2 1 2
tan or tan

1 4 4 1
m m m m

m m m m
% 0 1% ; ; %0 1! !4 5 4 5� �6 76 7

... (1)

where        m1 ! dy/dx   for the required family at (x, y)
and m2! value of the dy/dx for the second curve (xy ! c) ! –c/x2, as y ! c/x = dy/dx ! –(c/x2)

Putting values of m1 and m2 in (1), we get

 1 !
2

2 2

2

or 1
1

dy c
dy dyc cdx x

dyc dx dxx x
dxx

�
0 1% & ! �4 5
6 7% &

           or           
2 2

1 1dyc c
dxx x

0 1� ! %4 5
6 7

or                 
2

2
x c

dy dx
x c

%
!

�
                 or                 dy !

2

2 2
2 21 .x c c cdx dx

x c x c
∋ ( ∋ (� %

! %) ∗ ) ∗
� �+ ,+ ,

Integrating,       y ! 12 (1/ ) tan ( / )x c c x c c%% � ∃

or               12 tan ( / ) ,y x c x c c%! % � ∃  where c∃ is an arbitrary constant.
Ex. 20. Show that the curve in which the angle between the tangent and the radius vector

at any point is half of the vectorial angle is a cardioid. [Kurukshetra 1993; Magadh 1993]

Sol. Here Μ !
2
:

   =   tan Μ ! tan 
2
:

   =   r
d
dr

:
! tan 

2
:

,

Separating variables, ? ≅ ? ≅1/ cot / 2r dr d! : :

Integrating, log r ! 2 log sin (:/2) " log c or  r! c sin2 (:/2),      i.e.,   r ! (c/2) × (1 – cos :)
i.e., r ! c∃ (1 – cos :), where c∃ ! c/2 and it represents a cardioid.

Ex. 21. Find the curve for which the sum of the radius vector and the subnormal varies as
the square of the radius vector.

Sol. Here given that          (radius vector " subnormal) ! kr2, where k is a constant
or           r " (dr/d:) ! kr2  or     (dr/d:) ! r (kr – 1).

or              d: !
1

( 1) 1
dr k

r kr kr r
0 1

! %4 5% %6 7
dr, resolving into partial fractions

Integrating,              : ! log (kr – 1) – log r – log c, c being an arbitrary constant
or                    log {(kr – 1)/rc} ! :                          or kr – 1 ! rc ce:.

Ex. 22(a). Find the curve in which the angle between the radius vector and the tangent is n times
the vectorial angle. What is the curve when n ! 1, n ! 1/2?

Sol. Here given that               Μ ! n:                     so that tan Μ ! tan n:
or              r (d:/dr) ! tan n:                         or (1/r) dr ! cot n: d:.

Integrating, log r ! (1/n) log sin n: " (1/n) log c, being an arbitrary constant
or                n log r – log c ! log sin n:                         or rn ! c sin n:.... (1)
When n ! 1, (1) becomes r ! c sin :, which is a circle.
When n ! 1/2, (1) becomes r1/2 ! c sin (:/2)   or   r ! c2 sin2 (:/2) or r ! c2 (1 – cos :)/2
which is equation of a cardioid.
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Ex. 22(b). Find the equation of the curve in which the angle between the radius vector and
tangent is supplementary of half the vectorial angle.

Sol. Given that                Μ ! ; – (:/2)               so that   tan Μ ! tan (; – :/2)
or              r (d:/dr) ! – tan :/2                       or  (1/r) dr " cot (:/2) d: ! 0.

Integrating,    log r " 2 log sin (:/2) ! log c            or log r " log sin2 (:/2) ! log c
or               r sin2 (:/2) ! c                       or      r (1 – cos :)/2 ! c
or         (2c)/r ! 1 – cos :, which is polar equation of parabola.

Ex. 23. Find the curve for which the length of the perpendicular from the pole to the tangent
varies as the radius vector.

Sol. If ‘p’ is length of the perpendicular from the pole on the tangent at any point P (r, :)
on the curve, then p ! r sin Μ, ... (1)
where Μ is the angle between the tangent and the radius vector at P.

According to the given condition,               p ! kr, where k is constant. ... (2)
(1) and (2)  =  kr ! r sin Μ  =  sin Μ ! k.  =  tan Μ ! constant ! a, (say)

or r (d:/dr) ! a,   as tan Μ ! r (d:/dr)
or (1/r) dr ! (1/a) d:           so that            log r ! log c " (1/a) :          or             r ! ce:/a.

Ex. 24. The tangent at any point P of a curve meets the x-axis in Q. If Q is on the positive side
of the origin O and OP ! OQ, show that the family of curves having this property are parabolas
whose common axis is the x-axis.

Sol. Here TQ is the tangent at P (r, :).
Also ΟPOQ ! :  and  ΟOPQ ! Μ.
Given that OP ! OQ so that ΟOQP ! ΟOPQ ! Μ.
Now, in Θ OPQ,   : " Μ " Μ ! 180°     or 2Μ ! 180° – :

Thus,                                      Μ ! 90° – (:/2).
< tan Μ ! tan {90° – (:/2)} ! cot (:/2).
or r (d:/dr) ! cot (:/2) or (1/r) dr ! tan (:/2) d:.

Integrating,                     log r ! log c – 2 log cos (:/2),
where c  in an arbitrary constant.
or             log r " log cos2 (:/2) ! log c                or                   log {r cos2 (:/2)} ! log c
or           r cos2 (:/2) ! c           or           r (1 " cos :)/2 ! c           or           2c/r ! 1 " cos :,
which is the standard polar equation of a family of parabolas with initial line (x-axis) as the common
axis, c being the parameter.

Ex. 25. A point moves in a fixed straight path so that s ! t1/2, show that the acceleration is
negative and proportional to the cube of the velocity.

Sol. Given that s ! t1/2. ... (1)
(1) =                   ds/dt ! (1/2)& t–1/2               or v ! (1/2) & t–1/2.... (2)
< (2) = dv/dt ! – (1/4) & t–3/2 = f ! – (1/4)&  (t–1/2)3

<                             f ! – (1/4) &  (2v)3, as by (2), t–1/2 ! 2v
showing that acceleration f is – ve and proportional to cube of velocity v.

Ex. 26(a). Particle moving in a straight line is subject to a resistance which produces
retardation kv3, where v is the velocity. Show that v and t are given in terms of s by the equations
v ! u/(1 " ksu) and t ! (1/2) ks2 " (s/u), where u is the initial velocity.

Sol. Given that retardation ! kv3     so that      v (dv/ds) ! – kv3       or v–2 dv ! – k ds.

X

Y

Q

P (r, ):

:

Μ

Fig. 2.4

T

O
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Integrating,               – (1/v) ! – ks " A, where A is an arbitrary constant ... (1)
But initially when s ! 0, v ! u, so from (1), A ! – (1/u.)

Hence (1) becomes         1 1 1 or
1

kus uks v
v u u kus

�
% ! % % ! % !

�
... (2)

Since v ! (ds/dt), so (2) becomes                           ds/dt ! u/(1 " kus)
or dt ! (1/u) (1 " kus) ds ! {(1/u) " ks} ds.

Integrating,     t ! (s/u) " (1/2) ks2 " B, where B is an arbitrary constant. .. (3)
But initially, when t ! 0, s ! 0, so from (3), B ! 0. Then from (3), t ! (1/2) ks2 " (s/u)
Ex. 26(b). A particle is projected with velocity u along a smooth horizontal plane in a

medium whose resistance per unit mass is k (velocity), show that the velocity after a time t and
the distance s in that time are given by v ! ue–kt and s ! u (1 – e–kt)/k.

Hints: Here f ! – kv. Now proceed as in Ex. 26(a).
Ex. 27(a). If the population of a country doubles in 50 years, in how many years will it treble

under the assumption that the rate of increase is proportional to the number of inhabitants.
[Delhi B.Sc. I (Hons) 2010; Delhi Maths (H) 1995, 1998, 2000, 08]

Sol. Let the population be x at time t (in years) and x0 be the population when t ! 0. Then,
given that dx/dt is proportional to x, i.e.,

dx/dt ! kx, k being the constant of proportionality, ... (1)

          (1)  =  (1/x) dx ! k dt  =  (1/ ) log log .x dx k dt x c kt! = % !# #
<log (x/c) ! kt so that x ! cekt.... (2)
By our assumption, when t ! 0, x ! x0 so that
(2)  =  x0 ! c and then (2)  =  x ! x0 ekt.... (3)
Given x ! 2x0 when t ! 50, so (3) yields

2x0 ! x0 e50k  =  50k ! log 2  =  k ! (log 2)/50. ... (4)
Next, let the population treble in t∃ years.

< From (3),            3x0 ! x0 ekt∃ = kt∃ ! log 3 = t∃ ! (log 3)/k ! (50 log 3)/log 2, by (4)
or                              t∃ ! (50 × .47712)/.30103 ! 78.25 years.

Ex. 27(b). The number of bacteria in a yeast culture grows at a rate which is proportional
to the number present. If the population of a colony of yeast bacteria triples in 1 hour, find the
number of bacteria which will be present at the end of 5 hours. [Delhi Maths (H) 1993]

Sol. Suppose that the number of bacteria is x0 when t ! 0, and it is x at time t (in hours). Then
given that dx/dt is proportional to x, i.e.,

               (dx/dt) ! kx, k being the constant of proportionality, ... (1)

          (1)  =  (1/x) dx ! k dt  =  (1/ ) log log .x dx k dt x c kt! = % !# #
<      log (x/c) ! kt                  so that x ! cekt.... (2)
By our assumption, when t ! 0, x ! x0 Therefore,
           (2)   =   x0 ! c     and    then                   (2) = x ! x0 ekt. ... (3)
Given x ! 3x0 when t ! 1, so (3) yields 3x0 ! x0 ek = ek ! 3. ... (4)
Next, let x ! x∃ when t ! 5. Then (3) yields       x∃ ! x0 e5k ! x0 (ek)5 ! x0 Α 35, by (4)
Hence, the bacteria is expected to grow 35 times at the end of 5 hours.
Ex. 28. Radium is known to decay at a rate proportional to the amount present. If the half

life of radium is 1600 years, what percentage of radium will remain in a given sample after 800
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years? Also determine the number of years, after which only one-tenth of the original amount of
radium would remain? [Delhi Maths (H) 1998]

[Note. The time required to reduce a decaying material to one-half the original mass is called
the half-life of the material]

Sol. Let x (t) denote the amount of material present at time t. Then, according to given
condition, dx/dt ! kx, where k is negative constant

<      (1/x) dx ! kt                             so that                        log x ! kt " c. ... (1)
Let x0 be the amount of radium at t ! 0 so that x ! x0, t ! 0. Then (1) gives c ! log x0 and

hence (1) becomes
log x ! kt " log x0 or x ! x0 ekt.        ... (2)
Since half life of radium is 1600 years, so x ! x0/2 when t ! 1600.
Then,                 (2)   =   x0/2 ! x0 e1600 k   =   k ! – (1/1600) log 2. ... (3)
Let x ! x∃ when t ! 800 years. Then, from (2), x∃ ! x0 e800 k ! x0 e– (1/2) log 2, using (3)

<               
1/2log(2) 1/2

0 0 0 02 / 2 0.707 .x x e x x x
% %∃ ! ! ! !

Hence the given percentage of radium that remains in given sample after 800 years
! (x∃/x0) × 100 ! (0.707) × 100 ! 70.7%.

Second part. Proceed upto relation (3) as before. Let t ! t∃ when x ! x0/10. Then (2) gives

or   0
0

1 1or log or log 2 log
10 10 1600 10

ktx tx e kt∃ ∃
! ∃ ! % ! , by (3)

or                          t∃ ! [1600 log 10]/log 2 ! 5317 years, approximately.
Ex. 29(a). According to Newton’s law of cooling, the rate at which a substance cools in

moving air is proportional to the difference between the temperature of the substance and that
of the air. If the temperature of the air is 290 K and the substance cools from 370 K to 330 K in
10 minutes, find when the temperature will be 295 K. [Delhi Maths (H) 1994, 2005]

Sol. Let T be the temperature of the substance at the time t (in minutes). Then, by hypothesis,

we have ( 290) or ,
290

dT dTT dt
dt T

! % Ι % ! % Ι
%

... (1)

where Ι is a positive constant of proportionality.
Integrating (1) between the limits t ! 0, T ! 370 K and t ! 10 minutes, T ! 330 K, we have

           
330

330 10

370 0
370

or log ( 290) 10
290

dT dt T
T

∋ (
! % Ι % ! % Ι) ∗% + ,

# #
                   = – 10Ι ! log 40 – log 80   =   Ι ! (1/10) log 2.
Again, assuming that t ! t∃ minutes when T ! 295 K and so integrating (1) between the limits

t ! 0, T ! 370 K and t ! t∃ (minutes), T ! 295 K, we have

          
295

295

370 0
370

or log ( 290)
290

tdT dt T t
T

∃ ∋ (! % Ι % ! % Ι ∃) ∗% + ,# #
= – Ιt∃ ! log 5 – log 80   =   Ιt∃ ! log 16   =   Ιt∃ ! 4 log 2
= [(1/10) log 2] t∃ ! 4 log 2, using (2). So t∃ ! 40 minutes.
Ex. 29(b). A metal bar at a temperature of 100° F is placed in a room at a constant

temperature of 0° F. If after 20 minutes the temperature of the bar is half, find an experssion for
the temperature of the bar at any time. [Delhi Maths (H) 1996, 2006]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Equations of First Order and First Degree 2.57

Sol. Let T be the temperature of the substance at any time t (in minutes). Then, by Newton’s
cooling law, we have               (dT/dt) ! – l (T – 0)             or (1/T) dT ! – Ι dt.

Integrating,                  log T ! – Ιt " c, c being an arbitrary constant. ... (1)
Initially, when t ! 0, T ! 100. So (1) gives c ! log 100.
Then, (1) becomes           log T ! – Ιt " log 100           or           T ! 100 e–Ιt. ... (2)
When t ! 20 minutes, we are given that T ! 50.
< From (2),            50 ! 100 e–20Ι              so that                    e–20Ι ! (1/2)

or                 – 20Ι ! log (1/2) ! – log 2               or                  Ι ! (log 2)/20 ! 0.035.
Then, from (2), T ! 100 e(–0.035) t, as required.
Ex. 29(c). A body whose temperature is initially 100°C is allowed to cool in air, whose

temperature remains at a constant temperature 20°C. It is given that after 10 minutes, the body
has cooled to 40°C. Find the temperature of the body after half an hour.[Delhi Maths (H) 2000]

Sol. Let T be the temperature of the body in degree celsius and t be time in minutes. Then,
by Newton’s law of cooling, we get

( 20)dT T
dt

! % Ι % or
20

dT dt
T

! % Ι
%

...(1)

where Ι is a positive constant of proportionality.
Integrating (1),            log (T – 20) – log C ! – Ιt              or              T ! 20 " Ce–Ιt ... (2)
Initially, when t ! 0, T ! 100. So (2) gives C ! 80
Then (2) reduces to T ! 20 " 80 e–Ιt ... (3)
Given that T ! 40 when t ! 10. (3) gives                 40 ! 20 " 80 e–10Ι

or             80 e–10Ι ! 20              or                e–10Ι ! 4–1                or                e–Ι ! (4–1)1/10

< (3) reduces to                       T ! 20 " 80 (e–Ι)t ! 20 " 80 (4–1)t/10 ... (4)
Let T ! T ∃ when t ! half an hour ! 30 minutes. Then (4) gives

T ! 20 " 80 (4–1)3 ! 20 " 8 (1/43) ! 20 " 1.25 ! 21.25°C.
Ex. 30(a). A certain radioactive material is known to decay at rate proportional to the

amount present. If initially 500 mg of the material is present and after 3 years 20 per cent of the
original mass has decayed, find an expression for the mass at any time.[Delhi Maths (H) 2001]

Sol. Let x (t) denote the amount of material present at any time t. Then according to the given
condition, we have

                            dx/dt ! kx where k is a negative constant.
or (1/x) dx ! k dt                         so that log x ! kt " c... (1)

Let x0 be the amount of the material at t ! 0 so that x ! x0 when t ! 0.
Then (1) gives c ! log x0 and so (1) reduces to
log x ! kt " log x0      or         log (x/x0) ! k                     or x ! x0 ekt... (2)
Also, given that when t ! 3 years, x ! x0 – (20/100) x0 ! (4/5) x0

Hence, (2) = (4/5) & x0 ! x0 e3k   =   e3k ! 0.8 = k ! (1/3) & log (0.8) ! – 0.07438
Putting x0 ! 500 and k ! – 0.07438 in (2), the required expression for mass at any time t is

given by                            x ! 500 e–0.07438 t mg
Ex. 30(b). Assume that the rate at which radio active nuclei decay is proportional to the

number of nuclei in the sample. In a certain sample 10% of the original number of radio active
nuclei have undergone  disintegration in a period of 200 years. (i) What percentage of the
original radio active nuclei will remain after  1000 years (ii) In how many years will only one
– fourth of the original number remain . [Delhi Maths (Prog) 2007]
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Sol. Let x(t) denote the number of nuclei present in a sample at any time t. Then, according
to the given condtion of the problem, we have

                                dx/dt ! kx, where k is a negative constant ... (1)
Rewriting (1),              (1/x) dx ! k dt              so that              log x ! kt + c, ... (2)

where c is an arbitrary constant. Let x0 denote the number of nuclei present in the given sampel
at time t ! 0. Thus, we have x ! x0 when t ! 0. Putting t ! 0 and x ! x0 in (2), we have c ! log x0.
Hence, (2) reduces to

log x ! kt + log xo            or 0log ( / ) or kt
ox x kt x x e! ! ... (3)

Also, given that when t ! 200 years, x ! x0 – (10/100) & x0 ! (9/10) & x0.
Using this fact, (3) = (9/10) & x0 ! x0 e200k = e200k  ! 9/10 ... (4)
Part (i): From (3), x' ! the number of nuclei in the sampe after 1000 years ! x0e1000k

< Required percentage of nuclei after 1000 years.

? ≅ ? ≅
1000 5 52000

0 0
100 100 100 9 /10 100,

k
kx x e e

x x
∃

! & ! & ! & ! &  using (4)

! 5 39 /10 59045 /1000 59%! ! (approximately)
Part (ii): Suppose that after t' years, there will remain only x0/4 nuclei in the smaple, Then,

from (3) we have

                 ? ≅0 0/ 4 log 1/ 4 log 4 (log 4 / )ktx x kt kt t k∃ ∃ ∃ ∃! = ! = ! % = ! % ...(5)

Again, (4) ? ≅200 log 9 /10 (log 0.9) / 200k k= ! = ! ...(6)

From (5) and (6), t' ! – 200log 4 2631 years, on simplification and using
log 0.9

! log tables.

Ex. 30(c). In a certain city the population gets doubled in 2 years and after 3 years the
population is 20,000. Find the number of people initially being living in the city.

[Delhi Maths (H) 2004]
Sol. Let the number of people initially living in the city be x0 and let the population of the city

at time t (in years) be x. Assuming that the rate of increase of population is proportional to x, we
have            dx/dt Ρ x or dx/dt ! kx, k being a constant.
or (1/x) dx ! k dt             so that          log x – log C ! kt       or        x ! Cekt ... (1)

By our assumption, when t ! 0, x ! x0, so (1) gives C ! x0

Then (1) reduces to                  x ! x0 ekt ... (2)
Given that x ! 2x0 when t ! 2. So (2) gives

2 2 2
0 02 or 2 or ( ) 2 or 2k k k kx x e e e e! ! ! ! ... (3)

Also, given that, x ! 20,000, when t ! 3. Hence (2) gives

20,000 ! x0 e3k         or         x0 (ek)3 ! 20,000           or 3
0 ( 2) 20,000, by (3)x !

< 0
20,000 10,000 7072.14 7072, nearly.

1.4142 2
x ! ! ! !

&
Hence, initially 7072 people were living in the city.
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Ex. 31. Assume that a spherical rain drop evaporates at a rate proportional to its surface
area. If its radius originally is 3 mm, and one hour later has been reduced to 2 mm, find an
expression for the radius of the rain drop at any time. [I.A.S. 1997]

Sol. Let r mm be the radius of the rain drop at time t hours from start. If V and S be volume
and surface area of the rain drop, then we have
      V ! (4/3) ;r3 cubic mm                                    and S ! 4;r2 sq. mm.... (1)

Given                     dV/dt ! – kS, where k (> 0) is the constant of proportionality.
Using (1),               this   =   4;r2 (dr/dt) ! – k (4;r2)               or               dr ! – k dt
Integrating              r ! – kt " c, where c is an arbitrary constant. ... (2)
Now, initially when t ! 0, r ! 3 mm. Then (2)   =   c ! 3
Hence (2) reduces to       r ! 3 – kt ... (3)
Again, given that r ! 2 mm when t ! 1 hour. Hence (3) reduces to 2 ! 3 – k so that k ! 1.
With k ! 1, (3) reduces to r ! 3 – t, which is the required expression for radius r at any time t.
Ex. 32. A particle begins to move from a distance ‘a’ towards a fixed centre, which repels it

with retardation ϑx. If its initial velocity is ,a ϑ show that it will continually approach the fixed
centre, but will never reach it.

Sol. Since the particle is repelled from the centre O in the direction OX in which x increases
and so by hypothesis               v(dv/dx) ! ϑx                or                2v/dv ! 2ϑx dx, ... (1)
where the distance x is measured from O.

Integrating (1) between the limits ,v a! % ϑ x ! a and v ! v, x ! x, we have

2 22 2 or
v xv x

a a a a
v dv x dx v x

% ϑ % ϑ
∋ ( ∋ (! ϑ ! ϑ+ , + ,# #

or                    v2 – ϑa2 ! ϑx2 – ϑa2                   or .v x! Σ ϑ    ... (2)
Since the particle is moving in the direction of x decreasing, v is negative.

< or / or (1/ ) .v x dx dt x x dx dt! % ϑ ! % ϑ ! % ϑ

Integrating,                log x t c! % ϑ � , c being an arbitrary constant. ... (3)
Initially, when x ! a, t ! 0, so from (3), c ! log a.

Hence (3) gives         log x ! log or log ( / )t a x a t% ϑ � ! % ϑ

or                                  t ! (1/ ) log ( / ).x a% ϑ ... (4)
When the particle reaches at centre O, x ! 0, then from (4), t Τ Υ.(! log 0 Τ – Υ as

x Τ 0). Thus, we find that the particle does not reach the centre for any finite value of t.
Ex. 33. Determine a family of curves for which the ratio of the y-intercept of the tangent to

the radius vector is constant. [I.A.S. 1995]
Sol. The equation of the tangent PT to the curve at P (x, y) is

Y – y ! (dy/dx) (X – x). ... (1)
It meets y-axis at A (say), where X ! 0 and OA ! Y.
< from (1),       OA – y ! (dy/dx) (0 – x)   =   OA ! y – x (dy/dx).
By hypothesis, OA/OP ! constant ! k, say
<                   y – x (dy/dx) ! k (x2 " y2)1/2   =  dy/dx ! (y/x) – k (1 " y2/x2)1/2 ... (2)
Putting y/x ! v so that y ! xv and dy/dx ! v " x (dv/dx), ... (3)

(2) yields 2 1/ 2
2 1/ 2(1 ) or 0

(1 )
dv dv dxv x v k v k
dx xv

� ! % � � !
�
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Integrating, 2 1/ 2log { (1 ) } log logv v k x c� � � ! , c being an arbitrary constant.
or           xk {v " (v2 " 1)1/2} ! c                      or xk {y/x " (y2/x2 " 1)1/2} ! c

Hence 1 2 2 1/ 2{ ( ) } .kx y x y c% � � !

Ex. 34. Show that the only curves having constant curvature are circles and straight lines.

Sol. By hypothesis, curvature ! 
2 2

2 3/ 2
( / )

[1 ( / ) ]
d y dx
dy dx�

! k, where k is constant. ... (1)

Putting dy/dx ! p  so that  d2y/dx2 ! dp/dx, (1) yields

2 3/ 2
( / )

(1 )
dp dx

p�
! k  or k dx ! 2 3/ 2(1 )

dp
p�

or                      k dx !  
2

2 3/ 2
sec

(1 tan )
d: :

� :
                     2

on putting tan
and sec

p
dp d

! :
! : :

or     k dx ! cos : d: so that kx ! sin : " c
or                       kx – c ! p/(1 + p2)1/2, as p ! tan :  =  sin : ! p/(1 + p2)1/2

or 1 " p2 ! p2/(px – c)2   or p2 [1 – (kx – c)2] ! (kx – c)2

or dy
dx

!
2 2

( )
or

[1 ( ) ] [1 ( ) ]

kx c dxkx c dy
kx c kx c

%%
Σ ! Σ

% % % %

or                                  k dy ! 2 1/ 2(1 )
z dz
z

Σ
%

, putting kx – c ! z

Integrating,              ky ! ± (1 – z2)1/2   or  k2y2 ! 1 – z2 ! 1 – (kx – c)2

or k2x2 " k2y2 – 2kcx " c2 – 1 ! 0, which represents a circle for all values of k except k ! 0.

If k ! 0, then from (1), we have              
2

2
0 or 0d y dyd

dx dxdx
0 1! !4 5
6 7

Integrating it,                     (dy/dx) ! a, a being constant of integration ... (2)
Integrating (2),                     y ! ax " b, b being constant of integration

y ! ax " b is general equation of a straight line. Thus, we see that the only curves having
constant curvature  are circles or straight lines.

Ex. 35. Find the curve for which sum of the reciprocals of the radius vector and the polar
subtangent is constant. [I.A.S. 1996]

Sol. Reciprocal of polar substangent !
1

2
2

1d drr
dr dr

%:0 1 !4 5 :6 7
.

Given that  2
1 1 dr
r dr

�
:

! k, where k is constant             or          2
1 dr

dr :
! k –

1 1kr
r r

%
!

or            d: !
( 1)

dr
r kr %

  or     d: !
1

1
k

kr r
0 1

%4 5%6 7
dr.

Integrating, : " c ! log {(kr – 1)/r}    or kr – 1 ! re:"c         or         kr – 1 ! c∃r e:,
where c∃ (! ec) is an arbitrary constant.

Exercise 2(N)
1. Show that the equation of the curve whose slope at any point is equal to y + 2x and which

passes through the origin in y ! 2(ex– x –1). (Guwahati 2007)
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2. Find the cartesian equation of the curve whose gradient at (x, y) is y/2x and passes through
the point (a, 2a). Ans. y2 ! 4ax

3. Find the equations to the curves for which
(i)   Cartesian sub-tangent is constant. Ans. y ! kex/c

(ii)  Cartesian sub-normal is constant. Ans. y2 ! 2cx + k
(iii) Polar sub-tangent is constant. Ans. r (k – :) ! c
(iv) Polar sub-normal is constant. Ans. r ! c: + k

4. Find the curve for which the angle between the tangent and the radius vector at anypoint is
(a) Constant (! Κ). Ans. r ! ce: cos Κ

(b) Twice the vectorial angle. Ans. r2 ! c sin 2:
5. Find the curves in which the cartesian subtangent varies as the abscissa. Ans. x ! cyk

6. Find the polar equation of the family of curves for which the sum of the radius vector and

the polar subnormal varies as the kth power of the radius vector.    Ans. 1 ( 1)1/ k kr ce c% % : ∃! �
7. Find the curve for which the sum of the reciprocals of polar radius and polar subtangent at

any point on it is of 5 units and the curve passes through a point whose polar coordinates
are (1/2, 0). Ans. 5r – 1 ! 3re:

8. Prove that all curves for which the square of the normal is equal to the square of the radius
vector are either circles or rectangular hyperbolas.

9. Find the curve in which the length of the portion of the normal intercepted between the
curve and the x-axis varies as the square of the ordinate.                     Ans. ky ! cosh (kx " c)

10. The population of a country doubles in 40 years. Assuming that the rate of increase is
proportional to the number of inhabitants, find the number of years, in which it would triple
(becomes three times) itself.  [Delhi B.A. (Prog) II 2010]               Ans. (40 log 3)/(log 2)

11. Air at temperature 200 K is passed over a substance at 300 K. The temperature of the
substance cools down to 260 K in 30 minutes. Assuming that the rate at which a substance
cools in moving air is proportional to the difference between the temperature of the
substance and that of the air, find after what time the temperature of the substance would be
240 K. (K stands for Kelvin, a unit of measurement of temperature)        Ans. 53.8 minutes

12. A steam boat is moving at velocity V when steam is shut off. Given that the retardation at
any subsequent time is equal to the magnitude of the velocity at that time. Find the velocity
and distance travelled in time t after the steam is shut off.              Ans. v ! Ve–t, x ! V (1 – e–t)

13. The rate of increase of bacteria in a culture is proportional to the number of bacteria present
and it is found that the number doubles in 5 hours. Express this mathematically, using rate of
increase of bacteria with respect to time. Hence, calculate how many times the bacteria may
be expected to grow at the end of 15 hours.        Ans. 8 times

14. Determine the curve for which the radius of curvature is proportional to the slope of the
tangent.       [I.A.S. 1993]

15. A thermometer reading 18°F is brought into a room, the temperature of which is 70°F. One
minute later, the thermometer reading is 31°F. Determine the thermometer reading as a
function of time. [Kuvempa 2005]

16. Find the family of curves that intersect the family of spirals r ! a: at a constant angle Κ.
Ans. log (r/c) – log (: + tan Κ)sec Κ + : tan Κ ! 0

2.32 Some typical examples on Chapter 2
Ex. 1. Solve (dy/dx) – x tan (y – x) ! 1.
Sol. Given                     (dy/dx) – x tan (y – x) ! 1. ... (1)
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Putting y – x ! v so that (dy/dx) – 1 ! dv/dx or dy/dx ! 1 " (dv/dx), (1) becomes
1 " (dv/dx) – x tan v ! 1          or           dv/dx ! x tan v          or          cot v dv ! x dx.
Integrating,       log sin v ! x2/2 " log c                      or  log sin (y – x) – log c ! x2/2

or log {sin (y – x)/c} ! x2/2          or          sin (y – x) !
2 / 2 ,xce c being an arbitrary constant.

Ex. 2. Solve x (dy/dx) – y ! x (x2 " y2)1/2 [Kolkata 2003]
Sol. Given   dy/dx ! {y " (x2 " y2)1/2}/x             or dy/dx ! (y/x) " (x2 " y2)1/2. ... (1)
Putting y ! vx   so that   dy/dx ! v " x (dv/dx), (1) becomes

2 2 2 1/ 2 2 1/ 2
2 1/ 2( ) or (1 ) or .

(1 )
dv dv dvv x v x x y x v dx
dx dx v

� ! � � ! � !
�

Integrating, sinh–1 v ! x " c        or         v ! sinh (x " c)         or           y/x ! sinh (x " c).

Ex. 3. If ( ) ,e2 v dx v log 1 v A! % � �# where v is a function of x which has value 0 when x
! 0, prove that v ! 2ex sinh x.

Sol. Differentiating both sides of given equation, w.r.t. ‘x’, we get
1 1 12 or 2 1 or 2 .

1 1 1
dv dv dvv v dv dx
dx v dx v dx v

0 1
! % ! % !4 5� � �6 7

Integrating, log (1 " v) – log c ! 2x               or                1 " v ! ce2x. ... (1)
we are given that when x ! 0, v ! 0. Hence (1) gives 1 ! c and so (2) reduces to

v ! e2x – 1 ! ex (ex – e–x)                or                   v ! 2ex sinh x, as sinh x ! (ex – e–x)/2
Ex. 4. By the substitution y2 ! v – x reduce the equation y3 (dy/dx) " x " y2 ! 0 to the

homogeneous form and hence solve the equation.
Sol. Given y2 Α y (dy/dx) " x " y2 ! 0. ... (1)

Putting     y2 ! v – x       so that       2y (dy/dx) ! (dv/dx) – 1       or        y (dy/dx) ! {(dy/dx) – 1}/2,

(1) becomes
1( ) 1 ( ) 0 or
2

v xdv dvv x x v x
dx dx x v

�0 1% Α % � � % ! !4 5 %6 7
which is homogeneous. To solve (1) we proceed as usual.

Putting v ! ux   so that   dv/dx ! u " x (du/dx), (1) becomes
21 1or

1 1
du ux x du u uu x x u
dx x ux dx u u

� � �
� ! ! % !

% % %

or 2 2 2
1 1 1 2or

21 1 1
u dx u dxdu du

x xu u u

∋ (%
! % !) ∗

� � �) ∗+ ,
Integrating,  tan–1 u – (1/2) × log (1 " u2) ! log x – log c

log x " log (1 " u2)1/2 – log c ! tan–1 u                       or                 x (1 " u2)1/2 !
1tan uce

%

or 1 1 22 1/ 2 tan ( / ) 2 2 2 1/ 2 tan ( ) /{1 ( / ) } or { ( ) }v x y x xx v x ce x y x ce
% % �� ! � � !

Ex. 5(a). Solve dy/dx ! (x " y – 1)2/4(x – 2)2. [Srivenkateshwar 2003]
Sol. Given dy/dx ! (x " y – 1)2/4(x – 2)2. ... (1)
Put     x ! X " h      and       y ! Y " k       so that      dx ! dX       and        dy ! dY.... (2)

Then, from (1),                  
2 2

2 2
( 1) ( 1)

4 ( 2) 4 ( 2)
dY X h Y k X Y h k
dX X h X h

� � � % � � % %
! !

� % � %
... (3)
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Choose h and k such that    h – k – 1 ! 0     and       h – 2 ! 0   so that      h ! 2     and     k ! –1.
Then,        (2)   =   X ! x – h ! x – 2                  and              Y ! y – k ! y " 1. ... (4)
Also, from (3),                dY/dX ! (X " Y)2/4X 2 which is homogeneous ... (5)
Putting Y ! vX   so that   dY/dX ! v " X (dv/dX), (5) becomes

2 2 2

2
( ) ( 1) (1 )or .

4 44
dv X vX dv v vv X X v
dX dXX

� � %
� ! ! % !

Separating the variables,                          4 (1 – v)–2 dv ! (1/X) dX.
Integrating,           4 (1 – v)–1 ! log X " c            or  4 (1 – Y/X)–1 ! log X " c.

or
4 ( 2)4 log or log ( 2) , by (4)

3
xX X c x c

X Y x y
%

! � ! % �
% % %

Ex. 5(b). Solve dy/dx ! (x " y – 1)/5 (x – 2)2.

Ans. Ye1/5 X ! 1/ 5(1/ 5 ) XX e dX c�#  where X ! x – 2, Y ! y " 1.

Ex. 6. The integration factor of the following equation is of the form yn. Find n and hence
solve the equation. y sec2 x dx " [3 tan x – {(sec y)/y}2] dy ! 0. [Kanpur 1992, 1993]

Sol. Multiplying the given equation by yn, we have
yn"1 sec2 x dx " {3yn tan x – sec2 y Α yn–2} dy ! 0. ... (1)

Comparing (1) with M dx " N dy ! 0, we have
M ! yn"1 sec2 x and N ! 3yn tan x – yn–2 sec2 y... (2)
Since yn is the I.F. of the given equation, so (1) must be exact and hence

1 2 2 2or ( sec ) [3 tan sec ]n n nM N y x y x y y
y x y x

� %Γ Γ Γ Γ
! ! %

Γ Γ Γ Γ
or (n " 1) yn sec2 x ! 3yn sec2 x    or n " 1 ! 3               so that                n ! 2.

With n ! 2, (1) gives, y3 sec2 x dx " (3y2 tan x – sec2 y) dy ! 0. ... (3)
Solution of exact equation (3) is given by

                          
3 2 2

[Treating ascostant] [Integrate termsfree from ]

sec ( sec )
y x

y x dx y dy c� % !# #

or 3 2 3tan sec or tan tan .y x y dy c y x y c% ! % !#
Ex. 7. Prove that 1/(x " y " 1)4 is an integrating factor of (2xy – y2 – y) dx " (2xy – x2 – x) dy

! 0, and find the solution of this equation.
Sol. Multiplying the given equation by 1/(x " y " 1)4, we have
                 (2xy – y2 – y) (x " y " 1)–4 dx " (2xy – x2 – x) (x " y " 1)–4 dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0, we have
M ! (2xy – y2 – y) (x " y " 1)–4 and N ! (2xy – x2 – x) (x " y " 1)–4

Now, ΓM/Γy ! (2x – 2y – 1) (x " y " 1)–4 – 4 (2xy – y2 – y) (x " y " 1)–5

       ! (x " y " 1)–5 {(2x – 2y – 1) (x " y " 1) – 4 (2xy – y2 – y)}

= /M yΓ Γ ! (x " y " 1)–5 (2x2 " 2y2 – 8xy " x " y " 1) ... (2)

and ΓN/Γx ! (2y – 2x – 1) (x " y " 1)–4 – 4 (2xy – x2 – x) (x " y " 1)–5

! (x " y " 1)–5 {(2y – 2x – 1) (x " y " 1) – 4 (2xy – x2 – x)}

= /N xΓ Γ ! (x " y " 1)–5 (2x2 " 2y2 – 8xy " x " y – 1). ... (3)
From (2) and (3), ΓM/Γy ! ΓN/Γx and so (1) is exact. Solution of (1) is
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[Treating asconstant]y

M dx# + (termsfreefrom in )x N dy c!#

or               
22

4 4
2 ( 1 1) ( )2 or

( 1) ( 1)
y x y y y yxy y y dx c dx c

x y x y
� � % % % �% %

! !
� � � �# #

or                            4 2( 1) {2 ( 1) 2 ( 1) ( )}x y y x y y y y y dx c%� � � � % � % � !#
or                        3 42 ( 1) [2 ( 1) ( 1)] ( 1)y x y dx y y y y x y dx c% %� � % � � � � � !# # ... (3)
           Intergrating (3) w.r.t. x while treating y as constant, we get.

or 3 2 3

( 1) ( 1) ( 1)
or

( 1) ( 1) ( 1)
y y y y y x yy c c

x y x y x y
� � % � �

% ! !
� � � � � �

or                y2 " y – xy – y2 – y ! c (x " y " 1)3          or             c (x " y " 1)3 " xy ! 0.

Ex. 8(a). Solve
2 2 2

2 2
x dx y dy a x y
x dy y dx x y

0 1� % %
! 4 5

% �6 7
[Delhi Maths (H) 2009; I.A.S. 1999;

Kumaun 1998; Garhwal 2010]

Sol. We transform the given equation to polars, by taking         x ! r cos :,        y ! r sin :,
so that x2 " y2 ! r2 ... (1)
and y/x ! tan :. ... (2)

From (1),           2x dx " 2y dy ! 2r dr           or            x dx " y dy ! r dr ... (3)
              (2)  =  (x dy – y dx) x2 ! sec2 : d:   =   x dy – y dx ! r2 d:. ... (4)
Using (1), (3) and (4) the given equation reduces to

(r dr)/(r2 d:) ! {(a2 – r2)/r2}1/2                     or d: ! {1/(a2 – r2)1/2} dr.
Integrating,       : " c ! sin–1 (r/a)            or              tan–1 (y/x) " c ! sin–1 {(x2 " y2)1/2/

a}.
Ex. 8(b). Solve x dx " y dy ! a2 (x dy – y dx)/(x2 " y2).
Sol. Let          x ! r cos :                          and    y ! r sin :.... (1)
(1)  =             x2 " y2 ! r2                          and   y/x ! tan :.... (2)
Now,      (2) =  2x dx " 2y dy ! 2r dr                and  (x dy – y dx)/x2 ! sec2 : d:
Thus,       x dx " y dy ! r dr                 and x dy – y dx ! r2 d:, as x sec : ! r
Then, the given equation becomes r dr ! (a2r2 d:)/r2            or 2r dr ! 2a2 d:.
Integrating,           r2 ! 2a2 : " c               or                 x2 " y2 ! 2a2 tan–1 (y/x) " c, by (2)
Ex. 9(a). Show that the equation (4x " 3y " 1) dx " (3x " 2y " 1) dy ! 0 represents a family

of hyperbolas having as asymptotes the lines x " y ! 0 and 2x " y " 1 ! 0.   [I.A.S. 1998]
Sol. Given                        (4x " 3y " 1) dx " (3x " 2y " 1) dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0,       M ! 4x " 3y " 1         and           N ! 3x " 2y " 1.
Here ΓM/Γy ! 3 ! ΓN/Γx and so (1) is exact and as usual, its solution is given by

(4 3 1) (2 1)x y dx y dy c� � � � !# #
                      [Treating y as constant]

2x2 " 3xy " x " y2 " y " c ! 0, c being arbitrary is constant ... (2)
Comparing (2) with standard form of conic section
ax2 " 2hxy " by2 " 2gx " 2fy " c ! 0, we have,      a ! 2,        h ! 3/2,         b ! 1.
Here h2 – ab ! (9/4) – 2 ! positive quantity  =  (2) is hyperbola.
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Since the equation of the hyperbola and asymptotes differ by a constant, so the combined
equations of two asymptotes of the hyperbola (2) may be taken as

2x2 " 3xy " y2 " x " y " k ! 0, where k is some constant. ... (3)
Comparing (3) with standard equation of pair of lines ax2 " 2hxy " by2 " 2gx " 2fy " c ! 0, we

have a ! 2,          h ! 3/2,           b ! 1,           g ! 1/2,           f ! 1/2, c ! k.
Condition for (3) to represent two lines is abc " 2fgh – af 2 – bg2 –ch2 ! 0

or 2k " 2 Α (1/2) Α (1/2) Α (3/2) – 2 Α (1/4) – 1 Α (1/4) – k Α (9/4) ! 0  =  k ! 0.
Hence the required equation of the two asymptotes of (2) is

2x2 " 3xy " y2 " x " y ! 0 or (x " y) (2x " y " 1) ! 0,
showing that x " y ! 0 and 2x " y " 1 ! 0 are the required asymptotes.

Ex. 9(b). Show that the equation (12x " 7y " 1) dx " (7x " 4y " 1) dy ! 0 represents a family
of curves having as asymptotes the lines 3x " 2y – 1 ! 0 and 2x " y " 1 ! 0.

Sol. Proceed as in Ex. 10.
Ex. 10. Solve dy/dx ! (y – x)1/2.
Sol. Given                         dy/dx ! (y – x)1/2 ... (1)

Let     y – x ! v2    so    that (dy/dx) – 1 ! 2v (dv/dx)   or    (dy/dx) ! 1 " 2v (dv/dx)... (2)

From (1) and (2),                  1 " 2v
dv
dx

! v                      or dx !
2

1
v dv

v %

or dx !
2( 1) 2

1
v
v
% �
%

dx or dx !
22 .

1
dv

v
0 1

�4 5%6 7
Integrating,                x " c ! 2v " 2 log (v – 1), c being an arbitrary constant.

or x " c ! 2 (y – x)1/2 " 2 log {(y – x)1/2 – 1}, using (2)
Ex. 11(a). Solve (y2 " x2 – a2x) x dx " (y2 " x2 – b2y) y dy ! 0
Sol. Re-writing the given equation,            (x2 " y2) (x dx " y dy) – a2x2 dx – b2y2 dy ! 0

or                   (1/2) × (x2 " y2) (2x dx " 2y dy) – a2x2 dx – b2y2 dy ! 0 ... (1)
Let            x2 " y2 ! z so that 2x dx " 2y dy ! dz... (2)
From (1) and (2),           (1/2) × z dz – a2x2 dx – b2y2 dy ! 0
Integrating, (z2/4) – (1/3) × (a2x3 " b2y3) ! c/12, being an arbitrary constant.

or 3z2 – 4 (a2x3 " b2y3) ! c              or 3 (x2 " y2)2 – 4 (a2x3 " b2y3) ! c, by (2)
Ex. 11(b). Solve (a2 – 2xy – y2) dx ! (x " y)2 dy
Sol. Re-writing the given equation,              {(a2 " x2) – (x2 " 2xy " y2)} dx ! (x " y)2 dy

or (a2 " x2) dx ! (x " y)2 (dx " dy) ... (1)
Let                x " y ! z                         so that dx " dy ! dz ... (2)
From (1) and (2), (a2 " x2) dx ! z2 dz.
Integrating,  a2x " (1/3) × x3 ! (1/3) × z3 " c/3           or 3a2x " x3 ! z3 " c

or            3a2x " x3 ! (x " y)3 " c       or 3a2x – 3x2y – 3xy2 – y3 ! c.

MISCELLANEOUS PROBLEMS ON CHAPTER 2
1. Solve (1 – x2y2) dx ! y dx " x dy. [Rohilkhand 1994]

Hint: Put xy ! v. Ans. (1 " xy)/(1 – xy) ! ce2x

2. Show that if y1 and y2 be solutions of the equation dy/dx " Py ! Q, where P and Q are

functions of x alone, and y2 ! y1z, then z ! 1( / )1 ,Q yae dx%� a being an arbitrary constant.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



2.66 Equations of First Order and First Degree

OBJECTIVE PROBLEMS ON CHAPTER 2
Ex. 1. The solution of (x – y2) dx " 2xy dy ! 0 is
(a)

2 /y xye A!      (b) 
2 /y xxe A!    (c) 

2/x yye A!     (d) 
2/ .x yxe A! [I.A.S. (Prel.) 1993]

Sol. Ans. (b). Rewriting given equation, we have
x – y2 " 2xy (dy/dx) ! 0 or 2y (dy/dx) – (1/x) y2 ! – 1... (1)
Putting               y2 ! v                 so that        2y (dy/dx) ! dv/dx.          ... (2)
                (1) and (2)   =   (dv/dx) – (1/x) v ! – 1, which is linear.   ... (3)

Its I.F. ! 1(1 / ) log log 1 1 / .x dx x xe e e x x
%% % %! ! ! !  and hence its solution is

            v (1/x) ! ( 1) (1/ ) log logx dx x A% ! % �# , A being an arbitrary constant.

or     v/x ! log (A/x)              or                 A/x ! ev/x                or                A !
2 / ,y xxe  by (2).

Ex. 2. The solution of  (dy/dx) " y (dΜ/dx) ! Μ (x) (dΜ/dx) is          (a) y ! Μ (x) – 1 " ce–Μ

(b) y ! ceΜ (c) y ! xΜ (x) – ce–Μ (d) y ! [Μ (x) – 1] e–Μ " c. [I.A.S. (Prel.) 1993]

Sol. Ans. (a). Given equation is linear whose I.F. ! ( / ) .d dx dxe eΜ Μ# !

< Solution is                  ( ) dye e x dx e d e e d
dx

Μ Μ Μ Μ ΜΜ
! Μ ! Μ Μ ! Μ % Μ# # #

or               eΜ y ! ΜeΜ – eΜ " c                          or y ! Μ (x) – 1 " ce–Μ.
Ex. 3. The solution of dy/dx " 2xy = e–x2

 is
(a) ye–x2 ! x + c       (b) yex2 ! x + c    (c) x ex2 ! y + c   (d) xey2 ! x + c  [Garhwal 2010]
Hint. Ans. (b). Proceed as in Art. 2.24, page 2.33
Ex. 4. Differential equation x dy – y dx – 2x3 dx ! 0 has the solution
(a) y " x3 ! c1 x (b) – y " x3 ! c2 x, (c) y – x2 ! c3 x, (d) y3 – x3 ! c4 x [I.A.S. (Prel.) 1993]
Sol. Ans. (b). Re-write given equation as                         (dy/dx) – (1/x) y ! 2x2,

which is linear whose I.F. ! (1/ ) log 1/x dx xe e x% %# ! !  and solution is

y/x ! 2 2(1/ ) (2 )x x dx c x c� ! �#                 or                 – y " x3 ! c2 x, where c2 ! – c.

Ex. 5. Primitive (2xy4 ey " 2xy3 " y) dx " (x2y4 ey – x2y2 – 3x) dy ! 0, is
(a) x2ey " (x2/y) " (x/y3) ! c (b) x2ev – (x2/y) " (x/y3) ! c
(c) x2ev " (x2/y) – (x/y3) ! c (d) x2ev – (x2/y) – (x/y3) ! c. [I.A.S. (Prel.) 1994]
Sol. Ans. (a). Dividing throughout by y4, we have

   {2xey " (2x/y) " (1/y3)} dx " {x2ey – (x2/y2) – (3x/y4)} dy ! 0.
2

2
2 3 4

2 3(2 ) 0y y x dx x dy dx x dyxe dx x e dy
y y y y

0 1 0 1
� � % � % !4 5 4 5

6 76 7
or d (x2ex) " d (x2/y) " d (x/y3) ! 0.

Integrating,                 x2ex " (x2/y) " (x/y3) ! c, c being an arbitrary constants.
Ex. 6. The solution of (dy/dx) " 2xy ! 2xy2, is (a) 

2
( ) /(1 )xy cx e%! �  (b) y ! 1/(1 – cex)

 (c) 
2

1/(1 )xy ce! �                                (d) 
2

( ) /(1 ).xy cx e! � [I.A.S. (Prel.) 1994]
Sol. Ans. (c). Dividing by y2,              y–2 (dy/dx) " 2x y–1 ! 2x. ... (1)
Put                  y–1 ! v                       so that                    – y–2 (dy/dx) ! dv/dx, ... (2)
< (1)   =   – (dv/dx) " 2xv ! 2x                   or (dv/dx) – 2xv ! – 2x, ... (3)

which is linear whose I.F. !
22 .x dx xe e% %# ! and hence required solution is
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2 2

( 2 ) ,x x tve x e dx e dt% %! % !# #  putting (– x2) ! t

or    
21 xy e% % !

2
,t xe c e c%� ! �            or y–1 !

2 2
1 or 1/(1 ).x xce y ce� ! �

Ex. 7. The solution of (x " y)2 (dy/dx) ! a2 is given by
(a) y " x ! a tan {(y – c)/a} (b) y – x ! a tan (y – c)
(c) y – x ! tan {(y – c)/a} (d) a (y – x) ! tan {(y – c)/a}. [I.A.S. (Prel.) 1994]
Sol. Ans. (a). Refer solved example 2, Art. 2.5.
Ex. 8. A solution curve of the equation xy∃ ! 2y, passing through (1, 2), also passes through
(a) (2, 1)            (b) (0, 0)            (c) (4, 24)             (d) (24, 4). [I.A.S. (Prel.) 1995]
Sol. Ans. (b). Given    x (dy/dx) ! 2y or               (1/y) dy ! (2/x) dx.
Integrating,                 log y ! 2 log x " log c                 or y ! cx2.... (1)
Since (1) passes through (1, 2), so putting x ! 1, y ! 2 in (1), we have 2 ! c and so (1) becomes

y ! 2x2 which clearly passes through (0, 0).
Ex. 9. An integral curve of x (4y dx " 2x dy) " y3 (3y dx " 5x dy) ! 0 is (a) x4y2 " x3y5 ! 1
(b) x4y2 " x3y4 ! 1 (c) x3y3 " x4y3 ! 1 (d) x2y4 " x3y4 ! 1 [I.A.S. (Prel.) 1995]
Sol. Ans. (a). Do as explained in Art. 2.22.
Ex. 10. The integrating factor of y2dx " (1 " xy) dy ! 0 is

(a) ey (b) ex (c) exy (d) e–xy. [I.A.S. (Prel.) 1995]
Sol. Ans. (c). Multiplying given equation by exy, y2 exy dx " exy (1 " xy) dy ! 0. ... (1)
Comparing (1) with M dx " N dy ! 0,                    M ! y2 exy, N ! exy (1 " xy).

<    ΓM/Γy ! exy xy2 " exy Α 2y ! exy (xy2 " 2y), ΓN/Γx ! exy y (1 " xy) exy y ! exy (xy2 " 2y).
Since ΓM/Γy ! ΓN/Γx, so (1) is exact and hence exy is I.F.
Ex. 11. The homogeneous differential equation M (x, y) dx " N (x, y) dy ! 0 can reduced to

a differential equation, in which the variables are separated, by the substitution.
(a) y ! vx           (b) xy ! v           (c) x " y ! v          (d) x – y ! v. [I.A.S. (Prel.) 1996]
Sol. Ans. (a). Refer Art. 2.7.
Ex. 12. The solution of the differential equation (dy/dx) " (y/x) ! x2 under the condition that

y ! 1 when x ! 1 is (a) 4xy ! x3 " 3 (b) 4xy ! y4 " 3 (c) 4xy ! x2 " 3 (d) 4xy ! y3 " 3.
[I.A.S. (Prel.) 1996]

Sol. Ans. (a). The given equation is linear equation. Try yourself.
Ex. 13. The differential equation M (x, y) dx " N (x, y) dy ! 0 is an exact equation if

(a) 
M N
y x

Γ Γ
�

Γ Γ
! 0 (b) 

M N
y x

Γ Γ
%

Γ Γ
! 0 (c) 

N M
y x

Γ Γ
�

Γ Γ
! 0 (d) 

N M
y x

Γ Γ
%

Γ Γ
! 0 [I.A.S. (Prel.) 1997]

Sol. Ans. (b). Refer Art 2.13.
Ex. 14. The differential equation (4x " 3y " 1) dx " (3x " 2y " 1) dy ! 0 represents a family of
(a) circles        (b) parabolas       (c) ellipses          (d) hyperbolas. [I.A.S. (Prel.) 1997]
Sol. Ans. (d). Refer Ex. 9(a), Art. 2.32.
Ex. 15. The general solution of the differential equation (x2 " y2) dx – 2x dy ! 0 is
(a) x2 – cx – y2 ! 0 (b) (x – y)2 ! cx (c) x " y " 2xy ! c (d) y ! x2 – 2x " c.[I.A.S. (Prel.) 1997]
Sol. Ans. (a). Use Art. 2.7.
Ex. 16. The differential equation y dx – 2x dy ! 0 represents a family of
(a) straight lines         (b) parabolas        (c) circles       (d) catenaries. [I.A.S. (Prel.) 1998]
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Sol. Ans. (b). The given equation is (2/y) dy ! (1/x) dx. Integrating it, 2 log y ! log x " log c
or y2 ! cx which is a family of parabolas.

Ex. 17. If c be an arbitrary constant, the general solution of the equation (x " 2y3) (dx/dy)
! y is     (a)x ! cy – y2      (b) x ! cy " y2     (c) x ! cy " y3     (d) x ! cy – y3. [I.A.S. (Prel.)
1998]

Sol. Ans. (b). Re-writing the given equation, we have
x " 2y3 ! y (dx/dy)   or dx/dy – (1/y) x ! 2y2, which is linear.

Its IF !
1(1/ ) log 1 1/y dy y ye e e y y

%% % %# ! ! ! !  and hence solution is
2 2 2(1 / ) (2 ) (1 / ) or .x y y y dy c y c x cy y& ! � ! � ! �#

Ex. 18. Consider the following statements: The equation (2x/y3) dx " [(y2 –3x2)/y4] dy ! 0 is
1. Exact 2. Homogeneous 3. Linear. Of these statements (a) 1 and 2 are correct

(b) 1 and 3 are correct (c) 2 and 3 are correct (d) 1, 2 and 3 are correct.[I.A.S. (Prel.) 1998]
Sol. Ans. (c). Apply definitions of exact, homogeneous and linear equation as given in articles

2.12, 2.8, 2.22 respectively.
Ex. 19. The rate at which bacteria multiply is proportional to the instantaneous number

present. If the original number doubles in 2 hours, then it will triple in
(a) 2 log 3/log 2     (b) 2 log 2/log 3     (c) log 3/log 2     (d) log 2/log 3. [I.A.S. (Prel.) 1998]

Sol. Ans. (a). Suppose that the number of bacteria is x0 when t ! 0 and it is x at time t (in
hours). Then given that               dx/dt Ρ x               so that               dx/dt ! kx, ... (1)
where k is the constant of proportionality. Now, (1) gives

(1/x) dx ! k dt so that log x – log c ! kt or x ! cekt ... (2)
But x ! x0 when t ! 0. So (2) gives c ! x0 and so x ! x0 ekt. ... (3)
Given that x ! 2x0 when t ! 2. Also, let x ! 3x0, when t ! t∃.
Then (3) gives                      2x0 ! x0 e2k          and         3x0 ! x0 et∃k.

= 2k ! log 2              and                     t'k ! log 3                =             t' ! 2 log 3/log 2.
Ex. 20. Which of the following is not an integrating factor of x dy – y dx ! 0?
(a)1/x2 (b) 1/(x2 " y2) (c) 1/xy (d) x/y [GATE 2001]
Hint: Ans. (d). Refer results (i), (ix) and (xi) of Rule I, Art. 2.16.
Ex. 21. The general solution of dy/dx " tan y tan x ! cos x sec y is
(a) 2 sin y ! (x " c – sin x cos x) sec x  (b) sin y ! (x " c) cos x
(c) cos y ! (x " c) sin x                       (d) sec y ! (x " c) cos x [GATE 2001]
Sol. Ans. (b). Re-writing                      cos y (dy/dx) " tan x sin x ! cos x.
Put sin y ! v to reduce to linear equation and proceed as usual.
Ex. 22. If the integrating factor of (x7y2 " 3y) dx " (3x8y – x) dy ! 0 is xmyn then
(a) m ! – 7, n ! 1    (b) m ! 1, n ! – 7    (c) m ! n ! 0    (d) m ! n ! 1. [GATE 2002]
Hint: Ans. (a). Use rule VI, Art. 2.16.
Ex. 23. A curve ς in the xy-plane is such that the line joining the origin to any point P (x,

y) on the curve and the line parallel to the y-axis through P are equally inclined to the tangent
to the curve at P. Differential equation curve ς is

(a) x (dy/dx)2 – 2y (dy/dx) ! x (b) x (dy/dx)2 " 2y (dy/dx) ! 0
(c) x (dy/dx)2 " 2y (dx/dy) ! 0 (d) x (dy/dx)2 " 2y (dx/dy) ! x [GATE 2005]
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Sol. Ans. (a). We use (X, Y) as current coordinates. Here
P (x, y) is a given point on the given curve Y ! f (X), say.
Now, we have

tan Ν1 ! gradient of OP ! (y – 0)/(x – 0) ! y/x    ... (1)
Ν2 ! slope of line through P parallel to y-axis ! 90°

Let PT be the tangent drawn to the given curve at
P (x, y). Then, by problem we have ΟOPT ! ΟMPT ! Κ, say.
Now, from ΘOPM, we find that
Ν1 " 2Κ ! ;/2       so that         Κ ! ;/4 – Ν1/2 ... (2)

Again, from ΘTPM, Ν3 ! slope of PT ! ;/2 – Κ
< Ν3 ! ;/2 – (;/4 – Ν1/2)   or   2Ν3 ! ;/2 " Ν1, by (2)
= tan (2Ν3) ! – cot Ν1

= (2 tan Ν3)/(1 – tan2 Ν3) ! – (1/tan Ν1)
= (2y∃)/(1 – y∃2) ! – x/y, since tan Ν3 ! y∃ ! dy/dx and tan Ν1 ! y/x
= 2yy∃ ! – x (1 – y∃2)  =  x (dy/dx)2 – 2y (dy/dx) ! x
Ex. 24. An integrating factor for (cos y sin 2x) dx" (cos2 y – cos2 x) dy ! 0 is
(a) sec2 y " sec y tan y (b) tan2 y " sec y tan y
(c) 1/(sec2 y " sec y " tan y) (d) 1/(tan2 y " sec y tan y) [GATE 2006]
Sol. Ans. (a). Comparing the given equation with M dx " N dy ! 0, here
M ! cos y sin 2x                                  and                                 N ! cos2 y – cos2 x.

<
1 N M
M x y

0 1Γ Γ
%4 5Γ Γ6 7

!
1

cos sin 2y x
 {2 cos x sin x – (– sin y sin 2x)} !

sin 2 sin sin 2
cos sin 2
x y x

y x
�

! sec y " tan y, which is function of y alone. So by rule V, Art. 2.16,

< I.F. ! (sec tan )y y dye �# ! elog (sec y " tan y) " log sec y! elog {(sec y " tan y) sec y} ! (sec y " tan y) sec y
Ex. 25. Which equation represents the set of all curves in the xy-plane which have slope at

each P equal to the reciprocal of the slope of the straight lines through P and the origin?
(a) y2 ! x " c        (b) x2 " y2 ! c2       (c) x2 – y2 ! c2       (d) xy ! c2.[I.A.S. (Prel.) 2006]
Sol. Ans. (c). Let the coordinates of P be (x, y). Then, slope of straight line through P (x, y)

and origin O (0, 0) is (y – 0)/(x – c), i.e.,y/x ! m, say. By problem, if dy/dx be the slope of the
required curve, then       d y/dx ! 1/m       or       dy/dx ! x/y       so that       2x dx – 2y dy ! 0.

Integrating, x2 – y2 ! c2, c being an arbitrary constant.
Ex. 26. The population P of a city increases at a rate which is jointly proportional to the

current population and the difference between 200,000 and the current population. The
differential eauation for this is

(a) dP/dt ! P (P – 200,000) (b) dP/dt ! kP (200,000 – P)
(c) dP/dt ! k (P – 200,000) (d) dP/dt ! 200,000 P [M.S. Univ. T.N. 2007]
Sol. Here dP/dt Ρ P and dP/dt Ρ (200,00 – P).
Hence dP/dt ! kP (200,000), k being the constant of proportionality
Ex. 27. The cooling law “The rate at which a hot body cools is proportional to the

difference in temperature between the body and the surrounding medium”,
(a) Ohm’s law (b) Kepler’s law
(c) Newton’s law (d) Kelvin’s law [M.S.Univ. T.N. 2007]
Sol. Ans. (c). Refer list F of Art. 2.30.
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M
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Κ
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Ex. 28. If in a culture of yeast the active ferment doubles itself in three hours. By what ratio
will it increase in 15 hours on the assumption that the quantity increases at rate proportional
to itself        (a) 22 times                             (b) 12 times

        (c) 32 times (d) 42 times [M.S. Univ. T.N. 2007]
Sol. Ans. (c). Let the quantity of yeast at any time t be x. Then, according to the given

problem dx/dt Ρ x
Thus, dx/dt ! kx, where k is constant of proportionality

or (1/x)dx ! kdt so that log x – log c ! kt
or log (x/c) ! kt or       x ! cekt, c being an arbitrary constant

Let x ! x0 when t ! 0. Then the above equation givens c ! x0

Then, we have x ! x0ekt ... (1)
Given that x ! 2x0 when t ! 3 hours.       Hence              (1) = 2x0 ! x0 e3k

Then, we have                          e3k ! 2 ... (2)
Let x ! x∃ when t ! 15 hours. Then, (1) = x∃ ! x0 e15k

or x∃  ! x0 (e3k)5 ! x0 × 25, using (2)
Then, x∃ ! 32 x0 so that x∃/x0 ! 32, which is required result

MISCELLANEOUS PROBLEMS ON CHAPTER 2
Ex. 1. Solve the ordinary differential equation (cos 3x) × (dy/dx) – 3y sin 3x = (1/2) × sin

6x + sin2 3x, 0 < x < ;/2 [I.A.S. 2007]
Sol. Re-writing the given equation, we have

(dy/dx) – (3 tan 3x)y ! sec 3x {(1/2) × sin 6x + sin23x} ... (1)

which is linear whose I.F. ! (– 3tan3 ) logcos3 cos3# ! !x dx xe e x and hence its solution is

y cos 3x ! 2cos3 sec 3 {(1/ 2) sin6 sin 3 }& � �# x x x x dx c

or y cos 3x ! {(1/ 2) sin6 (1/ 2) (1 – cos6 )}& � & �# x x dx c

or y cos 3x ! – (1/12) × cos 6x + x/2 – (1/12) × sin 3x + c
or y cos 3x ! (1/12) × (6x – cos 6x – sin 6x) + c, c being an arbitrary constant

Ex. 2. Find the solution of the equation (1/y)dy + xy2dx = – 4x dx [I.A.S. 2007]
Sol. Re-writing the given equation, we have

2(4 ) 0� � !
dy x y dx
y

or 2 0
( 4)

� !
�

dy xdx
y y

or 2
1 1 – 0
4 4

0 1
� !4 54 5�6 7

y dy x dx
y y

or 2
2 2 8

4
0 1

% !4 54 5�6 7

y dy x dx
yy

Integrating,            log (y2 + 4) – 2 log y – log c ! 4x2, c being an arbitrary constant

or log {(y2 + 4)/cy2} ! 4x2 or y2 + 4 !
22 4 xcy e

Ex. 3 (a). A particle falls from rest in a medium whose resistance varies as the velocity. Find
the relation between velocity (v) and the distance (x). [M.S. Univ. T.N. 2007]
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(b) A particle falls from rest in a medium whose resistance varies as the velocity of the
particle. Find the distance fallen by the particle and its velocity at time t. [I.A.S. 2007]

Sol. Let a particle of mass m fall from rest under gravity from a fixed point O. Let P be the
position of the particle at any time t such that OP ! x. Let v be its velocity at P. Let kv be the force
of resistance per unit mass so that mkv is resistance of the medium on the particle acting in vertical
upward direction.Then, the equation of the particle at any time t is given by

! %��m x mg mkv or (1 / )x g kv g! %�� ... (1)

Let V be the terminal velocity of the particle so that v ! V when 0!��x . Then, (1) yields
0 ! g(1 – kV/g) giving k ! g/V. Hence, (1) reduces to

(1 / )! %��x g v V or ( / ) ( )x g V V v! & %�� ... (2)

Part (a). Since ( / )x v dv dx!�� , (2)  = v(dv/dx) ! (g/V) × (V – v)

or              !
%
v gdu dx

V v V
or 10 1% !4 5%6 7

V gdv dx
V v V

Integrating,        – V log (V – v) – v ! gx/V + A, A being an arbitrary constant ... (3)
Initially at O, when x ! 0, v ! 0. Hence, (3) givens A ! – V log V.
Thus, (3) becomes – V log (V – v) – v ! gx/V – V log V

or loggx VV v
V V v

! %
%

or x !
2

logV V Vv
g V v g

%
%

Part (b). To find the velocity of the particle at any time t

Since / ,x dv dt!��  (2) reduces to dv/dt ! (g/V) × (V – v)
or {V/(V – v)}dv ! g dt
Integrating, – V log (V – v) ! gt + B, B being an arbitrary constant ... (4)
Initially at O, when t ! 0, v ! 0. Hence, (4) givens B ! – V log V
Hence (4) reduces to – V log (V – v) ! gt – V log V
log {(V – v)/V} ! – gt/V so that v ! V (1 – e–gt/V) ... (5)
To find the distance fallen by the particle at any time t
Since v ! dx/dt, (5) reduces to dx/dt ! V(1 – e–gt/V)

so that dx ! V(1 – e–gt/V)dt
Integrating, x ! Vt + (V2/g) × e–gt/V + C, C being an arbitrary constant ... (6)
Initially at O, when t ! 0, x ! 0. Hence (6) yields C ! – (V2/g)
Hence (6) reduces to x ! Vt – (V2/g) × (1 – e–gt/V).
Ex. 4. A solid sphere of salt dissolves in running water at rate proportional to the surface

area of the sphere. If half the solid dissolves in 15 minutes in what time it all will be dissolved.
[M.S. Univ. T.N. 2007]

Sol. Let original volume and radius of the given solid sphere of salt be V0 and r0 respectively:
Let its volume, surface and radius at any time be V, S and r respectively. According to the

given problem we have

dV kS
dt

! or 3 24 (4 ),
3

0 1; ! & ;4 5
6 7

d r k r
dt

... (1)
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where k is constant of proportionality.

Re-writing (1),             2 24 (3 ) (4 )
3

& ; & ! & ;
drr k r
dt

or dr ! k dt.

Integrating, r ! kt + c, c being an arbitrary constant ... (2)
Initially, when t ! 0, r ! r0. So (2) yields c ! r0.
Then, (2) reduces to            r ! r0 + kt ... (3)
Given that when t ! 15 minutes, V ! V0/2. Then, let the radius of the solid sphere of solid be

r∃ when its volume is V0/2. Thus, we have

        3 3
0 0

4 1 1 4
3 2 2 3

r V r∃; ! ! & ; = 01/ 3
1

2
∃ !r r ... (4)

Now, given that r ! r∃ when t ! 15 minutes, so (3) gives
r∃ ! r0 + 15k or k ! (r∃ – r0) / 15

< (3) becomes r ! r0 + {(r∃ – r0) / 15}t ... (5)
Let the whole solid sphere dissolves in time T minutes. Then, r ! 0 when t ! T. Hence (5)

gives         0 ! r0 + {(r∃ – r0) / 15}T                     or {(r0 – r∃) / 15}T ! r0

giving T ! 0

0

15
∃%

r
r r

                        or              T ! 1/ 3
0

15 15
1 ( / ) 1 (1/ 2 )

!
∃% %r r , using (4)

Thus, required time !  {(15 × 21/3) / (21/3 – 1)} hours

Ex. 5. The equation ( 3 2 2cos ) ( sin ) 0Κ � � � Λ !xy y x dx x y x dy is exact if

(a) Κ ! 3/2,  Λ ! 1 (b) Κ ! 1,  Λ ! 3/2
(c) Κ ! 2/3,  Λ ! 1 (c) Κ ! 1,  Λ ! 2/3  (GATE 2009)

Sol. Ans.(c).Comparing the given equation with Mdx + Ndy ! 0, we have 3 cos! Κ �M xy y x

and 2 2 sin! �ΛN x y x . Since the given equation in exact, hence by definition . / /Γ Γ ! Γ ΓM y N x

Hence 2 23 cos 2 cos 3 2, 1 2 / 3, 1Κ � ! �Λ = Κ ! Λ ! = Κ ! Λ !xy x xy x

Ex. 6. The rate at which a substance cools in air is proportional to the difference between the
temperatures of the substance and air. If the temperature of the air is 30° and the substance cools
from 100°C to 70°C in 15 minutes, find when the temperature will be 40°C.

[Delhi Maths (H) 2009]
Hint: Do like Ex. 29 (a), page 2.56. Ans. 52 minutes (approx.)
Ex. 7. Show that the solution curves of the differential equation

dy/dx = –{y (2x3 – y3)/x (2y3 – x3)} are of the form x3 + y3 = 3cxy [Delhi B.Sc. (Hons) III 2011]

Sol. Given
3 3

3 3

2
2

dy y x y
dx x y x

%0 1! % &4 56 7 % !
3

3

2 ( / )
2( / ) 1

y y x
x y x

%0 1% &4 56 7 % .... (1)

Take      
y v
x

!          i.e.,             y ! vx        so that           dy/dx = v + x (dv/dx) .... (2)

From (1) and (2),
dvv x
dx

� !
3

3

2
2 1

vv
v
%

%
%

        or       
4

3

2
2 1

dv v vx v
dx v

%
! %

%
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or     
4

32 1
Dv v vx
dx v

�
! %

%
               or                 

dx
x

! 
3

2
3

2 1
( 1)
v v dv

v v
%

%
� ... (3)

Putting v3 ! u and 3v2 dv ! du, (3) reduces to

1 2 1
3 ( 1)

dx u du
x u u

%
! %

�#               or                 3 dx
x

% ! 
3 1

1
du

u u
0 1%4 5�6 7#

[On resolving into partial fractions]
Integrating, – 3 log x ! 3 log (u + 1) – log u – log c∃3 c∃ being an arbitrary constant

or log (u + 1)3 + log x3 ! log c∃3 + log u or x3 (u + 1)3 ! u c∃3

or x3 (vΩ + 1)3 ! vΩ c∃3 or x (vΩ + 1) ! c∃vΗ as u ! vΩ

or                            x (yΩΞxΩ + 1) ! c∃ × (y/x)
or                            x3 + y3 ! 3cxy,    where   c∃ ! 3c

Ex. 8. Solve 6 cos2 x (dy/dx) – y sin x + 2y4 sin3 x = 0 [Pune 2010]

Sol. Re-writing the given equation, 4 2 3( / ) (sin / 6cos )xy dy dx x y% %% � ! 2(1 / 3) sin tanx x&

Putting 3y v% !  and 43 ( / ) / ,y dy dx dv dx%% ! the above equation yields

2

1 sin
3 6 cos

dv x v
dx x

� ! 21 sin tan
3

x x

or
1 (tan sec )
2

dv x x v
dx

� !
2sin tan

3
x x

which in liner differential equation whose integrating factor is

                  (1/ 2) sec tanx x dxe &#                  i.e                      (1/2) secxe &

and hence its solution is given by

             (1/ 2) sec (1/2) sec 21 sin tan ,
3

x xv e e x x dx c c& && ! �#  being an arbitrary constant.

or                              3 (1/ 2) sec (1/ 2) sec 21 sin tan
3

x xy e e x x dx c% & && ! �#
Ex. 9. Find r, if xr is an integrating factor of the equation (x + y3) dx + 6xy2 dy = 0 and hence

solve it. [Pune 2010]
Sol. Multiplying the given differential equation by xr, we have

                          1 3 1 2( ) 6r r rx x y dx x y dy� �� � ! 0 ... (1)

Comparing (1) with Mdx + Ndy ! 0,    here       M ! xr + 1 + xr y3  and   N ! 6xr + 1 y2 ... (2)
Since xr is an integrating factor of the given equation, so (1) must be exact and hence

ΓM/Γy ! ΓN/Γx. Hence, using (2), we obtain
3xry2 ! 6 (r + 1) xr y2      =      3 ! 6 (r + 1)     =    r + 1 ! 1/2        =     r ! – (1/2)
Putting r ! – (1/2) in (1) yields                  1/2 (1/2) 3 1/2 2{ } 6 0x x y dx x y dy%� � ! ... (3)
Solution of exact equation (3), as usual, is given by

                1/ 2 (1/2) 3 1/ 2 2{ } {6 }x x y dx x y dy%� � �# #                   ! c/3
                   (Treating y as constant)           [Integrating terms free from x]

giving         (2/3) × x3/2 + 2 x1/2 y3 !c/3                 or                    x3/2 + 3 x1/2 y3 ! c.
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Ex.10. Explai Terricell’s  law
Sol. Suppose that a water tank has a hole with area A at its bottom, from which water is

leaking. Denote by y(t) the depth of water in the tank at time t and by V(t) the volume of water in
the tank at that instant. Then, under suitable condition, the velocity v of the water exiting through
the hole is given by

2v gy! ... (1)
using (1), we have

2dV Av A gy
dt

! % ! % ... (2)

or ,dV k y
dt

! %        where           2k A g! ... (3)

This is a statement of Torricelli’s law for a draining tank. If S(y) denotes the horizontal cross-
sectional area of the tank at height y above the hole, the method of volume by crosssection given
by

0
( )

y
V S y dy! # ... (4)

and hence using the fundamental theorem of calculus, (4) implies that

( )dV dV dy dyS y
dt dy dt dt

! ! ... (5)

From equations (2), (3) and (5) we obtain

( ) 2 ,dyS y gy k y
dt

! % ! % ... (6)

which is an atternative form of Torricelli’s law
Ex.11(b). A hemispherical bowl has top radius 4ft and at time t = 0 is full of water. A that

moment a circular hole  with diameter 1in.  is opened in the bottom of the tank. How long will
it take for the water to drain from the tank
?

Sol. Let AOB be a hemispherical lowl
of radius CA = CB = CO = 4 ft. Let y(t) be the
depth of water in the tank at time t. Let S (y)
denote the horizontal cross sectional area of
the tank at height by above the hole
suppose that the bowl has a hole with area A
at its bottom 0, from which water is leaking.
Them, by Torricelli’s law,

( ) 2dyS y A gy
dt

! % ... (1)

Here, 2 2(1/ 24) 32 / secA g ft! ;& ! .  Also from right angled triangle PCQ, we have

2 2 2 2( ) {4 (4 ) } (8 )S y r y y y! ; ! ; % % ! ; %

Hence, (1) reduces to       
2

2 1(8 ) 2 32
24

dyy y y
dt

0 1; % ! %; &4 5
6 7

4 – y

y
90°

4

r

A

P

O

B

Q

C
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so that                         1/2 3/2(8 ) (1/ 72)y y dy dt% ! %

Integrating,      3/2 5/2(16 / 3) (2 / 5) ( / 72) ,y y t C C& % & ! % �  being a constant ...(2)
Initially when the bowl is full of water, y = 4 and t = 0. Hence (2) yields

3/2 5/2(16 / 3) 4 (2 / 5) 4 448 /15C ! & % & ! Therefore, (2) reduces to

         3/2 5/2(16 / 3) (2 / 5) ( / 72) (448 /15)y y t& % & ! % � ... (3)
The tank is empty when y = 0, thus when
                 0 = – (t/72) + (448/15),  i.e., t = 72 × (448/15) Ψ  2150 sec.

that is about 35 min 50 sec. so it takes slightly less than 36 min. for the tank to drain.
Ex. 11.A. A spherical tank of radius 4ft is full of gasoline, when a circular bottom hole with

radius 1in. is opened. How long will be required for all the gasoline to drain from the tank ?
[Ans. 14 min. 29 sec.]

Ex. 11B. A spherical tank of radius 2ft in full of gasoline, when a circular bottom hole
with radius 1 in. is opened. How long will be required for the liquid 1in. is opened. How long
will be required for the liquid to drain completely. [Delhi B.Sc. (Hons.) 2011]
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3
Trajectories

3.1 Trajectories
Definition. A curve which cuts every member of a given family of curves in accordance with

some given law is called trajectory of the given family of curves. In the present chapter we shall
study only the case when the given law is that the angle at which the curve cuts every member is
constant.

If a curve cuts every member of given family of
curves at right angles, it is called an orthogonal
trajectory. Again, if a curve cuts every member of  a given
family of curves at an angle # (∃ 90°), it is called an
oblique trajectory.

As an example, consider two family of curves y ! mx
and x2 " y2 ! a2, where m and a are parameters. Then, we
find that every line (given by y ! mx) through the origin of
coordinates is an orthogonal trajectory of the family of
concentric circles (given by x2 " y2 ! a2) with centre at
origin. Thus, y ! mx is the orthogonal trajectory of the
family of circles x2 " y2 ! a2. Since m is parameter, it
follows that the orthogonal trajectories of a given family
of curves themselves form a family of curves.

3.2 Determination of orthogonal trajectories in cartesian coordinates
Let the equation of the given family of curves be f (x, y, c) ! 0, ... (1)

where c is a parameter. Differentiating (1) with respect to x and eliminating c, between (1) and the
derived result, we shall arrive at the differential equation of the given family of curves (1). Let it be

                                             F (x, y, dy/dx) !
0. ... (2)

Let � be the angle between the tangent PT to a
member PQ of the family of curves and x-axis at any point
P (x, y). Then,

tan � ! dy/dx                       .... (3)

Let (X, Y) be the current coordinates of any point of a
trajectory. At point of intersection P of any member of (2)
with the trajectory PQ!, let �! be the angle which the
tangent PT ! to the trajectory makes with x-axis.

% tan �! ! dY/dX. ... (4)
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Let PT and PT ! intersect at 90°. Hence tan � tan �! ! –1     or     (dy/dx) × (dY/dX) ! –1

%
1
/

dy dX
dx dY dX dY

& ∋ & ∋ ... (5)

At a point of intersection of any member of (2) with the trajectory, we have
x ! X, and y ! Y. ... (6)

Eliminating x, y and dy/dx from (2), (5) and (6), we get F (X, Y, – dX/dY) ! 0, ... (7)
which is the differential equation of the required family of trajectories. In the usual notation, we
observe that the differential equation of the family of trajectories of the family of curves given by

F (x, y, dy/dx) ! 0, ... (8)
is F (x, y, – dx/dy) ! 0, ... (9)
showing that it can be obtained on replacing, dy/dx, by – (dx/dy).

3.3 Self-orthogonal family of curves.
Definition. If each member of a given family of curves intersects all other members

orthogonally, then the given family of curves is said to be self orthogonal.
Remark. From the above definition, it follows that if the differential equation of the family

of curves is identical with the differential equation of its orthogonal trajectories, then such a family
of curves must be self orthogonal.

3.4 Working rule for finding the orthogonal trajectories of the given family of curves in
cartesian coordinates
Step I. Differentiate the given equation of the family of curves. Eliminate the parameter

between this derived equation and the given equation of the family of curves to obtain the
differential equation of the given family of curves.

Step II. In the differential equation found in step I, replace dy/dx by – dx/dy and thus obtain
the differential equation of the required orthogonal trajectories.

Step III. Obtain the general solution of the differential equation of the orthogonal trajectories
found in step II. The general solution so obtained will give us the desired orthogonal trajectories.

3.5 Solved examples of Type I based on Art. 3.4
Ex. 1. Find the orthogonal trajectories of family of curves y ! ax2, a being a parameter.

[Patna 2003, Kanpur 2011]
Sol. The given family of curves is                  y ! ax2, with a as parameter. ... (1)
Differentiating (1) with respect to x, we get                    dx/dy ! 2ax. ... (2)
From (1),                                             a ! y/x2. ... (3)
Eliminating a from (2) and (3), we have
dy/dx ! 2 (y/x2) x or dy/dx ! 2y/x, ... (4)

which is the differential equation of the given family of curves (1). Replacing dy/dx by – dx/dy, the
differential equation of the required orthogonal trajectories is given by

– dx/dy ! 2y/x or x dx " 2y dy ! 0.
Integrating,                x2/2 " y2 ! b2                or                x2/2b2 + y2/b2 ! 1, ... (5)

which is the required orthogonal trajectories, b being parameter.
Remark. Here given family (1) represents parabolas. Their orthogonal trajectories is family

of ellipses given by (5). Each member of (1) cuts each member of (5) orthogonally.
Ex. 2. Find the orthogonal trajectories of the family of curves 3xy ! x3 – a3, a being

parameter of the family. [Kanpur 1998; Agra 1995]
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Sol. The given family of curves is            3xy ! x3 – a3, with a as parameter. ... (1)
Differentiating (1) with respect to x, we get

3y " 3x (dy/dx) ! 3x2 or y " x (dy/dx) ! x2. ... (2)
Since (2) does not contain parameter a, so (2) is the differential equation of the given family

of curves (1). Replacing dy/dx by – dx/dy, the differential equation of the required orthogonal
trajectories is given by

y – x (dx/dy) ! x2 or x (dx/dy) " x2 ! y.... (3)
To solve (3), we reduce it to linear differential equation as follows:
Putting x2 ! v so that 2x (dx/dy) ! dv/dy, (3) gives
(1/ 2) ( / ) or ( / ) 2 2 ,dv dy v y dv dy v y( ) & ) & ...(4)

which is linear differential equation whose I.F. ! 2 2 .dy ye e∗ &  Hence solution of (4) is

v (I.F.) ! (2 ) (I.F.)y dy c)∗ or ve2y ! 22 yy e dy c)∗

or ve2y ! 2 21 1(2 ) (2)
2 2

y yy e e dy c+ , + ,∋ )− . − .
/ 0 / 0∗ , integrating by parts

or ve2y ! ye2y – (1/2) × e2y " c or v ! y – (1/2) × e–2y " c
or x2 ! y – (1/2) " ce–2y, which is the required orthogonal trajectories, c being parameter.

Ex. 3. Find the orthogonal trajectories of the system of curves (dy/dx)2 ! a/x.
[I.A.S. Prel. 2007; Meerut 1995]

Sol. The differential equation of the given family of curves is (dy/dx)2 ! a/x, ... (1)
where a is a given constant. Replacing dy/dx by – dx/dy, the differential equation of the required
orthogonal trajectories is given by

(– dx/dy)2 ! a/x or dy ! ± (x1/2/a1/2) dx. ... (2)
Integrating (2), y " c ! 1/ 2 3/ 2(1/ ) (2 / 3)a x( ( or 3/ 23 ( ) 2a y c x) & 1

or 2 39 ( ) 4 ,a y c x) &  which is the required orthogonal trajectories, c being parameter..
Ex. 4. Find the orthogonal trajectories of the system of circles touching a given straight line

at a given point.                                                      [Purvanchal 1993]
OR

Find the orthogonal trajectories of x2 " y2 ! 2ax.     [GATE 2003]
Sol. Let the given point be O (0, 0) and the given straight line be y-axis. Now, if a be the

radius, then equation family of given circles is
(x – a)2 " (y – 0)2 ! a2         or         x2 " y2 ! 2ax, where a is a parameter. ... (1)
Differentiating (1) with respect to x, 2x " 2y (dy/dx) ! 2a   or   a ! x " y (dy/dx) ... (2)
Eliminating a from (1) and (2), we get

x2 " y2 ! 2 dyx x y
dx

+ ,)− .
/ 0

or 2xy (dy/dx) ! y2 – x2,                     ... (3)
which is the differential equation of the given family of
circles (1). Replacing dy/dx by – dx/dy, the differential
equation of the required orthogonal trajectories is

y!

y

y!

y

x! xo ( , 0)a x! xo

(0,  )
c
2

Fig. 3.3

Given system
of circles

Orthogonal
trajectories

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



3.4 Trajectories

2 2
2 2 2

2 ( / )22 or ,
1 ( / )

y xdx dy xyxy y x
dy dx x y y x

∋ & ∋ & &
∋ ∋ ... (3)

which is a homogeneous differential equation.
Put y/x ! v or y ! xv so that dy/dx ! v " x (dv/dx)

% (3) gives v " x dv
dx

! 2 2
2 2or

1 1
v dv vx v

dxv v
& ∋

∋ ∋

or x dv
dx

!
3 2

2 2
1

or
1 (1 )
v v vdx dv

xv v v
) ∋

&
∋ )

or
dx
x

! 2
1 2

1
v

v v
+ ,

∋− .
)/ 0

dv, on resolving into partial fractions

Integrating, log x ! log v – log (1 " v2) " log c        or        x ! (cv) / (1 + v2)
or x (1 " v2) ! cv or x (1 + y2/x2) ! c (y/x), as v ! y/x

% x2 " y2 ! cy, c being parameter. ... (4)
Note: Here the orthogonal trajectories (4) again represents a family of circles touching x-axis

at O (0, 0) and having variable radius (c/2).
Ex. 5. Find the orthogonal trajectories of the parabola 6ay2 ! (x – 3), where a is a variable

parameter.   [Kanpur 2006]
Sol. Given 6ay2 ! x – 3 ... (1)
Differentiating (1) w.r.t. ‘x’, 12ay (dy/dx) ! 1 ... (2)
Dividing (2) by (1), (2/y) × (dy/dx) ! 1/(x – 3), ... (3)

which is the differential equation of the given family of curves (1). Replacing dy/dx by – (dx/dy),
the differential equation of the required orthogonal trajectories is given by

– (2/y) × (dx/dy) ! 1/(x – 3) or 2 (x – 3) dx " y dy ! 0
Integrating, (x – 3)2 " y2/2 ! c2, c being an arbitrary constant.
Ex. 6. Find the orthogonal trajectories of the family of co-axial circles x2 " y2 " 2gx " c

! 0, where g is the parameter. [Kanpur 2005; I.A.S. 2005; Guwahati 1996; Lucknow 1998;
Meerut 1998; Osmania 1997]

Sol. The given family of curves is x2 " y2 " 2gx " c ! 0, with g as parameter. ... (1)

Differentiating (1) with respect to x, 2 2 2 0 or .
dy dy

x y g g x y
dx dx

+ ,) ) & & ∋ )− .
/ 0

... (2)

Eliminating g from (1) and (2), we get

x2 " y2 " 2 dyx x y
dx

+ ,∋ ∋− .
/ 0

" c ! 0 or y2 – x2 – 2xy
dy
dx " c ! 0, ... (3)

which is the differential equation of the given family of circles (1). Replacing dy/dx by – dx/dy in
(3), the differential equation of the required orthogonal trajectories is

2 2 212 0 or 2 ,dx dx cy x xy c x x y
dy dy y y

∋ ) ) & ∋ & ∋ ∋ ... (4)

which can be reduced to linear differential equation as follows:

Putting x2 ! v so that 2x (dx/dy) ! dv/dy, (4) gives
1 ,dv cv y

dy y y
∋ & ∋ ∋ ... (5)

whose I.F. ! ( 1/ ) log (1/ ) .y dy ye e y∋ ∋∗ & & Hence solution of (5) is

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Trajectories 3.5

(I.F.) (I.F.)cv y dy d
y

+ ,
& ∋ ∋ 2 )− .

/ 0
∗ ! 21 ( 1)c y dy d cy dy d

y y
∋+ ,

∋ ) ) & ∋ ) )− .
/ 0

∗ ∗

or
v
y

! cy–1 – y " d or
2x c
y y

&  – y " d, as v ! x2

or x2 " y2 – dy – c ! 0, d being parameter.
Ex. 7. Find the orthogonal trajectories of the family of curves:
(a) (x2/a2) " {y2/(b2 " 3)} ! 1, 3 being the parameter.  [Guwahati 2007]
(b) (x2/a2) " {y2/(a2 " 3)} ! 1, 3 being the parameter. [Calicut 2004; Calcutta 1995]
Sol. (a) Given (x2/a2) " {y2/(b2 " 3)} ! 1, with 3 as parameter. ... (1)

Differentiating (1),
2 2 2 2

2 2 1
0 or

x y dy x dx
dx dya b b a y

) & & ∋
) 3 ) 3

... (2)

Eliminating 3 from (1) and (2), we get
2 2

2
2 2 2 2

11 or 1,
/

x x dx x xyy
dy dy dxa a y a a

+ ,
) ∋ & ∋ &− .

/ 0
... (3)

which is the differential equation of the given family of curves (1). Replacing dy/dx by – dx/dy in
(3), the differential equation of the required orthogonal trajectories is

2 2

2 2 2 2
1 1 or 1
/

xy xy dyx x
dx dy dxa a a a

+ ,
∋ ∋ & ∋ &− .

/ 0
or (xy/a2) (dy/dx) ! (a2 – x2)/a2    or   y dy ! {(a2/x) – x} dx
Integrating, y2/2 ! a2 log x – x2/2 " c / 2     or            x2 " y2 – 2a2 log x ! c,
which is the required equation of the orthogonal trajectories.

(b) Proceed as in part (a). Ans. x2 " y2 – 2a2 log x ! c.
Ex. 8(a). Find the orthogonal trajectories of the family of circles x2 " y2 " 2fy " 1 ! 0, where

f is parameter.    [Meerut 1999]
(b) Find the orthogonal trajectories of the family of curves x2 " y2 " 2fy – 1 ! 0, f being a

parameter.
Sol. (a) Given                x2 " y2 " 2fy " 1 ! 0, where f is parameter. ... (1)
Differentiating (1) w.r.t. ‘x’,  2x " 2y (dy/dx) " 2f (dy/dx) ! 0. ... (2)
From (1) and (2), 2fy ! – (1 " x2 " y2) and 2f (dy/dx) ! – [2x " 2y (dy/dx)]

On dividing, these give 2 2
2 ( / ) 2 2 ( / )

2 1
f dy dx x y dy dx

fy x y
)

&
) )

or (1 " x2 " y2) (dy/dx) ! 2y [x " y (dy/dx)], ... (3)
which is the differential equation of (1). Replacing dy/dx by – dx/dy, the differential equation of
the required orthogonal trajectories is

(1 " x2 " y2) (– dx/dy) ! 2y [x " y (– dx/dy)] or (dx/dy) (y2 – x2 – 1) ! 2xy

or 2 22 1dyxy y x
dx

& ∋ ∋ or
2

2 112
xdyy y

dx x x
)

∋ & ∋ . ... (4)

Putting y2 ! v so that 2y (dy/dx) ! dv/dx, (4) reduces to
(dv/dx) – (1/x) v ! – (x2 " 1)/x, which is linear equation, ... (5)

Integrating factor of (5) !
1( 1/ ) log log 1 1/ .x dx x xe e e x x

∋∋ ∋ ∋∗ & & & &

and solution is v/x ! – 2 2{( 1) / } (1/ ) (1 )x x x dx c x dx c∋) 2 ) & ∋ ) )∗ ∗
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3.6 Trajectories

or y2/x ! – x " (1/x) " c              or                  x2 " y2 – cx – 1 ! 0
or x2 " y2 " 2gx – 1 ! 0, where 2g ! – c, g being parameter.

(b) Proceed as in part (a). Ans. x2 " y2 " 2gx " 1 ! 0.
Ex. 9. Find the differential equation of the family of curves given by the equation x2 – y2

" 23xy ! 1, where 3 is a parameter. Obtain the differential equation of its orthogonal trajectories
and solve it.

Sol. The given family of curves is x2 – y2 " 23xy ! 1, where 3 is parameter ... (1)
Differentiating (1), x – y (dy/dx) " 3 [y " x (dy/dx)] ! 0. ... (2)
From (1), 3 ! (1 " y2 – x2)/(2xy). ... (3)

Eliminating 3 between (2) and (3),
2 21 0,

2
dy y x dyx y y x
dx xy dx

) ∋ 4 5∋ ) ) &6 78 9
... (4)

which is the differential equation of the family of curves given by (1).
Replacing dy/dx by (– dx/dy) in (4), the differential equation of the required orthogonal

trajectories is
2 21

2
dx y x dxx y y x
dy xy dy

+ ,) ∋
) ) ∋− .

/ 0
! 0

or x2y " y3 " y " (xy2 – x " x3) (dx/dy) ! 0 or y (x2 " y2 " 1) dy " x (y2 " x2 – 1) dx ! 0
or                              (x2 " y2) (2x dx " 2y dy) " 2y dy – 2x dx ! 0. ... (5)

Putting x2 " y2 ! z so that 2x dx " 2y dy ! dz, (5) becomes
z dz " 2y dy – 2x dx ! 0 so z2/2 " y2 – x2 ! – c/2, by integration

or (x2 " y2)2 " 2y2 – 2x2 ! c, as z ! x2 " y2.
Ex. 10. A system of rectangular hyperbolas pass through the fixed points (± a, 0) and have the

origin as centre; show that the orthogonal trajectories is given by (x2 " y2)2 ! 2a2 (x2 – y2) " c.
Sol. Equation of any rectangular hyperbola with origin as centre is

Ax2 " 2Hxy – Ay2 ! 1, where A and H are parameters. ... (1)
(1) passes through (± a, 0)   :   Aa2 ! 1   :   A ! 1/a2.
% (1) gives (x2 " y2)/a2 " 2Hxy ! 1 or x2 – y2 " 2Ha2xy ! a2

or x2 – y2 " 23xy ! a2, where 3 (! Ha2) is a parameter. ... (1)
Note the equation (1) is similar to equation (1) of Ex. 9 except that now we have a2 on R.H.S.

in place of 1. Now proceed exactly as in Ex. 9 to find the required family of orthogonal trajectories.
Ex. 11. Find the orthogonal trajectories of family of parabolas y2 ! 4a (x " a), where a is parameter.

  [Meerut 2000; Purvanchal 2007]
or Show that the system of confocal and co-axial parabolas y2 ! 4a (x " a) is self orthogonal, a
being parameter. [Purvanchal 1999; I.A.S. (Prel.) 1997, 2001; Pune 2010]
or Show that the orthogonal trajectories of the system of parabolas y2 ! 4a (x " y) belongs to
the system itself, a being parameter. [Bangalore 2005; Kerala 2001]

Sol. Given y2 ! 4a (x " a), with a as parameter. ... (1)
Differentiating (1), 2y (dy/dx) ! 4a so that a ! (y/2) (dy/dx). ... (2)
Eliminating a from (1) and (2), we have

y2 ! 2y (dy/dx) {x " (y/2) (dy/dx)} or y ! 2x (dy/dx) " y (dy/dx)2, ... (3)
which is differential equation of (1). Replacing dy/dx by – dx/dy in (3), the differential equation of
the required orthogonal trajectories is
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2

2
2or

( / ) ( / )
dx dx x yy x y y
dy dy dy dx dy dx

+ ,
& ∋ ; ) ∋ & ∋ )− .

/ 0
or y (dy/dx)2 ! – 2x (dy/dx) " y or y ! 2x (dy/dx) " y (dy/dx)2, ... (4)
which is the same as the differential equation (3) of the given system (1). Hence, the system of
parabolas (1) is self orthogonal, i.e., each member of the given system of parabolas intersects its
own members orthogonally.

Ex. 12. Find the orthogonal trajectories of the family of curves x2/(a2 " 3) " y2/(b2 " 3) ! 1,
where 3 is a parameter. [Gorakhpur 1996; Kumaun 1995]
or Show that the system of confocal conics {x2/(a2 " 3)} " {y2/(b2 " 3)} ! 1 is self orthogonal.

[I.A.S. 1993; Bilaspur 1995; Kumaun 1997; Purvanchal 1998, 2007; Meerut 1998]
Sol. Given x2/(a2 " 3) " y2(b2 " 3) ! 1. ... (1)

Differentiating (1), 2 2 2
2 2 0 or 0x y dy x y dy

dx dxa b a b; ) & ) &
) 3 ) 3 ) 3 ) 3

or 2 2 2 2( ) ( ) 0 or .dy dy dyx b y a x y b x a y
dx dx dx

+ , + ,) 3 ) ) 3 & 3 ) & ∋ )− . − .
/ 0 / 0

%                              3 ! – {b2x " a2y (dy/dx)}/{x " y (dy/dx)}

%                     a2 " 3 ! a2 – 
2 2 2 2( / ) ( )

( / ) ( / )
b x a y dy dx a b x

x y dy dx x y dy dx
) ∋

&
) )

and b2 " 3 ! b2 – 
2 2 2 2( / ) ( ) ( / )

( / ) ( / )
b x a y dy dx a b y dy dx

x y dy dx x y dy dx
) ∋ ∋

&
) )

.

Putting the above values of (a2 " 3) and (b2 " 3) in (1), we have
2 2

2 2 2 2
{ ( / )} { ( / )}
( ) ( ) ( / )

x x y dy dx y x y dy dx
a b x a b y dy dx
) )

∋
∋ ∋

! 1

or                                    {x " y (dy/dx)} {x – y (dx/dy)} ! a2 – b2, ... (2)
which is the differential equation of the family (1). Replacing dy/dx by (– dx/dy) in (2), the differential
equation of the required orthogonal trajectories is
{x " y (– dx/dy)} {x – y (– dy/dx)} ! a2 – b2 or {x " y (dy/dx)} {x – y (dx/dy)} ! a2 – b2, ... (3)
which is the same as the differential equation (2) of the given family of curves (1). Hence, the system
of given curves (1) is self orthogonal, i.e., each member of the given family of curves intersects its
own members orthogonally.

Ex. 13. Prove that the orthogonal trajectories of the family of conics y2 – x2 " 4xy – 2cx ! 0
consists of a family of cubics with the common asymptote x " y ! 0.                  [Meerut 2009]

Sol. Given y2 – x2 " 4xy – 2cx ! 0, c being a parameter ... (1)
Differentating (1), 2y (dy/dx) – 2x " 4 [x (dy/dx) " y] ! 2c. ... (2)
From (1),                                      2c ! (y2 – x2 " 4xy)/x. ... (3)
Eliminating c between (2) and (3), 2y (dy/dx) – 2x " 4 {x (dy/dx) " y} ! (y2 – x2 " 4xy)/x

or 2xy (dy/dx) – 2x2 " 4x2 (dy/dx) " 4xy ! y2 – x2 " 4xy
or                                 2x (y " 2x) (dy/dx) ! x2 " y2, ... (4)
which is the differential equation of (1). Replacing dy/dx by (– dx/dy) in (4), the differential
equation of the required orthogonal trajectories is

2x (y " 2x) (– dx/dy) ! x2 " y2 or 2 2
2 ( 2 )dy x y x

dx x y
)

& ∋
)

!
2

2 ( / ) 4
1 ( / )

y x
y x

)
∋

)
... (5)
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3.8 Trajectories

Putting y/x ! v or y ! xv so that dy/dx ! v " x (dv/dx), (5) gives
3

2 2 2
2 4 2 4 4 3or
1 1 1

dv v dv v v vv x x v
dx dxv v v

) ) ) )
) & ∋ & ∋ ∋ & ∋

) ) )

or
2 2

3 3
1 3 3or 3 0.

4 3 4 3
v dx dx vdv dv

x xv v v v
) )

& ∋ ) &
) ) ) )

Integrating, 3 log x " log (4 " 3v " v3) ! log c, c being an arbitrary constant

or log x3 " log (4 " 3v " v3) ! log c or x3 (4 " 3v " v3) ! c

or x3 {4 " 3 (y/x) " (y/x)3} ! c     or y3 " 3x2y " 4x3 ! c. ... (6)

Re-writing (6), (y " x) (y2 – xy " 4x2) ! c. ... (7)

The asymptote of (7) corresponding to the factor (x " y) is given by

x " y ! 2 2, / 1
lim

4x y x

c
y xy x<= <∋

+ ,
− .

∋ )/ 0

!
2 2

2 2, / 1

( / ) ( / )lim lim
( / ) ( / ) ( 1) ( 1) 4x y x x

c x c x
y x y x y<= <∋ <=

4 5
&6 7

∋ ) ∋ ∋ ∋ )8 9
! 0.

Hence x " y ! 0 is the asymptote common to the family of cubics (6).

Exercise 3(A)

1. Find the orthogonal trajectories of the following family of curves:
(i) y ! axn [Agra 1996] Ans. x2 " ny2 ! c
(ii) y ! ax3  [Garhwal 2005, 2010] Ans. x2 " 3y2 ! c

(iii) cx2 " y2 ! 1  [Delhi B.A. (Prog) II 2011] Ans.
2 2( ) /2x yy ce )&

(iv) y2 ! 4ax  [Kanpur 2009] Ans. 2x2 " y2 ! c2

(v) x2 " y2 ! a2   [I.A.S. 2008] Ans. y ! cx
(vi) x2/3 " y2/3 ! a2/3 [Kakatiya 2003] Ans. y4/3 – x4/3 ! c4/3

(vii) x2 " y2 ! cx3 [Delhi B.A. (Prog) II 2009, 10] Ans.  yx2 + y3 ! c!
2. Find the orthogonal trajectories of the family of semicubical parabolas ay2 ! x3 where a is a prameter.

[Garhwal 1993; I.A.S. 1992; Nagpur 2005] Ans. 2x2 " 3y2 ! c2

3. Find the orthogonal trajectories of the family of the curves xy ! k2. [ Kanpur 2007; Mysore 2004]
Ans. x2 – y2 ! a2

4. Find the orthogonal trajectories of x2 " y2 " 2gx " c ! 0, where c is the parameter. Ans. x " g ! ay
5. Show that the orthogonal trajectories of x2 " y2 " 2gx " 1 ! 0 is x2 " y2 " 2fy – 1 ! 0.
6. Find the orthogonal trajectories of the curve y2 ! x3/(a – x), a being parameter.

Ans. (x2 " y2)2 ! c (y2 " 2x2)
7. Find the orthogonal trajectories of the family of circles (x – 1)2 " y2 " 2ax ! 0, a being the parameter.

Ans. x2 – y2 – cy " 1 ! 0

3.6 Determination of orthogonal trajectories in polar coordinates
Let the equation of the given family of curves be f (r, >, c) ! 0, ... (1)
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Trajectories 3.9

where c is a parameter. Differentiating (1) with respect to >
and eliminating c, between (1) and the derived result, we
shall arrive at the differentiated equation of the given family
of curves (1). Let it be

F (r, >, dr/d>) ! 0. ... (2)
Let ? be the angle between the tangent PT to a

member PQ of the family of given curves and radius vector
OP at any point P (r, >).

% tan ? ! r (d>/dr). ... (3)
Let (R, ≅) be the current coordinates of any point of a

trajectory. At point of intersection P of any member of (2)
with the trajectory PQ!, let ?! be angle which the tangent
PT ! to the trajectory makes with the common radius vector
OP.

% tan ?! ! R (d≅/dR). ... (4)
Let PT and PT ! intersect at 90°. Then, from figure, ?! – ? ! 90°  so that ?! ! 90° " ?.
% tan ?! ! tan (90° " ?) ! – cot ? or tan ? tan ?! ! – 1. ... (5)

Using (3) and (4), (5) gives     d dr R
dr dR

> ≅+ , + ,
− . − .
/ 0 / 0

! 1 or
dr drR
d dR

≅
& ∋

>
.... (6)

At a point of intersection of any member of (2) with the trajectory, r ! R, > ! ≅. ... (7)
Eliminating r, > and dr/d> from (2), (6) and (7), we have

                                        2, , 0,dF R R
dR

≅+ ,≅ ∋ &− .
/ 0

... (8)

which is the differential equation of the required family of trajectories. In the usual notation, we
observe that the differential equation of the family of orthogonal trajectories of the family of curves
given by                                                 F (r, >, dr/d>) ! 0 ... (9)

is                                        2, , 0,dF r r
dr

>+ ,> ∋ &− .
/ 0

... (10)

showing that it can be obtained by replacing dr/d> by – r2 (d>/dr).

3.7 Working rule for getting orthogonal trajectories in polar coordinates
Step I. Differentiate the given equation of the family of curves, w.r.t. ‘>’. Eliminate the

parameter between this derived equation and the given equation of the family of curves to obtain
the differential equation of the given family of curves. Note that while differentiating the given
equation, we shall generally take logarithm and then differentiate.

Step II. In the differential equation found in step I, replace (dr/d>) by – r2 (d>/dr) and thus
obtain the differential equation of the required orthogonal trajectories.

Step III. Obtain the general solution of the differential equation obtained in step II. The
solution so obtained will give us the desired orthogonal trajectories.

3.8 Solved examples of Type 2 based on Art. 3.7
Ex. 1(a). Find the orthogonal trajectories of cardioids r ! a (1 – cos >), a being parameter.
[Meerut 1993; Gorakhpur 1996; Kumaun 1996; I.A.S. (Prel.) 2001; Nagarjuna 2003]
Sol. The given family of cardioids is r ! a (1 – cos >). ... (1)
Taking logarithm of both sides of (2), we get log r ! log a " log (1 – cos >). ... (2)

y!

x! x

y

o

T

T!

90°
?!?

P

Q!
Q

A member of
family of curves

Trajectory

Fig. 3.4

>

r

(r, )>
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3.10 Trajectories

Differentiating (2) with respect to ‘>’, we get
1 sin

1 cos
dr

r d
>

&
> ∋ >

. ... (3)

Since (3) is free from parameter ‘a’, hence (3) is the differential equation of the given family (1).
Replacing dr/d> by – r2 (d>/dr) in (3), the differential equation of the required orthogonal

trajectories is 21 dr
r dr

>+ ,∋− .
/ 0

!
1 1
2 2

2 1
2

2 sin cossin 1cot
1 cos 22 sin

> >>
& & >

∋ > >

or (1/r) dr ! – tan (>/2) d>, on separating variables

Integrating, log r ! 2 log cos 1
2 > " log c or log r ! Α Β2 1

2log cosc >

or r ! (c/2) (1 " cos >) or r ! b (1 " cos >), ... (4)
where b (! c/2) is arbitrary constant. (4) gives another family of cardioids.

Note: We know that (r, >) and (– r, Χ " >) represent the same point in polar coordinates.
Accordingly, replacing r and > by – r and Χ " > respectively in (4), we obtain

– r ! b [1 " cos (Χ " >)]         or         r ! (– b) (1 – cos >). ... (5)
If we set (– b) ! a in (5), (5) reduces to (1). Hence, the given family of cardioids (1) is self

orthogonal.
Ex. 1(b). Find the orthogonal trajectories of the family of curves r ! a (1 " cos >), where a

is the parameter.  [Agra 1994, 1995; Garhwal 1994; Gorakhpur 1993; Lucknow 1992, 1995;
                                     Meerut 1993; Purvanchal 1992; G.N.D.U Amritsar 2010]

Sol. The given family of curves is                      r ! a (1 " cos >). ... (1)
Taking logarithm of both sides               log r ! log a " log (1 " cos >). ... (2)
Differentiating (2) w.r.t. ‘>’,                (1/r) (dr/d>) ! (– sin >)/(1 " cos >), ... (3)

which is the differential equation (1). Replacing dr/d> by – r2 (d>/dr) in (3), the differential
equation of the required orthogonal trajectories is

2
2

1 sin 2 sin ( / 2) cos ( / 2)
1 cos 1 2 cos ( / 2) 1

dr
r dr

> ∋ > > >+ ,∋ & & ∋− . ) > ) > ∋/ 0
! – tan (>/2)

or r (d>/dr) ! tan (>/2)                  or     (1/r) dr ! cot (>/2) d>
Integrating, log r ! 2 log sin (>/2) " log c                or r ! c sin2 (>/2)

or r ! c {(1 – cos >)/2}     or        r ! b (1 – cos >), taking b ! c/2
which is the equation of the required trajectories with b as parameter.

Ex. 1(c). Show that the families of curves given by the equation r ! a (1 " cos >) and
r ! b (1 – cos >) intersect orthogonally. [Purvanchal 1996]

Sol. Here we are to show that the family of orthogonal trajectories of the family of curves
r ! a (1 " cos >) is r ! b (1 – cos >), where a and b are parameters of the respective families. This
is same as proved in Ex. 1(a).

Ex. 1(d). Find the orthogonal trajectories of r ! a (1 " cos n>).
Sol. Given family is            r ! a (1 " cos n>), where a is parameter. ... (1)
Taking logarithm of both sides,          log r ! log a " log (1 " cos n>). ... (2)
Differentiating (2) w.r.t. >                 (1/r) (dr/d>) ! – (n sin n>)/(1 " cos n>) ... (3)

which is differential equation of the family of curves (1). Replacing dr/d> by – r2 (d>/dr) in (3),
the differential equation of the required trajectories is

2 sin 1 cos1 or
1 cos sin

n n n dr ndr d
r dr n r n

> ) >>+ ,∋ & ∋ & >− . ) > >/ 0
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or
22 cos ( / 2) or cot ( / 2) .

2 sin ( / 2) cos ( / 2)
n dr n d drn n d

r n n r
> >

& & > >
> >

Integrating,  n log r ! (2/n) × log sin (n>/2) " (1/n) × log c, c being arbitrary constant
or n2 log r ! log sin2 (n>/2) " log c  or

2nr ! c sin2 (n>/2)

or
2nr ! (c/2) (1 – cos n>)   or     

2nr ! b (1 – cos n>),     taking b ! c/2
which is the equation of required orthogonal trajectories with b as parameter.

Ex. 2. Find the equation of the system of orthogonal trajectories of the parabolas
r ! 2a/(1 " cos >), where a is the parameter. [Purvanchal 1995; Ravishankar 1995]

Sol. From the given equation, we get log r ! log 2a – log (1 " cos >). ... (1)
Differentiating (1) w.r.t. >, we get              (1/r) (dr/d>) ! (sin >)/(1 " cos >) ... (2)
(2) is the differential equation of the given system of parabolas. Replacing dr/d> by

– r2 (d>/dr) in (2), the differential equation of the required orthogonal trajectories is

2
2

2 sin ( / 2) cos ( / 2)1 ( ) or cot .
22 cos ( / 2)

d drr d
r dr r

> >> >
∋ & & ∋ >

>

Integrating, log r ! – 2 log sin (>/2) " log c, or r ! c/sin2 (>/2)
or r ! 2c/(1 – cos >),                 as                 sin2 (>/2) ! (1 – cos >)/2

Ex. 3. Find the orthogonal trajectories of the curves A ! r2 cos >, where A is the parameter.
or Prove that the orthogonal trajectories of the curves A ! r2 cos > are the curves B ! r sin2 >.

              [I.A.S. (Prel.) 2005; Purvanchal 1994]
Sol. Given family of curves is r2 cos > ! A. ... (1)
Taking logarithm of both sides, 2 log r " log cos > ! log A. ... (2)
Differentiating (2) w.r.t. ‘>’, we get (2/r) (dr/d>) – cot > ! 0, ... (3)

which is differential equation of the family (1). Replacing dr/d> by – r2 (d>/dr) in (3), the differential
equation of the required orthogonal trajectories is

(2/r) (– r2) (d>/dr) – tan > ! 0 or (1/r) dr " 2 cot > d> ! 0.
Integrating,         log r " 2 log sin > ! log B                  or r sin2 > ! B.
Ex. 4(a). Prove that the orthogonal trajectories of rn cos n> ! an is rn sin n> ! cn.
Sol. Given                             rn cos n> ! an, where a is a parameter. ... (1)
From (1),                               n log r " log cos n> ! log an. ... (2)
Differentiating (2), (n/r) (dr/d>) – n tan n> ! 0 or (1/r) (dr/d>) – tan n> ! 0,  ... (3)

which is the differential equation of family (1). Replacing dr/d> by – r2 (d>/dr) in (3), the differential
equation of the required orthogonal trajectories is

(1/r) (– r2) (d>/dr) – tan n> ! 0 or (1/r) dr " cot n> d> ! 0.
Integrating, log r " (1/n) log sin n> ! log c, c being an arbitrary constant.

or n log r " log sin n> ! n log c                   or rn sin n> ! cn,
which is the required equation of orthogonal trajectories.

Ex. 4(b). Find the orthogonal trajectories of rn sin n> ! an.
[I.A.S. (Prel.) 1999; Agra 1996; Kanpur 1995; Meerut 1996]

Sol. Proceed as in Ex. 4(a). Ans. rn cos n> ! cn.
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Exercise 3(B)

1. (a) Find the orthogonal trajectories of the system of curves rn ! an cos n>, where a is parameter.
[Kanpur 2008; Meerut 2007; Kumaun 1998]

(b) Find the orthogonal trajectories of the system of curves rn ! an sin n>, where a is parameter.
[Lucknow 1993]

(c) Determine the orthogonal trajectories of the system of curves rn ! an cos n> and hence find the
orthogonal trajectories of the series of lemniscates r2 ! a2 cos 2>.

(d) Find the orthogonal trajectories of the family of curves given by r2 ! a2 cos 2>, a being the
parameter.

Ans. (a) rn ! cn sin n>, (b) rn ! cn cos n>, (c) rn ! cn sin n>, r2 ! c2 sin 2>, (d) r2 ! c2 sin 2>
2.  Find the orthogonal trajectories of the family of curves r ! c (cos > " sin >), where c is the parameter.

Ans. r ! d (sin > – cos >), d being parameter
3.  Find the orthogonal trajectories of the family of curves r ! a " sin 5>, a being the parameter.

Ans. sec 5> " tan 5> ! ce25/r, c being parameter
4. Find the orthogonal trajectories of the following family of curves: (i) r> ! a (ii) r ! a>; a being the parameter.

[Sol  (i). Given family is                              r> ! a, a being a parameter ... (1)
Differentiating (1) w.r.t. ‘>’, we get                               (dr/d>) > + r ! 0, ... (2)

which in the differential equation of (1). Replacing dr/d> by – r2 (d>/dr) in (2), the differential equation of
the required orthogonal trahectories is

– r2 (d>/dr) + r ! 0     or     (1/r) dr ! >d>     so that    log r – log c ! >2/2        or    
2 /2r c e>&

(ii) Try yourself. Ans.
2 / 2r c e∋>& ]

5.  Find the orthogonal trajectories of r ! ea> with a is parameter.
Ans. >2 " (log r)2 ! c2, c being parameter

6.  Find the orthogonal trajectories of {r " (k2/r)} cos > ! #, # being the parameter.
Ans. r2 – k2 ! r c cosec >

3.9 Determination of oblique trajectories in cartesian coordinates
Let the equation of the given family of curves be f (x, y, c) ! 0, ... (1)

where c is a parameter. Differentiating (1) w.r.t. ‘x’ and eliminating parameter c between (1) and
the derived result, we shall arrive at the differential equation the given family of curves (1). Let it
be

F (x, y, dy/dx) ! 0. ... (2)

Let � be the angle between the tangent PT to a
member PQ of the family of curves and x-axis at any point

P (x, y). Hence,               tan � ! dy/dx. ... (3)

Let (X, Y) be the current coordinates of any point of
trajectory. At point of intersection P of any member of (2)
with the trajectory PQ!, let �! be the angle which the
tangent PT ! to the trajectory makes with x-axis.

% tan �! ! dY/dX. ... (4)

Let PT and PT ! intersect at angle #. Then, we have

y!

x! xo

y

� �!

T T!

#
P

Q

Q!

Trajectory

A member of
family of curves

Fig. 3.5
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% tan # !
( / ) ( / )

1 ( / ) ( / )
dy dx dY dX

dy dx dY dX
∋

)
so that

( / ) tan
1 ( / ) tan

dY dXdy
dx dY dX

) #
&

∋ #
. ... (5)

At a point of intersection of any member of (2) with the trajectory, x ! X,   y ! Y. ... (6)

Eliminating x, y and dy/dx from (2), (5) and (6), ( / ) tan, , 0 ,
1 ( / ) tan

dY dXF X Y
dY dX

+ ,) #
&− .∋ #/ 0

... (7)

which is the differential equation of the required family of trajectories. In the usual notation, we
observe that the differential equation of the family of trajectories of the family of curves given by

                                       F (x, y, dy/dx) ! 0, ... (8)

is                                        ( / ) tan, , 0 ,
1 ( / ) tan

dy dxF x y
dy dx

+ ,) #
&− .∋ #/ 0

... (9)

showing that it can be obtained on replacing dy/dx by [(dy/dx) " tan #]/[1 – (dy/dx) tan #],
i.e., (p " tan #)/(1 – p tan #), where p ! dy/dx

3.10 Working rule for finding the oblique trajectories which cut every member of the given
family of curves at a constant angle #

All the steps are similar to working rule of Art. 3.4. For oblique trajectories we replace      dy/
dx (i.e., p) by (p " tan #)/(1 – p tan #).

3.11 Solved examples of type 3 based on Art. 3.10
Ex. 1. Find the family of curves whose tangents form the angle of Χ/4 with the hyperbola xy ! c.

                              [I.A.S. 1994, 2006]
Sol. The given family of curves is              xy ! c, where c is a parameter ... (1)
Differentiating (1), y " x (dy/dx) ! 0 or y " xp ! 0, where p ! dy/dx. ... (2)
(2) is the differential equation of given family (1).

Replacing p by
tan ( / 4)

1 tan ( / 4)
p

p
) Χ

∋ Χ
,   i.e.,   

1
1
p

p
)

∋
 in (2) the differential equation of the

desired family of curves is

y "
1

1
p

p
)

∋
x ! 0 or p !

y x
y x

)
∋

or
( / ) 1
( / ) 1

dy y x
dx y x

)
&

∋
. ... (3)

Let y/x ! v,  i.e.,  y ! xv  so that dy/dx ! v " x (dv/dx). ... (4)

% From (3),
21 2 1or

1 1
dv v dv v vv x x
dx v dx v

) ∋ ∋
) & & ∋

∋ ∋
or (2/x) dx ! – {2 (v – 1)/(v2 – 2v – 1)} dv.

Integrating, 2 log x ! – log (v2 – 2v – 1) " log c, c being an arbitrary constant
or log x2 " log (v2 – 2v – 1) ! log c or x2 (v2 – 2v – 1) ! c
or x2 (y2/x2 – 2y/x – 1) ! c or y2 – 2xy – x2 ! c.

Ex. 2. Find the equation of the family of oblique trajectories which cut the family of
concentric circles at 30°.                  [Gorakhpur 1997]

Sol. Let the equation of the given family of concentric circles, having (0, 0) as common
centre be x2 " y2 ! a2, where a is the parameter.  ... (1)

Differentiating (1), 2x " 2y (dy/dx) ! 0 or x " yp ! 0, where p ! dy/dx. ... (2)
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3.14 Trajectories

Replacing p by
tan 30

1 tan 30
p

p
) ∆

∋ ∆
, i.e., (1/ 3)

1 (1/ 3)
p

p
)

∋
, i.e.,         3 1

3
p

p
)

∋
 in (2),

the differential equation of the desired family of curves is

{( 3 1) /( 3 )} 0 or ( 3 ) ( 3 1) 0x y p p x p y p) ) ∋ & ∋ ) ) &

or p ! 3
3

x y
x y

)
∋

or 3 ( / )
1 3 ( / )

dy y x
dx y x

)
&

∋
. ... (3)

Putting y/x ! v or y ! xv so that dy/dx ! v " x (dv/dx), (3) gives
23 ( 1)3 3or

1 3 1 3 1 3
vdv v dv vv x x v

dx dxv v v
)) )

) & & ∋ &
∋ ∋ ∋

or    2 2 2

21 3 33 or 3 0.
21 1 1

v dvdx v dx dv
x xv v v

∋
& ∋ ) &

) ) )

Integrating,   1 23 log tan ( 3 / 2) log ( 1) ( 3 / 2) logx v v c∋∋ ) ) &

or 2 log x " log (v2 " 1) – log c ! 1(2 / 3) tan v∋

or 12 2 1 2 2 (2 / 3 ) tanlog { ( 1) / } (2 / 3) tan or ( 1) / vx v c v x v c e
∋∋) & ) &

or 1 12 2 (2 / 3) tan ( / ) 2 2 (2 / 3) tan ( / )[( / ) 1] or ,y x y xx y x ce y x ce
∋ ∋

) & ) &
which is the required family of curves, c being a parameter.

Exercise 3(C)

1. Determine the 45° trajectories of the family of concentric circles x2 " y2 ! a2, a being the parameters.
[Delhi Math (H) 1996] Ans. x2 " y2 !

12 tan ( / ) ,y xce
∋∋  where c is an arbitrary constant.

2. Given the set of lines y ! ax, a being arbitrary, find all the curves that cut these lines at a constant
angle #. Ans.

12 2 tan 2 tan ( / )( ) y xx y ce
∋# ∋) &

3. Find the family of curves cutting the family of parabolas y2 ! 4ax at 45°.

Ans.
12 2 2 tan ( / ) ,y xx y ce

∋∋) & c being an arbitrary constant

Objective Problem on Chapter 3
Ex. 1. The differential equation of the orthogonal trajectories of the system of parabolas

y ! ax2 is    (a) y! ! x2 " y    (b) y! ! x – y2    (c) y! ! – (x/2y)    (d) y! ! x/(2y) [I.A.S. (Prel.) 1993]
Sol. Ans. (c). Sol. Given              y ! ax2,where a is a parameter ... (1)
From (1),                      dy/dx ! 2ax ! 2x (y/x2), using (1) ... (2)
Replacing dy/dx by – dx/dy in (2), the required differential equation of the orthogonal

trajectory is      – dx/dy ! 2y/x      or     dy/dx ! – (x/2y)     or      y! ! – (x/2y).
Ex. 2. Consider the Assertion (A) and Reason (R) given below:
Assertion (A): The curves y ! ax3 and x2 " 3y2 ! c2 form orthogonal trajectories.
Reason (R): The differential equation of the second curve is obtained from the differential

equation of the first by replacement of dy/dx by – (dx/dy).
The correct answer is
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not a correct explanation of A.
(c) A is true but R is false.               (d) A is false but R is true. [I.A.S. (Prel.) 1993]
Sol. Ans. (a). Refer Art. 3.4.
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Ex. 3. The orthogonal trajectories of the hyperbolas xy ! c is
(a) x2 – y2 ! c (b) x2 ! cy2 (c) x2 " y2 ! c (d) x ! cy2. [I.A.S. (Prel.) 1994]
Sol. Ans. (a). Use Art. 3.4.
Ex. 4. The equation y – 2x ! c represents the orthogonal trajectories of the family
(a) y ! Ce–2x      (b) x2 " 2y2 ! C      (c) xy ! C      (d) x " 2y ! C. [I.A.S. (Prel.) 1995]
Sol. Ans. (d). Use Art. 3.4.
Ex. 5. The orthogonal trajectories of the parabola y2 ! 4a (x " a), a being the parameter,

are given by (a) y2 ! 4b (x " b) (b) y2 ! 4b (x – b)
(c) y2 ! 4bx  (d) x2 ! 4by.

Sol. Ans. (a). Refer solved Ex. 11, Art. 3.5. [I.A.S. (Prel.) 1997]
Ex. 6. The orthogonal trajectories of the system of curves rn sin n> ! kn, k being arbitrary

constant, are (a) rn cos n> ! a (b) rn cos > ! a
(c) r2 cos n> ! a (d) rn tan n> ! a. [I.A.S. (Prel.) 1999]

Sol. Ans. (a). Sol. Given                        rn sin n> ! kn, k being parameter ... (1)
From (1),                                n log r " log sin n> ! log kn ... (2)
Differentiating (2),  (n/r) (dr/d>) " n cot n> ! 0  or  (1/r) (dr/d>) " cot n> ! 0 ... (3)

which is the differential equation of family (1). Replacing dr/d> by – r2 (d>/dr) in (3), the differential
equation of the required orthogonal trajectories is

(1/r) (– r2) (d>/dr) " cot n> ! 0 or (1/r) dr – tan n> d> ! 0
Integrating, log r " (1/n) log cos n> ! (1/n) log a         or     rn cos n> ! a
Ex. 7. The equation whose solution is self orthogonal is (taking p ! dy/dx)

(a) p – (1/p) ! p2 (b) (px " y) (x " yp) – 3p ! 0
(c) (px – y) (x " yp) – 3p ! 0 (d) (px " y) (x – yp) – 3p ! 0 [I.A.S. (Prel.) 1999]

Sol. Ans. (d). Replace dy/dx (i.e., p) by (– dx/dy), i.e., (– 1/p) in all given equations one by
one. Then, we find that equation given in part (d) remains unchanged even after replacing p by
– 1/p. Hence, equation whose solution family is self orthogonal is given by (d). Refer Art. 3.3 and
Art.3.4.

Ex. 8. If k is a parameter, then the orthogonal trajectories of the cardioia r ! k (1 – cos >)
is (a) r ! c (1 " cos >)      (b) r ! c (1 – sin >)      (c) r (1 " cos >) ! c      (d) r (1 – sin >) ! c.

Sol. Ans. (a). Refer solved Ex. 1, Art. 3.8. [I.A.S. (Prel.) 2000]
Ex. 9. The orthogonal trajectories of the system of parabolas y2 ! 4a (x " a), a being

parameter, is given by the system of curves
(a) y2 ! 4a (x " a)  (b) y2 ! 4a (x – a)    (c) y2 ! 4ax   (d) x2 ! 4ay. [I.A.S. (Prel.) 2001]

Sol. Ans. (a). Refer Ex. 11, Art. 3.5.           
Ex. 10. The orthogonal trajectories of family rn sin n> ! an, a being parameter, is

(a) rn sin n> ! c    (b) rn cos n> ! c  (c) rn sinn > ! c    (d) rn cosn > ! c. [I.A.S. (Prel.) 2002]
Sol. Ans. (b). Refer Ex. 4(b) of Art. 3.8.
Ex. 11. The orthogonal trajectories of the family y2 ! 4ax " 4a2 is the family

(a) x2 ! 4ay " 4a2       (b) y2 ! 4ay " 4a2x       (c) y2 ! 4ax " 4a2       (d) x2 ! 4ax " 4a2y
Sol. Ans. (c). Refer solved Ex. 11, Art. 3.5. [I.A.S. (Prel.) 2003]
Ex. 12. If 2x (1 – y) ! K and g (x, y) ! L are orthogonal families of curves where K and L

are constants, then g (x, y) is (a) x2 " 2y – y2 (b) 2y (1 – x) (c) x2 " 2x – y2 (d) x2 " 2y " y2.
Sol. Ans. (a). Proceed as in Art. 3.4. [GATE 1999]
Ex. 13. The orthogonal trajectories to family of straight lines y ! k (x – 1), k Ε R, are given

by (a) (x – 1)2 " (y – 1)2 ! C2 (b) x2 " y2 ! C2 (c) x2 " (y – 1)2 ! C2 (d) (x – 1)2 " y2 ! C2

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



3.16 Trajectories

Sol. Ans. (d). Proceed as in Art. 3.4. [GATE 2004]
Ex. 14. The orthogonal trajectory of the cardioid r ! a (1 " cos >), a being the parameter,

is      (a) r ! a (1 – cos >)     (b) r ! a cos >       c) r ! a (1 " cos >)     (d) r ! a (1 " sin >).
Sol. Ans. (a). Refer solved Ex. 1(b), Art. 3.8. [I.A.S. (Prel.) 2004]
Ex. 15. Which one of the following curves is the orthogonal trajectory of straight lines

passing through a fixed point (a, b)?          (a) x – a ! k (y – b)          (b) (x – a) (y – b) ! k
(c) (x – a)2 ! k (y – b)           (d) (x – a)2 " (y – b)2 ! k. [I.A.S. (Prel.) 2006]
Sol. Ans. (d). Equation of family of straight lines passing through (a, b) is

y – b ! m (x – a), m being the parameter. ... (1)
Differentiating w.r.t. ‘x’, (1) gives dy/dx ! m ... (2)
Eliminating m from (1) and (2), y – b ! (x – a) (dy/dx), ... (3)

which is the differential equation of the given family of straight lines (1). Replacing dy/dx by
– (dx/dy), the differential equation of the required orthogonal trajectories is given by

y – b ! – (x – a) (dy/dx) or 2 (x – a) dx " 2 (y – b) dy ! 0
Integrating, (x – a)2 " (y – b)2 ! k, k being arbitrary constant.
Ex. 16. The equation of the family of curves orthogonal to the family y ! ax3 is :
(a) x2 + 3y2 ! 0   (b) x2 – 3y2 ! 0   (c) y2 + 3x2 ! c2   (d) x2 + 3y2 ! c2 [Garhwal 2010]
Sol. Ans. Given                                 y ! ax3,  a being parameter ... (1)
Differentiating (1) w.r.t ‘x’,                 dy/dx ! 3 ax2 ... (2)
Eliminating a between (1) and (2),       dy/dx ! 3 × (y/x3) × x2         or     dy/dx ! 3y/x, ... (3)

which is the differential equation of (1). Replacing dy/dx by – dx/dy, the differential equation of the
required family of orthogonal trojectories is given by

                             – (dx/dy) ! 3y/x             so that              2xdx + 6y dy ! 0 ...(4)
Integrating (4),   x2 + 3y2 ! c2, c being an arbitrary constant
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4
Equations of the First Order But Not

of The First Degree, Singular
Solutions And Extraneous Loci

PART 1: DIFFERENT METHODS OF FINDING GENERAL SOLUTIONS
4.1 Equations of the first order but not of the first degree

Defintion. The general first order differential equation of degree n > 1 is
P0 (dy/dx)n ! P1 (dy/dx)n–1 ! P2 (dy/dx)n–2 ! ... ! Pn–1 (dy/dx) ! Pn " 0, ... (1)

where P0, P1, P2, ..., Pn–1, Pn are functions of x and y.
It is a convention to denote dy/dx by p and so (1) becomes

P0 pn ! P1 pn–1 ! P2 pn–2 ! ... ! Pn–1 p ! Pn " 0.
Such equations can be solved by one (or more) of some methods given in this chapter. In each

of these methods, the given problem is reduced to that of solving one or more equations of the first
order and the first degree (already discussed in chapter 2).

Remarks. In this Chapter, we shall present solutions in the following two forms:
(i) The cartesian form will consist of x, y and an arbitrary constant c, say. For example,

y2 " 2cx ! c2 is general solution in the cartesian form.
(ii) The parametric form will consist of two equations of form x " f1 (p, c) and y " f2 (p, c),

where c is an arbitrary constant. These two equations together will give the parametric equations
of general solution. This situation arises only when the elimination of p is not possible during the
process of solving certain equations. Note that p is treated as parameter for this purpose.
Sometimes even the above form is not possible. Then we regard the following forms of solutions
to be in parametric form: (i) y " f (x, p), F (x, p, c) " 0 (ii) x " g (y, p), G (y, p, c) " 0.

4.2 Method I. Equations solvable for p
Let P0 pn ! P1 pn–1 ! P2 pn–2 ! ... ! Pn–1 p ! Pn " 0 ... (1)

be the given differential equation of the first order and degree n > 1.
Since (1) is solvable for p, it can be put in the form

[p – f1 (x, y)] [p – f2 (x, y)] ... [p – fn (x, y)] " 0. ... (2)
Equating each factor of (2) to zero, we obtain n equations of the first order and the first

degree, namely,
p " dy/dx " f1 (x, y), p " dy/dx " f2 (x, y), ...., p " dy/dx " fn (x, y). ... (3)
Let the solutions of these n component equations be respectively

F1 (x, y, c1) " 0.      F2 (x, y, c2) " 0, ...,      Fn (x, y, cn) " 0,
which c1, c2, ..., cn are the arbitrary constants of integration.

4.1
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4.2 Equations of the First Order but not of the First Degree...

Since all the c’s can have any one of an infinite number of values, the above solutions (4) will
remain general if we replace c1, c2, ..., cn by a single arbitrary constant c. Then the n solutions (4)
can be re-written as F1 (x, y, c) " 0, F2 (x, y, c) " 0, ..., Fn (x, y, c) " 0.

These can be combined into one equation, namely,
F1 (x, y, c) F2 (x, y, c), ....... Fn (x, y, c) " 0.

Remark. Since the given equation (1) is of the first order, its general solution cannot have
more than one arbitrary constant.

4.3 Solved Examples based on method I of Art. 4.2
Ex. 1. Solve the following differential equations:
(a) (dy/dx)2 – ax3 " 0. (b) p2 – x5 " 0. (c) p3 " ax4

(d) 4p2x (x – a) (x – b) " [3x2 – 2 (a ! b) x ! ab]2

(e) 4p2x (x – 1) (x – 2) " (3x2 – 6x ! 2)2

Sol. (a) Given (dy/dx)2 " ax3 so that dy/dx " ± a1/2 x3/2.
Separating variables,                     dy " ± a1/2 x3/2 dx.
Integrating, y ! c " ± (2/5) a1/2 x5/2   or       5 (y ! c) " ± 2a1/2 x5/2.
Squaring both sides, 25 (y ! c)2 " 4ax5 which is the required solution.
(b) Proceed as in part (a). Ans. 49 (y ! c)2 " 4x7.
(c) Given (dy/dx)3 " ax4   or   dy/dx " a1/3 x4/3   or   dy " a1/3 x4/3 dx.
Integrating,     y ! c " (3/7) a1/3 x7/3,   c being an arbitrary constant.
Cubing, 343 (y ! c)3 " 27ax7, which is the required solution.

(d) Here p "
2

3 2 1/ 2
3 2( )

2[ ( ) ]
! � �

# ∃
! � �

dy x a b x ab
dx x x a b abx

or dy " ± (1/2) [x3 – x2 (a ! b) ! abx]–1/2 [3x2 – 2 (a ! b) x ! ab] dx. ... (1)
Putting x3 – x2 (a ! b) ! abx " v so that [3x2 – 2 (a ! b) x ! ab] dx " dv,

(1) becomes                dy " ± (1/2) v–1/2 dv        so that                 y ! c " ± v1/2.
Squaring and putting the value of v, we have

(y ! c)2 " x3 – x2 (a ! b) ! abx   or   (y ! c)2 " x (x – a) (x – b), ... (2)
which is the required solution, c being an arbitrary constant.

(e) This part is a particular case of part (d). Here a " 1, b " 2, proceed now as in part (d).
Ans. (y ! c)2 " x (x – 1) (x – 2).

Ex. 2. Solve (i) 4xp2 " (3x – a)2

            (ii) xp2 " (x – a)2.
Sol. (i) Solving for p, p " dy/dx " ± (3x – a)/ 2 x

i.e., 1 /2 1 /2{(3 / 2) (1/ 2) }dy x ax dx!# ∃ % ! %

Integrating, y ! c " ± (x3/2 – ax1/2) or y ! c " ± x (x – a)
On squaring, the general solution is (y ! c)2 " x (x – a)2.
(ii) Do like part (i). Ans. (y ! c)2 " (4x/9) × (x – 3a)2.
Ex. 3. Solve the following differential equations:
(a) p2 – 7p ! 12 " 0
(b) p2 – 2p cosh x ! 1 " 0 [Kolkata 1993]
Sol. (a) Resolving into linear factors,      p2 – 7p ! 12 " 0 becomes      (p – 3) (p – 4) " 0.
Its component equations are p – 3 " 0 and p – 4 " 0

or (dy/dx) – 3 " 0 and (dy/dx) – 4 " 0     or         dy – 3dx " 0 and dy – 4dx " 0.
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Integrating, y – 3x – c " 0 and y – 4x – c " 0.
Hence, the required combined solution is

(y – 3x – c) (y – 4x – c) " 0, c being an arbitrary constant.
(b) The given equation is p2 – p (ex ! e–x) ! 1 " 0, as           cosh x " (ex ! e–x)/2

or p2 – p ex – pe–x ! ex & e–x " 0, as ex & e–x " 1
or p (p – ex) – e–x (p – ex) " 0         or (p – ex) (p – e–x) " 0.

Its component equations are p – ex " 0 and p – e–x " 0
or (dy/dx) – ex " 0 and (dy/dx) – e–x " 0 or dy – exdx " 0 and dy – e–x dx " 0.

Integrating, y – ex – c " 0 and y ! e–x – c " 0.
Hence, the required combined solution is (y – ex – c) (y ! e–x – c) " 0.
Ex. 4. Solve the following differential equations:
(a) x2p2 ! xyp – 6y2 " 0. [Delhi Maths (G) 1993]
(b) p2 ! (x ! y – 2y/x) p ! xy ! (y2/x2) – y – (y2/x) " 0
Sol. (a) Given x2p2 ! xyp – 6y2 " 0  or  x2p2 ! 3xyp – 2xyp – 6y2 " 0

or xp (xp ! 3y) – 2y (xp ! 3y) " 0     or       (xp ! 3y) (xp – 2y) " 0.
Its component equations are          x (dy/dx) ! 3y " 0           and          x (dy/dx) – 2y " 0

or (1/y) dy ! 3 (1/x) dx " 0 and (1/y) dy – 2 (1/x) dx " 0.
Integrating, log y ! 3 log x " log c, i.e., yx3 " c and  log y – 2 log x " log c, i.e., y/x2 " c
Hence, the general solution is (yx3 – c) (y/x2 – c) " 0., c being an arbitrary constant
(b) Re-writing, p2 ! [{x – (y/x)} ! {y – (y/x)}] p ! {x – (y/x)} {y – (y/x)} " 0

or [p ! {x – (y/x)}] [p ! {y – (y/x)}] " 0.
Its component equations are (dy/dx) + x – (y/x) " 0 ... (1)

and (dy/dx) + y – (y/x) " 0. ... (2)
Re-writing (1), (dy/dx) – (1/x) y " – x, which is linear equation.

Its I.F. " 1( 1/ ) log log 1 1/x dx x xe e e x x
!! ! !∋ # # # #  and solution is

(1/ ) ( ) (1/ ) or / .y x x x dx c y x x c% # ! � # ! �∋ ... (3)

Re-writing (2), dy/dx " y {(1/x) – 1} or (1/y) dy " {(1/x) – 1} dx
Integrating, log y " log x – x ! log c                      or                y " cx e–x.
Hence, the combined solution of the given equation is

(y ! x2 – cx) (y – cx e–x) " 0, c being an arbitrary constant.
Ex. 5. Solve differential equation p3 ! 2xp2 – y2p2 – 2xy2p " 0.
Sol. The given equation can be re-written as
p (p2 ! 2xp – y2p – 2xy2) " 0               or               p [p (p ! 2x) – y2 (p ! 2x)] " 0

or p (p ! 2x) (p – y2) " 0.
Its component equations are dy/dx " 0, (dy/dx) ! 2x " 0 and (dy/dx) – y2 " 0

or          dy " 0, dy ! 2x dx " 0 and  dx – y–2 dy " 0.
Integrating, y " c, y ! x2 " c and x ! (1/y) " c.
Hence, the combined solution is           (y – c) (y ! x2 – c) [x ! (1/y) – c] " 0.
Ex. 6. Solve the following differential equations:
(a) p (p ! x) " y (x ! y) or p2 – xy " y2 – px
(b) p (p ! y) " x (x ! y) [Delhi Maths (G) 2006]
(c) p (p – y) " x (x ! y) [Meerut 1997]
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Sol. (a) Given p (p ! x) " y (x ! y)   or (p2 – y2) ! x (p – y) " 0.
or       (p – y) (p ! y) ! x (p – y) " 0   or (p – y) (p ! y ! x) " 0.

Its component equation are (dy/dx) – y " 0 ... (1)
and (dy/dx) ! y ! x " 0   or   (dy/dx) ! y " – x, which is linear ... (2)

Now, from (1), (1/y) dy " dx so that log y " x ! log c or y " cex. ... (3)

For (2), I.F. " dx xe e∋ #  and hence its solution is

yex " ( ) [ (1 ) ]x x xx e dx c xe e dx c! � # ! ! & �∋ ∋ or yex " – xex ! ex ! c

or                      y ! x – 1 – ce–x " 0, c being an arbitrary constant ... (4)
From (3) and (4), the required combined solution is       (y – cex) (y ! x – 1 – ce–x) " 0.
(b) Try yourself. Ans. (x2 + y2 – c) (2xy + x2 – c) " 0.
(c) Proceed as in part (a). Ans. (x2 + 2y – c) (x + y + 1 – cex) " 0.
Ex. 7. Solve the following differential equations:
(a) x2p2 – xyp – y2 " 0.
(b) p2 – px ! 1 " 0. [Delhi Maths (G) 1996]
(c) x2p2 – 2xyp ! 2y2 – x2 " 0. [Osmania 2003; Kanpur 2005;  Rajsthan 2010]
Sol. (a) Solving for p, p " {xy ± (x2y2 ! 4x2y2)1/2}/(2x2) " (1 ± 51/2) (y/2x)

or dy/dx " (1 ± 51/2) (y/2x) or (2/y) dy " (1 ± 51/2) (1/x) dx.
Integrating, 2 log y " (1 ± 51/2) log x ! log c or y2 "

1 /2(1 5 ).cx ∃

(b) Solving for p, p " dy/dx " {x ± (x2 – 4)1/2}/2 or 2 2(1/ 2) [ 2 ] .dy x x dx# ∃ !

Integrating, ( ) ( ) ( )∗ +22 2 21 1 2
2 2 2 2( 4) log ( 4)

4
x cy x x x x, −# ∃ ! ! � ! �. /0 1

or 4y " x2 ± [x (x2 – 4)1/2 – 4 log {x ! (x2 – 4)1/2}] ! c, c being an arbitrary constant
(c) Solving for p, p " [2xy ! {4x2y2 – 4x2 (2y2 – x2)}1/2]/2x2

or dy/dx " (1/2x2) {2xy ± 2x (x2 – y2)1/2} " {y ± (x2 – y2)1/2}/x ... (1)
Putting y/x " v or y " xv so that dy/dx " v ! x (dv/dx), (1) gives

v ! x (dv/dx) " {xv ± (x2 – x2v2)1/2}/x " v ± (1 – v2)1/2

2 (1/x) dx " ± 2(1/ 1 )v dv! and hence log x – log c " ± sin–1 v

or log (x/c) " ± sin–1 (y/x) or x "
1sin ( / )y xce

!∃

Ex. 8. Solve (1 – y2 ! y4/x2) p2 – 2 (yp/x) ! (y2/x2) " 0.
Sol. Re-writing the given equation, we have
p2 – (2y/x) p ! (y/x)2 " p2y2 – (p2y4/x2) or (p – y/x)2 " p2y2 (1 – y2/x2)

or px – y " ± py (x2 – y2)1/2

or
2 2 1/ 2

2 2 1/ 2 ( ){ ( ) } ordy dx x x yx y x y y
dx dy y

!
! # #

�� ... (1)

To solve it, put x " vy so that dx/dv " v ! y (dv/dy). Then, (1) gives

v ! y
dv
dy

"
2 2 2

2( ) ( 1)vy v y y v y v
y

!
# !

� �

or           
dv
dy

" 2( 1)v !�                   or 2( 1)

dv dy
v

#
!

�

Integrating,      cosh–1 v " c � y                   or cosh–1 (x/y) " c � y.
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Ex. 9. Solve p2y2 cos2 3 – 2pxy sin2 3 ! y2 – x2 sin2 3 " 0.
Sol. Given (py)2 – 2 (py) x tan2 3 ! (y2 sec2 3 – x2 tan2 3) " 0.

2 py "
2 2 4 2 2 2 22 tan {4 tan 4 ( sec tan )}

2
x x y x3 ∃ 3 ! 3 ! 3

or py " 2 2 2 2 2 2tan { tan (tan 1) sec }x x y3 ∃ 3 3 � ! 3

or 2 2 2 2( / ) tan sec ( tan )y dy dx x x y# 3 ∃ 3 3 !

or 2 2 2 2tan sec ( tan )y dy x dx x y dx! 3 # ∃ 3 3 !

or
2

2 2 2

tan sec .
( tan )

x dx y dy dx
x y

!
∃ # ! 3

3 !

Integrating, 2 2 2( tan ) sec .x y c x∃ 3 ! # ! 3 , c being an arbitrary constant
Squaring, x2 tan2 3 – y2 " c2 – 2cx sec 3 ! x2 sec2 3 or x2 ! y2 – 2c x sec 3 ! c2 " 0.
Ex. 10. Solve p2 ! 2py cot x " y2. [Andhra 2003; Kanpur 1997 Srivenkateshwara 2003;

Kanpur 2008; Gulbarga 2005; Delhi Math (G) 1994]
(b) If the curve whose differential equation is p2 + 2py cot x = y2 passes through (4/2, 1),

show that the equation of the curve is given by (2y – sec2 x/2) (2y – cosec2 x/2) = 0.
Sol. (a) Given p2 ! (2y cot x) p – y2 " 0. Solving it for p, we get

2 2 2[ 2 cot (4 cot 4 )] / 2p y x y x y# ! ∃ �

or p " – y cot x ± y (cot2 x ! 1)1/2 " – y (cot x ± cosec x).
Its component equations are dy/dx " – y (cot x ! cosec x)              ... (1)

and dy/dx " – y (cot x – cosec x).               ... (2)

By (1),                  
2cos 1 1 cos 2 cos ( /2)

sin sin sin 2 sin ( /2) cos ( /2)
dy x x y xy y
dx x x x x x

�5 6# ! � # ! # !7 8
9 :

or (1/y) dy " – cot (x/2) dx.
Integrating, log y " log c – 2 log sin (x/2) or y " c cosec2 (x/2). ... (3)

By (2),              
2cos 1 1 cos 2 sin ( /2)

sin sin sin 2 sin ( /2) cos ( /2)
dy x x y xy y
dx x x x x x

!5 6# ! ! # #7 8
9 :

or (1/y) dy " tan (x/2) dx.
Integrating, log y " log c – 2 log cos (x/2) or y " c sec2 (x/2). ... (4)
2 From (3) and (4), the combined solution is (y – c sec2 x/2) (y – c cosec2 x/2) " 0.
(b) As in part (a), the general equation of the curve is

(y – c sec2 x/2) (y – c cosec2 x/2) " 0. ... (5)
Since (1) is to pass through (4/2, 1),         (5)  ;  (1 – 2c)2 " 0  ;  c " 1/2.
Putting c " 1/2 in (5), the equation of the required curve is

(2y – sec2 x/2) (2y – cosec2 x/2) " 0.
Ex. 11. Solve x2p2 – 2xyp ! y2 – x2y2 – x4 " 0. [Delhi Maths (H) 2004]
Sol. Given (xp – y)2 " x2 (x2 ! y2) or xp – y " ± x (x2 ! y2)1/2
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or
1/22

2 2 1/ 2
2 2

( ) or 1
x dy y dxdy yx y x x y

dx x x

5 6!
! # ∃ � # ∃ �7 87 8

9 :

or        2 1 / 2 2 1 / 2

( / )
or , where

{1 ( / ) } (1 )
d y x ydtdx dx t

xy x t
# ∃ # ∃ #

� �
Integrating,  sinh–1 t " C ± x   or   sinh–1 (y/x) " C ± x, as t " y/x
Thus, y/x " sinh (C ± x)                 or                               y " x sinh (C ± x)

The required solution is          {y – x sinh (C ! x)} {y – x sinh (C – x)} " 0

Exercise 4(A)
Solve the following differential equations:

1. p2 – 5p ! 6 " 0   [Delhi Maths (G) 2005] Ans. ( y – 2x – c) (cy – 3x – c) " 0
2. p2 ! p " 6 Ans. ( y ! 3x – c) (y – 2x – c) " 0
3. p2 – p (e2 ! e–2) ! 1 " 0 Ans. ( y – x e2 – c) (y ! x e2 – c) " 0
4. yp2 ! (x – y) p – x " 0 [Delhi B.A. (Prog.) II 2011] Ans. ( y – x – c) (y2 ! x2 – c) " 0
5. x2 p2 ! 3 xyp ! 2 y2 " 0 [Madras 2005, Delhi Maths (G) 1993] Ans. (xy – c) (x2 y – c) " 0
6. xyp2 ! (3 x2 – 2 y2) p – 6xy " 0 Ans. ( y2 ! 3x2 – c) (y – cx2) " 0
7. p3 ! 3 xp2 – y3p2 – 3 xy3 p " 0 Ans. (y – c) (2y ! 3x2 – c) (y–2 ! 2x – c) " 0
8. x2 p3 ! y (1 ! x2 y) p2 ! y3 p " 0 Ans. (y – c) (x – y–1 – c) (ye–1/x – c) " 0
9. xyp2 ! (x2 ! xy ! y2) p ! x2 ! xy " 0 Ans. (x2 ! y2 – c) (2xy ! x2 – c) " 0

10. x2 p2 – 2xyp ! y2 " x2 y2 ! x4 Ans. x ! c " ± log [(y/x) ! {1 ! (y/x)2}1/2]
11. 3 p2 y2 – 2 xyp ! 4 y2 – x2 " 0 Ans. 2x ± (x2 – 3 y2)1/2 " c
12. y " x {p ! (1 ! p2)1/2}[Kanpur 1996] Ans. x2 ! y2 " cx
13. xyp2 – (x2 – y2) p – xy " 0 [Kolkata 1994]     Ans. ( y2 – x2 – c) (xy – c) " 0
14. 4 y2p2 ! 2 pxy (3x ! 1) ! 3x3 " 0  [Delhi 2008] Ans. (x2 ! 2y2 – c) (x2 ! y2 – c) " 0
15. p3 (x ! 2 y) ! 3 p2 (x ! y) ! p (y ! 2x) " 0   [Delhi B.Sc. (Prog) II 2010]

Ans. (y – c) (x ! y – c) (xy ! x2 ! y2 – c) " 0

4.4 Method II. Equations solvable for x
If the given equation f (x, y, p) " 0 is solvable for x, we can express x explicitly in terms of y

and p. Thus, an equation solvable for x can be put in the form. x " F (y, p) ... (1)
Differentiating (1) w.r.t. ‘y’ and writing 1/p for dx/dy, we get

1/p " < (y, p, dp/dy), ... (2)
which is a equation involving two variables y and p. Let its solution be

= (y, p, c) " 0, c being an arbitrary constant. ... (3)
Eliminating p between (1) and (3), we get the solution of (1) in the form g (x, y, c) " 0.
If the elimination of p between (1) and (3) is not possible, then we solve (1) and (3) to

express x and y in terms of p and c in the form
x " f1 (p, c),                y " f2 (p, c). ... (4)

These two equations together form the general solution of (1) in the parametric form, the
parameter being p.

Sometimes even the form (4) of the desired solution is not possible. In that case (1) and (3)
may be regarded as giving x and y in terms of p, that is, (1) and (3) together are said to form the
solution in parametric form.

Remark 1. In some problems (2) can be expressed as <1 (y, p) <2 (y, p, dp/dy) " 0. ... (5)
In such cases we ignore the first factor <1 (y, p) which does not involve dp/dy and proceed

with <2 (y, p, dp/dy) " 0 as already discussed in Art. 4.3.
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Remark 2. If instead of ignoring the factor <1 (y, p), we eliminate p between (1) and <1 (y, p)
" 0, we obtain an equation involving no constant c. This is known as singular solution of (1) and
we shall discuss it later on in this chapter. Singular solution will be obtained only if asked to do so
in a given question. Refer part II of this chapter for more details.

Special case of Method II. Equations that do not contain y.
If the given equation does not contain y, then it can be put in the form  f (x, p) " 0. ... (6)
If (6) is solvable for p, it can be put in the form p " F (x) or dy/dx " F (x),

which can be easily integrated to give the required solution.
If (6) is solvable for x, it can be put in the form   x " G (p), which is of the form (1)

considered in Art 4.3 and so it can be solved as before.
4.5 Solved examples based on method II of Art. 4.4

Ex. 1. Solve the following differential equations :
(a) y = 2px + y2p3. [Delhi B.Sc. (Prog) II 2008; Purvanchal 2007]
(b) p3 – 4xyp + 8y2 = 0. [Delhi B.Sc. Maths (Prog) II 2007]
(c) (2x – b) p = y – ayp2, a > 0 [I.A.S. 2001]
Sol. (a) Given y " 2 px ! y2 p3 where p " dy/dx. ... (1)
Solving (1) for x, x " y (1/2p) – y2 (p2/2). ... (2)
Differentiating (2) w.r.t. ‘y’ and writing 1/p for dx/dy, we get

2 2

2
1 1 2 2

2 2 22
y dp y p y dpp

p p dy dyp
# ! ! ! &

or
2 2

2 2 2
1 1 10 or 0

2 2 2 2
dp y dpyp yp p py y py

p dy dyp p p
5 6 5 6 5 6� � � # � � � #7 8 7 8 7 8
9 : 9 : 9 :

or [py ! (1/2 p2)] [p ! y (dp/dy)] " 0.
*Neglecting the first factor which does not involve dp/dy, (3) reduces to

p ! y (dp/dy) " 0                     or          (1/p) dp ! (1/y) dy " 0.
Integrating,    log p ! log y " log c or py " c or p " c/y.
Substituting this value of p in (1), we get the required solution

y " (2x) (c/y) ! y2 (c/y)3                                or y2 " 2 cx ! c3.

(b) Given              p3 – 4xyp ! 8 y2 " 0,    where   p " dy/dx. ... (1)
Solving (1) for x,                                   x " (1/4y) p2 ! (1/p) (2y). ... (2)
Differentiating (2) w.r.t. ‘y and writing 1/p for dx/dy, we get

2 2

2 2 2
1 2 2 2 1 2or 0

4 4 24
p p dp y dp p dp p y

p y dy p dy y p dy yy p p
5 6# ! � � ! ! ! ! #7 8
9 :

or
2 2 21 2 1 1 20 or 1 0

4 4 4
p y dp p p y dp

y p p dy y p y p p dy
5 6 5 6 5 65 6! ! ! # ! ! #7 8 7 8 7 87 8
9 : 9 : 9 :9 :

... (3)

Neglecting the first factor which does not involve dp/dy, (3) reduces to
1 – (2y/p) (dp/dy) " 0 or (2/p) dp " (1/y) dy.
Integrating, 2 log p " log y ! log c> so that p2 " c> y. ... (4)
We now proceed to eliminate p between (1) and (4). Re-writing (1), p (p2 – 4xy) " – 8 y2

* If we take py + (1/2p2) " 0, then we shall get singular solution which is not to be discussed
unless asked. Thus, the factor which does not involve a derivative of p w.r.t. ‘x’ or ‘y’ will be
omitted. For more details refer part II of this chapter.
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Squaring, p2 (p2 – 4xy)2 " 64 y4 or c>y (c>y – 4xy)2 " 64 y4, using (4) ... (5)
Let c> " 4c, where c in new arbitrary constant. Then (5) gives
4cy (4cy – 4xy)2 " 64y4 or c (c – x)2 " y. ... (6)
(c) Solving the given equation for x, we have 2x " b ! (y/p) – ayp. ... (1)
Differentiating (1) w.r.t. ‘y’, we have

2
2 1 1or 1 0y dp dp y dpap ay ap
p p dy dy p p dyp

5 65 6# ! ! ! � � #7 87 8
9 :9 :

Neglecting the first factor which does not involve dp/dy, we get
1 ! (y/p) (dp/dy) " 0 or (1/p) dp ! (1/y) dy " 0 so that py " c.
Putting p " c/y in the given equation, the required solution is
(a c2/y) ! (2x – b) (c/y) – y " 0 or ac2 ! (2x – b) c – y2 " 0.
Ex. 2. Solve y = 2px + p2y. [Kakatiya 2003, Purvanchal 2007 ; Delhi (Prog.) II 2011]
Sol. Solving for x, we get                            2x " – py ! y/p.  ... (1)

Differentiating (1) w.r.t. y, we get 2
2 1dp y dpp y
p dy p dyp

# ! ! � ! , as 
1dx

dy p
#

or p ! 1/p " – y (dp/dy) (1 ! 1/p2) orp (1 ! 1/p2) ! y (dp/dy) (1 ! 1/p2) " 0
or (1 ! 1/p2) [p ! y (dp/dy)] " 0.

Omitting the first factor which leads to a singular solution, we get
p ! y (dp/dy) " 0 or (1/p) dp ! (1/y) dy " 0
Integrating       log p ! log y " log c or py " c. ... (2)
To eliminate p between (1) and (2), first solve (2) for p. So p " c/y. Putting this value of p in

(1), we get 2x " – c ! y2/c or 2xc – y2 ! c2 " 0.
Ex. 3. Solve y2 log y = xpy + p2. [G.N.D.U. Amritsar 2010]

Sol. Solving for x,                   
log

.
y y p

x
p y

# ! ... (1)

Differentiating (1) w.r.t. y and remembering that dx/dy " 1/p, we get

3 2
1 1 1 1 1 1log log dp dpy y y y p
p y p dy y dyp y

5 6 , −# � & ! & ! ! & �7 8 . /9 : 0 1

or 2 2
1 log 1 log 1y p dp y y
p p p dy yy p

5 6# � � ! �7 8
9 :

or 2 2
log 1 log 10 p y y dp y y

y y dy yp p
5 6 5 6# � ! �7 8 7 8
9 : 9 :

or 2
log 1 0.y y p dp

y y dyp
5 6 5 6� ! #7 8 7 8

9 :9 :

Omitting the first factor, we have 0 or .
p dp dp dy
y dy p y

! # #

Integrating, log p " log y ! log c so that p " cy. ... (2)
Putting the value of p given by (2) in (1), we get x " (log y)/c – c or log y " cx ! c2.
Ex. 4. Solving the following differential equations :
(a) x = y + a log p. [Delhi Maths. (G) 2001, Indore 1995]
(b) x = y + p2. [Delhi Maths. (Pass) 2004]
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Sol. (a) Given x " y ! a log p, where p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘y’ and writing 1/p for dx/dy, we get

11 1 or or .
1

pa dp a dp ady dp
p p dy p p dy p

!
# � # #

!

Integrating, y " c – a log (1 – p), c being an arbitrary constant ... (2)
Substituting this value of y in (1), we get x " c – a log (1 – p) ! a log p. ... (3)
(2) and (3) together form the required general solution of (1) in parametric form, p being

regarded as parameter.
(b) Differentiating the given equation w.r.t. ‘x’, we have
1/p " 1 ! 2p (dp/dy)                           or                             dp/dy " (1 – p)/2p2

or         
22 1or 2 1
1 1

pdy dp dy p dp
p p

5 6# ! # ! � �7 8! !9 :
Integrating, y " c – {p2/2 ! p ! log (p – 1)}, c being an arbitrary constant ... (1)
Substituting this value of y in the given equation, we get x " c – 2 {p ! log (p – 1)}. ... (2)
(1) and (2) together constitute solution in parametric form, p being regarded as parameter.
Ex. 5. Solve the following differential equations :
(a) p3 – p (y + 3) + x = 0 [Lucknow 1997]
(b) x = py + p2 [Delhi Maths. (G) 2004]
(c) x = py – p2

(d) x = py + ap2

Sol. (a) Given                      p3 – p (y ! 3) ! x " 0, where p " dy/dx. ... (1)
Solving for x, x " p (y ! 3) – p3. ... (2)
Differentiating (2) w.r.t. ‘y’ and writing 1/p for dx/dy, we get

   
2 21 1

( 3) 3 or ( 3 3 )
dp dp dpp y p p y p

p dy dy p dy
# � � ! ! # � !

or
2

2 2
2

1 3 3 or [ 3 (1 )]
1

p dy dy py p y p
p dp dp p

!
# � ! # � !

!
or                    (dy/dp) – {p/(1 – p2)} y " 3p, which is linear equation. ... (3)

Its    I.F. "
2 2[ /(1 )] (1/ 2) log (1 ) 2 1/ 2(1 ) .p p dp pe e p! ! % !∋ # # !

2 Solution of (3) is                 y (1 – p2)1/2 " c ! 2 1/ 23 (1 ) .p p dp!∋ ... (4)

Putting 1 – p2 " v so that – 2p dp " dv or pdp " – (1/2) dv, (4) gives
 y (1 – p2)1/2 " 1/ 2 3/ 2 2 3/ 2(3 / 2) (1 )c v dv c v c p! % # ! # ! !∋ ... (5)

y " c (1 – p2)–1/2 – (1 – p2), where | p | < 1, c being an arbitrary constant
Putting this value of y in (2), we get

x " p [c (1 – p2)–1/2 – 1 ! p2 ! 3] – p3 or x " cp (1 – p2)–1/2 ! 2p. ... (6)
(5) and (6) together form the solution of (1) in parametric form, p being treated as parameter.
(b) Given x " py ! p2 ... (1)
Differentiating (1) w.r.t. ‘y’, 1/p " p ! y (dp/dy) ! 2p (dp/dy)

or (1 – p2)/p " (y ! 2p) (dp/dy) or dy/dp " p (y ! 2p)/(1 – p2)
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4.10 Equations of the First Order but not of the First Degree...

or dy/dp – {p/(1 – p2)} y " 2p2/(1 – p2), ... (2)

which is linear with I.E. P dxe∋ , where P " – p/(1 – p2).

   Now, 2 2 1/2
2 2

1 ( 2 ) 1 log(1 ) log(1 )
2 21 1

p p dpP dx dp p p
p p

!
# ! # # ! # !

! !∋ ∋ ∋

2 I.F. of (2) "
2 1/ 2log(1 )pe ! " (1 – p2)1/2 and so solution of (2) is

y (1 – p2)1/2 "
22

2 1/ 2
2 2 1/ 2

1 (1 )2 (1 ) 2
1 (1 )

pp p dp C C dp
p p

! !
! � # �

! !∋ ∋

" 2 1/ 2
2 1/ 22 2 (1 )

(1 )
dpC p dp
p

� ! !
!∋ ∋

" C ! 2 sin–1 p – 2 {(p/2) × (1 – p2)1/2 ! (1/2) × sin–1 p}
or    y " C (1 – p2)–1/2 ! (1 – p2)–1/2 sin–1 p – p     or     y " (C ! sin–1 p) (1 – p2)–1/2 – p ... (3)

Substituting the above value of y in (1), we have
x " p {C (1 – p2)–1/2 ! (1 – p2)–1/2 sin–1 p – p} ! p2

or x " Cp (1 – p2)–1/2 ! p (1 – p2)–1/2 sin–1 p
or                x " p (C ! sin–1 p) (1 – p2)–1/2. ... (4)

(3) and (4) together give the solution is parametric form, p being the parameter.
(c) Do as in part (b). Solution in parametric form is
             x " p(C – sin–1 p) × (1 – p2)–1/2, y " (C – sin–1 p) × (1 – p2)–1/2 ! p
(d) Do as in part (b). Solution in parametric form is
                    x " p (C ! a sin–1 p) (1 – p2)–1/2, y " (C ! a sin–1 p) (1 – p2)–1/2 – ap
Ex. 6. Solve the following differential equations: (a) x = 4 (p + p3)
(b) x (1 + p2) = 1
(c) x + {p/(1 + p2)1/2} = a
Sol. (a) Given                                      x " 4 (p ! p3), where p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘y’ and writing 1/p for dx/dy, we get
1/p " 4 (1 ! 3p2) (dp/dy) or dy " 4 (p ! 3p3) dp.
Integrating,                     y " 4 [(p2/2) ! 3 (p4/4)] ! c " 2p2 ! 3p4 ! c. ... (2)
(1) and (2) together form the solution in parametric form, p being treated as parameter.
(b) Given x " (1 ! p2)–1,  where  p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘y’ and writing 1/p for dx/dy, we get

2
2 2

2 2
1 2(1 ) 2 or .

(1 )
dp pp p dy dp

p dy p
!# ! � & # !

�

Integrating, y " c – 2
2 22

2 2 2 2
tan sec2

(1 ) (1 tan )
dp dp c

p
?& ? ?

# !
� � ?∋ ∋ , putting p " tan ? , dp " sec2? d?

or y " 22 sin (1 cos 2 ) (1/ 2) sin 2c d c d c! ? ? # ! ! ? ? # ! ? � ?∋ ∋
or y " 1

2 2
2 tan1 tan .

2 1 tan 1
pc c p
p

!?
! ? � # ! �

� ? �
... (2)

(1) and (2) together form the solution in parametric form, p being parameter
(c) Given x " a – p (1 ! p2)–1/2. ... (1)
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Differentiating (1) w.r.t. ‘y’ and writing 1/p for dx/dy, we get

2 1/ 2 2 3/ 21 10 (1 ) (1 ) 2
2

dpp p p p
p dy

! !, −5 6# ! � � & ! � &7 8. /9 :0 1

or
2 22

2 3/ 2 2 3/ 2 2 3/ 2
(1 )1 1

(1 ) (1 ) (1 )
p pdp p dp

p dy dyp p p
, − ! �

# ! #. /
� � �0 1

or dy " – (1 ! p2)–3/2 p dp.

Integrating, y " 2 3/ 2 3/21 1
2 2(1 ) (2 )c p p dp c v dv! !! � # !∋ ∋ , putting 1 ! p2 " v, 2 p dp " dv

or y " c ! v–1/2 or y " c ! (1 ! p2)–1/2. ... (2)
We now try to eliminate p from (1) and (2) as follows.
Here, (1) and (2)   ;   x – a " p/(1 ! p2)1/2 and y – c " 1/(1 ! p2)1/2.
Squaring and adding these,               (x – a)2 ! (y – c)2 " 1,

which is the required solution, c being an arbitrary constant.

Exercise 4(B)
Solve the following differential equations

1. p3y2 – 2px ! y " 0 [Delhi B.Sc. (Prog) II 2011] Ans. y2 " 2 cx – c3

2. yp2 – 2xp ! y " 0 Ans. y2 " 2 cx – c2

3. (i) y – 2xp ! ayp2 " 0 (ii) y – 2xp ! yp2  (I.A.S. 2008) Ans. (i) y2 " 2cx – ac2  (ii) y "2cx – c2

4. 4 (xp2 ! yp) " y4 Ans. y " 4c (xyc ! 1)
5. y " 3 px ! 6 p2y2 [Delhi Maths (H) 2001; Delhi Maths (G) 2000] Ans. y3 " 3 cx ! 6 c2

6. p2 – 2xp ! 1 " 0 Ans. x " (p/2) ! (1/2p), y " (p2/4) – (1/2) × log p ! c
7. xp3 " a ! bp Ans. x " a/p3 ! b/p2, y " (3 a/2p2) ! (2 b/p) ! c
8. xp3 – p2 – 1 " 0 Ans. x " p–1 ! p–3, y " (3/2) × p–2 – log p ! c
9. p " tan {x – p/(1 ! p2)}   or   p cot {x – p/(1 ! p2)} " 1

Ans. x " {p/(1 ! p2)} ! tan–1 p, y " c – (p2 ! 1)–1

4.6 Method III. Equations solvable for y
If the given equation f (x, y, p) " 0 is solvable for y, we can express y explicitly in terms of x

and p. Thus, an equation solvable for y can be put in the form y " F (x, p). ... (1)
Differentiating (1) w.r.t. x and writing p for dy/dx, we get p " < (x, p, dp/dx), ... (2)

which is an equation involving two variables x and p. Let its solution be
= (x, p, c) " 0, c being an arbitrary constant. ... (3)

Eliminating p between (1) and (3), the solution of (1) is in the form g (x, y, c) " 0.
If the elimination of p between (1) and (3) is not possible, then we solve (1) and (3) to

express x and y in terms of p and c in the form
x " f1 (p, c),                   y " f2 (p, c). ... (4)

These two equations together form the general solution of (1) in the parametric form, the
parameter being p.

Sometimes even the form (4) of the desired solution is not possible. In that case (1) and (3)
may be regarded as giving x and y in terms of p, that is, (1) and (3) together are said to form the
solution in parametric form.

Remark 1. In some problems (2) can be expressed as  <1 (x, p) <2 (x, p, dp/dx) " 0. ... (5)
In such cases we ignore the first factor <1 (x, p) which does not involve dp/dx and proceed

with <2 (x, p, dp/dx) " 0 as discussed in Art. 4.6.
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4.12 Equations of the First Order but not of the First Degree...

Remark 2. If instead of ignoring the factor <1 (x, p), we eliminate p between (1) and
<1 (x, p) " 0, we obtain an equation involving no constant c. This is known as singular solution of
(1) and we shall discuss it later on in this chapter. Singular solution will be obtained only if asked
to do so in a given question. For details refer part II of this chapter.

First special case of Method III. Lagrange’s equation
The differential equation of the form                      y " x F (p) ! f (p) ... (6)

is known as Lagrange’s equation. To solve it we proceed as in Art. 4.6.
Differentiating (6) w.r.t. ‘x’, we have p " F (p) ! x F> (p) (dp/dx) ! f > (p) (dp/dx)

or p – F (p) "
( ) ( )[ ( ) ( )] or

( )
x F p f pdp dxx F p f p

dx dp p F p
> � >

> � > #
!

or ( ) ( ) ,
( ) ( )

dx F p f px
dp p F p p F p

> >
! #

! !

which is linear equation in x and p and can be solved by usual method to give a relation of the form
x " < (p, c) ... (7)

We now eliminate p between (6) and (7) to get the required solution
It p cannot be eliminated, then putting the value of x in (6), we get

y " < (p, c) F (p) ! f (p). ... (8)
Then (7) and (8) together form the required solution in parametric form, p being regarded as

parameter.
Second special case of method III. Equation that do not contain x.
If given equation does not contain x, then it can be put in the form   f (y, p) " 0. ... (9)
If (9) is solvable for p, it can be put in the form p " F (y) or dy/dx " F (y),

which can be easily integrated to give the required solution.
If (9) is solvable for y, it can be put in the form                         y " G (p),

which is of the form (1) of Art. 4.6 and so it can be solved as before.

4.7 Solved examples based on method III of Art. 4.6
Ex. 1. Solve (a) y " 3x ! log p.
          (b) y " x {p ! (1 + p2)1/2}. [Kanpur 2009]
Sol. (a) Given                               y " 3x ! log p, where p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we get
p " 3 ! (1/p) (dp/dx) or p (p – 3) " (dp/dx)

or 1 1 1 ,
( 3) 3 3

dpdx dp
p p p p

, −# # !. /! !0 1
 resolving into partial fractions.

Integrating, x " (1/3) [log (p – 3) – log p] – (1/3) log c, c being an arbitrary constant

or
3

3
3 3 3log 3 or or

1
x

x
p px e p

pc pc ce
! !, − # # #. / !0 1

Putting this value of p in (1), the required solution is
y " 3x ! log {3/(1 – ce3x)}, c being an arbitrary constant

(b) Given                             y " x {p ! (1 ! p2)1/2},      where     p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we get
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2 1/ 2 2 1/ 21
(1 ) 1 (1 ) 2

2
dpp p p x p p
dx

!, −# � � � � � %. /0 1

or
2 1/ 2

2 1/ 2
2 1/ 2 2 2 1/ 2

[ (1 ) ] 1 2 1(1 ) or .
2(1 ) 1 (1 )

x p p dp p dxp dp
dx xp p p

� � , −# ! � & � # !. /� � �0 1
Integrating, (1/2) × log (1 ! p2) ! log [p ! (1 ! p2)1/2] " log c – log x

log (c/x) " log (1 ! p2)1/2 ! log [p ! (1 ! p2)1/2]
or c/x " (1 ! p2)1/2 [p ! (1 ! p2)1/2] or c/x " (1 ! p2)1/2 (y/x), by (1)
or c " y (1 ! p2)1/2        or         c2 " y2 (1 ! p2)          or c2 – y2 " y2 p2. ... (2)

Multiplying both sides of (1) by y,                              y2 " xyp ! xy (1 ! p2)1/2

or y2 " xyp ! cx, since from (2) y (1 ! p2)1/2 " c
or y2 – cx " xyp or (y2 – cx)2 " x2y2p2

or y4 – 2 cxy2 ! c2x2 " x2y2p2 or y4 – 2 cxy2 ! c2x2 " x2 (c2 – y2), by (2)
or y4 – 2 cxy2 ! x2 y2 " 0 or x2 ! y2 – 2 xc " 0

Ex. 2. Solve the following differential equations:
(a) y + px = x4p2. [M.S. Univ. T.N. 2007; Agra 1996, Delhi Maths (Hons.) 1998]
(b) y = yp2 + 2px [Allahabad 1994, Kanpur, 1993]
(c) y = 2 px + f (xp2) Meerut 2007, Delhi Maths (G) 1998]
(d) y = 2 px + tan–1 (xp2) [Nagarjuna 2003]
Sol. (a) Given                                       y ! px " x4p2, where p " dy/dx. ... (1)
Solving (1) for y, y " x4p2 – px. ... (2)
Differentiating (2) w.r.t. ‘x’ and writing p for dy/dx, we get

p " 4 x3p2 ! 2 x4p (dp/dx) – [p ! x (dp/dx)]
or 2 p – 4x3p2 ! (dp/dx)(x – 2x4p) " 0 or 2p(1 – 2x3p) ! x(dp/dx)(1 – 2x3p) " 0
or (1 – 2x3p) [2 p ! x (dp/dx)] " 0. ... (3)

Neglecting the first factor which does not involve dp/dx, (3) reduces to
2 p ! x (dp/dx) " 0 or (1/p) dp ! 2 (1/x) dx " 0.
Integrating,     log p ! 2 log x " log c           or           px2 " c           or           p " c/x2.
Putting this value of p in (1), the required solution is
y ! x (c/x2) " x4 (c2/x4) or xy ! c " c2x.
(b) Given y " yp2 ! 2 px, where p " dy/dx. ... (1)
Solving (1) for y, y (1 – p2) " 2 px or y " 2 px/(1 – p2). ... (2)
Differentiating (2) w.r.t. ‘x’ and writing p for dy/dx, we get

p " [(1 – p2) {2p ! 2x (dp/dx)} – 2 px (– 2p) (dp/dx)]/(1 – p2)2

or p (1 – p2)2 " 2p (1 – p2) ! 2x (1 – p2) (dp/dx) ! 4 p2x (dp/dx)
or p (1 – p2) [(1 – p2) – 2] – 2x (dp/dx) (1 – p2 ! 2 p2) " 0
or p (p2 – 1) (1 ! p2) – 2x (dp/dx) (1 ! p2) " 0
or (1 ! p2) [p (p2 – 1) – 2x (dp/dx)] " 0. ... (3)

Neglecting the first factor which does not involve dp/dx, (3) reduces to

2 1 1 2( 1) 2 0 or .
1 1

dp dxp p x dp
dx p p p x

5 6! ! # � ! #7 8! �9 :
Integration,               log (p – 1) ! log (p ! 1) – 2 log p " log x ! log c
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or [(p – 1) (p ! 1)/p2] " cx or (p2 – 1)/p2 " cx
or                    p2 – 1 " cxp2 or p " [1/(1 ! cx)]1/2.

Putting this value of p in (1), the required solution is

1/ 2 1/ 2 1/ 2
2 1 2or 1 or 2

1 1(1 ) (1 ) (1 )
y x x cyy y
cx cxcx cx cx

, −# � ! # ! #. /� �� � �0 1
Squaring both sides of above equation,         c2y2 " 4 (1 ! cx), c being an arbitrary constant
(c) Given y " 2 px ! f (xp2), where p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we get

p " 2p ! 2x (dp/dx) ! f > (xp2) × {p2 ! 2xp (dp/dx)}
or p {1 ! p f > (xp2)} ! 2x (dp/dx) {1 ! p f > (xp2)} " 0
or {1 ! p f > (xp2)} {p ! 2x (dp/dx)} " 0. ... (2)

Neglecting the first factor which does not involve dp/dx, (2) reduces to
p ! 2x (dp/dx) " 0 or 2 (1/p) dp ! (1/x) dx " 0.
Integrating, 2 log p ! log x " 2 log c or p2x " c2   or   p " c/x1/2.
Putting this value of p in (1), the required solution is
y " 2 x (c/x1/2) ! f (c2) or y " 2 cx1/2 ! f (c2).
(d) Do as in part (c). Ans. y " 2 (cx)1/2 ! tan–1 c.
Ex. 3. Solve : yp2 – 2 xp ! y " 0
Sol. Solving for y,           y " (2 px) / (1 ! p2). ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we get

p "
2

2 2
(1 )[2 2 ( / )] 2 (2 )( / )

(1 )
p p x dp dx px p dp dx

p
� � ! &

�
or p (1 ! p2)2 " 2p (1 ! p2) ! 2x (dp/dx) {1 ! p2 – 2p2}
or p (1 ! p2) (1 ! p2 – 2) " – 2x (p2 – 1) (dp/dx) ... (2)
or (p2 – 1) [p (1 ! p2) ! 2x (dp/dx)] " 0.

Neglecting the first factor which does not involve dp/dx, (2) reduces to

2
2

2 2(1 ) 2 0 or 0,
1

dp dx pp p x dp
dx x p p

, −� � # � ! #. /�0 1
2 log x ! 2 log p – log(1 ! p2) " log c or x " c (1 ! p2)/p2 ... (3)

Putting this value of x in (1), we get y " 2 c/p. ... (4)
(2) and (4) together form the solution in parametric form, p being treated as parameter.
Ex. 4. Solve the following differential equations :
(a) y = x + a tan–1 p [Delhi Maths (G) 1999, 2000]
(b) 4y = x2 + p2 [Delhi Maths (H) 2009; Delhi Maths (G) 1998]
Sol. (a) Given y " x ! a tan–1 p, where p " dy/dx. ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we have

2 21 or 1
1 1

a dp a dpp p
dx dxp p

# � ! #
� �

or 2 2
11

2 1( 1)(1 ) 1
pa adx dp

pp p p
�, −# # !. /!! � �0 1

, by partial fractions
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Integrating, x " (a/2) × [log (p – 1) – tan–1 p – (1/2) × log (1 ! p2) ! log c]
or x " (a/2) × [log {c (p – 1)/(1 ! p2)1/2} – tan–1 p] ... (2)

Substituting the value of x given by (2) in (1), we have
y " (a/2) × [log {c (p – 1)/(1 ! p2)1/2} ! tan–1 p]. ... (3)

(2) and (3) together form the required solution in parametric form, p being parameter
(b) Given 4 y " x2 ! p2, where p " dy/dx. ... (1)
Differentiating (1) w.r.t. x, 4 p " 2x ! 2 p (dp/dx)

so that             
2 2( / ) 1

,
( / )

p x p xdp
dx p p x

! !
# # which is a homogeneous equation ... (2)

Putting p/x " v or p " xv so that dp/dx " v ! x (dv/dx), (2) gives
2 22 1 2 1 2 1 ( 1)orv v v v vdv dvv x x v

dx v dx v v v
! ! ! ! !

� # # ! # # !

or 2 2 2
( 1) 1 1 1 .

1( 1) ( 1) ( 1)
dx v dv v dv dv
x vv v v

! � , −# ! # ! # ! !. /!! ! !0 1
Integrating, log x " – log (v – 1) ! 1/(v – 1) ! c, c being an arbitrary constant

or log {x (v – 1)} "
1

1
c

v
�

!
or log (p – x) " ,x c

p x
�

!
 as v "

p
x

... (3)

(1) and (3) together give solution, p being the parameter.
Ex. 5. Solve the following the so called Lagrange’s equations.

(a) y = 2 px – p2. [Kanpur 2007, S.V. University (A.P.) 1997]
(b) x = yp + ap2.
(c) 9 (y + x p log p) = (2 + 3 log p) p3

(d) y = abx + bp3

(e)  y = 3px + 4p2 [I.A.S. 1998]
(f) y = 2 px + p2 [Delhi Maths (G) 2005, 06]

Sol. (a) Given                                  y " 2 px – p2, where p " dy/dx. ... (1)
Differeintiating (1) w.r.t. ‘x’,                  p " 2p ! 2x (dp/dx) – 2p (dp/dx)

or          p ! 2 (x – p) (dp/dx) " 0                or p (dx/dp) ! 2 (x – p) " 0

or (dx/dp) ! (2/p) x " 2, which is linear equation.

Its I.F. "
2(2/ ) 2 log log 2p dp p pe e e p∋ # # #  and solution is

xp2 " 22 p dp c�∋ " (2/3) p3 ! c or x " (2/3) p ! cp–2. ... (2)

Putting this value of x in (1), we get

y " 2p [(2/3) p ! cp–2] – p2 or y " (1/3) p2 ! 2 cp–1. ... (3)

(2) and (3) together form the required solution, p being the parameter.

(b) Solving for y, we have                           y " (x/p) – ap. ... (1)

Differentiating (1) w.r.t., ‘x’, p " (1/p) – (x/p2) (dp/dx) – a (dp/dx)
or          (1/p) – p " (dp/dx) (x/p2 ! a)                or (1 – p2) p " (x ! ap2) (dp/dx)
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or
2

2 2 2
1or ,

(1 ) (1 ) 1
x apdx dx apx

dp dpp p p p p
�

# ! #
! ! !

... (2)

which is a linear equation. Comparing (2) with (dx/dp) ! Px " Q, here, we have
P " – 1/{p (1 – p2)}                            and                    Q " (ap)/(1 – p2). ... (3)

2    2 2
1 ,

(1 ) 1
dp pPdx

pp p p
5 6# ! # ! �7 8! !9 :

∋ ∋ ∋ on resolving into partial fractions

" 2 2[(1/ ) (1/ 2){ 2 /(1 )}] – log (1/ 2) log (1 )p p p dp p p! ! ! # � % !∋
" log (1 – p2)1/2 – log p " log {(1 ! p2)1/2/p}.

2 I.F. of (2) " Pdpe∋ " elog {(1 – p2)1/2/p} " (1 – p2)1/2/p and solution is

or
2 1/2 2 1/2

1
2 2 1/ 2

(1 ) (1 ) sin
1 (1 )

x p ap p dpc dp c a c a p
p pp p

!� !
# � & # � # �

! !∋ ∋
2 x " {p/(1 ! p2)1/2} (c ! a sin–1 p). ... (3)
Using (3),                  (1) ; y " {1/(1 ! p2)1/2} (c ! a sin–1 p) – ap. ... (4)
(3) and (4) together form the required solution, p being the parameter.
(c) Solving the given equation for y, y " – xp log p ! (1/9) (2 ! 3 log p) p3. ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we have

p " ##$ p log p – x (log p ! 1) (dp/dx) ! (1/9) [3p2 (2 ! 3 log p) ! 3 p2] (dp/dx)
or p (1 ! log p) " – x (1 ! log p) (dp/dx) ! (1/9) (9p2 ! 9p2 log p) (dp/dx)
or p (1 ! log p) " – x (1 ! log p) (dp/dx) ! p2 (1 ! log p) (dp/dx)
or (1 ! log p) {p ! x (dp/dx) – p2 (dp/dx)} " 0. ... (2)

Rejecting the first factor since it does not involve dp/dx, (2) gives
p ! (x – p2) (dp/dx) " 0 or p (dx/dp) ! x – p2 " 0

or (dx/dp) ! (1/p) x – p " 0 or (dx/dp) ! (1/p) x " p. ... (3)

(3) is linear equation. Its I.F. " (1/ )p dpe∋ " elog p " p and solution is

xp " ( )p p dp c& �∋ or xp " p3/3 ! c

2 x " p2/3 ! cp–1, c being an arbitrary constant ... (4)
Then, (1) ; y " – p log p [(1/3) p2 ! cp–1] ! (1/9) (2 ! 3 log p) p3

or y " (2/9) % p3 – c log p. ... (5)
(1) and (5) together form the required solution, p being the parameter
(d) Differentiating w.r.t. x the given equation     y " apx ! bp3, ... (1)

we get p " ap ! ax (dp/dx) ! 3 bp2 (dp/dx) or p (1 – a) " (ax ! 3bp3) (dp/dx)

or
23 3or ,

(1 ) ( 1) 1
ax bpdx dx a bpx

dp a p dp a p a
�

# � #
! ! !

... (2)

I.F. " [( ) /( 1) ] { /( 1)} log [ / 1)]a dp a p a a p a ae e p& ! ! !∋ # #  and solution is
[ /( 1)] [ /( 1)] [(2 1) /( 1)3 3

1 1
a a a a a ab bxp p pdp c p dp c

a a
! ! ! !# � # �

! !∋ ∋

or
{(3 2) /( 1)}

[ /( 1)] [(3 2) /( 1)]3 3
1 {(3 2) /( 1)} 2 3

a a
a a a ab p bxp c p c

a a a a

! !
! ! !# � # �

! ! ! !

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Equations of the First Order but not of the First Degree... 4.17

or x " (3 bp2)/(2 – 3a) ! cp[a/(1 – a)]. ... (3)
The required solution is given by (1) and (3) in parametric form, p being the parameter.
(e) Given that                     y " 3 px ! 4 p2. ... (1)
Differentiating (1) w.r.t. ‘x’, p " 3 p ! 3 x (dp/dx) ! 8 p (dp/dx)

or
3 8 3(3 8 ) 2 or 4

2 2
x pdp dxx p p x

dx dp p p
�

� # ! # # ! !
!

or (dx/dp) ! (3/2 p) x " – 4, which is linear equation ... (2)

Its I.F. "
3/2(3/ 2 ) (3/ 2)log log 3/ 2p dp p pe e e p∋ # # #  and solution is

5 /2
3/2 3/ 2 5/ 284 4

(5 / 2) 5
pxp p dp c C p c# ! � # ! � # ! �∋

or x " – (8/5) p ! c p–3/2, c being an arbitrary constant ... (3)
Substituting the above value of x in (1), we get

y " 3 p {(– 8/5) p ! cp– 3/2} ! 4 p2 " 3 cp–1/2 – (4/5) p2 ... (4)
The required solution is given by (3) and (4) in parametric form, p being the parameter.
(f ) Given that y " 2 px ! p2 ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we get
p " 2 p ! 2x (dp/dx) ! 2 p (dp/dx) or 2 (x ! p) (dp/dx) " – p

or
2( ) 2

or 2,
x pdx dx

x
dp p dp p

�
# ! � # ! ... (2)

Integrating factor of (2) "
2(2/ ) 2 log log 2p dp p pe e e p∋ # # #  and solution of (2) is

xp2 " 2 2 3( 2) or (2 / 3)p dp c xp p c! � # ! �∋
Thus,                  x " – (2/3) p ! c/p2, c being an arbitrary constant ... (3)
Substituting the value of x given by (3) in (1), we get
y " 2 p{(–2/3) p ! c/p2} ! p2 or y " – (1/3) p2 ! (2c/p) ... (4)
The required solution is given by (3) and (4) in parametric form, p being the parameter.
Ex. 6. Solve the following differential equations :
(a) y " p tan p ! log cos p.
(b) p3 ! p " e y

Sol. (a) Given                            y " p tan p ! log cos p. ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we get

p " [tan p ! p sec2 p ! {1/cos p} (– sin p)] (dp/dx)
or p " p sec2 p (dp/dx) or dx " sec2 p dp. ... (2)

Integrating, (2),               x " tan p ! c, c being an arbitrary constant ... (3)
(1) and (3) form the solution in parametric form, p being the parameter
(b) Taking logarithm of both sides of the given equation we have

log e y " log {p (1 ! p2)} or y " log p ! log (1 ! p2). ... (1)
Differentiating (1) w.r.t. ‘x’, we have

2
1 2

1
p dpp

p dxp
5 6

# �7 8
�9 :

or 2 2
1 2

1
dx dp

p p
5 6

# �7 8
�9 :

Integrating,     x " – (1/p) ! 2 tan–1 p ! c, c being an arbitrary constant. ... (2)
(1) and (2) together form the required solution in parametric form, p being the parameter.
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Exercise 4(C)
Solve following differential equations :

1. y " 2 px ! p4x2 [Delhi Maths (G) 1998] Ans. ( y – c2)2 " 4 cx
2. xp2 – 2 yp ! ax " 0 [Delhi Maths (H) 2006; G.N.D.U. Amritsar 2010] Ans. c2x2 – 2 yc ! a " 0
3. y " 2px – xp2   [Delhi B.A. (Prog) II 2007, 10] Ans.  ( y ! c)2 " 4 cx
4. xp2 – 3 yp ! 9x2 " 0 Ans. 3 cy " c2x3 ! 9
5. p2 ! p " y/x   or   x (p2 ! p) " y. Ans. x " (c/p2) e1/p, y " c (1 ! 1/p) e1/p

6. y " p2 ! x. Ans. x " 2p ! 2 log (p – 1) ! c, y " p2 ! 2p ! 2 log (p – 1) ! c
7. y " p3 ! x. Ans. x " 3 p2/2 ! 3 p – 3 log (p – 1) ! c,

y " p3 ! 3p2/2 ! 3 p ! 3 log (p – 1) ! c
8. y – px ! x – (y/b) " a. Ans. x " c (p – b)–b, y " {b/(b – 1)} × {c (p – 1) (p – b)–b ! a}
9. y " p ! x p2  [Agra 1995] Ans.  x " (log p – p + c) / (p – 1)2 , y " p {1– p ( 2 – log p)} / (p – 1)2

10. x2 ! p2x " yp. Ans. x " cp1/2 – (p2/3), y " {c – (1/3) p3/2} × {c ! (2/3) p3/2}
11. x " yp – p2 Ans. x " {p/(1 ! p2)1/2} (c – sin–1 p), y " {1/(1 ! p2)1/2}(c – sin–1 ! p) ! p
12. x ! py " p3 [Delhi B.Sc. (Prog) II 2009; Delhi Maths (G) 2000, Delhi Maths (H) 1999]

Ans. x " 2p ! cp (p2 ! 1)–1/2, y " p2 – c (p2 ! 1)–1/2 – 2
13. (a) y " (1 ! p) x ! ap2.            Ans. x " ce–p – 2a (p – 1), y " (1 ! p) {ce–p – 2a (p – 1)} ! ap2

(b) y " (1 ! p) x ! p2 Ans. x " ce–p – 2 (p – 1), y " (1 ! p) {ce–p – 2 (p – 1)} ! p2

14. 4 p3 ! 3 xp " y. Ans. x " – (12 p2/7) ! c p–3/2, y " – (8 p3/7) ! 3 cp1/2

15. y " 2 px ! pn. Ans. x " (c/p2) – (n pn –1) / (n ! 1), y " (2c/p) – {(n – 1)pn/(n ! 1)}
16. p3 ! xp2 " y. Ans. x " (2x – 2p3 ! 3p2) / 2(p – 1)2, y " (2cp2 ! 2p3 – p4) / 2 (p – 1)2

17. y " p2x ! p4 Ans. x " {3c ! p3 (4 – 3 p)}/(1 – p)2,
y " {3 cp2 ! p5 (4 – 3 p) ! 3 p4 (1 – p)2} / 3 (1 – p)2.

18. y " sin p – p cos p [Kanpur 1995] Ans. x " c – cos p, y " sin p – p cos p
19. y " p sin p ! cos p. Ans. x " c ! sin p, y " p sin p ! cos p
20. ep – y " p2 – 1. Ans. x " log p – log {(p – 1)/(p ! 1)} ! c, y " p – log (p2 – 1)
21. y " 2 p ! 3 p2. Ans. x " c ! 6 p ! 2 log p, y " 2 p ! 3 p2

22. y " a (1 ! p2)1/2   [Kanpur 1994, 96] Ans. x " c ! a sinh–1 p, y " a (1 ! p2)1/2

23. y – {1 / (1 – p2)1/2} " a Ans. (x ! c)2 ! (y – a)2 " 1
24. y " 2 p ! (1 ! p2)1/2 Ans. y " 2 log p ! sinh–1 p ! c, y " 2 p ! (1 ! p2)1/2

25. p – y " log (p2 – 1). Ans. x " log {p (p ! 1)/(p – 1)} ! c, y " p – log (p2 – 1)
26. y " a ! bp ! dp2. Ans. x " b log p ! 2 dp ! c, y " a ! bp ! dp2

4.8 Method IV : Equations in Clairaut’s form
Clairaut’s equation. Definition. [Andra 2003, Garhwal 2005]
An equation of the form y " px ! f (p) is known as Clairaut’s equation.
General solution of Clairaut’s equation. To show that the general solution of Clairaut’s

equation y = px + f (p) is y = cx + f (c) which is obtained by replacing p by c, where c is an
arbitrary constant

Proof. Given Clairaut’s equation is                            y " px ! f (p). ... (1)
Differentiating (1) w.r.t. ‘x’ and writing p for dy/dx, we have
p " p ! x (dp/dx) ! f > (p) (dp/dx) or [x ! f > (p)] (dp/dx) " 0   ... (2)
Omitting the factor x ! f > (p) which does not involve dp/dx, (2) gives,

dp/dx " 0 so that p " c, c being on arbitrary constant    ... (3)
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Putting the value of p given by (3) in (1), the required solution is
y " cx ! f (c). ... (4)

Working rule for solving Clairaut’s equation i.e. (1):
Replace p, by c in (1) to obtain the general solution of (1) c being an arbitrary constant.
Remark. It we eliminate p between x ! f > (p) " 0 and (1), we shall arrive at a solution which

is free from an arbitrary constant and is not a particular case of (4). Such a solution is known as a
singular solution of (1) and will be discussed in part II of this chapter.

4.9 Solved examples based on Art. 4.8
Ex. 1. Solve the following differential equations :
(a) y = px + (1 + p2)1/2 [Kanpur 1995]
(b) y = px + ap (1 – p) [Agra 2006]
(c) y = px + (a/p)   or   y = x (dy/dx) + a (dx/dp) [Agra 2005]
(d) y = x (dy/dx) + edy/dx   or   y = xp + ep

(e) y = x (dy/dx) + (dy/dx)2  or   y = px + p2 [I.A.S. (Prel.) 1997]
Sol. (a) The given equation is in Clairaut’s form y " px ! f (p). So replacing p by c its general

solution is y " cx ! (1 ! c2)1/2, c being an arbitrary constant.
(b) Proceed as in part (a). Ans. y " cx ! ac (1 – c)
(c) Proceed as in part (a). Ans. y " cx ! (a/c)
(d) Writing p for dy/dx, we get y " xp ! ep which is in Clairaut’s form y " px ! f (p). So

replacing p by c its general solution is   y " cx ! ec.
(e) Writing p for dy/dx, the given equation reduces to y " px ! p2, which is in Clairaut’s form

y " px ! f (p). Replacing p by c, the required solution is   y " cx ! c2 , c being an arbitrary constant
Ex. 2. Solve the following differential equations :

(a) p = log (px – y). I.A.S. (Prel.) 2005]
(b) p = tan (px – y). [Jabalpur 1993, Poona 1991]
(c) sin px cos y = cos px sin y + p [I.A.S. (Prel.) 2005]
(d) (y – px)2 / (1 + p2) = a2

(e) p2 (x2 – a2) – 2 pxy + y2 – b2 = 0 [G.N.D.U. Amritsar 2010]
(f) y2 + x2 (dy/dx)2 – 2xy (dy/dx) = 4 (dx/dy)2

Sol. (a) Given p " log (px – y) so that ep " px – y or y " px – ep, which is in Clairaut’s form.
So replacing p by c, the required general solution is

y " cx – ec, c being an arbitrary constant.
(b) Given p " tan (px – y)  so that  tan–1 p " px – y or y " px – tan–1 p, which is in Clairaut’s

form. So replacing p by c, the required solution is
y " cx – tan–1 c, c being an arbitrary constant

(c) Given sin px cos y " cos px sin y ! p or sin px cos y – cos px sin y " p
or sin (px – y) " p or px – y " sin–1 p or y " px – sin–1 p, which is in Clairaut’s form.
So replacing p by c, the required general solution is

y " cx – sin–1 c, c being an arbitrary constant.
(d) Given    (y – px)2 / (1 ! p2) " a2     or     y – px " ± a (1 ! p2)1/2

or y " cx ± a (1 ! p2)1/2, which is in Clairaut’s form.
Replacing p by c, its general solution is y " cx ± a (1 ! c2)1/2.

or y – cx " ± a (1 ! c2)1/2 or (y – cx)2 " a2 (1 ! c2), on squaring.
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(e) Given p2 (x2 – a2) – 2 pxy ! y2 – b2 " 0 or p2x2 – 2pxy ! y2 " p2a2 ! b2.
or (y – px)2 " p2a2 ! b2 or y " px ± (p2a2 ! b2)1/2.

Replacing p by c, the required general solution is
y " cx ± (c2a2 ! b2)1/2 or y – cx " ± (c2a2 ! b2)1/2.

or (y – cx)2 " c2a2 ! b2 or c2 (x2 – a2) – 2c xy ! y2 – b2 " 0.
(f) Writing p for dy/dx and 1/p or dx/dy, we get
y2 ! x2p2 – 2 xyp " 4/p2 or (y – px)2 " 4/p2 or y " px ± (2/p),

which is of Clairaut’s form. So replacing p by c, the required solution is
y " cx ± (2/c) or y – cx " ± (2/c) or y2 ! x2c2 – 2 xyc " 4/c2.
Ex. 3. Solve p2x (x – 2) + p (2y – 2xy – x + 2) + y2 + y = 0.
Sol. Given p2x2 – 2 p2x ! 2py – 2pxy – px ! 2p ! y2 ! y " 0

or (y2 – 2pxy ! p2x2) ! 2p (y – px) ! (y – px) ! 2p " 0
or (y – px)2 ! 2p (y – px) ! (y – px) ! 2p " 0
or (y – px) [(y – px) ! 2p] ! {(y – px) ! 2p} " 0 or (y – px ! 2p) (y – px ! 1) " 0
; y – px ! 2p " 0 or y – px ! 1 " 0.
; y " px – 2p or y " px – 1. ... (1)

Both the component equations of (1) are in Clairaut’s form and hence replacing p by c, their
general solution are y " cx – 2c and y " cx – 1.
2 general solution is (y – cx ! 2c) (y – cx ! 1) " 0
or c2x (x – 2) ! c (2y – 2xy – x ! 2) ! y2 ! y " 0, c being an arbitrary constant

Exercise 4(d)
Solve the following differential equations, taking p = dy/dx

1. y " px ! pn Ans. y " cx ! cn

2. y " px ! p – p2 [Kanpur 2011] Ans. y " cx ! c – c2

3. y " px ! log p Ans. y " cx ! log c
4. y " px ! sin–1 p Ans. y " cx ! sin–1 c
5. y " x (dy/dx) ! (dy/dx)3 Ans. y " cx ! c3

6. y " px ! a tan–1 p Ans. y " cx ! a tan–1 c
7. px – y ! p3 " m3/p3 Ans. y " cx ! c3 – (m3/c3)
8. y " px ! (a2p2 ! b2)1/2 Ans. y " cx ! (a2c2 ! b2)1/2

9. xp2 – yp ! a " 0 or y " px + a/p [Purvanchal 2007] Ans. y " cx ! (a/c)
10. sin (y – px) " p   [Delhi Maths (Hons.) 2005] Ans. y " cx ! sin–1 c
11. cos px cos y ! sin px sin y " p Ans. y " cx – cos–1 c
12. (y – px) (p – 1) " p Ans. y " cx ! {c/(c – 1)}
13. (xp – y)2 " p2 ! 1    [Guwahati 2007] Ans. (cx – y)2 " c2 ! 1
14. (xp – y)2 " p2 – 1 Ans. (cx – y)2 " c2 – 1
15. (y – px)2 (1 ! p2) " a2p2 Ans. (y – cx)2 (1 ! c2) " a2c2

16. p2 (x2 – a2) – 2 pxy ! y2 ! a4 " 0 Ans. c2 (x2 – a2) – 2cxy ! y2 ! a4 " 0
17. y2 – 2pxy ! p2 (x2 – 1) " m2 Ans. c2 – 2cx ! c2 (x2 – 1) " m2

18. (x2 – 1) p2 – 2xyp ! y2 " 1 Ans. (x2 – 1) c2 – 2xyc ! y2 " 1

4.10 Method V : Equations reducible to Clairaut’s form
By using suitable substitutions, some equations can be reduced to Clairaut’s form. There is

no general method of deciding about proper substitution in a certain problem. These can be learned
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only by practice. However, the students are adviced to remember the three important substitutions
given in following solved examples 1, 2, 3 and indicated as forms I, II and III respectively.

4.11 Solved examples based on Art. 4.10
Form I : To solve y2 " (py/x) x2 ! f (py/x), put x2 " u and y2 " v.
    Now, x2 " u and y2 " v ;  2x dx " du and 2y dy " dv.
2

       
2

or , where .
2

y dy pydv dvP P
x dx du x du

# # #

Hence the given equation becomes                              v " Pu ! f (P),
which is in Clairaut’s form and so its solution is

v " cu ! f (c) or y2 " cx2 ! f (c), c being an arbitrary constant.
We now illustrate form I in the following example 1
Ex. 1. (a) Solve x2 (y – px) = yp2 or yp2 + x3p – x2y = 0. [Allahabad 1994, Delhi Maths (G)

1994, Kumaun 1998, Agra 1995, I.A.S. 1996, Lucknow 1995, S.V. Univ. (A.P.) 1997]
(b) Solve (px – y) (py + x) = h2p, using the transformations x2 = u, y2 = v.[Delhi Maths (H) 2007,

Agra 2006, Delhi Maths (G) 1995, 96, Osmania 2004 Kumaun 1996, Meerut 1997]
(c) Reduce the differential equation (px – y) (x – yp) = 2p to Clairaut’s form by the

substitution x2 = y, y2 = v and find its complex primitive. [Allahabad 1993, Kanpur 1992]
(d) Solve  axy p2 + (x2 – ay2 – b) p – xy = 0 by putting u = x2, v = y2.
(e) Solve   xyp2 – (x2 + y2 – 1) p + xy = 0. [G.N.D.U. Amritsar 2010]
(f) Solve   xy (y – px) " x ! yp.
Sol. (a) Given x2 (y – px) " yp2 or y – px " (yp2)/x2

or                y2 " pxy ! (py/x)2 or y2 " (py/x) x2 ! (py/x)2. ... (1)
Putting x2 " u and y2 " v so that 2x dx " du and 2y dy " dv,     ... (2)

we get            
2

or , where .
2

y dy Pydv dvP P
x dx du x du

# # # ... (3)

Using (2) and (3), (1) becomes v " Pu ! P2, which is in Clairaut’s form. So replacing P by
arbitrary constant c, the required general solution is

v " cu ! c2               or                     y2 " cx2 ! c2, c being an arbitrary constant
(b) Given (px – y) (py ! x) " h2p or (pxy – y2) x {1 ! (py/x)} " h2py

or      (pxy – y2) "
2 2( / ) ( / )

or .
1 ( / ) 1 ( / )
h py x h py xpyy x

py x x py x
5 6# !7 8

� �9 :  ... (1)

Putting  x2 " u  and  y2 " v  so that  2x dx " du  and  2y dy " dv, ... (2)

we get
2

or , where .
2

y dy pydv dvP P
x dx du x du

# # # ... (3)

Using (2) and (3), (1) becomes   v " Pu – (hP)/(1 ! P), which is in Clairaut’s form. So
replacing P by arbitrary constant c, the required solution is

v " cu – (hc)/(1 ! c) or y2 " cx2 – (hc)/(1 ! c), c being an arbitrary constant
(c) Proceed as in part (b). Ans. y2 " cx2 – (2c)/(1 – c).
(d) Given axy p2 ! (x2 – ay2 – b) p – xy " 0. ... (1)
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Putting   x2 " u   and   y2 " v   so that   2x dx " du   and   2y dy " dv, ... (2)

we get
2 or or , where .
2

y dy dv py xP dvP p P
x dx du x y du

# # # # ... (3)

Replacing p by (xP/y) in (1), we have
axy(x2P2/y2) ! (x2 – ay2 – b)(xP/y) – xy " 0 or ax2P2 ! (x2 – ay2 – b)P – y2 " 0

or auP2 ! (u – av – b) P – v " 0   or   v (1 ! aP) " uP (1 ! aP) – bP,    as x2 = u, y2 = v
or v " uP – (bP)/(1 ! aP), which is in Clairaut’s form.

So replacing P by arbitrary constant c, the required general solution is
v " uc – (bc)/(1 ! ac) or y2 " cx2 – (bc)/(1 ! ac), c being an arbitrary constant
(e) Do like part (d). Ans. y2 " cx2 – c/(c – 1)
(f) Given xy (y – px) " x ! yp or xy2 " px2 y ! x ! yp

or y2 " pxy ! 1 ! (py/x) or y2 " (py/x) x2 ! 1 ! (py/x). ... (1)
Putting   x2 " u   and   y2 " v   so that   2x dx " du   and   2y dy " dv, ... (2)

we get      
2

or , where .
2

y dy pydv dvP P
x dx du x du

# # # ... (3)

Using (2) and (3), (1) becomes   v " Pu ! (1 ! P), which is in Clairaut’s form. So replacing P
by arbitrary constant c, the required general solution is

v " cu ! (1 ! c)               or               y2 " cx2 ! (1 ! c), c being an arbitrary constant
Form II : To solve equations of the form eby (a – bp) " f (peby – ax), we use the transformation

eax " u   and   eby " v
We now illustrate form II in the following example 2.
Ex. 2. Solve the following differential equations :
(a) e3x (p – 1) + p3 e2y = 0. [Kanpur 1993]
(b) e4x (p – 1) + e2y p2 = 0. [Delhi 2008; Kakitiya 1997]
Sol. (a) Given                        e3x (p – 1) ! p3 e2y " 0. ... (1)
Re-writing (1), 1 – p " p3 e2y – 3x or ey (1 – p) " (p ey – x)3,

which is of the form II. Note that here a " 1, b " 1.
Putting ex " u and ey " v so that ex dx " du and ey dy " dv, we get

or or , where .
y

x
e dy dv v uP dvp P p P

du u v due dx
# # # #

Putting   ex " u, ey " v and p " uP/v in (1), we have
3 3

3 2
31uP u Pu v

v v
5 6! � %7 89 : " 0 or uP – v ! P3 " 0 or v " uP ! P3,

which is in Clairaut’s form. So replacing P by c, the required solution is
v " uc ! c3              or               ey " c ex ! c3, c being an arbitrary constant
(b) Given e4x (p – 1) ! e2y p2 " 0. ... (1)
Re-writing (1), 1 – p " p2 e2y – 4x or e2y (1 – p) " (p e2y – 2x)2,

which is of the form II. Note that have here      a " 2, b " 2.
Putting e2x " u and e2y " v so that 2 e2x dx " du and 2 e2y dy " dv, we get

  
2

2
2 or or , where ,
2

y

x
e dy dv v uP dvp P p P

du u v due dx
# # # #
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Putting   e2x " u, e2y " v      and    p " uP/v in (1), we get
2 2

2
21 0uP u Pu v

v v
5 65 6! � #7 87 8

9 : 9 :
or uP – v ! P2 " 0 or v " uP ! P2,

which is in Clairaut’s form. So replacing P by c, the required solution is
v " uc ! c2 or e2y " c e2x ! c2, c being an arbitrary constant.
Form III. Sometimes the substitution y2 " v will transform the given equation to Clairaut’s

form as shown in the following example 3
Ex. 3. Solve the following differential equations :
(a) y " 2px + y2 p3 [Delhi 2008]
(b) y " 2px + ay p2

(c) y " 2px + 4yp2 " 0
(d) y " 2px + yp2.
(e) yp2 – 2xp + y " 0.
Sol. (a) Given          y " 2px ! y2p3 ... (1)
Multiplying both sides of (1) by y, we get
y2 " 2 pxy ! y3 p3 or y2 " x (2yp) ! (1/8) × (2y p)3. ... (2)
Put y2 " v so that 2y (dy/dx) " dv/dx or 2yp " P, where P " dv/dx.
Then (2) becomes   v " xP ! P3/8, which is in Clairaut’s form. ... (3)
So replacing P by arbitrary constant c in (3), the required solution is

v " xc ! (c3/8) or y2 " cx ! (c3/8).
(b) Given y " 2px – ayp2. ... (1)
Multiplying both sides of (1) by y, we get
y2 " 2pxy – ay2p2 or y2 " x (2yp) – (a/4) % (2yp)2.
Put y2 " v so that 2y (dy/dx) " dv/dx or 2yp " P, where P " dv/dx.
Then (2) becomes   v " xp – (a/4) % P2, which is in Clairaut’s form. So replacing P by arbitrary

constant c, the required solution is
v " xc – (ac2/4) or y2 " xc – (ac2/4).

(c) Try yourself. Ans. y2 " cx ! 4c2.
(d) Try yourself. Ans. y2 " cx ! (c2/4).
(e) Try yourself. Ans. y " cx – (c2/4).
Note. In the following solved examples, we now present a variety of transformations

employed to reduce a given equation to Clairaut’s form.
Ex. 4. Reduce the equation y2 (y – xp) = x4p2 to Clairaut’s form by the substitution x = 1/u,

y = 1/v and hence solve the equation. [Gulberga 2005]
Sol. Give equation is            y2 (y – xp) " x4p2. ... (1)
Putting   x " 1/u, y " 1/v so that dx " – (1/u2) du, dy " – (1/v2) dv, we get

2 2

2 2or , where and .dy u dv u dv dyp P P p
dx du du dxv v

# # # #

2 Putting   x " 1/u, y " 1/v, p " (u2P)/v2 in (1), we have
(1/v2) {(1/v) – (1/u) (u2P/v2)} " (1/u4) (u4P2/v4) or v " uP ! P2,

which is in Clairaut’s form. Replacing P by c, the required general solution is
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  v " uc ! c2              or              1/y " (c/x) ! c2             or             x " cy ! c2xy.
Ex. 5. Reduce the equation xp2 – 2yp + x + 2y = 0 to Clairaut’s form by using the substitution

y – x = v and x2 = u.
Sol. Given equation is                                xp2 – 2yp ! x ! 2y " 0. ... (1)
Given y – x " v and x2 " u.     ... (2)
Differentiating (2), dy – dx " dv  and 2x dx " du

2 or 1 2 or 1 2 ,
2

dy dx dv dy dvx p x P
x dx du dx du
!

# ! # # �

where p " dy/dx   and   P " dv/du.  Putting p " 1 ! 2 xP in (1), we get
x (1 ! 2xP)2 – 2y (1 ! 2xP) ! x ! 2y " 0

or 2 x2p2 – 2(y – x) P ! 1 " 0  or 2 uP2 – 2 vP ! 1 " 0, using (2)
or                  v " uP ! 1/(2P),  which is of Clairaut’s form. Its solution is

v " uc ! 1/(2c)         or         y – x " cx2 ! 1/(2c), c being an arbitrary constant.
Ex. 6. Solve x2 p2 + yp (2x + y) + y2 = 0 by using the substitution y = u. xy = v.

[Kumaun 1997, Gorakhpur 1993]
Sol. Given equation is                            x2p2 ! yp (2x ! y) ! y2 " 0. ... (1)
Given y " u and xy " v. ... (2)
Differentiation (2), dy " du and x dy ! y dx " dv.

2 or or
x dy y dx ydv dx dvx y x P

dy du dy du p
�

# � # � #

or y/p " P – x  or p " y/(P – x),  where  p " dy/dx, P " dv/du.
Putting   p " y/(P – x) in (1), we have

2 2 2
2

2 (2 )
( )

x y y x y y
P xP x

� � �
!!

" 0 or x2 ! (P – x) (2x ! y) ! (P – x)2 " 0

or Py – xy ! P2 " 0 or v " uP ! P2,  using (2). ... (3)
(3) is in Clairaut’s form. So replacing P by c its general solution is

v " uc ! c2            or            xy " yc ! c2, c being an arbitrary constant.
Ex. 7. Solve (a) y = 2px + f (xp2). [Meerut 2007; Nagrajuna 2003, Delhi 1998]

(b) y = 2px + tan–1 (xp2).
Sol. (a) Given equation is y " 2 px ! f (xp2). ... (1)
Let x " u2 so that dx/dy " 2u (du/dy).

or dy/dx " (1/2u) (dy/du) or p " (1/2u) P, where p " dy/dx, P " dy/du.
Putting   x " u2   and   p " P/(2u) in (1), we have

2
2 2

22
2 4
P Py u f u
u u

5 65 6# � 7 87 8
9 : 9 :

or y " uP ! f (P2/4),

which is in Clairaut’s form. So replacing P by c, its solution is y " cu ! f (c2/4)
or y " c x1/2 ! f (c2/4), c being an arbitrary constant

(b) Proceed as in part (a). Ans. y " cx1/2 ! tan–1 (c2/4).
Ex. 8. Solve  (y + xp)2 = x2p.
Sol. Given equation is                              (y ! xp)2 " x2p. ... (1)
Let xy " v so that y ! x (dy/dx) " dv/dx. ... (2)
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or y ! xp " P or p " (P – y)/x, where p " dy/dx, P " dv/dx.
Putting   p " (P – y)/x in (1), we get                         (y ! P – y)2 " x (P – y)

or                           P2 " xP – xy                           or                           v " xP – P2, by (2).
It is in Clairaut’s form. Hence its solution is  v " xc – c2 or xy " xc – c2.
Ex. 9. Solve   y2 log y = pxy + p2.
Sol. Given equation is                                      y2 log y " pxy ! p2. ... (1)
Let log y " v so that (1/y) (dy/dx) " dv/dx or (1/y) p " P

so that      p " Py,      where     p " dy/dx    and    P " dv/dx.
Putting p " Py in (1), we get y2 log y " (Py) (xy) ! P2y2

or log y " Px ! P2 or v " Px ! P2, as v " log y. ... (2)
(2) is in Clairaut’s form. Replacing P by c, its general solution is
v " cx ! c2                           or                           log y " cx ! c2, c being an arbitrary constant.
Ex. 10. Solve (px2 + y2) (px + y) = (p + 1)2.
Sol. Let x ! y " u         and         xy " v. [Note]     ... (1)
Differentiating (1), dx ! dy " du and x dy ! y dx " dv.

2
( / ) or ,
1 ( / ) 1

x dy y dx x dy dx y xp ydv P
du dx dy dy dx p

� � �
# # #

� � �
... (2)

where P " dv/du and p " dy/dx.  Now, (px2 ! y2) can be re-written as
px2 ! y2 " (px ! y) (x ! y) – xy (p ! 1).

Hence the given equation can be re-written as
{(px ! y) (x ! y) – xy (p ! 1)} (px ! y) " (p ! 1)2

or
2

( ) 1
1 1

px y px y
x y xy

p p
� �5 6 5 6� ! #7 8 7 8� �9 : 9 :

or P2u – vP " 1, by (1) and (2)

or v " uP – (1/P),  which is in Clairaut’s form.
Its general solution is v " uc – (1/c) or xy " c (x ! y) – (1/c)

or                    c2 (x ! y) – cxy – 1 " c, c being an arbitrary constant.
Ex. 11. Solve (x2 + y2) (1 + p)2–2 (x + y) (1 + p) (x + yp) + (x + yp)2= 0 [I.A.S. 2005]
Sol. Let          x2 ! y2 " v and x ! y " u ... (1)
Differentiating (1), 2 (x dx ! y dy) " dv and dx ! dy " du

2       
2( ) 2{ ( / )} 2( )

or ,
1 ( / ) 1

x dx y dy x y dy dx x y pdv P
du dx dy dy dx p

� � �
# # #

� � � ... (2)

where p " dv/du   and   p " dy/dx. Re-writing the given equation, we get
2

2 2( ) 2( ) 0
1 1
x yp x yp

x y x y
p p

� �5 6 5 6� ! � � #7 8 7 8� �9 : 9 :
or v – 2u × 

2

2 2
P P5 6� 7 8

9 :
" 0, using (1) and (2)

or v " uP – (P2/4), which is in Clairaut’s, form. Hence its general solution is
v " uc – (c2/4) or x2 ! y2 " C (x ! y) – (c2/4), by (1)

Exercise 4(E)
Solve the following differential equations:

1. p2 cos2 y ! p sin x cos x cos y – sin y cos2 x " 0
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Hint : Put sin x " u, sin y " v. Ans. sin y " c sin x ! c2.
2. y " 2 px ! yn – 1 pn.

Hint : Put y " v1/2. Ans. v " 2cx ! cn.
3. Solve y " 2 px ! 6 y2p2.

Hint : Put y3 " v, Ans. y2 " 3 cx ! 6 c2.
4. x2 – (xy/p) " f (y2 – xyp).

Hint : Put y2/x2 " v, 1/x2 " u. Ans. cx2 " (c – y2) ! f (c)
5. (2 y/x) – p " f (px – y/x2)

Hint: Put y/x " v. Ans. y " cx2 ! c f (c).
Part II : SINGULAR SOLUTIONS

4.12 Introduction
Let the given differential equation be y " px ! (a/p), where p " dy/dx. ... (1)
(1) is in Clairaut’s form. So its solution is

y " mx ! (a/m), where m is an arbitrary constant. ... (2)
(2) represents a family of curves whose each member

corresponds to a definite value of m. From coordinate
geometry, we know that the straight line (2) touches the
parabola

y2 " 4 ax. ... (3)
Thus assigning different values of m we obtain different

solutions (2), all of which satisfy (1) and they all touch
parabola (3) as shown in fig. 4.1.

Consider the point of contact P (x, y) of any particular
tangent. At P the tangent and parabola have the same
direction, so they have a common values of dy/dx, as well as
of x and y. As P may be any point on the parabola, the
equation of the parabola y2 " 4ax must be a solution of (1) as shown below :

Differentiating y2 " 4 ax, p " dy/dx " 2 a/y. Again from y2 " 4ax, we have x " y2/4a. Putting

these values of p and x,   the R.H.S. of (1) "
22

4 2 2 2
a y y y ya
y a a

& � & # � " y " R.H.S. of (1)

y2 " 4ax is known as a singular solution of (1). Such a solution does not contain any arbitrary
constant and is not a particular case of the general solution. It is sometimes possible to get this
solution from the general solution by assigning a particular value to the arbitrary constant. In such
a case the singular solution is also a particular solution.

Again, we see that the singular solution y2 " 4ax is the *envelope of the general solution (2)
of (1).

4.13 Relation between the singular solution of a differential equation and the envelope of
family of curves represented by that differential equation

Theorem. Whenever the family of curves        < (x, y, c) " 0 ... (1)
represented by the differential equation              f (x, y, p) " 0, where p " dy/dx ... (2)
possesses an *envelope, the equation of the envelope is the singular solution of the differential
equation (2).
* Envelope. Definition. A curve which touches each member of a one-parameter family of curves
and at each point is touched by some member of the family, is called the envelope of that one-
parameter family of curves.

x
O

y

Fig. 4.1

y = 4 x
2 a

y = mx +
/ma

P(x, y)

T
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Proof. Suppose that the family of curves (1) possesses
an envelope AB. Let P (x, y) be any point on the envelope.
Then there exists a curve CPD of the family (1), say,
< (x, y, c1) " 0, which touches the envelope at P (x, y). The
values of x, y, dy/dx for the curve at P satisfy the given
differential equation (2). Again the values of x, y, dy/dx at P
for the envelope are the same as those for the curve. Hence it follows that the values of x, y, dy/dx
at every point of the envelope satisfy the given differential equation (2). Therefore the equation of
the envelope is a solution of the differential equation.

4.14 c-discriminant and p-discriminant relations.
Definitions. The discriminant of an equation involving a single parameter is the simplest

function of the coefficients in the rational integral form, whose vanishing is the condition that the
equation have two equal roots. When the equation is quadratic in parameter p or c, the
corresponding p and c-discriminant relations can be obtained by using the following simple
formula of theory of equations.

If AP2 ! Bp ! C " 0 (or Ac2 ! Bc ! C " 0) be quadratic in p (or c) where A, B, C are functions
of x and y, then p-discriminant (or c-discriminant) relation is given by B2 – 4 AC " 0.

However, if the equation in p (or c) is of higher degree (than 2), then p (or c) discriminant
relation is found in the following way.

Method of getting p-discriminant relation. Let the given equation be f (x, y, p) " 0
Let p (" dy/dx) be regarded as parameter. Then the p discriminant relation is obtained by

eliminating p between the equations, f (x, y, p) " 0          and          ≅f Α ≅p " 0.
Thus the p discriminant relation represents the locus, for each point of which f (x, y, p) " 0

has equal values of p.
Method of getting c-discriminant relation. Let < (x, y, c) " 0 be the general solution of the

given differential equation f (x, y, p) " 0. Let the arbitrary constant c be regarded as parameter.
Then the discriminant relation is obtained by eliminating c between the equations,

< (x, y, c) " 0 and ≅< /≅c " 0.
Thus the c discriminant relation represents the locus, for each point of which < (x, y, c) " 0

has equal values of c.

4.15 Determination of singular solutions
There are two methods of determining singular solution of a given differential equation. We

may find it either from the general solution of the given differential equation or directly from the
given differential equation.

First method. Determination of singular solution from the general solution < (x, y, c) " 0
of the given differential equation f (x, y, p) " 0.

We know that the envelope of the family of curves < (x, y, c) " 0 is contained in c-discriminant
relation, say, = (x, y) " 0.

As the c-discriminant = (x, y) " 0 may represent loci other than the envelope, it follows that
only that part of locus = (x, y) " 0 is the singular solution which also satisfies the given differential
equation f (x, y, p) " 0. Accordingly, if the equation = (x, y) " 0 fails to satisfy f (x, y, p) " 0, then
= (x, y) " 0 should be resolved into more simpler factors. Now, try to verify if any part so obtained
is or is not a solution of f (x, y, p) " 0. Only those parts will constitute the required envelope which
satisfy f (x, y, p) " 0.

C
D

A B

Q

Fig. 4.2

p x y( , )
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Second Method. Determination of singular solution directly from the given differential
equation f (x, y, p) " 0.

Let < (x, y, c) " 0 ... (1)
be the general solution of  f (x, y, p) " 0 ... (2)
Let = (x, y) " 0 ... (3)

be the c discriminant relation. From the theory of equations, it is known that the equation (3)
represents the locus of points (x, y) such that at least two of the corresponding values of c, are
equal i.e. such that at least two of the curves of the family through (x, y) coincide. As the equation
(2) determines the slopes of the tangents to the curves of the family through (x, y), it follows that
for a point (x, y) satisfying (3) at least two of the corresponding values of p must coincide. Hence
we see that the envelope and hence the singular solution is also contained in p-discriminant
relation.

4.16 Working rule for finding the singular solution
Method I. Let f (x, y, p) " 0 ... (1)

be the given differential equation.
Differentiating (1) partially w.r.t. ‘p’, ≅f /≅p " 0. ... (2)
Eliminate p between (1) and (2) to get p-discriminant relation F (x, y) " 0. ... (3)
It (3) satisfies (1), then (3) is the required singular solution. If (3) does not satisfy (1), then

resolve F (x, y) into simpler factors. Now it is necessary to verify if any part of (3) is or is not a
solution of (1). Only those parts will constitute the singular solution which satisfy (1).

From the above discussion, it follows that if p occurs only in the first degree in the given
differential equation, there will be no singular solution. Similarly, if the differential equation can
be resolved into a number of factors, each linear in p, there will be no singular solution.

Method II. Let                                     < (x, y, c) " 0 ... (4)
be the general solution of given differential equation (1).

Differentiating (4) partially w.r.t. ‘c’, ≅< /≅c " 0. ... (5)
Eliminate c between (4) and (5) to get c discriminant relation = (x, y) " 0. ... (6)
It (6) satisfies (1), then (6) is the required singular solution. On the other hand, if (6) does not

satisfy (1), then resolve = (x, y) into simpler factors. Now it is necessary to verify if any part of (6)
is or is not a solution of (1). Only those parts will be the singular solutions which satisfy (1).

Particular case. Singular solution of Clairaut’s equation.
We know that the general solution of the Clairaut’s equation

                                               y " px ! f (p) ... (1)
is                                                y " cx ! f (c). ... (2)

Differentiating (2) partially w.r.t. ‘c’, 0 " x ! f > (c). ... (3)
The singular solution, which is the envelope of (2), is obtained by elimination c between (2) and (3).
Now, differentiating (1) partially w.r.t. ‘p’,                     x ! f > (p) " 0. ... (4)
Note that the equations (1) and (4) differ from the equations (2) and (3) only in having p in

place of c. Accordingly, the c discriminant relation from (2) and (3) and p discriminant relation
from (1) and (4) are identical and both of them gives us the required singular solution.
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The students are, therefore, advised to make use of this fact in doing problems. Thus there
is no need to get general solution (2) and subsequently c-discriminant relation while dealing with
Clairaut’s form of differential equation. Accordingly, the singular solution of the Clairaut’s
equation (1) should be always obtained from p-discriminant relation.

Note. In part I of this chapter we have explained five different methods of solving f (x, y, p)
" 0. We now discuss the determination of singular solution in the following five types of problems
corresponding to five methods of part I. In some solutions we have given reference to solved
examples of part I. Students are advised to give full solution in examination for complete answer
to the problem.

4.17 Solved examples based on singular solutions (See Art. 4.16)

Type I : Equations solvable for p
Ex. 1. Find general and singular solutions of 9p2 (2 – y)2 = 4 (3 – y).
Sol. Solving for p,                          p " (dy/dx) " ± (2/3) × {(3 – y)1/2 / (2 – y)}

Separating variables, dx " 1/ 2 1/ 2
3 2 3 (3 ) 1 .
2 2(3 ) (3 )

y ydy dy
y y

! ! !
∃ # ∃

! !

Integrating, x ! c " ± (3/2) 1/ 2 1/ 2[(3 ) (3 ) ]y y dy!! ! !∋
or x ! c " ± (3/2) [(–2/3) (3 – y)3/2 ! 2(3 – y)1/2] " ± (3 – y)1/2 [– (3 – y) ! 3]
or x ! c " ± y (3 – y)1/2 or (x ! c)2 " y2 (3 – y), on squaring.

This is the general solution. The singular solution can be found by any of the two methods
given below :

First Method. The general solution is    (x ! c)2 " y2 (3 – y)
or c2 ! 2xc ! {x2 – y2 (3 – y)} " 0.

This is a quadratic equation in the parameter c. So the c discriminant relation is
B2 – 4 AC " 0,      i.e.,      4x2 – 4 % 1 % {x2 – y2 (3 – y)} " 0     or       y2 (3 – y) " 0.

Now y " 0 gives dy/dx " p " 0. Substitution of y " 0 and p " 0 in the given differential equation
does not satisfy it. Hence y " 0 is not a singular solution.

Again 3 – y " 0 gives dy/dx " p " 0. Substitution of y " 3 and p " 0 in the given differential
equation satisfies it. Hence y " 3 the required singular solution.

Second Method. Given equation is 9 p2 (2 – y)2 ! oΒp – 4 (3 – y) " 0.
This is a quadratic in the parameter p. So p-discriminant relation is given by

B2 – 4AC " 0, i.e., 02 – 4&9 (2 – y)2 & {–4 (3 – y)} " 0 or (2 – y)2 (3 – y) " 0.
Now 2 – y " 0 gives dy/dx " p " 0. Substitution of y " 2 and p " 0 in the given equation does

not satisfy it. Hence y " 2 is not a singular solution.
Again 3 – y " 0 gives dy/dx " p " 0. Substitution of y " 3 and p " 0 in the given equation

satisfies it. Hence y " 3 is the required singular solution.
Ex. 2. Find the general solution and singular solution of
(a) 4p2 = 9x
(b) xp2 = (x – a)2

Sol. (a) Solving for p, p " dy/dx " ± (3/2) x1/2 or dy " ± (3/2) x1/2

Integrating,     y ! c " ± x3/2     or     (y ! c)2 " x3     or     c2 ! 2yc ! (y2 – x3) " 0,
which is is a quadratic equation in the parameter c. Hence c–discriminant relation is

B2 – 4AC " 0, i.e.,  4 y2 – 4 % 1 % (y2 – x3) " 0  or x3 " 0  or x " 0
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Re-writing the given equation,                                  4 " 9x (1/p)2 ...(1)
Now x " 0 gives dx/dy " 1/p " 0. Substitution of x " 0 and 1/p " 0 in the given equation (1) does

not satisfy it. Hence x " 0 is not a singular solution.
Thus, the given equation has no singular solution.
(b) Solving for p,                   p " dy/dx " ± (x – a)/x1/2 " ± (x1/2 – a x–1/2).

or dy " ± (x1/2 – ax–1/2) dx so that y ! c " ± {(2/3) x3/2 – 2a x1/2}
or y ! c " ± (2/3) x1/2 (x – 3a) or 9 (y ! c)2 " 4x (x – a)2

or 9c2 ! 18 yc ! {9y2 – 4x (x – a)2} " 0,
which is a quadratic in the parameter c. So the c discriminant relation is

B2 – 4 AC " 0, i.e., (18)2 % y2 – 4 % 9 % {9y2 – 4x (x – a)2} " 0 or 4x (x – a)2 " 0.
Given equation is xp2 " (x – a)2 or x " (x – a)2 (1/p)2. ... (1)
Now x " 0 gives dx/dy " 1/p " 0. Substitution of x " 0 and 1/p " 0 in the given equation (1)

satisfies it. Hence x " 0 in the required singular solution.
Again, x " a gives dx/dy " 1/p " 0. Substitution of x " a and 1/p " 0 in the given equation (1).

does not satisfy it. Hence x " a is not singular solution.
Ex. 3. Find general and singular solutions of 8ap3 = 27y [I.A.S. 1993]
Sol. Solving for p, p " dy/dx " (3/2) (1/a1/3) y1/3

or                   dx " (2/3) a1/3 y–1/3 dy                   so that                    x ! c " a1/3 y2/3

or (x ! c)3 " ay2, on cubing both sides. ... (1)
Now, differenting (2) partially w.r.t. ‘c’, we get

3 (x ! c)2 " 0 or x ! c " 0 or c " – x. ... (2)
Eliminating c between (1) and (2), the c-discriminant relation is

0 " ay2 or y " 0.
Now   y " 0 gives p " dy/dx " 0. Substitution of y " 0 and p " 0 in the given differential

equation satisfy it. Hence y " 0 is the singular solution.
Ex. 4. Find the singular solution of  xp2 – (y – x) p – y = 1.
Sol. Since the given equation is the quadratic in the parameter p, hence the p-discriminant

relation is B2 – 4 AC " 0, i.e.,  (y – x)2 – 4x & (– y – 1) " 0 or (y ! x)2 " – 4x. ... (1)
Differentiating (1) w.r.t. ‘x’, 2 (y ! x) (p ! 1) " – 4      or     p " – (x ! y ! 2)/(x ! y).
Now, substituting this value of p in the given differential equation and using (1), we verify

that it is satisfied. Hence (x ! y)2 ! 4x " 0 is the required singular solution.
Ex. 5. Find the general and singular solution of p2 + y2 = 1.
Sol. Given equation is p2 ! o&p ! (y2 – 1) " 0 ... (1)
Solving for p, p " dy/dx " ± (y2 – 1)1/2 or dx " ± [1/(1 – y2)1/2] dy.
Integrating, x ! c " ± cos–1 y or cos–1 y " ± (x ! c) or y " cos (x ! c).
From (1), the p-discriminant relation is            B2 – 4 AC " 0,           i.e.,

0 – 4 & 1 & (y2 – 1) " 0 or y2 – 1 " 0 or (y – 1) (y ! 1) " 0.
Now, y – 1 " 0 gives p " dy/dx " 0. Substitution of y " 1 and p " 0 in (1) satisfies it. Hence y

" 1 is a singular solution. Similarly we see that y " – 1 is also a singular solution.
Hence y " cos (x ! c) is general solution and y " ± 1 are singular solutions.
Ex. 6. Find the general and singular solution of y2 (1 + p2) = r2  or   y2 {1 + (dy/dx2} = r2.

[I.A.S. (Prel.) 2000, 01, 02, 06]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Equations of the First Order but not of the First Degree... 4.31

Sol. Re-writing the given equation, we have
p " dy/dx " % (r2 – y2)1/2/y or dx " % (1/2) × (r2 – y2)–1/2 (– 2y) dy
Integrating, x ! c " % (r2 – y2)1/2 or (x ! c)2 ! y2 " r2, ... (1)

which is the general solution of the given differential equation.
Now differentiating (1) partially w.r.t. ‘c’, we get
2 (x ! c) ! 0 " 0 so that c " – x. ... (2)
Eliminating c between (1) and (2), we get   y2 " r2 or (y – r) (y ! r) " 0, which is the c-

discriminant relation. Since y " r and y " – r both satisfy the given differential equation and hence
form the singular solutions.

Ex. 7. Find the general and singular solutions of
(a) 4p2x (x – a) (x – b) = {3x2 – 2x (a + b) + ab}2.
(b) 4p2x (x – 1) (x – 2) = (3x2 – 6x + 2)2.
Sol. (a) Given                 4p2 x (x – a) (x – b) – {3x2 – 2x (a ! b) ! ab}2 " 0. ... (1)
Proceed now as in Ex. 1(d) of Art. 4.3 and get the solution as
(y ! c)2 " x(x – a) (x – b) or c2 ! 2cy ! {y2 – x (x – a) (x – b)} " 0.
This is a quadratic equation in the parameter c. Hence the c-discriminant is given
B2 – 4AC " 0, i.e., 4 y2 – 4&1·{y2 – x (x – a) (x – b)} " 0 or x (x – a) (x – b) " 0.
Re-writing (1),              4x(x – a)(x – b) " {3x2 – 2x(a ! b) ! ab}2(1/p)2 ... (2)
Now, x " 0 gives dx/dy " 0 or 1/p " 0. Substitution of x " 0 and 1/p " 0 in (2) satisfies it. Hence

x " 0 is a singular solution Similarly, x " a and x " b are also singular solutions
(b) Proceed as in part (a).Ans. (y ! c)2 " x (x – 1) (x – 2) is general solution and  x " 0,

x " 1, x " 2 are singular solutions.
Ex. 8. Find the general and singular solution of p2y2 cos2 3 – 2pxy sin2 3 + y2 – x2 sin2 3 = 0
Sol. For general solution refer Ex. 9 of Art. 4.3. Then we have
                          c2 ! 2 (x sec 3) x ! x2 ! y2 " 0, c being an arbitrary constant
This is quadratic in c. So here  c-discriminant relation is
4x2 sec2 3 – 4&1& (x2 ! y2) " 0                 or                     x2 (sec2 3 – 1) – y2 " 0

or                 y2 – x2 tan2 3 " 0 or (y – x tan 3) (y ! x tan 3) " 0.
Now,   y " x tan 3 gives p " dy/dx " tan 3. Substitution of p " tan 3 and y " x tan 3 in the

given equation satisfies it. Hence y " x tan 3 is a singular solution. Similarly, we easily verify that
y " – x tan 3 is also a singular solution.

Ex. 9. Find the differential equation of the family of circles x2 + y2 + 2cx + 2c2 – 1 = 0
(c arbitrary constant). Determine singular solution of the differential equation.

Sol. To get differential equation proceed as in chapter 1 and get
2y2p2 ! 2xyp ! x2 ! y2 – 1 " 0, where p " dy/dx ... (1)

Here p-discrimation relation is
x2y2 – 2y2 (x2 ! y2 – 1) " 0 i.e. y2 (x2 ! 2y2 – 2) " 0. ... (2)
From the given equation, c-discriminant relation is
x2 – 2 (x2 ! y2 – 1) " 0 or x2 ! 2y2 – 2 " 0. ... (3)
From (2) and (3), we conclude that x2 ! 2y2 – 2 " 0 is the only singular solution since it

occurs once both in p and c-discriminant relations and also satisfies (1).
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Type 2 : Equations solvable for x
Ex. 10. Find the general and singular solution of p3 – 4xyp + 8y2 = 0.
Sol. Given equation is                          p3 – 4xyp ! 8y2 " 0. ... (1)
As in solved example 1(b) of Art. 4.5, the required general solution is
                          c (c – x)2 " y, c being an arbitrary constant ... (2)
Differentiating (2) partially w.r.t. ‘c’, we have

(c – x)2 ! 2c (c – x) " 0 or (c – x) (3c – x) " 0 so that c " x or c " x/3
When c " x, (4) gives y " 0;                     when c " x/3, (4) gives y " 4x3/27.      .. (3)
Now, y " 0 gives p " dy/dx " 0. Substitution of y " 0 and p " 0 in (1) satisfy (1). Hence y " 0

is a singular solution of (1). Again y " 4x3/27 gives p " dy/dx " 4x2/9. These satisfy (1). Hence y "
4x3/27 is also singular solution.

Ex. 11. Find the solution of the differential equation y = 2xp – yp2 where p = dy/dx. Also find
the singular solution. [Guwahati 1996]

Sol. Given                                             y " 2xp – yp2 ... (1)
Solving (1) for x,                                    x " y/2p ! yp/2 ... (2)

Diff. (2) w.r.t. y and noting that dx/dy " 1/p, we get 2
1 1

2 2 22
y dp p y dp

p p dy dyp
# ! � �

or
2 2 2

1 1 1 11 1 0 or 1 0.
2 2 2
y dp p dpy p

dy dyp p p
5 65 6 5 6 5 6! � ! # ! � #7 87 8 7 8 7 8
9 :9 : 9 : 9 :

Omitting the first factor, for general solution we have
y (dp/dy) ! p " 0    or (1/p) dp ! (1/y) dy " 0
Integrating, log p + log y " log c or py " c or p " c/y. ... (3)
Eliminating p from (1) and (3), the general solution is
y " (2xc)/y – (yxc2)/y2 or y2 " 2cx – c2 .... (4)
The p-disc. relation from (1) i.e.     yp2 – 2xp ! y " 0 is given by
4x2 – 4y2 " 0 or x2 – y2 " 0 or (x – y) (x ! y) " 0.
The c-disc. relation from (4) i.e.      c2 – 2cx ! y2 " 0 is given by
4x2 – 4y2 " 0 or x2 – y2 " 0 or (x – y) (x ! y) " 0.
Hence x – y " 0 and x ! y " 0 are singular solutions because these appear once in both the

descriminants and also satisfy (1).

Type 3 : Equations solvable for y
Ex. 12. Solve the general and singular solutions of x3p2 + x2yp + a3 = 0. [Kanpur 1994]
Sol. The given equation is                               x3p2 ! x2 yp ! a3 " 0. ... (1)
Solving for y,                                      y " – xp – a3/(x2p). ... (2)
Differentiating (2) w.r.t. ‘x’ and writing p for dy/dx, we have

  
3 3

3
3 2 2 3 2 2
2 1 2or 2 0dp dp dp a a dpp p x a p x

dx dx dx dxx p x p x p x p
5 6# ! ! ! ! ! � ! ! #7 8
9 :

or
3 3 3

3 2 3 2 3 22 1 1 0 or 1 2 0.a dp a a dpp x p x
dx dxx p x p x p

5 6 5 6 5 65 6! � ! # ! � #7 8 7 8 7 87 8
9 :9 : 9 : 9 :

Omitting the first factor since it does not involve dp/dx, we get
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2p ! x (dp/dx) " 0 or (1/p) dx ! (2/x) dx " 0.
Integrating, log p ! 2 log x " log c or px2 " c or p " c/x2.     ... (3)
Eliminating p between (1) and (3), the required general solution is
x3 (c2/x4) ! x2y (c/x2) ! a3 " 0 or c2 ! xyc ! a3x " 0. ... (4)
By (4), c-discriminant relation is           (xy)2 – 4 × 1 × (a3x) " 0 or x (xy2 – 4a3) " 0.
Now x " 0 and xy2 – 4a3 " 0 both satisfy (1) and the hence required singular solutions are

x " 0 and xy2 – 4a3 " 0.
Ex. 13. Find general and singular solutions of  3xy = 2px2 – 2p2 or y = (2x/3) p – (2/3x) p2

[I.A.S. Prel. 1995, 2001]
Sol. Given equation is                         3xy " 2px2 – 2p2. ... (1)
Solving (1) for y,                                   y " (2/3) px – (2/3) p2 x–1. ... (2)
Differentiating (2) w.r.t. ‘x’ and writing p for dy/dx, we get

2
1 2 2

2
2 2 2 2 42 or 3 2 2 0
3 3 3
p x dp dp p dp p dpp p x x p p p x

dx dx dx x dxx
! !, −# � ! ! ! ! ! � #. /0 1

or        
2

2 2 2
2 2 2 22 0 or 1 2 1 0p dp p p dp pp x p x

dx x dxx x x
5 6 5 6 5 6! ! ! # ! ! ! #7 8 7 8 7 89 : 9 : 9 :

or {1 – (2 p/x2)} {p – 2x (dp/dx)} " 0. ... (3)
Omitting the first factor which does not involve dp/dx, we get
p – 2x (dp/dx) " 0 or (2/p) dp " (1/x) dx
Integrating, 2 log p " log x ! log c or p2 " xc or p " ± (xc)1/2.
Putting this value of p in (2), the required general solution is
3y " ± 2x (xc)1/2 – 2c or 3y ! 2c " ± 2x (xc)1/2

or (3y ! 2c)2 " 4cx3 or 4c2 ! 4c (3y – x3) ! 9y2 " 0. ... (4)
From (4), the c-discriminant relation is B2 – 4 AC " 0, i.e.,
16 (3y – x3)2 – 4 × 4 × 9y2 " 0                       or x3(x3 – 6y) " 0.
Now x3 " 0 gives x " 0 and dx/dy " 1/p " 0 and these values do not satisfy (1). So x " 0 is

not a singular solution.
Again x3 – 6y " 0 gives y " x3/6 and p " dy/dx " x2/2. These values satisfy (1). Hence x3 – 6y

" 0 is singular solution.
Ex. 14. Solve the differential equation (8p3 – 27) x = 12p2y and investigate whether a

singular solution exists.
Sol. The given equation is            (8p3 – 27) x " 12 p2y. ... (1)
Solving (1) for y, y " (2/3) px – (9/4) (x/p2). ... (2)
Differentiating (2) partially w.r.t. ‘x’ and writing p for dy/dx, we get

         2 3 2 3
2 9 1 2 1 9 2 9or 0
3 4 3 34 2

dp x dp dpp p p x
dx dx dxp p p p

5 6 5 6 5 6# � ! ! � ! � #7 8 7 8 7 89 : 9 : 9 :

or   3 3 3
1 27 2 27 1 271 1 0 or 1 2 0.
3 3 34 4 4

x dp dpp p x
dx dxp p p

5 6 5 6 5 65 6� ! � # � ! #7 87 8 7 8 7 89 :9 : 9 : 9 :
Omitting the first factor which does not involve dp/dx, we get
p – 2x (dp/dx) " 0 or (2/p) dp " (1/x) dx.
Integrating, 2 log p " log x ! log (9/4c) or p2 " x (9/4c) or p " ± (3/2) (x/c)1/2
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Putting this value of p in (2), the required general solution is
y " ± (x3/2 / c1/2) – c or c1/2 (y ! c) " ± x3/2 or c (y ! c)2 " x3. ... (3)
Differentiating (3) w.r.t. c,         (y ! c)2 ! 2c (y ! c) " 0          or          (y ! c) (y ! 3c) " 0

2 y ! c " 0 or y ! 3c " 0 so that c " – y or c " – y/3.
When c " – y, (3) gives x3 " 0 or x " 0;                  when c " – y/3, (3) gives 4y3!27x3 " 0.
We easily verity that x " 0 and 4y3 ! 27x3 " 0 both satisfy (1). Hence these are required

singular solutions.
Ex. 15. Solve the differential equation y = x – 2ap + ap2. Find the singular solution and

interpret it geometrically. [I.A.S. 2000]
Sol. Given that y " x – 2ap ! ap2, where p " dy/dx ... (1)
Differentiating (1) w.r.t. ‘x’, p " 1 – 2 a (dp/dx) ! 2 ap (dp/dx)

or p – 1 " 2a (p – 1) (dp/dx) or (p – 1) {2a (dp/dx) – 1} " 0
Omitting the first factor since it does not involve dp/dx, we get
2a (dp/dx) – 1 " 0                   or dx " 2 adp.
Integrating,      x " 2ap ! c so that p " (x – c)/2a ... (2)
Substituting the value of p from (2) in (1), general solution of (1) is
y " x – (x – c) ! (1/4a) (x – c)2 or 4a (y – c) " x2 ! c2 – 2xc

or c2 – 2xc ! 4ac ! x2 – 4ay " 0 or c2 – 2c (x – 2a) ! (x2 – 4ay) " 0, ... (3)
which is a quadratic equation in parameter c. So the c-discriminant relation is

4 (x – 2a)2 – 4 (x2 – 4ay) " 0 or y – x ! a " 0 ... (4)
Again, re-writing (1),                               ap2 – 2ap ! (x – y) " 0, ... (5)

which is a quadratic in parameter p. Hence the p-discriminant relation is
4a2 – 4a (x – y) " 0 or y – x ! a " 0 ... (6)
From (4) and (6), we find that y – x ! a " 0 is present in both p and c discriminant relations.

Further y – x ! a " 0 gives y " x – a and p " dy/dx " 1. These satisfy (1). Hence y – x ! a " 0 is
singular solution of (1).

Geometrical interpretation of singular solution y – x + a = 0.
Re-writing (3),                                     (x – c)2 " 4a (y – c), ... (7)

which represents a family of parabolas all of which touch the line y – x ! a " 0, which is the
envelope of this family of parabolas.

Type 4 : Equations in Clairaut’s form
Ex. 16. Find the general and singular solutions of y = px + (a/p).
Sol. The given equation is             y " px ! (a/p), ... (1)

which is in Clairaut’s form. So replacing p by c in (1) the solution is
y " cx ! (a/c) or c2x – yc ! a " 0. ... (2)
Now, c – discriminant relation of (2) is B2 – 4AC " 0,.         i.e.,
(– y)2 $ 4xa = 0                   or y2 " 4ax. ... (3)
Now,   y2 " 4ax gives 2y (dy/dx) " 4a or p " 2a/y. Putting this value of p in (1), we get y "

(2ax)/y ! (y/2) or y2 " 4ax which is true by (3). Hence (3) satisfies (1) and so y2 " 4ax is the
required singular solution.

Ex. 17. Find the complete primitive (general solution) and singular solution of the following
equations. Interpret your results geometrically.
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(a) y = px + (b2 + a2p2)1/2

(b) y = x (dy/dx) + a {1 + (dy/dx)2}1/2 or y = px + a (1 + p2)1/2

(c) (xp – y)2 = p2 – 1. [I.A.S. Prel 1997, 2000, 01, 02, 08]
Sol. (a) The given equation is y " px ! (b2 ! a2p2)1/2, ... (1)

which is in Clairaut’s form. So replacing p by the arbitrary constant c in (1), the required complete
primitive is                                             y " cx ! (b2 ! a2c2)1/2 ... (2)
or (y – cx)2 " b2 ! a2c2 or c2 (x2 – a2) – 2xyc ! (y2 – b2) " 0 ... (3)

From (3), the c-discriminant relation is B2 – 4AC " 0, i.e.,
4x2y2 – 4(x2 – a2) (y2 – b2) " 0 or b2x2 ! a2y2 " a2b2

or x2/a2 ! y2/b2 " 1. ... (3)
This relation satisfies (1), and hence it is the required singular solution.
Geometrical interpretation. The complete primitive (2) represents a family of straight lines

all of which touch the ellipse (3) which is the envelope of this family of straight lines.
(b) Proceed as in part (a). Note that here b " a.
The general solution is y " cx ! a (1 ! c2)1/2 and the singular solution is x2 ! y2 " a2.
Geometrical interpretation. The complete primitive y " cx ! a (1 ! c2)1/2 represents a family of

straight lines all of which touch the circle x2 ! y2 " a2 which is the envelope of this family of
straight lines.

(c) The given equation is (xp – y)2 " p2 – 1.                ... (1)
Re-writing (1), xp – y " ± (p2 – 1)1/2 or y " px ± (p2 – 1)1/2 ... (2)

either of which is in Clairaut’s form. So replacing p by the arbitrary constant c,
the required complete primitive is y " cx ± (c2 – 1)1/2 ... (3)

(y – cx)2 " c2 – 1 or c2 (x2 – 1) – 2xyc ! (y2 ! 1) " 0. ... (4)
From (4), the c-discriminant relation is B2 – 4AC " 0, i.e.,
(– 2xy)2 – 4 (x2 – 1) (y2 ! 1) " 0 or x2 – y2 " 1. ... (5)
This relation satisfies (1) and hence it is the singular solution.
Geometrical interpresation. The complete primitive gives by (3) represents a family of

straight lines, each member of which touches the rectangular hyperbola x2 – y2 " 1, which is the
envelope of this family of straight lines.

Ex. 18. Find the general and singular solutions of                 (px – y)2 = p2 + m2

or y2 – 2pxy ! p2 (x2 – 1) = m2.
Sol.  The given equation is y2 – 2pxy ! p2x2 " p2 ! m2 ... (1)
Re-writing (1), (y – px)2 " m2 ! p2 or y " px ± (m2 ! p2)1/2.

either of which is in Clairaut’s form. So replacing p by the arbitrary constant c, the required general
solution is y " cx ± (m2 ! c2)1/2 ... (2)
or (y – cx)2 " m2 ! c2 or c2 (x2 – 1) – 2cxy ! (y2 – m2) " 0. ... (3)

From (3), the c-discriminant relation is B2 – 4AC " 0, i.e.,
(– 2xy)2 – 4 (x2 – 1) (y2 – m2) " 0 or y2 ! m2x2 " m2. ... (4)
This relation satisfies (1), and hence it is the singular solution
Ex. 19. Find the general and singular solution of equation p = log (px – y)

[I.A.S. (Prel.) 1994, Purvanchal 1993]
Sol. The given equation is                                     p " log (px – y). ... (1)
Re-writing (1), ep " px – y or y " px – ep, ... (2)
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which is in Clairaut’s form and hence its general solution is y " cx – ec. ... (3)
Differentiating (3) partially w.r.t. ‘c’,   0 " x – ec      or   ec " x     or    c " log x. ... (4)
Eliminating c between (2) and (3), the c-discriminant is given by
y " x log x – elog x or y " x log x – x. ... (5)
Now, y " x log x – x gives p " dy/dx " log x ! 1 – 1 " log x. These values of y and p satisfy

(1). Hence the required singular solution is y " x log x – x.
Ex. 20. Find the general and singular solutions of sin px cos y = cos px sin y + p.
Sol. Given equation is sin px cos y " cos px sin y ! p ... (1)
(1) ; sin (px – y) " p                 or                 px – y " sin–1 p or y " px – sin–1 p. ...(2)

which is of Clairaut’s form and hence its general solution is y " cx – sin–1 c. ... (3)
Differentiating (3) partially w.r.t. ‘c’, we get
0 " x – 1/(1 – c2)1/2 or 1 – c2 " (1/x2) so that c " (x2 – 1)1/2/x. ... (4)
Eliminating c between (3) and (4), the c discriminant relation is

y " (x2 – 1)1/2 – sin–1 {(x2 – 1)1/2/x} ... (5)
Since (5) satisfies (2), so (5) is also the required singular solution
Ex. 21. Find the general and singular solution of y = px + p – p2, where p = dy/dx. Discuss
the relation between the two solutions. [Calcutta 2003]
Sol. Given equation is in Clairaut’s form and so its general solution is

y " cx ! c – c2, c being the parameter. ... (1)
Re-writing (1), c2 – c (x ! 1) ! y " 0, which is quadratic in c. Hence, its c-discriminant

relation is given by (x ! 1)2 – 4y " 0 or (x ! 1)2 " 4y ... (2)
Since (2) satisfies (1), so (2) is singular solution. Here (2) represents a parabola which is

envelope of family of straight lines given by (1).

Type 5 : Equations reducible to Clairaut’s form
Ex. 22. Solve and examine for singular solution of x2 (y – xp) = yp2.
Sol. The given equation is                                  x2 (y – xp) " yp2. ... (1)
The general solution of (1) is [Refer Ex. 1(a) of Art. 4.10]
y2 " cx2 ! c2 or c2 ! cx2 – y2 " 0, ... (2)

which is a quadratic equation in c. Its c-discriminant relation is
(x2)2 – 4&1& (– y2) " 0 or x4 ! 4y2 " 0. ... (3)
Since (3) satisfies (1), so x4 ! 4y2 " 0 is the required singular solution.
Ex. 23. Solve and find the singular solution of axy p2 + p (x2 – ay2 – b) = xy.
Sol. The given equation is axy p2 ! p (x2 – ay2 – b) – xy " 0. ... (1)
The general solution of (1) is [Refer Ex. 1 (d) of Art. 4.10]
y2 " cx2 – (bc)/(1 ! ac) or ax2c2 + c(x2 – ay2 – b) – y2 " 0 ... (2)

which is a quadratic equation in c and so its c-discriminant relation is
(x2 – ay2 – b)2 ! 4ax2 y2 " 0. ... (3)

This relation satisfies (1), and hence it is the singular solution.
Ex. 24. Reduce the equation xyp2 – p(x2 + y2 – 1) + xy = 0 to Clairaut’s form by the substitutions

x2 = u and y2 = v. Hence show that the equation represents a family of conics touching the four sides of
a square. [I.A.S. 2004]

Sol. The given equation is                  xyp2 – p (x2 ! y2 – 1) ! xy " 0.                ... (1)
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The general solution of (1) is [Refer Ex. 1(e) of Art. 4.10]
y2 " cx2 – c/(c – 1) or c2x2 – c (x2 ! y2 – 1) ! y2 " 0, ... (2)

which represents a family of conics. Since (2) is a quadratic equation is c so c-discriminant relation
is given by (x2 ! y2 – 1)2 – 4x2y2 " 0 or (x2 ! y2 – 1)2 – (2xy)2 " 0
or (x2 ! y2 – 1 ! 2xy)(x2 ! y2 – 1 – 2 xy) " 0 or {(x ! y)2 – 12}{(x – y)2 – 12} " 0
or (x ! y ! 1) (x ! y – 1) (x – y ! 1) (x – y – 1) " 0 ... (3)

Now x ! y ! 1 " 0 gives y " – x – 1 and p " dy/dx " – 1. These values satisfy (1). Hence x ! y
! 1 " 0 is a singular solution. Similarly x ! y – 1 " 0, x – y ! 1 " 0 and x – y – 1 " 0 are singular
solutions. Clearly x ! y ! 1 " 0, x ! y – 1 " 0, x – y ! 1 " 0 and x – y – 1 " 0 form a square.

Geometrical interpretation. General solution (2) represents a family of conics all of which
touch the straight lines x ! y ! 1 " 0, x ! y – 1 " 0, x – y ! 1 " 0 and x – y – 1 " 0 (forming a
square) which are the envelopes of family of conics.

Ex. 25. Reduce the differential equation (px – y) (x – py) = 2p to Clairaut’s form by the
substitution x2 = u and y2 = v and find its complete primitive and its singular solution, if any.

Sol. The given equation is (px – y) (x – py) " 2p.                 ... (1)
The general solution of (1) is [Refer Ex. 1(c) of Art. 4.10]
y2 " cx2 – (cx)/(1 – c) or x2c2 – c (x2 ! y2 – 2) ! y2 " 0, ... (2)

which is a quadratic in and c so its c-discriminant relation is
(x2 ! y2 – 2)2 – (2xy)2 " 0 or (x2 ! y2 – 2 – 2xy) (x2 ! y2 – 2 ! 2xy) " 0

or {(x – y)2 – 2( 2) } {(x ! y)2 – 2( 2) } " 0

or ( 2) ( 2) ( 2) ( 2) 0.x y x y x y x y! � ! ! � � � ! #

Now, x – y ! 2 " 0 gives y " 2x �  and p " dy/dx " 1. These values satisfy (1). So

2x y! � " 0 is a singular solution. Similarly 2x y! ! " 0, 2x y� � " 0 and 2x y� ! " 0
are also singular solutions.

Ex. 26. Find the general and singular solution of xy (y – px) = x + py.
Sol. The given equation is xy (y – px) " x ! py.                                            ... (1)
The general solution of (1) is [Refer Ex 1(f) of Art. 4.10] y2 " cx2 ! 1 ! c, ... (2)

which is linear in the parameter c. Hence c-discriminant does not exist and hence there is no
singular solution.

Ex. 27. Reduce y = 2px + y2p3 to Clairaut’s form by putting y2 = v and hence find its general
and singular solutions.

Sol. The given equation is y " 2px ! y2p3.                ... (1)
The general solution of (1) is [Refer Ex. 3(a) of Art. 4.10

                                         y2 " cx ! (c3/8). ... (2)
Differentiating (2) w.r.t. ‘c’, 0 " x ! 3c2/8 or c2 " (– 8/3) x. ... (3)
From (2), y2 " c (x ! c2/8) or y4 " c2 (x2 ! c2/8)2

or y4 " (– 8/3) x (x2 – x/3),   using (3)
or y4 " – (32/27) x3 or 27 y4 ! 32 x3 " 0, ... (4)
which is the c-discriminant relation (since it has been obtained by eliminating c between (2) and (3)).
Since (4) satisfies (1), hence (4) is also singular solution.

Ex. 28. Find the general and singular solution of y2 (y – xp) = x4p2.
Sol. The given equation is                        y2 (y – xp) " x4p2. ... (1)
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The general solution of (1) is [Refer Ex. 4 of Art. 4.10]
x " cy ! c2xy or xyc2 ! yc – x " 0,    ... (2)

which is a quadratic equation in c and so its c-discriminant relation is
y2 – 4 (xy) (– x) " 0 or y (y ! 4x2) " 0.
Now, y " 0 gives p " dy/dx " 0. These values satisfy (1). So y " 0 is a singular solution. Again

y " – 4x2 gives p " dy/dx " – 8x. These values satisfy (1).  Hence y ! 4x2 " 0 is also singular
solution.

Ex. 29. Reduce the equation xp2 – 2yp + x + 2y = 0 to Clairaut’s form by putting y – x = v
and x2 =  u. Hence obtain and interpret the primitive and singular solution of the equation. Show
that the given equation represents a family of parabolas touching a pair of straight lines.

Sol. The given equation is                          xp2 – 2yp ! x ! 2y " 0. ... (1)
The general solution of (1) is [Refer Ex. 5 of Art. 4.10]

2 c2 x2 – 2c (y – x) + 1 " 0 ... (2)
which represents a family of parabolas since the second degree terms form a perfect square. Since
(2) is a quadratic equation so c-discriminant relation is

4 (y – x)2 – 4&2 x2 " 0 or y – x " 2.x∃ ... (3)
Now y – x " 2x  gives y " ( 2 1)x �  and p " dy/dx " 2 1� . These values satisfy (1). So

y – x " 2x  is a singular solution. Similarly, we can show that y – x " 2x!  is also singular
solution. Thus the given equation (1) represents a family of parabolas given by (2) and this family
is being touched by a pair of straight lines y – x " 2x∃ .

Ex. 30. Reduce the equation x2p2 + py (2x + y) + y2 = 0 where p = dy/dx to Clairaut’s form
by putting u = y and v = xy and find its complete primitive and its singular solution.

[I.A.S. 2006, Kumaun 1995]
Sol. The given equation is                      x2p2 ! py (2x ! y) ! y2 " 0 ... (1)
The complete primitive of (1) is [Refer Ex 6 of Art. 4.10]
xy " cy + c2                   or c2 + cy – xy " 0

which is a quadratic equation in c and hence c-discriminant relation is
y2 – 4&1& (– xy) " 0                  or y (y ! 4x) " 0.
Since y " 0 and y ! 4x " 0 both satisfy (1), so these are both singular solutions.
Ex. 31. Solve (px2 + y2) (px + y) = (p + 1)2 by reducing it to Clairaut’s form and find its

singular solution.
Sol. Given (px2 ! y2) (px ! y) " (p ! 1)2. ... (1)
The general solution of (1) is [Refer Ex 10 of Art. 4.10] c2 (x ! y) – xyc – 1 " 0.
Its c-discriminant relation is B2 – 4AC " 0, i.e.,
(xy)2 – 4 (x ! y) × (– 1) " 0 or x2y2 ! 4 (x ! y) " 0.
This relation satisfies (1), and hence it is the singular solution.
Note. In what follows, G.S. and S.S. will stand for general solution and singular solution

respectively.

Exercise 4(F)
1. (Type I) : Equations solvable for p. Find the general and singular solution of the following

equations :
(a) p2 (2 – 3y)2 " 4 (1 – y). Ans. G.S. (x ! c)2 " y2 (1 – y) ; S.S. y " 1
(b) y " p2 Ans. G.S. 4y " (x ! c)2 ; S.S. y " 0
(c) 4 xp2 " (3x – a)2 Ans. G.S. (y ! c)2 " x (x – a)2 ; S.S. x " 0
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(d) 8 p3 " 27 y Ans. G.S. (x ! c)3 " ay2 ; S.S. y " 0
(e) p2 (1 – x2) " 1 – y2 Ans. G.S. c2 – 2 cxy ! x2 ! y2 – 1 " 0; S.S. x " ± 1, y " ± 1

2. Type 2, Equations solvable for x. Find the general and singular solutions of the following equations :
(a) 3p2 e4y – px ! 1 " 0 Ans. G.S. 3 c2 e3y – xcey ! 1 " 0 ; S.S. x2 – 12ey " 0
(b) 8p3x " y (12p2 – 9) Ans. G.S. (x ! c)3 " 3cy2 ; S.S. 3y ! 2x " 0
(c) xp2 – yp – y " 0 Ans. S.S. y2 ! 4xy " 0
(d) y2 (1 ! 4p2) – 2pxy – 1 " 0 Ans. S.S. x2 – 4y2 ! 4 " 0

3. Type 3, Equations solvable for y. Find the general and singular solutions of the following equations:
(a) y – px ! x – (y/p) " a Ans. G.S. xc2 ! c (a – x – y) ! y " 0 ; S.S. x2 ! y2 – 2xy – 2ax – 2ay ! a2 " 0
(b) y ! px " x4p2 Ans. G.S. xc2 – c – xy " 0, S.S. 4x2y ! 1 " 0
(c) xp2 – 2yp ! 4x " 0  (Rajasthan 2010) Ans. G.S. c2x2 – 2cy ! 4 " 0 ; S.S. y " 2x, y " – 2x
(d) xp2 – 2yp ! ax " 0 Ans. G.S. x2c2 – 2cy ! a " 0; S.S. y2 – ax2 " 0

4. Type 4 : Equations in Clairaut’s form. Find the general and singular solutions of the following
differential equations (here p Χ dy/dx)
(a) p2x #$ py ! a " 0 Ans. G.S. c2x – yc ! a " 0 ; S.S. y2 " 4ax
(b) y " x (dy/dx) ! (1/2) × (dx/dy) Ans. G.S. y " cx ! (1/2 c) ; S.S. y2 " 2x
(c) y " px ! p/2 Ans. G.S. y " cx ! c/2 ; S.S. y " 0
(d) p2 ! px – y " 0 Ans. G.S. y " cx ! c2 ; S.S. x2 ! 4y " 0
(e) y " px – p2 Ans. G.S. y " cx – c2 ; S.S. x2 " 4y
(f) y " px ! ap (1 – p) Ans. G.S. y " cx – ac (1 – c) ; S.S. (x ! a)2 " 4ay
(g) (a2 – x2) p2 ! 2xyp ! b2 – y2 " 0    Ans. G.S. c2 (a2 – x2) ! 2xyc ! b2 – y2 " 0 ; S.S. x2/a2 ! y2/b2 " 1
(h) (x2 – a2) p2 – 2xyp ! y2 ! a2 " 0        Ans. G.S. c2 (x2 – a2) – 2xyc ! y2 ! a2 " 0 ; S.S. x2 – y2 " a2

(i) (y – px)2 ! a2p " 0 Ans. G.S. x2c2 ! c (a2 – 2xy) ! y2 " 0 ; S.S. 4xy " a2

(j) p3 ! px – y " 0 Ans. G.S. y " cx ! c3 ; S.S. 27y2 ! 4x3 " 0
(k) (y – px)2 (1 ! p2) " a2p2 [Purvanchal 1996] Ans. G.S. (y – cx)2 (1 ! c2) " a2c2 ; S.S. x2/3 + y2/3 " a2/3

(l) y " px ! cos p. Ans. G.S. y " cx ! cos c ; S.S. (y – x sin–1 x)2 " 1 – x2

(m)y " px ! (1 ! p2)1/2 – p cos–1 p Ans. G.S. y " cx + (1 + c2)1/2 – c cos–1c

PART III. Extraneous Loci
4.18 Extraneous Loci i.e. Relations, not solutions; that may appear in p and c-discriminant

relations
We have seen that if = (x, y) " 0 be a singular solution, then it must be contained in both p

and c-discriminants. These discriminants, however, may contain other factors which give rise to
other loci associated with the general solution of the given differential equation. Since the equation
of these loci generally do not satisfy the differential equations, they are known as extraneous loci.
We now discuss tac-locus, node-lucus and cusp-locus which are all extraneous loci.

4.19 Tac-locus
Let P be a point on the p-discriminant

relation. Then by definition there are two equal
values of p at P. These equal p’s, however, may
belong to two curves of the family of curves that
are not consecutive, but which happen to touch at
P. Then P lies on a point of contact of two non-consecutive curves and the locus of P is called the
tac-locus of the family of curves. If T (x, y) " 0 is the equation of the tac-locus, then T (x, y) must
be a factor of the p-discriminant and will not be contained in the c-discriminant, since the touching
curves being non-consecutive will have different c’s. As an example, consider a system of circles,
all of equal radii, whose centres lie on straight line T T > as shown in Fig. 4.3. Here T T >, which is
the locus of points of contact of non-consecutive circles of the system, represents the tac-locus.

T T>

Fig. 4.3

P
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4.20 Node-locus
The c-discriminant relation simply represents the locus of the points for which two values of

c are equal. These equal c’s may belong to the nodes which are also the ultimate points of
intersection of the consecutive curves. Locus
of such points is known as the node-locus. If
N (x, y) " 0 is the equation of the node-locus,
then N (x, y) is not a factor of p-discriminant
and is always contained in c-discriminant. In
general, it does not satisfy the differential
equation [See Fig. 4.4(a)]. In exceptional
case [See Fig. 4.4(b)] however, N (x, y) " 0
may satisfy the differential equation. In that
case the node-locus would also be an
envelope. In both figures S1, S2, S3 are curves
and NN > represents the node-locus passing
through the nodes N1, N2, N3.

4.21 Cusp-locus
The c-discriminant relation simply represents the locus of points for which two values of c

are equal. These equal c’s may belong to the cusps which are also the ultimate points of
intersection of the consecutive curves. Locus of such points is called the cusp-locus. If C (x, y) "
0 is the equation of the cusp-locus, then C (x, y) is a factor of both the p- and c-discriminants. In
general, it does not satisfy the differential equation [See Fig. 4.5 (a)]. In exceptional case [See Fig.
4.5(b)]. however, C (x, y) " 0 may satisfy the differential equation. In that case the cusp-locus
would also be an envelope. In both the figures, S1, S2, S3 are curves and CC > represents the cusp-
locus passing through the cusps C1, C2, C3.

Fig. 4.5(a)

C1
C C>

C2

C3

C C>S1 S2 S3
C1

S1

C2

S2

C3

S3

Fig. 4.5(b)
4.22 Working rule for finding singular solution (envelope) and extraneous loci

Step 1. First find the p-discriminant relation.
Step 2. By using any method determine the complete primitive or general solution of the

given differential equation. Then find out the c-discriminant. In case the given equation is of
Clairaut’s form or is reducible to this form, then the p-discriminant relation will also be the c-
discriminant relation. Thus in such a case step 2 is not necessary.

Fig. 4.4(a)

Fig. 4.4(b)

S1

S1

N

N

N>

N>

S2

S2

S3

S3

N1

N1

N2

N2

N2

N2

Singular Solution Tac- Node- Cusp-
(Envelope) Locus Locus Locus

p-discrt. Once Squard Absent OnceRelation
c-disct. Once Absent Squared CubedRelation

Whether or Yes Not, in Not, in Not, in
not satisfy always general general general
diff. eqn.
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Step 3. From the appearance of factors in p and c-discriminants, we shall decide about a
particular solution or loci by remembering the table given in step 2.

When any locus falls in two of the categories, the multiplicity of its equation in a discriminant
relation is the sum of the multiplicities for each category. As an example, a cusp-locus which is also
an envelope must appear in degree two in the p-discriminant relation and degree four in the c-
discriminant relation.

Aid to memory. The results of the above table are symbolically written as
              p-discriminant " ET 2 C ;                                          c " discriminant. " EN 2 C3

when E stands for envelope (singular solution), T for tac-locus, N for node-locus and C for cusp-
locus.

4.23 Solved Examples based on Art. 4.22
Ex. 1. Obtain the complete primitive and singular solution of the following equations,

explaining the geometrical significance of the irrelevent factors that present themselves.
(i) 4 xp2 = (3x – a)2.

(ii) xp2 = (x – a)2. [Ravishankar 1996; Vikram 1993]
Sol. (i) The given differential equation is 4xp2 – (3x – a)2 " 0. ... (1)
The general solution of (1) is [Refer Ex. 2 (i) of Art. 4.3]  (y ! c)2 " x (x – a)2. ... (2)
Rewriting (2) as quadratic in c, we have c2 ! 2cy ! y2 – x (x – a)2 " 0. ... (3)
Now from (1), the p-discriminant relation is
0 – 4 & 4x {– (3x – a)2} " 0 or x (3x – a)2 " 0. ... (4)
Similarly from (3), the c-discriminant relation is given by
4y2 – 4 [y2 – x (x – a)2] " 0 or x (x – a)2 " 0. ... (5)
Here x " 0 appears once in both the discriminants. Again (1) may be re-written as

4x – (3x – a)2 /p2 " 0 which is satisfied because x " 0 gives dx/dy " 0 i.e. 1/p " 0. Thus, by
definition x " 0 is a singular solution.

3x – a " 0 is a tac-locus since it appears squared in the p-discriminant relation (4), does not
occur in the c-discriminant relation (5), and does not satisfy the differential equation (1).

x – a " 0 is a node-locus since it appears squared in the c-discriminant relation (5), does not
occur in the p-discriminant relation (4), and does not satisfy the differential equation (1).

(ii) Proceed as above.  Ans. x " 0 is singular solution, x – a " 0 is tac locus, x – 3a " 0 in
node-locus.

Ex. 2. (i) Obtain the primitive and singular solution of the following equation
4p2x (x – a) (x – b) = {3x2 – 2x (a + b) + ab}2. Specify the nature of the loci which are not
solutions but which are obtained with the singular solution.

(ii) Investigate fully for singular solution, explaining the geometrical significance of
irrelevent factors that present themselves in 4x (x – 1) (x – 2) p2 = (3x2 – 6x + 2)2.

Sol. (i) The given differential equation is
4x (x – a) (x – b) p2 – {3x2 – 2x (a ! b) ! ab}2 " 0. ... (1)

Refer Ex.1 (d) of Art. 4.3. The general solution of (1) is
(y ! c)2 " x (x – a) (x – b) or c2 ! 2cy ! y2 – x (x – a) (x – b) " 0. .... (2)
From (1), the p-discriminant relation is

0 – 4x (x – a) (x – b) [– {3x2 – 2x (a ! b) ! ab}2] " 0
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i.e.           x (x – a) (x – b) {3x2 – 2x (a ! b) ! ab}2 " 0. ... (3)
From (2), the c-discriminant relation is
4y2 – 4&1& [y2 – x (x – a) (x – b)] " 0 or x (x – a) (x – b) " 0 ... (4)
Here x " 0 appears once in both the discriminants. Again x " 0 with corresponding value

dx/dy " 0 i.e. 1/p " 0 satisfies (1) [after dividing (1) by p2]. Hence x " 0 is a singular solution. For
similar reasons x – a " 0 and x – b " 0 are also singular solutions.

3x2 – 2x (a ! b) ! ab " 0 is a tac-locus since it appears squared in the p-discriminant relation
only. Again solving it for x, we get

x " [2(a + b) ± {4(a + b)2 – 12 ab}1/2]/6 or 3x " a ! b ± (a2 – ab ! b2)1/2 ... (5)
Thus the components of the above-mentioned tac-locus are given by (5). Thus there are two

tac loci given by (5).
(ii) It is a particular case of part (i). Here a " 1, b " 2. Ans. x " 0, x – 1 " 0, x – 2 " 0 are

singular solutions and x " 1 ± (1/ 3)  are tac loci.

Ex. 3. Obtain the primitive and the singular solution of the equation p2 (1 – x2) = 1 – y2.
Specify the nature of the geometrical loci which are not singular solutions, but which may be
obtained with the singular solution.

Sol. The given equation isp2 (1 – x2) – (1 – y2) " 0.                     ... (1)
2 p-disc. relation is 0 ! 4 (1 – x2) (1 – y2) " 0

i.e. (1 – x) (1 ! x) (1 – y) (1 ! y) " 0 ... (2)

Solving (1) for p,
2

2

(1 )

(1 )

ydyp
dx x

!
# #

!
       so that

Integrating,                     sin–1 y – sin–1 x " c>, where c> is an arbitrary constant.
or (4/2) – cos–1 y – [(4/2) – cos–1 x] " c>

or 1 2 2cos [ (1 ) (1 )]xy x y c! � ! ! # > or 2 2(1 ) (1 ) cos , sayx y xy c c! ! � # > #

or (1 – y)2 (1 – x2) " (c – yx)2 or c2 – 2xyc ! x2 ! y2 – 1 " 0. ... (3)
2 The c-disc. relation is 4x2y2 – 4 (x2 ! y2 – 1) " 0

or (1 – x2) (1 – y2) " 0 or (1 – x) (1 ! x) (1 – y) (1 ! y) " 0. ... (4)
1 – x " 0 occurs once in p-disc. and c-disc. relation, satisfies (1), and hence it is a singular

solution. Similarly 1 ! x " 0, 1 – y " 0 and 1 ! y " 0 are also singular solutions. Furthermore the
general solution (3) represents a family of conics which are here touched by the lines x " ± 1 and
y " ± 1. In our present problem there exist no geometrical loci which are not singular solutions,
that is, there does not exist any extraneous locus.

Ex. 4. Examine p2 (2 – 3y)2 = 4 (1 – y) for singular solution and extraneous loci.

Sol. The given equation is                    p2 (2 – 3y)2 – 4 (1 – y) " 0. ... (1)
2 p-disc. relation is 0 ! 4& (2 – 3y)2 & 4 (1 – y) " 0 or (2 – 3y)2 (1 – y) " 0.     ... (2)
Solving (1) for p, p " dy/dx "

or 2 3 3 3 1 3 1 1(1 ) .
2 22 (1 ) 2 (1 ) (1 )

y ydx dy dy y dy
y y y

! ! ! , −# # # ! !. /! ! !0 1
Integrating,           x ! c " – (1 – y)3/2 ! (1 – y)1/2, c being an arbitrary constant.

or x ! c " (1 – y)1/2 {1 – (1 – y)} " (1 – y)1/2 y.
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Squaring, (x ! c)2 " y2 (1 – y)
or c2 ! 2xc ! x2 – y2 (1 – y) " 0. ... (3)

2 c-disc. relation is   4x2 – 4&1 [x2 – y2 (1 – y)] " 0   or   y2 (1 – y) " 0 ... (4)
1 – y " 0, which occurs once in both the discriminants, gives singular solution. y " 0, which

occurs squared in the c-disc. and not at all in the p-disc., gives a node-locus. 2 – 3y " 0, which
occurs squared in the p-disc. and not at all in the c-disc., gives a tac locus.

Ex. 5. Examine the following equations for singular solution and extraneous loci, if any.
(i) x3p2 + x2yp + a3 = 0.

(ii) y ! px " x4p2.
(iii) 3y = 2px – 2p2/x. or 2p2 – 2px2 + 3xy = 0.

Sol. (i) The given equation is                     x3p2 ! x2yp ! a3 " 0. ... (1)
Solving for y, y " – xp – (a3/x2p)
Differentiating w.r.t. x, 3

3 2 2
2 1dp dpp p x a

dx dxx p x p
5 6# ! ! ! ! !7 8
9 :

or
3 3

3 2 3 22 2 or 1 2 0dp a dy a dpp x p x p x
dx dx dxx p x p

5 65 6 5 6� # � ! � #7 87 8 7 8
9 : 9 :9 :

or 2p ! x (dp/dx) " 0 [For general solution omit first factor]
or                                           (1/p) dp ! 2 (1/x) dx " 0.

2 Integrating, log p ! 2 log x " log c               or                  p " c/x2

Putting this value of p in (1) and simplifying, we get
c2 ! xyc ! a3x " 0 as the general solution. ... (2)

From (1), the p-disc. relation is x4y2 – 4x3a3 " 0 i.e. x2x& (xy2 – 4a3) " 0. ... (3)
From (2), the c-disc. relation is, x2y2 – 4a3x " 0 i.e. x (xy2 – 4a3) " 0. ... (4)
2 As usual x " 0 and xy2 – 4a3 " 0 are singular solutions. x " 0 is tac locus since it appears

as squared in p-disc. relation only.
(ii) The given equation is x4p2 – xp – y " 0. ... (1)
Its general solution [Refer Ex. 2(a) is of Art. 4.7]

                                             xc2 – c – xy " 0. ... (2)
As usual, the p-disc. relation is x2 (4x2 y ! 1) " 0 and the c-disc. relation is 4x2 y ! 1 " 0.
2 4x2 y ! 1 " 0 is singular solution and x " 0 is a tac-locus.
(iii) Proceed as in part (i), the general solution is (3y ! 2c)2 " 4cx3.
2 As usual the p-disc. relation is x (x3 – 6y) " 0 and the c-disc. relatioin is x3 (x3 – 6y) " 0.
2 x3 – 6y " 0 is the singular solution and x " 0 is the cusp-locus.
Ex. 6. Solve and find cusp locus of p2 + 2px – y = 0
Ans. G.S. (2x3 ! 3xy ! c)2 " 4 (x2 ! y2)3 ; cusp locus x2 ! y " 0
Ex. 7. Examine  y2 (1 + p2) = r2 for singular solution and extraneous loci.
Ans. y " r,  y " – r are singular solutions;  y " 0 is tac locus.
Ex. 8. Examine  8ap3 = 27y for singular solutions and extraneous loci.
Ans. y " 0 in singular solution as well as cusp locus.
Ex. 9. Examine  y2 (1 + 4p2) – 2pxy – 1 = 0 for singular and extraneous loci.
Ans. x2 – 4y2 ! 4 " 0 is singular solution and y " 0 is tac locus.
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Objective Problem on Chapter 4
Ex. 1. The differential equation x (dy/dx)2 – (x – 3)2 = 0 has p-discriminant relation as

x (x – 3)2 = 0 and c-discriminant relation as x (x – 9)2 = 0. The singular solution is
(a) x – 3 = 0     (b) x – 9 = 0     (c) x = 0     (d) x (x – 3) (x – 9) = 0. [I.A.S. Prel. 1993]

Sol. Ans. (c). Given x (dy/dx)2 – (x – 3)2 " 0 or x – (x – 3)2 (dx/dy)2 " 0. ... (1)
Now x " 0 ; dx/dy " 0 and so x " 0 satisfies (1). Thus x " 0 is the only singular solution

since it occurs once in both the p and c discriminant relations and satisfies the given differential
equation (1).

Ex. 2. The equation 8ap3 = 27y, where p = dy/dx, has singular solution
(a) y = 0        (b) y = c        (c) y2 = (x – c)2/a        (d) y = (x – c)2/a.[I.A.S. Prel. 1993]

Sol. Ans. (a). Refer Ex. 3 of Art. 4.17
Ex. 3. The general and singular solutions of (dy/dx)2 + x (dy/dx) – y = 0 are
(a) (y – c1x) (y – x2/4 – c2) = 0, x2 + 4y = 0.
(b) y = cx + c2 ; x2 + 4y = 0.       (c) (y – 2x)2 = cx ; x2 + y2 – xy = 0
(d) x2 + y2 = cxy + c2 ; (xy)2 – 4 (x2 + y2) = 0. [I.A.S. Prel. 1994]
Sol. Ans. (b). Let p " dy/dx. Then, we get y " px ! p2. This is in Clairaut’s form. Hence

putting c for p, the general solution is y " cx ! c2.
Since p2 ! px – y " 0 is quadratic in p, so the p-discriminant relation is given by

x2 – 4&1& (– y) " 0   or   x2 ! 4y " 0. Similarly, the c-discriminant is also x2 ! 4y " 0.
Now, x2 ! 4y " 0 ; y " – (1/4) x2 ; p " dy/dx " – (x/2).
Hence y " px ! p2 reduces to y " (– x/2) x ! (– x/2)2 or – x2/4 " – x2/4 which is an identity,

showing that x2 ! 4y " 0 satisfies the given equation.
Now, x2 ! 4y " 0 appears in both the p and c discriminant relations and  satisfies the given

differential equation. Hence it forms the singular solution.
Ex. 4. The singular solution/solutions of x (dy/dx)2 – 2y (dy/dx) + 4x = 0, (x > 0) is/are
(a) y = ± x2 (b) y = 2x + 3 (c) y = x2 – 2x (d) y = ± 2x. [I.A.S. Prel. 1994]
Sol. Ans. (d). Given xp2 – 2 yp ! 4x " 0 ... (1)
Solving for y, (1)   ;   y " (1/2) xp – (2x)/p. ... (2)

Diff. (2) w.r.t. ‘x’,      or    2
1 2 0,
2

dpx p
dx p

5 6 5 6! � #7 8 7 89 : 9 :
For general solution, we take only first factor.

2 ordp dx dpx p
dx x p

! #   so that   log p " log c ! log x   or  p " cx.

Putting this value of p in (1), the general solution of (1) is
c2x3 – 2y cx ! 4x " 0        or          c2x2 – 2cy ! 4 " 0. ... (3)

Both the p-discriminant and c-discriminant relations are same and are given by
4y2 – 16x2 " 0 or y2 – 4x2 " 0. ... (4)
From (4), y2 " 4x2 so that 2 yp " 8x or p " (4x)/y.
Putting this value of p in (1), we have
x (16x2/y2) – 2y (4x/y) ! 4x " 0 or (4x3)/y2 – x " 0

or           4x3 – xy2 " 0                            or 4x3 – x (4x2) " 0, by (4),
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showing that (4) satisfies the given diff. equation. Now, y2 – 4x2 " 0 appears both in p and c
discriminant relations and satisfy the given differential equation. So y2 – 4x2 " 0 or y " ± 2x are two
singular solutions.

Ex. 5. The singular solution of p = log (px – y), is
(a) y = x (log – 1) (b) y = x log x – 1 (c) y = log x – 1 (d) y = x log x
Sol. Ans. (a). Refer Ex. 19, Art. 4.17. [I.A.S. Prel. 1994]
Ex. 6. The singular solution of y = (2x/3)(dy/dx) – (2/3x) (dy/dx)2, x > 0 is
(a) y = ± x2 (b) y = x3/6 (c) y = x (d)   x = y2/6. [I.A.S. P. 1995]
Sol. Ans. (b). Refer Ex. 13 of Art. 4.17
Ex. 7. The singular solution of (xp – y)2 = p2 – 1, where p has the usual meaning, is
(a) x2 + y2 = 1 (b) x2 – y2 = 1 (c) x2 + y2 = 2 (d) x2 – y2 = 2. [I.A.S. Prel. 1996]
Sol. Ans. (b). Refer Ex. 17 of Art. 4.17
Ex. 8. The general solution of y = x (dy/dx) + (dy/dx)2 is
(a) y = cx – c2 (b) y = cx + c (c) y = cx – c (d) y = cx + c2. [I.A.S. Prel. 1997]
Sol. Ans. (d). Refer Ex. 1(e) of Art. 4.9.
Ex. 9. The singular solution of the differential equation (xp – y)2 = p2 – 1 is
(a) x2 + y2 = 1   (b) x2 – y2 = 1   (c) x2 + 2y2 = 1  (d) 2x2 + y2 = 1[I.A.S. Prel. 1997]
Sol. Ans. (b). Refer Ex. 17, Art. 4.17.
Ex. 10. The singular solution of the equation y " px ! f (p), p " dy/dx is obtained on
eliminating p between original equation and the equation
(a) x – f > (p) " 0        (b) x ! f > (p) " 0         (c) y – f > (p) " 0         (d) y ! f > (p) " 0
Sol. Ans. (b). Refer Art. 4.8 [I.A.S. Prel. 1998]
Ex. 11. The singular solution of y = px + p3, (p = dy/dx) is            (a) 4y3 + 27x2 = 0
(b) 4x2 + 27y3 = 0         (c) 4y2 – 27x3 = 0           (d) 4x3 + 27y2 = 0[I.A.S. Prel. 1998]
Sol. Ans. (d). Given equation is                          y " p ! px3... (1)

is in Clairaut’s form. So its p- and c- relations are same.
Diff. (1) partially w.r.t. ‘p’, we get 0 " x ! 3p2       or        p2 " – x/3. ... (2)
To find singular solution we eliminate p from (1) and (2). Re-writing (1), we have
y " p (x ! p2) or y2 " p2 (x ! p2)2 or y2 " (– x/3) (x – x/3)2, using (2)

or y2 " – 4x3/27 or 4x3 ! 27y2 " 0,            which is singular solution.
Ex. 12. Which of the following statements associated with a first order non-linerar
differential equation f (x, y, dy/dx) = 0 are correct.

(1) Its general solution must contain only one arbitrary constant
(2) Its singular solution can be obtained by substituting particular value of the arbitrary

constant in its general solution
(3) Its singular solution is an envelope of its general solution which also satisfies the

equation.
Select the correct answer using the codes given below :
(a) 1, 2 and 3 (b) 1 and 2 (c) 1 and 3 (d) 2 and 3. [I.A.S. Prel. 1998]
Sol. (c). Refer Art 4.2, Art 4.12 and Art 4.13
Ex. 13. The singular solution of p3 – 4xyp + 8y2 = 0, (p = dy/dx), is
(a)27y = 4x (b) 27y = 4x2 (c) 27 y = 4x3 (d) 27y3 = 4x [I.A.S. Prel. 1999]
Sol. Ans. (c). Refer Ex. 10 of Art 4.17
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Ex. 14. The singular solution of the differential equation (px – y)2 = p2 – 1 is
(a) x2 + y2 = 1 (b) x2 – y2 = 1 (c) x2 + 2y2 = 1 (d) x2 – 2y2 = 1
Sol. Ans. (b). Refer Ex. 17 of Art 4.17 [I.A.S. Prel. 2000]
Ex. 15. The singular solution of diff. eqn. (xp – y)2 = p2 – 1 is
(a) x2 + y2 = 1 (b) x2 – y2 = 1 (c) x2 + 2y2 = 1 (d) 2x2 + y2 = 1. [I.A.S. Prel. 2001]
Sol. Ans. (b). Refer Ex. 17 of Art 4.17
Ex. 16. The singular solution of y = (2x/3) % (dy/dx) – (2/3x) % (dy/dx)2, x > 0, is
(a) y = x3             (b) y = x             (c) y = x3/6             (d) y = x3/2. [I.A.S. Prel. 2001]
Sol. Ans. (c). Refer Ex. 13 of Art 4.17.
Ex. 17. The singular solution of diff. eqn. (xp – y)2 = p2 – 1 is
(a) x2 + y2 = 1 (b) y2 – x2 = 1 (c) x2 + 2y2 = 1 (d) x2 – y2 = 1 [I.A.S. Prel. 2002]
Sol. Ans. (d). Refer Ex. 17 of Art. 4.17
Ex. 18. Consider the Assertion (A) and Reason (R) given below :
Assertion (A): y = 0 is the singular solution of the differential equation 9yp2 + 4 = 0, where

p = dy/dx.
Reason (R): y = 0 occurs both in p-discriminant and c-discriminant obtained from its

general solution    y3 + (x + c)2 = 0   of   9yp2 + 4 = 0.
The correct answer is
(a) Both A and R are true and R is correct explanation of A
(b) Both A and R are true and R is not correct explanation of A
(c) A is true but R is false                     (d) A is false but R is true[I.A.S. Prel. 2002]
Sol. Ans. (d). Given equation is 9yp2 ! o.p ! 4 " 0 which is quadratic eqn is p. So its p-

discriminant is (0)2 – 4 (9y) (4) " 0 i.e. y " 0.
Again the general solution is given by y3 ! (x ! c)2 " 0... (1)
Differentiating (1) partially w.r.t. ‘c’, 2 (x ! c) " 0 giving c " – x.
Putting c " – x in (1), c-discriminant is                        y3 " 0.
Thus y " 0 is present in both p-discriminant and c-discriminant. But y " 0 ; dy/dx " 0 ; p "

0. Putting y " 0 and p " 0 in the given diff. eqn. 9 yp2 ! 4 " 0 we get 0 " 4, which is absurd. Thus,
y " 0 does not satisfy the given diff. eqn. and so y " 0 is not singular solution. Hence A is false
and R is true.

Ex. 19. The singular solution of the differentiate equation y2{1 + (dy/dx)2} = R2 is
(a) y = R/2 (b) y = R (c) y = 3R/2 (d) y = 2R [I.A.S. P. 2003]
Sol. Ans. (b). Refer Ex. 6 of Art. 4.17
Ex. 20. The singular solution of y = px + a (1 + p2)1/2 is
(a) parabola (b) hyperbola (c) circle (d) straight line [I.A.S. Prel. 2003]
Sol. Ans. (c). Re-writing given equation,        y – px " a (1 ! p2)1/2

or (y – px)2 " a2 (1 ! p2)              or              p2 (x2 – a2) – 2pxy ! y2 – a2 " 0
Its p-discriminant relation is 4x2y2 – 4 (x2 – a2) (y2 – a2) " 0

or x2y2 – x2y2 ! x2a2 ! y2a2 – a4 " 0 or x2 ! y2 " a2.
Since the given equation is in Clairaut’s form so its c-discriminant relation is also x2 ! y2 " a2.

Hence x2 ! y2 " a2 is singular solution which is a circle.
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Ex. 21. The singular solution of xyp2 – (x2 + y2 – 1) p + xy = 0, where p = dy/dx
(a) is y = 0 (b) is y2 = (x – 1)3 (c) does not exist (d) is none of the above.

Sol. Ans. (d). Refer Ex. 24 of Art. 4.17 [I.A.S. (Prel.) 2004]
Ex. 22. What is the singular solution of the differential equation p = ln (px – y) ?

(a) y = cx – ex (b) y = x + x ln x (c) y = ln x – x (d) y = x ln c – c,
where ln x stands for loge x. [I.A.S. Prel. 2005]

Sol. Ans. (c). Refer Ex. 19 of Art. 4.17
Ex. 23. What is the solution of the differential equation sin px cos y = cos px sin y + p?

(a) y = cx2 – sin–1c (b) y = cx – sin–1c (c) y = cy – sin–1c   (d) y = cy2 – sin–1c.
Sol. Ans. (b). Refer Ex. 2 (c) of Art. 4.9. [I.A.S. Prel. 2005]
Ex. 24. What is the singular solution of y2 (1 + y´ 2) = r2 where r is a constant ?
(a) y2 = 4x             (b) y2 = 4r             (c) y2 = r2             (d) y2 = r3 [I.A.S. Prel.

2006]
Sol. Ans. (c). Refer Ex. 6 of Art. 4.17. Here y> stands for dy/dx.
Ex. 25. The singular solution of the differential equation y = px + f(p) will be obtained by

eliminating p between the equation y = px + f(p) and which of the following equation ?
(a) x + df/dp = 0          (b) dy/dp = x + (df/dp)          (c) dy/dx = p          (d) dy/dx = p + (df/dp)

Sol. Ans. (a). Refer remark of Art. 4.8 [I.A.S. Prel. 2007]
Ex. 26. Consider the following statements:
Assertion (A): The function y " x2/y is a singular solution of (dy/dx)2 – x(dy/dx) + y " 0
Reason (R): The general solution of the given equation is y " cx – c2 and the given solution

cannot be obtained by assigning a definite value to c in the general solution.
Of these statements
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true and R is not the correct explanation of A
(c) A is true but R in false                 (d) A is false but R is true [I.A.S. Prel. 2007]
Sol. Ans. (c) Re-writing the given equation,         y " px – p2, where p " dy/dx ... (1)
Since (1) in is Clairaut’s form, its solution is y " cx – c2, c being an arbitrary constant... (2)
Differentiating (2) w.r.t. ’c’               0 " x – 2c                giving               c " x/2 ... (3)
Substituting the value of c given to (3) in (2), we get
y " (x2/2) – (x2/4)           or           y " x2/4, which is singular solution of (1)
Assertion (A) is true. But the Reason (R) is always true in view of discussion in Art. 4.12.

MISCELLANEOUS EXAMPLES ON CHAPTER 4
Ex.1 What are the general and singular solutions respectively of the differential equation

2 2( ) 1xp y p! # ! ?     (a) 2 2( ) 1cx y c� # � , 1x # ∃             (b) 2 2 2 2( ) 1, !cx y c x y! # ! � #

(c) 2 2 2 2( ) 1, 1cx y c x y! # ! ! #       (d) 2 2 2 2( ) 1 , 1x cy c x y! # ! ∃ # [I.A.S. 2008]

Sol. Ans (c).  Refer  part (c) of Ex. 17, page 4.34

Ex.2. The general solution of (x – p) p " p2+ y is      (a) 22y cx c# !

(b) 2y cx c# �  (c) y cx#  (d) 2y c cx# ! [Madurai Kamraj 2008]
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Sol. Ans. (a).  Use Art. 4.8.
Ex.3. Solution of (x – a) p2 + (x – y) p – y = 0 is

(a) 2( ) / ( 1)y cx ac c# ! � (b) 2( ) / ( 1)y cy ac x# � �

(c) 2( ) / ( 1)y cx ac y# ! � (d) 2( ) / ( 1)y cy ac c# ! � [Garhwal 2010]

Sol. Ans. (a) Re-writing given equation, 2( 1) ( 1)y p xp p ap� # � !  or 2( ) / ( 1)y xp ap p# ! �
which is in Clariaut’s form. Hence the required solution is           2( ) / ( 1)y cx ac c# ! �
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5
Linear Differential Equations With

Constant Coefficients
PART 1: USUAL METHODS OF SOLVING LINEAR DIFFERENTIAL

EQUATIONS WITH CONSTANT COEFFICIENTS
5.1 Some useful results

Let D stand for d/dx ; D2 for d2/dx2; and so on. The symbols D, D2, etc., are called operators.
The index of D indicates the number of times the operation of differentiation must be carried out.
For example, D3x4 shows that we must differentiate x4 three times. Thus, D3x4 ! 24x. The
following results are valid for such operators.

1. Dm " Dn ! Dn " Dm

2. DmDn ! Dn Dm ! Dm " n

3. D (u " v) ! Du " Dv, where u and v are functions of x.
4. (D – !) (D – �) ! (D – �) (D – !), where ! and � are constants.

Negative index of D. D–1 is equivalennt to an integration. For example, 1 2 / 2.D x x dx x# ∃ ∃%
But it is important to note that the main object of D–1 is to find an integral but not the complete
integral. Consequently the arbitrary constant which arises in integration must be omitted. The index
of D–1, say (D–1)5 is denoted by D–5 The negative index of D indicates the number of times the
operation of integration is to be carried out. For example,

                       2 2 3( / 2) / 6D x xdx dx x dx x# & ∋∃ ∃ ∃( )% % %
It is usual to write 1/Dm for D–m. It is to be remembered that DD–1 ! 1 and the symbol D with

negative indices also satisfy the above four results. Furthermore we write (d2y/dx2) " a1(dy/dx) " a2y
! (D2 " a1D " a2)y ! f (D)y, where f (D) is the operator now. If f1 (D) and f2 (D) be two operators,
then f1 (D) f2 (D) is also an operator such that            f1 (D) f2 (D) ! f2 (D) f1 (D).

If u be a function of x and k be a constant then f (D) (k u) ! k f (D)u.
From the above discussion we note that the symbol D obviously satisfies the fundamental

laws of algebra and hence it can be regarded as an algebraic quantity in several respects.

5.2 Linear differential equations with constant coefficients
A linear differential equation with constant coefficients is that in which the dependent

variable and its differential coefficients occur only in the first degree and are not multiplied
together, and the coefficients are all constants.

The general from of the equation is
1 2

1 21 2 .... ,
n n n

nn n n
d y d y d ya a a y X
dx dx dx

# #

# #∗ ∗ ∗ ∗ ∃ ... (1)

where X is a function of x only and 1 2, ... na a a  are constants.

5.1
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Using the symbols D, D2, ..... Dn of Art. 5.1, (1) becomes
1 2

1 2 ....# #∗ ∗ ∗ ∗ ∃n n n
nD y a D y a D y a y X     or    1 2

1 2( .... )# #∗ ∗ ∗ ∗ ∃n n n
nD a D a D a y X ... (2)

or f (D) y ! X ... (3)
where f (D) ! Dn " a1Dn–1 " a2Dn–2"...." an ... (4)
and f (D) now acts as operator and operates on y to yield X. The forms (2) and (3) are called the
symbolic forms of the given equation (1).

Consider the differential equation f (D) y ! 0, ...(5)
obtained on replacing the right hand member of (3) by zero. We will, now, show that if y1, y2 ..., yn
are n linearly independent solutions of (5) then, c1 y1 " c2 y2 " .... " cn yn is also a solution of (5);
c1, c2 ..., cn being arbitrary constants.

Since y1, y2 ..., yn are solutions of (5), f (D) y1 ! 0, f(D) y2 ! 0, ... f (D)yn ! 0 ... (6)
If c1, c2 ..., cn are an arbitrary constants, we get
f (D) (c1 y1 " c2 y2 " ... cn yn) ! f (D) (c1 y1) " f (D) (c2 y2) " ... " f (D) (cn yn)

! c1 f (D) y1 " c2 f (D) y2 " ... " cn f (D) yn ! c1.0 " c2.0 "..." cn.0 ! 0, using (6)
This proves the statement made above.
Since the general solution of a differential equaiton of the nth order contains n arbitrary

constants, we conclude that c1 y1 " c2 y2 " ... " cn yn ! u, say
is the general solution of (5).

Thus, f (D) u ! 0. ... (7)
Again, let v be any particular solution of (3) and hence f (D) v ! X.   ... (8)
Now, we have f (D) (u " v) ! f (D) u " f (D) v ! 0 " X, using (7) and (8)
This shows that (u " v), i.e., c1 y1 " c2 y2 " .... " cn yn " v is the general solution of (3), i.e.,

(1), containing n arbitrary constants c1. c2, ..., cn. The part c1 y1 " c2 y2 " ... " cn yn, is known as the
ComplementaryFunction (C.F.) and v, not involving any arbitrary constant, is called the Particular
Integral (P.I.). or particular solution (P.S.)

Thus, the general solution of (1) is y ! C.F. " P.I., where C.F. involves n arbitrary
constants and P.I. does not involve any arbitrary constant.

Remarks. It should be remembered that P.I.  appears due to X in (1). Hence if a linear
differential equation with constant coefficients is given with X ! 0, then its general solution will
not involve P.I and so for such differential  equations the general solution will be given by y ! C.F.

5.3 To find complementary function (C.F.) of the given equation [Mumbai 2010]
1 2

1 2( ... ) or ( ) .n n n
nD a D a D a y X f D y X# #∗ ∗ ∗ ∗ ∃ ∃ ... (1)

By definition, C.F. of (1) is the general solution of
1 2

1 2( ... ) 0 or ( ) 0.n n n
nD a D a D a y f D y# #∗ ∗ ∗ ∗ ∃ ∃ ... (2)

Let (2) be equivalent to (D – m1) (D – m2) .....(D – mn) y ! 0 ... (3)
Then solution of any one of the equations
(D – m1) y ! 0, (D – m2) y ! 0, ....., (D – mn) y ! 0 ... (4)

is also a solution of (3) because if ( ), 1r x r n+ , ,  be a solution of   ( – ) 0rD m y ∃ ... (5)

then, 1 2( ) ( ) ... ( ) ( )# # # +n rD m D m D m x
! 1 1 1( ) .... ( ) ( ) ( ) .... ( ) ( )# ∗# # # # # +r r r n rD m D m D m D m D m x
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! 1 1 1( ) .... ( ) ( ) .... ( ) ( ) ( )# ∗# # # # # +r r n r rD m D m D m D m D m x

! 0, since ( )+r x  is a solution of (5) ( ) ( ) 0− # + ∃r rD m x
We now proceed to find the general solution of (5), i.e.,
(dy/dx) – mr y ! 0 or (1/y) dy ! mr dx.
Integrating, log y – log cr ! mr x or y ! cremrx, ... (6)

where cr is the constant of integration.
Since the general solution of (5) is given by (6), we can assume that a solution of the

equation (2) is of the form y ! emx. Then since y ! emx, Dy ! m emx, D2y ! m2 emx, ...., Dny !
mn emx, so (2) becomes.

1 2
1 2( .... ) 0# #∗ ∗ ∗ ∗ ∃n n n mx

nm a m a m a e

Cancelling mxe  as 0.mxe  for any m, we obtain
1 2

1 2 .... 0# #∗ ∗ ∗ ∗ ∃n n n
nm a m a m a                               ... (7)

Equation (7) is called the auxiliary equation (A. E.). Replacing m by D in (7), we have
                       1 2

1 2 .... 0# #∗ ∗ ∗ ∗ ∃n n n
nD a D a D a ...(8)

Clearly, equaiton (7) gives the same values of m as equation (8) gives of D. In practice, we
may also take equation (8) as the auxiliary equation which is obtained by equating to zero the
symbolic coefficient of y in (1) or (2). Here D is considered as an algebraic quantity.

(7) or (8) will give, in genral, n roots say, m1, m2, ..., mn.
Case I. When all the roots of the A.E. (7) or (8) are real and different.

Let m1, m2, m3 ..., mn be the n real and different roots of (8). Then 1 2, ,..., nm xm x m xy e y e y e∃ ∃ ∃
are n independent solutions of (2). So the solution of (2) is

31 2
1 2 3 ..... nm x m xm x m x

ny c e c e c e c e∃ ∗ ∗ ∗ ∗ , c1, c2, ..... , cn being arbitrary constants ... (9)
Case II. When the auxilary equaiton has equal roots
Let the roots m1 and m2 of the A.E. (7) or (8) be equal. Then the general solution (9) becomes

   31 4
1 2 3 4( ) ....∃ ∗ ∗ ∗ ∗ ∗ nm x m xm x m x

ny c c e c e c e c e
or            31 4

3 4 ...∃ ∗ ∗ ∗ ∗ nm x m xm x m x
ny Ae c e c e c e              where              A ! c1 " c2. ... (10)

This solution contains (n – 1) arbitrary constants. A, c3, c4, ...., cn and not n. But we know that
C.F. of (1), i.e., solution of (1) must contain as many arbitrary constants as is the order of the given
differential equation. Hence (10) is not the general solution of (2). To obtain the general solution
of (2), consider the differential equation

2
1 1 1( ) 0 or ( ) ( ) 0,D m y D m D m y# ∃ # # ∃ ... (11)

in which the two roots are equal.
Let                                                    1( ) .D m y v# ∃ ... (12)
Then, (11) − 1( ) 0D m v# ∃ or dv/dx ! m1v or (1/v) dv ! m1dx.
Integrating, log v – log c1 ! m1x or v ! c1em1x ...(13)

Using (13), (12), becomes 1 1
1 1 1 1( ) orm x m xD m y c e Dy m y c e# ∃ # ∃

or 1
1 1( / ) ,m xdy dx m y c e# ∃  which is linear equation ...(14)

Its I.F. 1 1( )# #%∃ ∃m dx m xe e  and so its solution is

/ 01 1 1
1 2 1 2 1 2( ). )m x m x m xye c e e dx c c dx c c x c# #∃ ∗ ∃ ∗ ∃ ∗% %

or                        1 1
1 2 2 1( ) or ( )m x m xy c x c e y c c x e∃ ∗ ∃ ∗
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5.4 Linear Differential Equations with Constant Coefficients

Hence the general solution of (2) in this case is of the form
31 4 1 .

2 1 3 4( ) ...m xm x m x m x
ny c c x e c e c e c e∃ ∗ ∗ ∗ ∗ ∗ . ...(15)

Similarly, it three roots of the A.E. are equal, say m1 ! m2 ! m3, then the general solution of
(2) is of the form y ! (c3 " c2x " c1x2)  em1x " c4em4x " ... + cnemnx

Case III. When the A.E. has complex roots
Let the two roots of the A.E. be complex, say m1 ! ! " i� and m2 ! ! – i�.

Then the corresponding part of the C.F.
( ) ( )

1 2 1 2, ,i x i xc e c e c c! ∗ � ! # �1 1 1 1∃ ∗  being arbitrary constants

1 2 1 2( ) [ (cos sin ) (cos sin )]x i x i x xe c e c e e c x i x c x i x! � # � !1 1 1 1∃ ∗ ∃ � ∗ � ∗ � # �
[As by Euler’s theorem, ei2 ! cos 2 " i sin 2, e–i2 ! cos 2 – i sin 2]

1 2 1 2 1 2[( ) cos ( ) sin ] ( cos sin ),x xe c c x i c c x e c x c x! !1 1 1 1∃ ∗ � ∗ # � ∃ � ∗ �
[Taking c1 ! c11 " c11 and c2 ! i (c11 – c21)]

where c1 and c2 are arbitrary constants.
Similarly, if the complex roots are repeated, say ! " i� and ! – i� occur twice, then the

corresponding part of C.F. is of the form 1 2 3 4[( ) cos ( ) sin ]! ∗ � ∗ ∗ �xe c c x x c c x x  and so on.

Remark. After suitably adjusting the constants, eax (c1 cos �x " c2 sin �x) may also be written
as c1e!x cos (�x " c2) or c1e!x sin (�x " c2).

Case IV. When the A.E. has surd roots.
Let the two roots of the A.E. be surds, say m1 ! 2,! ∗ � ∃ ! # �m .

Then the corresponding part of the C.F. of (1)

! ( ) ( )
1 2 1 2[ ]x x x xxc e c e e c e c e! ∗ � ! # � � # �!1 1 1 1∗ ∃ ∗

! 1 2[ (cosh sinh ) (cosh sinh )]! 1 1� ∗ � ∗ � # �xe c x x c x x
[ cosh sinh and cosh – sinh ]e e2 #2∃ 2 ∗ 2 ∃ 2 2�

! 1 2 1 2[( ) cosh ( ) sinh ) ]xe c c x c c x! 1 1 1 1∗ � ∗ # � ! 1 2[ cosh sinh )]xe c x c x! � ∗ � ,

where c1 and c2 are arbitrary constants given by c1  ! 1 21 1∗c c and c2 ! 1 21 1#c c .

Similarly, if the surd roots are repeated, say ! ∗ �  and ! # �  occur twice, then the
corresponding part of C.F. is of the form

                  1 2 3 4[( ) cosh ( ) sin ]! ∗ � ∗ ∗ �xe c c x x c c x x  and so on.

Remark. After suitably adjusting the constants, e!x (c1 cosh x � + c2 sinh �x ) may be

written as c1e!x cosh 2 1( ) or sinh (xx c c e x!� ∗ �  + c2).

5.4 Working rule for finding C.F. of the given equation

( / )n nd y dx " a1 (d n – 1 y/dxn – 1) " a2 (d n – 2 y/dxn – 2) " ... " an y ! X ... (1)

Step I. Re-write the equation (1) in the symbolic form
(Dn " a1Dn – 1 " a2Dn – 2 " ... " an) y ! X. ... (2)

Step II. The auxiliary equation is mn " a1mn – 1 " a2 mn – 2 " ... " an ! 0. ... (3)
or Dn " a1Dn – 1 " a2Dn – 2 " ... " an ! 0. ... (3)1
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Linear Differential Equations with Constant Coefficients 5.5

Step III. From the roots of A.E. (3) or (3)1, write down the corresponding part of the C.F. as
given in the following table

S. Corresponding part of C.F. Nature of roots of auxiliary equation (A.E)
No.

1. (i) One real root m1 c1em1x

(ii) Two real and different roots m1, m2 c1em1x + c2em2x

(iii) Three real and different roots m1, m2, m3
31 2

1 2 3∗ ∗ m xm x m xc e c e c e
2. (i) Two real and equal roots m1, m1

1
1 2( )∗ m xc c x e

(ii) Three real and equal roots m1, m1, m1
12

1 2 3( ) m xc c x c x e∗ ∗

3. (i) One pair of complex roots ! ± i� 1 2( cos sin )! � ∗ �xe c x c x             or

1 2 1 2cos ( ) or sin ( )x xc e x c c e x c! !� ∗ � ∗
(ii) Two pairs of complex and equal roots

! ± i�, ! ± i� 1 2 3 4[( ) cos ( ) sin ]! ∗ � ∗ ∗ �xe c c x x c c x x

4. (i) One pair of surd roots ! 3 � 1 2( cosh sinh )! � ∗ �xe c x c x              or

1 2cosh ( )xc e x c! � ∗      or    1 2sinh ( )! � ∗xc e x c

(ii) Two pairs of surd and equal roots 1 2[( ) cosh! ∗ �xe c c x x " (c3 " c4x) sinh �x ]
,! 3 � ! 3 �

5.5 Solved examples based on Art 5.4
Ex. 1. Solve (d3y/dx3) + 6 (d2y/dx3) + 11 (dy/dx) + 6y = 0.
Sol. The given equation can be re-written as

                        (D3 " 6 D2 " 11 D " 6) y ! 0, where D 4 d/dx ... (1)
The auxiliary equation of (1) is D3 " 6 D2 " 11 D " 6 ! 0

or (D " 1) (D " 2) (D " 3) ! 0 so that D ! – 1, – 2, – 3.
5 The required general solution is  y ! c1e– x " c2e– 2x " c3e–3x, c1, c2, c3 being arbitrary constants.

Ex. 2.  Solve (D3 + 3D2 + 3D + 1) y = 0 [Delhi Maths. (G) 1994]
Sol. The auxiliary equation is D3 " 3D2 " 3D " 1 ! 0   or  (D + 1)3 ! 0 − –1, –1, –1.

5 The required solution is            y ! (c1 " c2x " c3x2) e–x, c1, c2, c3 being arbitrary constants.
Ex. 3 Solve (d4y/dx4) – (d3y/dx3) – 9(d2y/dx2) – 11(dy/dx) – 4y = 0.[Delhi Maths. (G) 1997]
Sol. Let D ! d/dx. Then the given equation can be written as

(D4 – D3 – 9 D2 – 11 D – 4) y ! 0   or   (D " 1)3 (D – 4) ! 0  so that D ! 4, – 1, – 1, – 1.
5 The required solution is y ! c1e4x " (c2 " c3x " c4x2) e–x, c1, c2, c3, c4 being arbitrary constants.

Ex. 4. Solve  (a) (D4 – 5D2 + 4) y = 0
(b) (D4 + 2D3 – 3D2 – 4D + 4) y = 0
(c) (D3 – 3D2 + 2D) y = 0

Sol. (a) Here auxiliary equation is D4 – 5D2 " 4 ! 0
or (D2 – 4) (D2 – 1) ! 0 or D2 ! 4 or 1 so that D ! 2, – 2, 1, – 1.
5 The required general solution is                 y ! c1e2x " c2e–2x " c3ex " c4e–x,
c1, c2, c3, c4 being arbitrary constants

(b) Here auxiliary equation is D4 " 2D3 – 3D2 – 4D " 4 ! 0 or (D – 1) (D3 " 3D2 – 4) ! 0
or (D – 1) {(D – 1) (D2 " 4D " 4)} or (D – 1)2 (D " 2)2 ! 0 so that D ! 1, 1, – 2, –2.
5 The required solution is y ! (c1 " c2x) ex " (c3 + c4x)–2x, c1, c2, c3 being arbitrary constants.
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5.6 Linear Differential Equations with Constant Coefficients

(c) Here the auxiliary equation is D3 – 3D2 " 2D ! 0 or D (D2 – 3D " 2) ! 0
or           D (D – 1) (D – 2) ! 0                           so that D ! 0, 1, 2.

Hence the required solution is                            y ! c1e0x " c2ex " c3e2x

or y ! c1 " c2ex " c3e2x, c1, c2, c3 being arbitrary constants
Ex. 5. Solve (D3 – 8) y = 0.
Sol. (a) Here auxiliary equation is      D3 – 8 ! 0      or      (D – 2) (D2 " 2D " 4) ! 0 so that

D ! 2 or D ! 1/ 2{ 2 (4 16) } / 2# 3 # or D ! 2, – 1 33 i .

5 The required solution is y ! c1e2x " e–x {c2cos ( 3x ) " c3 sin ( 3x )},
c1, c2, c3 being arbitrary constants

Ex. 6. Solve (i) d4 y/dx4 " m4 y = 0
(ii) d4 y/dx4 " y = 0 [(I.A.S.Prel 2001; Agra 2006]

Sol. (i) Let D # d/dx. Then, the given equation can be rewritten as (D4 " m4) y ! 0
Its auxiliary equation is D4 " m4 ! 0 or (D2 " m2)2 – 2( 2 )D m ! 0

or 2 2 2 2( 2 ) ( 2 ) 0∗ ∗ ∗ # ∃D m Dm D m Dm − D2 + m2 + 2 Dm ! 0 or D2 + m2 – 2 Dm ! 0

5 2 2 1/ 2{ 2 (2 4 ) }/ 2 ( / 2) ( / 2),D m m m m i m∃ # 3 # ∃ # 3

and               2 2 1/ 2{ 2 (2 4 ) } / 2 / 2 ( / 2)D m m m m i m∃ 3 # ∃ 3

Hence the required general solution is ( / 2 )#∃ mxy e { 1 cos( / 2)c mx 2 sin( / 2}c mx∗

/ 0/ 2
3 4cos( / 2) sin( / 2)mxe c mx c mx∗ ∗ , c1,c2,c3,c4 being arbitrary constants.

(ii) This is a particular case of part (i). Here m ! 1. Solution is
( / 2 )#∃ xy e  {c1cos (x/ 2 ) " c2sin (x/ 2 )} " / 2xe  {c3cos (x/ 2 ) " c4 sin (x/ 2 )}.

Ex. 7. Solve (i) (D4 – m4) y = 0
(ii) (D4 – 81) y = 0

Sol. (i) Here auxiliary equation is D4 – m4 ! 0 or (D2 – m2) (D2 " m2) ! 0
Hence D ! m, – m, ± im. Now the part of C.F. corresponding to roots m, – m is c1emx

" c2e–mx and the part of the C.F. corresponding to roots 0 ± mi is given by (noting that ! ! 0 and
� ! m in S.No. 3 (i) of table of Art. 5.4) e06x (c3 cos mx " c4 sin mx),  i.e.,  c3 cos mx " c4 sin mx.

Solution is y ! c1emx " c2e–mx " c3cos mx " c4sin mx, c1, c2, c3, c4 being arbitrary constants.
(ii) Take m ! 3 in part, (i). Ans. y ! c1e3x " c2e–3x " c3cos 3x " c4 sin 3x
Ex. 8. (a) Solve (D2 + 1)2y = 0, where D # d/dx. [I.A.S. Prel. 1993]
Sol. Here auxiliary equation is (D2 " 1)2 ! 0 so that D2 " 1 ! 0 (twice)
Hence D ! 0 ± i   (twice). Therefore, required solution is

                       y ! e06x {(A1 " A2x) cos x " (A3 " A4x) sin x}
or           y ! (A1 " A2x) cos x " (A3 " A4x) sin x, A1, A2, A3, A4 being arbitrary constants

Ex. 8. (b) Find the primtive of (D2 – 2D + 5)2 y = 0. [I.A.S. Prel. 1995]
Sol. Here auxiliary equation is             (D2 – 2D " 5)2 ! 0               so that

D2 – 2D " 5 ! 0   (twice) and hence             D ! (2 ± 16# )/2 ! 1 ± 2i   (twice)
5 Required solution is                  y = ex{(c1 " c2x) cos 2x " (c3 " c4x) sin 2x},

c1, c2, c3 and c4 being arbitrary constants.
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Ex. 9. Solve (D4 – 6D3 + 12D2 – 8D) y = 0 [I.A.S. Prel. 1996]
Sol. Here A.E. is D (D3 – 6 D2 " 12 D – 8) ! 0 or D{D2(D – 2) – 4D(D – 2) " 4(D – 2} ! 0 or

D(D – 2)(D2 – 4D " 4) ! 0 or D (D – 2)3 ! 0 so that D ! 0, 2, 2, 2
5 Required solution is y ! c1e06x " (c2 " c3x " c4x2) e2x  or  y ! c1 " (c2 " c3x " c4x2) e2x,  c1,
c2, c3 and c4 being arbitrary constants

Ex. 10. Solve (D6 – 1) y = 0.
Sol. Here the auxiliary equation is              D6 – 1 ! 0             or             (D2)3 – (1)3 ! 0

or              (D2 – 1) (D4 " D2 " 1) ! 0              or              (D2 – 1) {(D4 " 2D2 " 1) – D2} ! 0
or                                  (D2 – 1) {(D2 " 1)2 – D2} ! 0
or (D – 1) (D " 1) (D2 " 1 " D) (D2 " 1 – D) ! 0

5 D ! 1, – 1, 
1/ 2 1/ 21 (1 4) 1 (1 4),

2 2
# 3 # 3 #

! 1, – 1, 
1 3 1 3,
2 2 2 2

# 3 3
i i

Hence the solution is y ! c1ex " c2e–x " e–x/2 [c5 cos ( 3 / 2x ) " c4 sin ( 3 / 2x )]
" ex/2 [c5 cos ( 3 / 2x ) " c6 sin 3 / 2x )], c1, c2, c3, c4, c5, c6 being arbitrary constants

Ex. 11. Solve (a) (D4 + 8D2 + 16) y = 0 [I.A.S. (Prel.) 1994]
(b) (D2 + D + 1)2 = 0.

Sol. (a) Here the auxiliary equation is D4 " 8D2 " 16 ! 0 or (D2 " 4)2 ! 0 or D2 " 4 ! 0 (twice)
so that D ! 0 ± 2i (twice). Here complex roots of A.E. are repeated twice. Hence, the required
general solution is y ! e0x [(c1 " c2x) cos 2x " (c3 " c4x) sin 2x]
or y ! (c1 " c2x) cos 2x " (c3 " c4x) sin 2x, c1, c2, c3 and c4 being arbitrary constants

(b) Ans. y ! e–x/2 [(c1 " c2x) cos ( 3 / 2)x " (c3 " c4x) sin ( 3 / 2)x ].

Ex. 12. Solve (a) (D2 + D + 1)2 (D – 2) y = 0.
(b) (D2 + 1)2 (D2 + D + 1) y = 0
(c) (D2 + 1)3 (D2 + D + 1)2 y = 0
Sol. (a) Here the auxiliary equation is (D2 " D " 1)2 (D – 2) y ! 0
− D2 " D " 1 ! 0 (twice) or D – 2 ! 0

− D ! [– 1 ± (1 4)# ]/2 (twice) or D ! 2

− D ! (– 1/2) ± i ( 3 / 2 ) (twice) or D ! 2.

So required general solution is             y ! c1e2x " e–x/2 [(c2 " c3x) cos ( 3 / 2x )

" (c4 " c5x) sin ( 3 / 2x )], c1, c2, c3, c4 and c5 being arbitrary constants.

(b) Here the auxiliary equation is (D2 " 1)2 (D2 " D " 1) ! 0

5 D ! 0 ± i (twice), {–1 ± (1–4)1/2}/2 i.e., 0 ± i (twice),        – (1/2) ± i( 3 / 2 ).
Hence the required general solution is y ! (c1 " c2x) cos x " (c3 " c4x) sin x

" e–x/2 [c5 cos (x 3 /2) " c6 sin (x 3 /2) ], c1, c2, c3, c4, c5, c6 being arbitrary constants.
(c) Here the auxiliary solution is (D2 " 1)3 (D2 " D " 1)2 ! 0 − D2 " 1 ! 0 (thrice),

D2 " D " 1 ! 0 (twice). Hence D ! 0 ± i (thrice), – (1/2) ± i ( 3 / 2 ) (twice).

Solution is y ! (c1 + c2x + c3x2) cos x + (c4 + c5x + c6x2) sin x + e–x/2 [(c7 + c8x) cos ( 3 / 2x )

+ (c9 + c10x) sin ( 3 / 2x )], where c1, c2, ...., c10 are arbitrary constants.
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Ex. 13. (a) Solve (d4y/dx4) – 4(d3y/dx3) + 8(d2y/dx2) – 8(dy/dx)+ 4y ! 0 [Rohilkhand 1995]
Sol. Let D # d/dx. Then the given equation, becomes (D4 – 4D3 " 8D2 – 8D " 4) y ! 0
Here the auxiliary equation is D4 – 4D3 " 8D2 – 8D " 4 ! 0

or (D2 " 4/D2) – 4 (D " 2/D) " 8 ! 0, on dividing both sides by D2 ... (1)
Let D " 2/D ! z so that D2 " 4/D2 ! z2 – 4. ... (2)
Using (2), (1) becomes (z2 – 4) – 4z " 8 ! 0 or z2 – 4z " 4 ! 0

or (z – 2)2 ! 0 or [D " (2/D) – 2]2 ! 0, using (2)
or (D2 – 2D " 2)2 ! 0 − D ! [2 ± (4 – 8)]/2 (twice), i.e., D ! 1 ± i (twice).

Hence the required general solution is y ! ex [(c1 " c2x) cos x " (c3 " c4x) sin x)],
c1, c2, c3 and c4 being arbitrary constants.

Ex. 13. (b) Solve (D4 + 2D3 + 3D2 + 2D + 1) y = 0.
Sol. A.E. is D4 " 2D3 " 3D2 " 2D " 1 ! 0 or    (D4 " 2D3 " D2) " (2D2 " 2D " 1) ! 0

or (D2 " D)2 " 2 (D2 " D) " 1 ! 0   or    (D2 " D " 1)2 ! 0   or  D2 " D " 1 ! 0 (twice)
5 D ! {– 1 ± (1 – 4)1/2}/2 ! – (1/2) ± 7 83 / 2i  (twice). The required general solution is

y ! e–x/2 [(c1 " c2x) cos ( 3 / 2x ) " (c3 " c4x) sin ( 3 / 2x )]
c1, c2, c3 and c4 being arbitrary constants.

Ex. 14 (a). Solve (d2y/dx2) + 4y = 0, given that y = 2 and dy/dx = 0 when x = 0.
Sol. Let D # d/dx. Then the equation is (D2 " 4) y ! 0. ... (1)
Its auxiliary equation is D2 " 4 ! 1 so that D ! 0 ± 2i.
Hence the general solution of (1) is y ! c1 cos 2x " c2 sin 2x, ... (2)

where c1 and c2 are arbitrary constants. These constants will be determined by using the given
conditioins of the problem, namely,

y ! 2 when x ! 0 ... (3)
and dy/dx ! 0 when x ! 0 ... (4)

Now, from (2), dy/dx ! – 2c1 sin 2x " 2c2 cos 2x. ... (5)
Using condition (3), (2) gives       2 ! c1     so that  c1 ! 2
Using condition (4), (5) gives     0 ! 2c2     so that    c2 ! 0.
Putting c1 ! 2, c2 ! 0 in (2), the required solution is y ! 2 cos 2x.
Ex. 14 (b). Solve (d2y/dx2) + y = 0 given y = 2 for x = 0 and y = – 2 for x = 9/2.
Sol. Proceed as in part (a). Ans. y ! 2(cos x – sin x).
Ex. 15 (a). Solve l(d22/dt2) + g2 = 0 given that 2 = 20 and d2/dt = 0 when t = 0.
Sol. Let D # d/dt. Then the given equation can be written as  [D2 " (g/l)] 2 ! 0. ... (1)

Its auxiliary equation is D2 " (g/l) ! 0 so that D ! 0 ± 1/ 2( / )i g l

The general solution of (1) is 2 ! c1 / 0 / 02cos ( / ) sin ( / )t g l c t g l∗ , ... (2)
where c1 and c2  are arbitrary constants.

From (2), d2/dt ! 1 2( / ) sin { / )} ( / ) cos{ / )}c g l t g l c g l t g l# ∗ ... (3)
Given that   2 ! 20                  when                      t ! 0 ... (4)

and      d2/dt ! 0             when                      t ! 0. ... (5)
Using the condition (4), (2) − 20 ! c1      so that     c1 ! 20.

Using the condition (5), (3) − 0 ! 2 ( / )c g l so that c2 ! 0.
Putting c1 ! 20, c2 ! 0 in (2), the required solution is               2 ! 20 cos { ( / ) }t g l .
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Ex. 15 (b). Find the solution of (d2i/dt2) + (R/L) (di/dt) + (1/LC) i = 0, where R2C = 4L and
R, C, L are constants.

Sol. Let D # d/dt. Then the given equation can be written as [(D2 " (R/L) D " (1/LC)] i ! 0.
Here the auxiliary equation is D2 " (R/L) D " (1/LC) ! 0

so that 2 2 1/ 2 2[ ( / ) {( / ) (4 / )} ] 2 ( / 2 ), as 4D R L R L LC R L R C L∃ # 3 # ∃ # ∃
Thus, D ! – (R/2L) (twice). Hence the required general solution is

y ! (c1 " c2t) e–t (R/2L), c1, c2 being arbitrary constants.

Exercise 5(A)
Solve the following differential equations :

1. (a) ( 3 26 11 6) 0∗ ∗ ∗ ∃D D D y (Meerut 2010)                   Ans. 2 3
1 2 3

x x xy c e c e c e# # #∗ ∗∃
(b) d2y/dx2 + 2(dy/dx) + 5y ! 0   (Guwahati 2007) Ans. y !  e–x (c$cos 4x + c2 sin 4x)
(c) d3y/dx3 – 6(d2y/dx2) + 9 (dy/dx) ! 0   (Pune 2010) Ans. y !  c1 + (c% + xc3) e3x

2. (D3 " 6D2 " 12D " 8) y ! 0. Ans. y ! (c1 " c2x " c3x2) e– 2x

3. (d2y/dx2) " 2p (dy/dx) " (p2 " q2) y ! 0. Ans. y ! e–px (c1 cos qx " c2 sin qx)
4. (D4 – 2D3 " 5D2 – 8D " 4) y ! 0. Ans. y ! (c1 " c2x) ex " c3 cos 2x " c4 sin 2x
5. (D4 " D2 " 1) y ! 0.

Ans. y ! ex/2 [c1 cos ( 3 / 2)x " c2 sin ( 3 / 2)x ] " e–x/2 [c3 cos ( 3 / 2)x " c4 sin ( 3 / 2)x ]
6. (D4 " 4D3 – 5D2 – 36D – 36) y ! 0. Ans. y ! c1e–3x " c2e3x " (c3 " c4x) e– 2x

7. (D4 – 7D3 " 18D2 – 20D " 8) y ! 0. Ans. y ! c1ex " (c2 " c3x " c4x2) e2x

8. (D2 ± w2) y ! 0, w . 0. Ans. y ! c1 cos wx " c2 sin wx " c3 ewx " c4 e–wx

9. {D3 " D2 (2 3 1# ) " D (3 – 2 3 ) –3} y ! 0 Ans. y ! c1 ex " (c2 " c3x) 3xe#

10. (a) (D5 – 13D3 " 26D2 " 82D " 104) y ! 0
Ans. (a) y ! c1 e–4x " e–x (c2 cos x " c3 sin x) " e3x (c4 cos 2x " c5 sin 2x)

(b) (D6 + 9D4 " 24D2 " 16) y ! 0   (b)  y ! c1 cos x + c2 sin x " (c3 " c4x) cos 2x " (c5 " c6x) sin 2x
11. d2x/dt2 –3 (dx/dt) " 2x ! 0 given when t ! 0, x ! 0 and dx/dt ! 0 Ans. x ! 0

5.6 The symbolic function 1/f(D).

Definition. The expression 
1
( )

X
f D

 is defined to be that function of x which when operated

upon by f (D) gives X.

For example,                2
2

1 (2 6 )
3

x x
D D

∗ ∃
∗

[! (D2 " 3D) x2 ! 2 " 6x]

The operator 1/f (D), according to this definition, is the inverse of the operator f (D).

Thus,                                      1 X X dx
D

∃ % . [Remember]

5.7 Determination of the particular integral (P.I.) of
                                          f (D) y ! X. ... (1)

In view of the definition 5.6, it follows that, Particular integral of (1)
1 .
( )

X
f D

∃ ... (2)

5.8 General method of getting particular integral

Theorem. If X is a function of x, then
1 .x xX e Xe dx

D
! #!∃

# ! %
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5.10 Linear Differential Equations with Constant Coefficients

Proof. Let                                          y !
1 X

D # !
On operating by (D – !8, we get (D – !) y ! X

or             
d

y X
dx

: ;# ! ∃< =
> ?

                             or ,dy y X
dx

# ! ∃

which is a linear differential equation whose I.F. ! dxe# !% ! e–!x and hence its solution is given by

ye–!x ! xXe dx#!% , after omitting constant of integration, since P.I. is required.

5                                           x xy e Xe dx! #!∃ %

Thus,
1 x xX e Xe dx

D
! #!∃

# ! % ... (1)

Similarly
1 x xX e Xe dx

D
#! !∃

∗ ! % . ... (2)

Remark 1. Since we require only a particular integral, we shall never add a constant of
integration after integration is performed in connection with any method of finding P.I. Hence P.I.
will never contain any arbitrary constant.

Remark 2. The above method can be used to evaluate P.I. in any problem. Since shorter
methods depending upon the special form of function X are available (to be discussed later on),
the above general method, however, must be used for problems in which X is of the forms
sec ax, cosec ax, sec2 ax, cosec2 ax, tan ax, cot ax or any other form not covered by shorter
methods (employed for special forms).

5.9 Corollary. If n is a positive integer, then 
1

!( )

n
x x

n
x

e e
nD

! !∃
# !

Proof L.H.S.

!
1 1

1 1 1 1
( ) ( ) ( )

x x x x x
n n ne e e e e dx

DD D D
! ! ! ! #!

# #∃ ∃
# !# ! # ! # ! %

[Using the theorem of Art. 5.8 with X ! e!x]

! 1 2 2
1 1 1 1

( ) ( ) ( )
x x ax x x

n n n
e x xe e xe e dx

DD D D
! ! ! #!

# # #
∃ ∃

# !# ! # ! # ! %
[Using the theorem of Art. 5.8 with X ! xe!x]

!
2

2 2
1 1

2!( ) ( )
x x

n n
xe xdx e

D D
! !

# #∃ 6
# ! #!% ... (i)

!
2

2
3 3

1 1 1 { ( / 2!) }
2!( ) ( )

x x x x
n n

xe e e x e dx
DD D

! ! ! #!
# #

∃
# !# ! # ! %

[Using the theorem of Art. 5.8 with X ! e!x (x2/2!)]

!
3

2
3 3

1 1
2! 3!( ) ( )

x
x

n n
e xx dx e

D D

!
!

# #∃
# ! # !% ... (ii)
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Continuing as before and noting (i) and (ii), we finally obtain

1 1
! !( ) ( )

n n
x x x

n n n
x xe e e
n nD D

! ! !
#∃ ∃

# ! # !
... (iii)

5.10 Working rule of finding the particular integral (P.I.) i.e. 
1
( )

X
f D

.

There are two following ways to obtain P.I.
Method I. The oeprator 1/f (D) may be factored into linear factors;

Then, P.I. !
1 2 3

1 1 1 1...
n

X
D D D D

6 6
# ! # ! # ! # !

On operating with the first symbolic factor, beginning at the right, there is obtained (keeping
the result (1) of theorem 5.8)

P.I. !
1 2 1

1 1 1... ;n nx x

n
e Xe dx

D D D
! #!

## ! # ! # ! %
then, on operating with the second and remaining factors in succession, taking them from right to
left, required P.I. can be obtained.

Method II. The operator 1/f (D) may be decomposed into its partial fractions, then

P.I. ! 1

1 2
... n

n

AA A X
D D D

& ∋∗ ∗ ∗≅ Α# ! # ! # !( )
! 1 1

1 ... n nx xx x
nA e Xe dx A e Xe dx! #!! #! ∗ ∗% % .

Of these two methods, the latter is generally used in practice.

5.11 Solved examples based on Art. 5.10
Ex. 1. Solve (D2 + a2) y = cot ax. [Delhi Maths. (G) 2005]
Sol. Here the auxiliary equation is D2 " a2 ! 0 so that D ! 0 ± ia.

5 C.F. ! 1 2 1 2( cos sin ) cos sinaxe c ax c ax c ax c ax∗ ∃ ∗ , c1, c2 being arbitrary constants

Now, P.I. ! 2 2
1 1cot cot

( ) ( )
ax ax

D ai D iaD a
∃

∗ #∗
[! D2 " a2 ! D2 – (ia)2 ! (D " ai) (D – ai)]

! 1 1 1 cot ,
2

ax
ia D ia D ia

& ∋∗≅ Α# ∗( )
 on resolving into partial fractions

Now,  
1 cot ax

D ia#
!

coscot (cos sin )
sin

iax iax iax ax
e e ax dx e ax i ax dx

ax
# ∃ #% %

[! by Euler’s theorem, e–iax ! cos ax – i sin ax]

!
22 1 sincos cos cos

sin sin
iax iax axaxe i ax dx e i ax dx

ax ax
: ;: ; #

# ∃ #< =< =
> ? > ?

% %
! (cosec sin cos )iaxe ax ax i ax dx# #% ! eiax [(1/a) log tan (ax/2) " (1/a) cos ax – (i/a) sin ax]

! eiax [(1/a) log tan (ax/2) " (1/a) (cos ax – i sin ax)]
! eiax [(1/a) log tan (ax/2) " (1/a) e–iax], by Euler’s theorem

5
1 1cot log tan 1

2
iax axax e

D ia a
& ∋∃ ∗≅ Α( )#

. ... (2)
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5.12 Linear Differential Equations with Constant Coefficients

Replacing i by – i in (2), 1 1cot log tan 1
2

iax axax e
D ia a

#& ∋∃ ∗≅ Α( )#
... (3)

Using (2) and (3), (1) reduces to

P.I. !
1 1 1

{ log tan 1} { log tan 1}
2 2 2

iax iaxax ax
e e

ia a a
#& ∋∗ # ∗≅ Α( )

!
2 2

1 1log tan sin log tan
2 2 2

iax iaxe e ax ax
ax

ia a

##
6 ∃ .

Hence the required general solution is   y ! C.F. " P.I., i.e.,
y ! c1 cos ax " c2 sin ax " (1/a2) sin ax log tan (ax/2), where c1 and c2 are arbitrary constants.
Ex. 2. Solve (D2 + a2) y = tan ax. (Meerut 1996)
Sol. Here the auxiliary equation D2 " a2 ! 0 gives D ! ± ia.
5 C.F. ! c1 cos ax " c2 sin ax, c1, c2 is being arbitrary constants.

Now, P.I. ! 2 2
1 1tan tan

( ) ( )
ax ax

D ai D aiD a
∃

∗ #∗
! 1 1 1 tan .

2
ax

ia D ia D ia
& ∋#≅ Α# ∗( )

... (1)

Now, 
1 tan taniax iaxax e e ax dx

D ia
#∃

# % !
sin(cos sin ) ,
cos

iax ax
e ax i ax dx

ax
#%  by Euler’s theorem

!
21 cossin [sin (sec cos )]

cos
iax iaxaxe ax i dx e ax i ax ax dx

ax
& ∋#

# ∃ # #≅ Α
( )

% %

!
cos sinlog tan .

4 2
iax ax i ax axe i

a a a
& 9 ∋: ;# # ∗ ∗< =≅ Α> ?( )

! (cos sin ) log tan
4 2

iaxe axax i ax i
a

9& ∋: ;# # ∗ ∗< =≅ Α> ?( )

! log tan
4 2

iax
iaxe axe i

a
# 9& ∋: ;# ∗ ∗< =≅ Α> ?( )

, by Euler’s theorem

Thus,  1 1tan 1 log tan
4 2

iax a xa x i e
D ia a

9& ∋: ;∃ # ∗ ∗< =≅ Α# > ?( )
... (2)

Replacing i by –i in (2),
1 1tan 1 log tan

4 2
iax a xax ie

D ia a
# 9& ∋: ;∃ # # ∗< =≅ Α∗ > ?( )

... (3)

5 By (1), (2) and (3), we have

P.I. ! 1
( ) log tan

2 4 2
iax iaxi ax

e e
ia a

# 9Β Χ: ;# ∗ ∗< =∆ Ε
> ?Φ Γ

! 2(1/ ) cos log tan ( / 4 / 2)a ax ax# 9 ∗ .

5 The required solution is y ! C.F. " P.I., that is,
y ! c1 cos ax " c2 sin ax – (1/a2) cos ax log tan ( / 4 / 2)ax9 ∗ .

Ex. 3. Solve (D2 + a2) y = sec ax. [Rohilkhand 1995, Purvanchal 2007,
Agra 2006, Kanpur 1997, Delhi, Maths (G) 2006, Lucknow 1995]

Sol. Here the auxiliary equation is D2 " a2 ! 0. so that D ! ± ia.
and hence                 C.F. ! c1 cos ax " c2 sin ax, c1, c2 being arbitrary constants.

                      P.I. !
2 2

1 1 1 1sec sec .
2

ax ax
ia D ia D iaD a

& ∋∃ #≅ Α# ∗∗ ( )
... (1)
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Linear Differential Equations with Constant Coefficients 5.13

Now, 1 sec ax
D ia#

! cos sinsec
cos

iax iax iax ax i axe e ax dx e dx
ax

# #
∃% %

! (1 tan ) { ( / ) log cos }iax iaxe i ax dx e x i a ax# ∃ ∗% ... (2)

Replacing i by – i in (2),
1

D ia∗
 sec ax ! e–iax[x – (i/a) log cos ax] ... (3)

5 From (1), (2) and (3), we get
P.I. ! (1/2ia) [eiax {x " (1/a) log cos ax} – e–iax {x – (i/a) log cos ax}]

! 2
( ) ( )1 (log cos ).

2 2

iax iax iax iaxe e e e
x ax

ia a

# ## ∗
∗

! (x/a) sin ax " (1/a2) cos ax log cos ax
5 Hence the required solution is   y ! C.F. " P.I., that is,
y ! c1 cos ax " c2 sin ax " (x/a) sin ax " (1/a2) cos ax log cos ax.
Ex. 4. Solve (a) (d2y/dx2) + y = sec2x. [Delhi Maths. (Prog) 2009]

(b) (d2y/dx2) + y = cosec2x.
Sol. (a) Let D # d/dx. Then the given equation is (D2 " 1) y ! sec2x.
Its auxiliary equation is D2 " 1 ! 0 so that D ! ± i and C.F. ! c1 cos x " c2 sin x.

and                    P.I. ! 2 2 2
2
1 1 1 1 1sec sec sec

( ) ( ) 21
x x x

D i D i i D i D iD
& ∋∃ ∃ #≅ Α# ∗ # ∗∗ ( )

Now, 21 sec x
D i#

! 2
2

cos sinsec
cos

ix ix ix x i xe e x dx e dx
x

# #
∃% %

! (sec sec tan ) [log(sec tan ) – sec ]ix ixe x i x x dx e x x i x# ∃ ∗% ... (2)

Replacing i by – i in (2),
1

D i∗
sec2x ! e–ix [log (sec x " tan x) " i sec x] ... (3)

From (1) (2), and (3), we have
P.I. ! (1/2i) [eix log (sec x " tan x) – ieix sec x – e–ix log (sec x " tan x) – e–ix sec x]

!
2

ix ixe e
i

##
 log (sec x " tan x) sec

2

ix ixe e x
#∗

#

! sin x log (sec x " tan x) – cos x sec x ! sin x log (sec x " tan x) – 1.
Hence the required solution. y ! c1 cos x " c2 sin x " sin x log (sec x " tan x) – 1.

(b) Do yourself Ans. y ! c1 cos x " c2 sin x – cos x log (cosec x – cot x) – 1.

Exercise 5 (B)

Solve the following differential equations :
1. (D2 " 4) y ! tan 2x                              Ans. y ! c1 cos 2x " c2 sin x – (1/4) × cos 2x log tan (9/4 + x)
2. (D2 " 1) y ! cosec x. Ans. y ! c1 cos x " c2 sin x  – x cos x " sin x log sin x
3. (a) (D2 " 1) y ! sec x. Ans. y ! c1 cos x " c2 sin x " x sin x " cos x log cos x
3. (b) (D2 + 9) y ! sec 3x. [Meerut 2007; Rajasthan 2010]

Ans. y ! c1 cos 3x + c2 sin 3x + (x/3) × sin 3x + (1/9) × cos 3x log cos 3x
4. (D2 " a2) y ! cosec ax. Ans. y ! c1 cos ax " c2 sin ax " (1/a2) sin ax log sin ax – (x/a) cos ax
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5.14 Linear Differential Equations with Constant Coefficients

5. d2x/dy2 " 4x ! tan 2 y. Ans. x ! c1 cos 2y + c2 sin 2y – (1/4) × cos 2y tan (y " 9/4)
Hint: It is same as Ex. 1 by interchanging x and y.

6. (D2 – 3D " 2) y ! sin e–x Ans. y ! c1ex " c2e–x – e2x sin e–x

7. (D2 – 9D " 18)y !
3xee

#

Ans. y ! c1e2x " c2e6x " (1/9) × e6x
3 xee

#

5.12 Short methods for finding the particular integral of given equation f (D) y ! X,
when X is of certain special form.

The general method of finding P.I. given in Art. 5.8 leads to cumbersome calculations in most
of the problems. However, the P.I. can be obtained by methods that are shorter than general
methods provided X is one of the following special forms :

Form I. When X ! eax, where a is any constant.
Form II. When X ! sin ax    or    cos ax
Form III. When X ! xn or a polynomial a0xn " a1xn – 1 " ................. " an – 1 x " an  where n

is any positive integer
Form IV. When X ! xn V, where V is a function of x and n is positive integer.

5.13 Short method of finding P.I. when X ! eax, where ‘a’ is constant.

Formula IA.       P.I. !
1 1
( ) ( )

ax axe e
f D f a

∃ , when f (a) . 0.

Formula IIA.    P.I. !
1

!( )

n
ax ax

n
xe e
nD a

∃
#

, n ! 1, 2, 3. ...

Proof of formula IA. Let f (D) ! Dn " c1Dn – 1 " c2Dn – 2 " ... " cn – 1 D " cn.
But D eax = a eax, D2 eax ! a2 eax, ..., Dn – 1 eax ! an – 1 eax , Dn eax ! an eax.
5 f (D) eax ! (Dn " c1Dn – 1 " ... cn – 1 D " cn) eax

! (an " c1an – 1 " ... " cn – 1 a " cn) eax ! f (a) eax

Thus,                                             f (D) eax ! f (a) eax.
Operating upon both sides by 1/f (D), we get

1 1( ) ( )
( ) ( )

ax axf D e f a e
f D f D

6 ∃ or eax !
1( )
( )

axf a e
f D

or                                     1 1
( ) ( )

ax axe e
f D f a

∃ , provide f (a) . 0.

Proof of formula IIA. Refer corollary in Art. 5.8.

5.14 Working rule for finding P.I. of f (D) y ! X when X ! eax

Step 1. If f (a) . 0, then use formula IA of Art. 5.13. Note that we put a for D in f (D)
provided f (a) . 0.

Step II. If f (a) ! 0, then the following two cases arise.
Case (i) If f (D) ! (D – a)n, where n ! 1, 2, 3, ... Then we shall use formula IIA of Art. 5.13.
Case (ii) If f (D) ! (D – a)r + (D), where + (a) . 0 and r ! 1, 2, 3, ... Then we use formulas

IA and IIA of Art. 5.13 in succession as below :

P.I. ! 1 1 1
( )( ) ( ) ( )

ax x
r re e

aD a D D a
∃

+# + #
, using formula IA of Art. 5.13
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!
1 1 1
( ) ( ) !( )

r
ax ax

r
xe e

a a rD a
∃

+ +#
, using formula IIA of Art. 5.13     ... (1)

Alternative form of above result (1).  Since f(D) ! (D – a)r ( )D+ , ( ) ( ) ! ( )rf D r D∃ + + terms

containing (D – a) and its higher powers. So ( ) ( ) ! ( ).rf a r a∃ +  Hence, (1) takes new form

                        
1) ( ). . ( ) / ( ) ( )r ax r r r axP I x e f a x f a e

#7 & ∋∃ ∃ ( ) ... (2)
Note. As a particular case, if a ! 0 so that X ! e0.x ! 1, then formulae I and II of Art. 5.13

take the following forms :

Formula IB. 0. 0.1 1 1 11
( ) ( ) (0) (0)

x xe e
f D f D f f

∃ ∃ ∃ , if f (0) . 0

Formula IIB. 0. 0.1 11 , 1, 2, 3 ...
! !( 0)

n n
x x

n n
x xe e n
n nD D

∃ ∃ ∃ ∃
#

5.15 Solved examples based on working rule 5.14
Ex. 1. Solve the following differential equations :

(a) (D2 – 3D " 2) y ! e3x. [I.A.S. (Preliminary) 1993, Meerut 1994]
(b) (4D2 " 12D " 9) y ! 144 e–3x. [Rohilkhand 1992, 93]
(c) [D2 " 2pD " (p2 " q2)] y ! eax.
(d) D2 (D + 1)2  (D2 + D + 1)2 y ! ex

Sol. (a) Here the auxiliary equation is D2 – 3D " 2 ! 0 so that D ! 1, 2
5 C.F. ! c1ex " c2e2x, c1, c2 being arbitrary constants.

and P.I. ! 3 3 3
2 3

1 1 1
23 2 3 (3 3) 2

x x xe e e
D D

∃ ∃
# ∗ # Η ∗

5 The required general solution is          y ! c1ex " c2e2x " (1/2) e3x.
(b) Here the A.E. is (2D " 3)2 ! 0 so that D ! – 3/2, – 3/2
5 C.F. ! (c1 " c2x) e–3x/2, c1, c2 being arbitrary constants.

and P.I. ! 3 3
2 2 2

1 1 144144 144
4 12 9 (2 3) ( 6 3)

x xe e
D D D

# #∃ ∃
∗ ∗ ∗ # ∗

e–3x!16e–3x

Hence the required solution is y ! (c1 " c2x) e–3x/2 " 16 e–3x.

(c) Here the auxiliary equation is D2 " 2pD " (p2 " q2) ! 0

Solving                      D !
2 2 22 4 4( )
2

p p p q# 3 # ∗
! – p . iq (complex roots)

5 C.F. ! e–px (c1 cos qx " c2 sin qx), c1, c2 being arbitrary constants

and P.I. ! 2 2 2 2 2 2 2 2
1 1

2 ( ) 2 ( )

ax
ax ax ee e

D pD p q a pa p q p a q
∃ ∃

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5 Required solution is y ! e–p (c1 cos qx " c2 sin qx) " eax/{(p " a)2 " q2}

(d) Here the auxiliary equation is D2 (D " 1)2 (D2 " D " 1)2 ! 0

Solving, we get   D ! 0,     0,     – 1,     – 1,     – (1/2) ± i ( 3 / 2 ),     – (1/2) ± i ( 3 / 2 ).
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5.16 Linear Differential Equations with Constant Coefficients

5 C.F. ! (c1 " c2x) e0x " (c3 " c4x) e–x " e–x/2 [(c5 " c6x) cos ( 3 / 2x )]

                                    " [(c7 " c8x) sin ( 3 / 2x )], c1, c2, ..., c7, c8 being arbitrary constants.

and                       P.I. !
2 2 2 2 2 2 2 2

1 1
36( 1) ( 1) 1 (1 1) (1 1 1)

x
x x ee e

D D D D
∃ ∃

∗ ∗ ∗ ∗ ∗ ∗

Hence the required solution is y ! c1 " c2x " (c3 " c4x) e–x

" e–x/2 [(c5 " c6x) cos ( 3 / 2x )] " [(c7 " c8x) sin ( 3 / 2x )] " (1/36) ex.
Ex. 2. Solve the following differential equations :
(a) (4D2 – 12D + 9) y ! 144 e3x/2.
(b) (D2 + 4D + 4) y ! e2x – e–2x       or     (D2 + 4D + 4) y ! 2 sinh 2x.

Sol. (a) Here the auxiliary equation is             4D2 – 12D " 9 ! 0.
or              (2D – 3)2 ! 0                                      so that D ! 3/2, 3/2.

5 C.F. ! (c1 " c2x) e3x/2, c1, c2 being arbitrary constants.

and P.I. ! 3 / 2 3 / 2
2

1 1144 144
(2 3)(4 12 9)

x xe e
DD D

∃
## ∗

!
3 / 2

2
144 1

4 { (3 / 2)}
xe

D #

!
2

3 / 236
2!

xx e6 , as 
1

!( )

n
ax ax

n
xe e
nD a

∃
#

5 Solution is  y ! (c1 " c2x) e3x/2 " 18x2 e3x/2. c1, c2, being arbitrary constants.
(b) Given equation is (D2 " 4D " 4) y ! 2 sinh 2x.

or (D " 2)2 y ! e2x – e–2x,                   as                  sinh 2x ! (e2x – e–2x)/2.
Here the auxiliary equation is (D " 2)2 ! 0 so that D ! – 2, – 2
5 C.F. ! (c1 " c2x) e–2x, c1, c2 being arbitrary constants.

and P.I. ! 2 2 2 2
2 2 2

1 1 1( )
( 2) ( 2) ( 2)

x x x xe e e e
D D D

# ## ∃ #
∗ ∗ ∗

!
2 2

2 2 2 2
2

1 1
2! 16 2(2 2)

x x x xx xe e e e# ## ∃ #
∗

.

Hence the required solution is y ! (c1 + c2x) e–2x + (1/16) × e2x – (x2/2) × e–2x

Ex. 3. Solve the following differential equations :
(a) (D " 2) (D – 1)3 y ! ex.
(b) (D – 1)2 (D2 " 1)2 y ! ex

Sol. (a) Here auxiliary equation is (D " 2) (D – 1)3 ! 0 so that D ! – 2, 1, 1, 1.
5 C.F. ! c1e–2x " (c2 " c3x " c4x2) ex, c1, c2, c3 being arbitrary constants

P.I. ! 3 3
1 1 1 1

2 1 2( 1) ( 1)
x xe e

DD D
∃ 6

∗ ∗# #

     !
1
3

3

3
1 1

3 3!( 1)
x xxe e

D
∃ 6

#
, as

1
!( )

n
ax ax

n
xe e
nD a

∃
#

5 The required solution is y ! c1e–2x " (c2 " c3x " c4x2) ex " (1/18) x3 ex.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Linear Differential Equations with Constant Coefficients 5.17

(b) Ans. y ! (c1 " c2x) ex " (c3 " c4x) cos x " (c5 " c6x) sin x " (x2/8) ex.
Ex. 4. Solve :  (a) (D2 " D – 2) y ! ex [I.A.S. (Prel.) 1997]
(b) (D – 1) (D2 – 2D " 2) y ! ex [I.A.S. 2002]
(c) (D3 – D) y ! ex " e–x or (D3 – D) y ! 2 cosh x [I.A.S. Prel. 1993]
Sol. (a) Here the auxiliary equation is D2 " D – 2 ! 0 so that D ! – 2, 1
Hence C.F. ! c1e–2x " c2ex, c1, c2 being arbitrary constants.

P.I. ! 2
1 1 1

( 1)( 2) 12
x x xe e e

D D DD D
Ι

∃ ∃ 6
# ∗ # Ι ∗ ϑ∗ #

! 1 1 1
3 1 3 1! 3

x x xx xe e e
D

∃ Η ∃
#

So required solution is y ! c1e–2x " c2ex " (x/3) × ex

(b) Here the auxiliary equation is (D – 1) (D2 – 2D " 2) ! 0
Hence D ! 1, {2 ± (4 – 8)1/2}/2 i.e. D ! 1, 1 ± i
Hence              C.F. ! c1ex " ex (c2 cos x " c3 sin x), c1, c2, c3 being arbitrary constants

and P.I. ! 2
1 1 1 1 1

1 1 1 2 2 1 1!2 2
x x x xxe e e e

D D DD D
6 ∃ ∃ ∃

# # # ∗ ## ∗
So the required solution is y ! c1ex " ex (c2 cos x " c3 sin x) " x ex

i.e.                                   y ! ex (c1 " c2 cos x " c3 sin x " x).
(c) Hence the auxiliary equation is D3 – D ! 0 so that D ! 0, 1, – 1
Hence                         C.F. ! c1 e0.x " c2 ex " c2 e–x ! c1 " c2 ex " c3 e–x

P.I. ! 3
1 1( ) ( )

( 1) ( 1)
x x x xe e e e

D D DD D
# #∗ ∃ ∗

# ∗#

!
1 1 1 1

1 ( 1) 1 ( 1)
x xe e

D D D D D D
#∗

# ∗ ∗ #
!

1 1 1 1
1 1 2 1 ( 1) ( 2)

x xe e
D D

#∗
# Η ∗ # Η #

! 1 1 1 1 1 1 ( )
2 1 2 1 2 1! 2 1! 2

x x
x x x xx x x e ee e e e

D D

#
# # ∗

∗ ∃ ∗ ∃
# ∗

5 Required solution is y ! c1 " c2 ex " c3e–x " (x/2) × (ex " e–x)
Ex. 5. Solve (a) (D 4 – 2D3 + 5D2 – 8D + 4) y = ex [I.A.S. 1991]
(b) (D4 " D3 " D2 – D – 2) y ! ex [Bhopal 1993; Lucknow 1994]
Sol. (a) A.E. is D4 – 2D3 " 5D2 – 8D " 4 ! 0 or (D – 1) (D3 – D2 " 4D – 4) ! 0

or (D – 1) [D2 (D – 1) " 4 (D – 1)] ! 0 or (D – 1)2 (D2 " 4) ! 0 so that D ! 1, 1, ± 2i.
5   C.F. ! (c1 " c2x) ex " c3 cos 2x " c4 sin 2x, c1, c2, c3, c4 being arbitrary constants.

and P.I. !
2

2 2 2
1 1 1 1

5 5 2!( 1) ( 4) ( 1)
x x xxe e e

D D D
∃ ∃

# ∗ #
The solution is y ! (c1 " c2x) ex " c3 cos 2x " c4 sin 2x " (x2 ex)/10.
(b) The given equation is (D4 " D3 " D2 " D – 2) y ! ex.

or {D3 (D – 1) " 2D2 (D – 1) " 3D (D – 1) " 2 (D – 1)} y ! ex

or (D – 1) (D3 " 2D2 " 3D " 2) y ! ex

or (D – 1) {(D2 (D " 1) " D (D " 1) " 2 (D " 1)} y ! ex

or (D – 1) (D " 1) (D2 " D " 2) y ! ex

Here auxiliary equation is (D – 1) (D " 2) (D2 " D " 2) ! 0

5 D = 1, – 1, {–1 ± (1–8)1/2}/2 or D ! 1, –1,   – (1/2) ± i ( 7 / 2)
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and C.F. ! / 2
1 2 3 4{ cos( 7 / 2) sin ( 7 / 2)}x x xc e c e e c x c x# #∗ ∗ ∗ ,

c1, c2, c3 and c4 being arbitrary constants.

Also, P.I. ! 2
1 1 1

( 1) (1 1)(1 1 2)( 1)( 1)( 2)
x xe e

DD D D D
∃

# ∗ ∗ ∗# ∗ ∗ ∗

! 1 1 1
8 1 8 1! 8

x x xx xe e e
D

∃ ∃
#

,    as    1
!( )

n ax
ax

n
x ee

nD a
∃

#

Required solution is y ! c1ex " c2e–x " e–x/2 {c3cos ( 7 / 2x ) " c4 sin ( 7 / 2x )} " (x/8)ex.

Ex. 6. Solve :  (a) D2 – 3D + 2) y = ex + e2x. [Delhi Maths (G) 1996]
(b) (D2 – 3D + 2) y = cosh x. [I.A.S. Prel. 2005]
(c) (D3 – 5D2 + 7D – 3) y = e2x cosh x
(d) (d3y/dx3) – y = (ex + 1)2. [Delhi Maths (H) 1993, 1996]
Sol. (a) Here the auxiliary equation is D3 – 3D " 2 ! 0 so that D ! 1, 2.
5 C.F. ! c1 ex " c2 e2x, c1, c2 being arbitrary constants.

and P.I. ! 2 2
2

1 1 1( )
( 1)( 2) ( 2)( 1)3 2

x x x xe e e e
D D D DD D

∗ ∃ ∗
# # # ## ∗

! 2 21 1 1 1
1 1 2 2 2 1 1! 1!

x x x xx xe e e e
D D

∗ ∃ # ∗
# # # #

Hence the general solution is y ! c1 ex " c2 e2x – xex " xe2x.
(b) Here auxiliary equation is D2 – 3D " 2 ! 0 so that D ! 1, 2
5 C.F. ! c1 ex " c2 e2x, c1, c2 being arbitrary constants

and P.I ! 2
1 1 ( )cosh

( 1)( 2) 23 2

x xe ex
D DD D

#∗
∃

# ## ∗

! 1 1 1 1
2 ( 1)( 2) 2 ( 1)( 2)

x xe e
D D D D

#∗
# # # #

! 1 1 1 1 1 1 1 1 1
2 11 2 2 ( 2) ( 3) 2 1 2 6

x x x xe e e e
D D

# #∗ ∃ # ∗ Η
# # # Η # #

! 1 1 1
2 1! 12 2 12

x x x xx xe e e e# ## Η ∗ ∃ # ∗

5 the required solution is  y ! c1ex " c2e2x – (x/2) × ex " (1/12) × e–x

(c) Re-writing, the given equation becomes
{D2(D – 1) – 4D(D – 1) " 3(D – 1)}y ! e2x cosh x or (D – 1)2 (D – 3) y ! e2x cosh x.
Here auxiliary equation is (D – 1)2 (D – 3) ! 0 so that D ! 1, 1, 3.
5 C.F. ! (c1 " c2x) ex " c3e3x, c1, c2, c3 being arbitrary constants

P.I. !
2

2
2 2

( )1 1cosh
2( 1) ( 3) ( 1) ( 3)

x x x
x e e ee x

D D D D

#∗
∃

# # # #

! 3
2 2

1 1 1 1 1 1
2 3 2 3( 1) ( 1)

x xe e
D DD D

∗
# ## #

! 3 3
2

1 1 1 1 1 1
8 3 4 8 1! 4 2!( 1)

x x x xx xe e e e
D D

# ∃ #
# #
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So the required solution is y ! (c1 " c2x) ex " c3e3x " (x/8) e3x – (x2/8) ex.
(d) Let D # d/dx. Then the given equation reduces to
(D3 – 1) y ! (ex " 1)2 or (D – 1) (D2 " D " 1) y ! e2x " 2ex " 1.

Here auxiliary equation is (D – 1) (D2 " D " 1) ! 0 so that D ! 1, – (1/2) ± i ( 3 / 2) .

5 C.F. ! ( / 2)
1 2 3cos ( 3 / 2) sin ( 3 / 2)x xc e e c x c x# & ∋∗ ∗( )

P.I. ! 2 2 0.
3 3 3 3
1 1 1 1( 2 1) 2

1 1 1 1
x x x x xe e e e e

D D D D
∗ ∗ ∃ ∗ ∗

# # # #

! 2 0.
3 2 3
1 1 12

2 1 ( 1)( 1) (0) 1
x x xe e e

D D D
∗ ∗

# # ∗ ∗ #

! 2 2
2

1 1 1 1 22 1 1
7 1 7 3 1!1 1 1

x x x xxe e e e
D

∗ # ∃ ∗ 6 #
# ∗ ∗

So solution is y ! c1ex " e–(x/2) [c2 cos ( 3 / 2x ) " c3 sin ( 3 / 2x )] " (1/7) Η e2x " (2x/3) × ex – 1,
c1 c2, c3 being arbitrary constants.

Ex. 7. If (d2x/dt2) + (g/b) (x – a) = 0, (a, b and g being constants) and x = a1 and dx/dt =

0 when t = 0, show that x = a + (a1 – a) cos ( / )t g b . [I.A.S. 1994, Kurushetra 1994]

Sol. With D 4 d/dt, given equation is {D2 " (g/b)} x ! ga/b. ... (1)

Here auxiliary equation D2 " g/b ! 0 gives D ! 0 ± ( / )i g b .

5 C.F. ! c1 cos ( / )t g b " c2 sin ( / )t g b , c1, c2, being arbitrary constants

P.I. ! 0. 0.
2 2

1 1 1
0 ( / )( / ) ( / )

t tga ga gae e
b b b g bD g b D g b

∃ ∃
∗∗ ∗

! a.

So general solution is x ! c1 cos 2( / ) sin ( / )t g b c t g b a∗ ∗ . ...(2)

From (2), dx/dt ! – 1 2( / ) sin ( / ) ( / ) cos ( / )c g b t g b c g b t g b∗ ...(3)

Given x ! a1 when t ! 0. So (2) − a1 ! c1 " a or c1 ! a1 – a. ...(4)

Given dx/dt ! 0 when t ! 0. So (3) − 0 ! 2 /c g b or c2 ! 0. ...(5)
Substituting the values of c1 and c2 in (2), the required solution is

x ! (a1 – a) cos /t g b a∗ , as required.

Ex. 8. Solve (D2 – 6D + 8) y = (e2x + 1)2. [Delhi Maths (G) 2006]
Sol. Here auxiliary equation is D2 – 6D " 8 ! 0 giving D ! 2, 4.
Hence C.F. ! c1e2x " c2e4x, c1, c2 being arbitrary constants.

P.I. ! 2 2 4 2
2

1 1( 1) ( 2 1)
( 2)( 4)6 8

x x xe e e
D DD D

∗ ∃ ∗ ∗
# ## ∗

! 4 2 0.1 1 12
( 4)( 2) ( 2)( 4) ( 2)( 4)

x x xe e e
D D D D D D

∗ ∗
# # # # # #

  ! 4 2 0.1 1 1 1 12
4 4 2 2 2 4 (0 2) (0 4)

x x xe e e
D D

∗ ∗
# # # # # #
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! 4 2 4 21 1 1 (4 8 1)
2 1! 1! 8 8

x x x xx xe e xe xe# ∗ ∃ # ∗ .

5 Required solution is y ! c1e2x " c2e4x " (1/8) × (4 xe4x – 8xe2x " 1).
Ex. 9. Find the solution of the equation (D2 – 1) = 1, which vanishes when x = 0 and tends

to a finite limit as x Κ – Λ. D stands for d/dx.
Sol. Here auxiliary equation. is D2 – 1! 0 so that D ! 1, – 1.
5 C.F. ! c1ex " c2e–x, c1, c2 being arbitrary constants.

and P.I. ! 0. 0.
2 2 2
1 1 1

1
1 1 0 1

x xe e
D D

∃ ∃
# # #

! – 1.

So the general solution is                      y ! c1 ex " c2 e–x – 1. ... (1)
Given y ! 0 when x ! 0. So (1) − 0 ! c1 " c2 – 1 or c1 " c2 ! 1. ... (2)

Multiplying both sies of (1) by ex,                  yex ! c1e2x " c2 – ex.  ... (3)
We know that ex ! 0 as x Κ – Λ ... (4)
Taking limit of both sides of (3) as x Κ – Λ and using (4) and the given fact that y in finite, we

get            (finite) × 0 ! c1 × 0 " c2 – 0                so that c2 ! 0.     ... (5)
Solving (2) and (5), c1 ! 1, c2 ! 0. Hence, from (1), y ! ex – 1, which is the required solution.

Exercise 5(C)
Solve the following differential equations.

1. (D – 3)2 y = 2e4x     [Guwahati 2007]   Ans. y ! (c1+ c2 x) e3x + 2e4x

2. d2y/dx2 –3 (dy/dx) + 2y ! e5x. [Merrut 1994]                              Ans. y ! c1ex " c2e2x " (1/12) e5x

3. (D2 " D " 1) y ! e–x Ans. y ! e–x/2 [c1 cos ( 3 / 2)x " c2 sin ( 3 / 2)x ] " e–x

4. (D2 " 5D " 6) y ! e2x. Ans. y ! c1e–2x " c2e–3x " (1/20)e2x

5. (D2 – 1) y ! cosh x. [Utkal 2003; I.A.S. 2008] Ans. y = c1ex " c2e–x " (x/2) × sinh x
6. (D3 " 3D2 " 3D " 1) y ! e–x. [Pune 2010] Ans. y ! (c1 " c2x " c3x2) e–x " (x3/6) e–x

7. (D3 – D2 – 4D " 4) y ! e3x. Ans. y ! c1ex " c2e2x " c3e–2x " (1/10) e3x

8. (D3 " 1) y ! (ex " 1)2. Ans. y ! c1 e–x " ex/2 [c2 cos ( 3 / 2)x " c3 sin ( 3 / 2)x ] " 1 " ex " (1/9)e2x

9. (D2 – 2k D " k2) y ! ekx. Ans. y ! (c1 " c2x) ekx " (x2/2) ekx

10. (D2 – 3D " 2) y ! ex, given y ! 3 and dy/dx ! 3 when x ! 0. Ans. y ! 2ex + e2x – xex

11. (D2 – a2) y ! cosh ax. Ans. y ! c1eax " c2e–ax " (x/2a) sinh ax
12. (D2 + 4D + 4) y ! 2 sinh 2x. [Garhwal 2010] Ans. y ! (c1 + c2 x) e–2x " (116) × e2x – (x2/2) × e–2x

5.16 Short method of finding P.I. when X ! sin ax   or   X ! cos ax.
Case I. When f (D) can be expressed as + (D2) and + (– a2) . 0, we shall use the following

formulas            
2 2 2 2

1 1 1 1sin sin and cos cos
( ) ( ) ( ) ( )

ax ax ax ax
D a D a

∃ ∃
+ + # + + #

Thus, the rule is to replace D2 by – a2.
Proof of the above formula. By successive differentiation, we have

D sin ax ! a cos ax
D2 sin ax ! – a2 sin ax − (D2)1 sin ax ! (– a2)1 sin ax ... (A1)
D3 sin ax ! – a3 cos ax
D4 sin ax ! a4 sin ax − (D2)2 sin ax ! (– a2)2 sin ax ... (A2)
......................................................................................
D2n sin ax ! – a2n sin ax − (D2)n sin ax ! (– a2)n sin ax. ... (An)
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Let + (D2) ! (D2)n " a1(D2)n – 1 " ... " an – 1 (D2)1 " an. ... (1)
Then, from (A1), (A2), ..., (An) and (1), it follows that + (D)2 sin ax ! + (– a2) sin ax. ... (2)
Operating upon both sides of (2) by 1/+ (D2), we have

2 2
2 2

1 1( ) sin ( )
( ) ( )

D ax a
D D

+ ∃ + #
+ +

 sin ax or sin ax ! +(– a2) 2
1 sin

( )
ax

D+
Dividing both sides by + (– a2) which is not zero, we get

2 2
1 1sin sin ,

( ) ( )
ax ax

D a
∃

+ + #
 provided +(– a2) . 0.

Similarly, we have 2 2
1 1cos cos ,

( ) ( )
ax ax

D a
∃

+ + #
 provided +(– a2) . 0.

An important sub case. If f (D) contains odd powers also, it can be put in the form f (D) ! f1(D2)
" D f2(D2), where f1 (– a2) . 0 and f2 (– a2) . 0. Then

P.I. ! 2 2 2 2
1 2 1 2

1 1sin sin
( ) ( ) ( ) ( )

ax ax
f D D f D f a D f a

∃
∗ # ∗ #

[Use case I   so that   replace D2 by – a2]

! 1 sin ax
p qD∗

, where p ! f1 (– a2) and q ! f2 (– a2)

! 2 2 2
1 1( ) sin ( ) sin

( ) ( )
p qD ax p qD ax

p qD p qD p q D
# 6 ∃ #

# ∗ #

! 2 2 2 2 2 2
1 1( ) sin ( sin sin )

( )
p qD ax p ax qD ax

p q a p q a
# ∃ #

# # ∗

! 2 2 2
1

p q a∗
 (p sin ax – qa cos ax), as D sin ax !

d
dx

 sin ax.

Similarly,  P.I. ! 2 2
1 2

1 cos
( ) ( )

ax
f D D f D∗

can be evaluated.

Case II. When f (D) can be expressed as + (D2) where + (– a2) ! 0.
Then we shall use the following formula (for proof refer Art. 5.20).

1 1
( ) ( )

ax axe V e V
f D f D a

∃
∗

, where V is a function of x ... (i)

The above result says that eax which is on the right of 1/f(D) may be taken out to the left
provided D is replaced by D " a.

We shall now evaluate  2 2 2 2
1 1sin and cosax ax

D a D a∗ ∗
. [Pune 2010]

Note that here f (D2) ! D2 " a2 and f (– a2) ! – a2 " a2 ! 0.

But 2 2
1 sin ax

D a∗
! Imaginary part of 2 2

1
D a∗

 (cos ax " i sin ax)

Thus, 2 2
1 sin ax

D a∗
! Imaginary part of 2 2

1 aixe
D a∗

. ... (1)
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Now, 2 2
1 aixe

D a∗
! 2 2

1 1,aixe
D a

6
∗

 taking V ! 1

! 2 2
1 1,

( )
aixe

D ai a∗ ∗
 by formula (i) of case II.

! 0.
2

1
( 2 )

aix xe e
D D ai

∃
∗

1 1 1
2

aixe
ia D

 by formula IA of Art 5.13.

! 1
2 2

aix xe x
ia ia

∃  (cos ax " i sin ax) ! 1
sin cos sin cos .

2 2 2 2
x x x x

ax ax ax i ax
a i a a a

∗ ∃ #  ... (2)

Using (2), (1) reduces to

2 2
1 sin imaginary part of sin cos cos .

2 2 2
x x xax ax i ax ax
a a aD a

& ∋∃ # ∃ #≅ Α( )∗

Similarly, 2 2 2 2
1 1

cos Real part of aixax e
D a D a

∃
∗ ∗

... (3)

5 (2) and (3) − 2 2
1 cos ax

D a∗
! Real part of sin cos

2 2
x x

ax i ax
a a

& ∋#≅ Α( )
! sin

2
x a x
a

Remark. Note carefully and remember the following formulas :

2 2
1 sin cos sin .

2 2
x x

ax ax ax dx
aD a

∃ # ∃
∗ % ... (4)

2 2
1 cos sin cos .

2 2
x x

ax ax ax dx
aD a

∃ ∃
∗ % ... (5)

5.17 Solved examples based on Art. 5.16
Ex. 1. Solve the following differential equations
(a) (D2 + 1) y = cos 2x
(b) (D2 + 9) y = cos 4x.
Sol. (a) Here the auxiliary eqution is D2 " 1 ! 0 so that D ! ± i,
5 C.F. ! c1 cos x " c2 sin x, c1, c2 being arbitrary constants.

Now, P.I. ! 2 2
1 1 1cos 2 cos 2 cos 2 .

31 2 1
x x x

D
∃ ∃ #

∗ # ∗

The required general solution is                  y ! c1 cos x " c2 sin x – (1/3) cos 2x.
(b) Try yourself. Ans. y ! c1 cos 3x " c2 sin 3x – (1/7) cos 4x.
Ex. 2. (a) Solve (D2 – 3D + 2) y = sin 3x. [Delhi Maths (G) 1996]
(b) (D2 – 4D + 4) y = sin 2x. [G.N.D.U. (Amritsar) 2010]
Sol. (a) Here auxiliary equation              D2 – 3D " 2 ! 0            gives             D ! 1, 2.
C.F. ! c1ex " c2e2x, c1, c2 being arbitrary constants.

and P.I. ! 2 2
1 1

sin 3 sin 3
3 2 3 3 2

x x
D D D

∃
# ∗ # # ∗

! 1 1sin 3 (3 7) sin 3
3 7 (3 7) (3 7)

x D x
D D D

# ∃ # #
∗ # ∗
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! 2 2
1 1(3 7) sin 3 (3 7) sin 3

9 49 9( 3 ) 49
D x D x

D
# # ∃ # #

# # #
!  (1/130) Η (3D – 7) sin 3x ! (1/130) Η (9 cos 3x – 7 sin 3x).

5 Solution is      y ! c1ex " c2e2x " (1/130) Η (9 cos 3x – 7 sin 3x).
(b) Ans. y ! (c1" c2x) e2x " (3 sin 2x + 8 cos 2 x) /25
Ex. 3. Solve (D2 + a2) y = sin ax. [Lucknow 1997, Delhi 1997, Meerut 1995]
(b) (D2 " a2) y ! cos ax
Sol. (a) Here the auxiliary equation is D2 " a2 ! 0 so that D ! ± ia.
5 C.F. ! c1 cos ax " c2 sin ax, c1, c2 being arbitrary constants.

and               P.I. ! 2 2 2 2
1 1sin Imaginary part ofax

D a D a
∃

∗ ∗
 (cos ax " i sin ax)

or                      P.I. ! Imaginary part of 2 2
1 iaxe

D a∗
, by Euler’s theorem. ... (1)

Now, 2 2 2 2 2 2
1 1 11

( )
iax iax iaxe e e

D a D a D ia a
∃ 6 ∃ 6Ι

∗ ∗ ∗ ∗

1 1 From Art. 5.20,  
( ) ( )

ax axe V e V
f D f D a

& ∋∃≅ Α∗( )
�

!
0. 0.

2
1 1 1 1 1

2 0 22
iax iax x iax xe e e e e

D D ia D iaD iaD
∃ ∃

∗ ∗∗

!
1 1 1

1 (cos sin )
2 2 2

iax iax x
e e x ax i ax

ia D ia ia
∃ ∃ ∗

! (x/2a) sin ax – i (x/2a) cos ax, as (1/i) ! – i.

5  From (1), P.I. ! Imaginary part of sin cos cos
2 2 2
x ix x

ax ax ax
a a a

: ;# ∃ #< =
> ?

Hence the required general solution of the given equation is
y ! C.F. " P.I. or y ! c1 cos ax " c2 sin ax – (x/2a) cos ax.

Note: You can also use remark of Art. 4.15 to write 2 2
1 sin cos

2
x

ax ax
aD a

∃ #
∗

(b) Proceed as in part (a). C.F. is same as in part (a).

P.I. ! 2 2
1 cos ax

D a∗
! Real part of 2 2

1 (cos sin )ax i ax
D a

∗
∗

or                      P.I. ! Real part of 2 2
1 iaxe

D a∗
...(1)1

Now , we have 2 2
1 sin cos , do as in part ( ).

2 2
iax x xe ax i ax a

a aD a
: ; : ;∃ #< = < =∗ > ? > ?

Hence from (1)1, P.I. ! real part of sin cos sin
2 2 2
x ix xax ax ax
a a a

: ;# ∃< =
> ?

5 The required solution is y ! c1 cos ax " c2 sin ax " (x/2a) sin ax

Note: You can also use the result                     
2 2

1
cos sin

2
x

ax ax
aD a

∃
∗
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5.24 Linear Differential Equations with Constant Coefficients

Ex. 4. Solve the following differential equations:
(a) (D3 " a2 D) y = sin ax [I.A.S. Prel. 2006, Rajsthan 2010, Purvanchal 1999]
(b) (D3 + 9D) y = sin 3x.
(c) (d3x/dy3) + b2(dx/dy) = sin by.
Sol. (a) Here auxiliary equation is    D3 " a2 D ! 0               so that   D ! 0, 0 ± ia.
5 C.F. ! c1e0.x " e0.x (c2 cos ax " c3 sin ax) ! c1 " c2 cos ax " c3 sin ax,

where c1, c2 and c3 arbitrary constants.

P.I. ! 3 2 2 2 2 2
1 1 1 1 1sin sin cosax ax ax

D aD a D D a D a
: ;∃ ∃ #< =
> ?∗ ∗ ∗

! 2 2
1 1Real part of (cos sin )ax i ax
a D a

& ∋# ∗≅ Α∗( )

! 2 2
1 1Real part of iaxe
a D a

& ∋# ≅ Α∗( )
, by Euler’s theorem

! 1 Real part of sin as
2 2
x ixax ax

a a a
& ∋: ;# #< =≅ Α> ?( )

                      [As in Ex. 3. (a), prove that 2 2
1 sin cos

2 2
iax x ixe ax ax

a aD a
∋∃ # Α∗ )

! – (1/a) (x/2a) sin ax ! – (x/2a2) sin ax.
Hence the general solution is y ! c1 " c2 cos ax " c3 sin ax – (x/2a2) sin ax.
(b) Do as in part (a) Ans. y ! c1 " c2 cos 3x " c3 sin 3x – (x/18) sin 3x.
(c) Proceed as in part (a). Here y is independent and x is dependent variable

Ans. x ! c1 " c2 cos by " c3 sin by – (y/2b2) sin by
Ex. 5. Solve (D – 1)2 (D2 + 1)2 y = sin x. [Gorakhpur 1994]
Sol. Here the auxiliary equation is (D – 1)2 (D2 " 1)2 ! 0 so that D ! 1, 1, 0 ± i, 0 ± i.
5 C.F. ! (c1 " c2x) ex " (c3 " c4x) cos x " (c5 " c6x) sin x,

where c1, c2, c3, c4, c5 and c6 arbitrary constants.

P.I. ! 2
2 2 2 2 2 2 2

1 1 1sin ( 1) sin
( 1) ( 1) ( 1) ( 1) ( 1)

x D x
D D D D D

∃ ∗
# ∗ ∗ ∗ #

!
2

2
2 2 2 2 2 2 2 2
1 1 1 ( 2 1)( 2 1) sin sin

( 1) ( 1) ( 1) ( 1 1)
D DD D x x

D D D
∗ ∗

∗ ∗ ∃
∗ # ∗ # #

! 2
2 2

1 1 ( sin 2 sin sin )
4 ( 1)

D x D x x
D

∗ ∗
∗

! 2 2 2 2
1 1 1 1( sin 2cos sin ) cos
4 2( 1) ( 1)

x x x x
D D

# ∗ ∗ ∃
∗ ∗

! 2 2 2
1 1 1 1Real part of 1 Real part of 1
2 2( 1) [( ) 1]

ix ixe e
D D i

6 ∃ 6
∗ ∗ ∗

1 1 From Art. 5.20, 
( ) ( )

ax axe V e V
f D f D a

& ∋∃≅ Α∗( )
�
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Linear Differential Equations with Constant Coefficients 5.25

! 0.
2

1 1 1 1Real part of 1 Real part of
2 2 ( 2 )2

ix ix xe e e
D D iD iD

6 ∃
∗∗

! 0.1 1 1 1 1Real part of Real part of 1
2 0 2 2 2

ix
ix x ee e

D i i D
∃ 6

∗
! –(i /4) Η Real part of x ( cos x + i sin x) ! (x / 4) Η  sin x

5 Solution is     y ! (c1 " c2x) ex " (c3 " c4x) cos x " (c5 " c6x) sin x " (x/4) sin x.
Ex. 6. Solve (d4y/dx4) – m4y = sin mx. [I.A.S. 1991]
Sol. Given (D4 – m4) y ! sin mx,          where  D 4 d/dx ... (1)

whose auxililary equation is D4 – m4 ! 0          giving              D ! ± m, 0 ± im.
C.F. ! c1 emx " c2 e–mx " c3 cos mx " c4 sin mx, c1, c2, c3, c4 being arbitrary constans

P.I. ! 2 2 2 2 2 2 2 2
1 1 1 1sin sin

( ) ( ) –
mx mx

D m D m D m m m
∃

∗ # ∗ #

! 2 2 2 2 3
1 1 1sin cos cos .

22 2 4
x xmx mx mx
mm D m m m

: ;# ∃ # Η # ∃< =
> ?∗

So solution is y ! c1 emx " c2 e–mx " c3 cos mx " c4 sin mx " (x/4m3) cos mx.
Ex. 7. (a) Find the solution of (d2y/dx2) + 4y = 8 cos 2x, given that y = 0 and dy/dx = 0, when

x = 0. [I.A.S. 1995]
(b) Solve (D2 + 4) y = sin 2x, given that when x = 0, y = 0 and dy/dx = 2. [I.A.S. 1992]
Sol. (a) Re-writing the given equation, we get  (D2 " 4) y ! 8 cos 2x. ... (1)
Also given that               when   x ! 0, y ! 0 ... (2)
and               when   x ! 0, dy/dx ! 0. ... (3)
The auxiliary equation of (1) is D2 " 4 ! 0 so that D ! ± 2i
C.F. ! e0.x (c1 cos 2x " c2 sin 2x) ! c1 cos 2x " c2 sin 2x, c1, c2 being arbitrary constants

Also, P.I. ! 2 2
18 cos 2 8 sin 2 2 sin 2 .

(2 2)2
x

x x x x
D

∃ 6 ∃
Η∗

Solution of (1) is y ! c1 cos 2x " c2 sin 2x " 2x sin 2x. ... (4)
Putting x ! 0 and y ! 0 (due to (2)), (4) yields c1 ! 0. Then (4) gives

y ! c2 sin 2x " 2x sin 2x ! (c2 " 2x) sin 2x. ... (5)

From (5) 2/ 2sin 2 2( 2 )cos2dy dx x c x x∃ ∗ ∗ ... (6)

Putting x ! 0 and dy/dx ! 0, (6) yields 0 ! 2c2 − c2 ! 0.
Hence from (5), the required solution is y ! 2x sin 2x.
(b) Proceed as in part (a). Solution is y ! (1/8) (9 sin 2x – 2x cos 2x)
Ex. 8. Solve (d2y/dx2) – 8 (dy/dx) + 9y = 40 sin 5x.
Sol. Let D # d/dx. Then given equation becomes  (D2 – 8D " 9) y ! 40 sin 5x. ... (1)

Here auxiliary equation D2 – 8D " 9 ! 0 − D !
8 (64 36) 8 2 7 4 7

2 2
3 # 3

∃ ∃ 3 .

5C.F. ! e4x (c1 cosh 7x " c2 sinh 7x ), c1, c2 being arbitrary constants

and P.I. ! 2 2
1 140sin 5 40 sin 5
8 9 5 8 9

x x
D D D

∃
# ∗ # # ∗

!
140 sin 5

8( 2)
x

D# ∗
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5.26 Linear Differential Equations with Constant Coefficients

! 1– 5( 2) sin 5
( 2)( 2)

D x
D D

#
# ∗

! 2 2
1 15( 2) sin 5 – 5( 2) sin 5

4 5 4
D x D x

D
# # ∃ #

# # #

! (5/29) Η (D sin 5x – 2 sin 5x) ! (5/29) Η (5 cos 5x – 2 sin 5x).
Hence the required general solution is y ! C.F. " P.I.

or y ! e4x (c1 cosh 7x " c2 sin 7x ) " (5/29) Η (5 cos 5x – 2 sin 5x).
Ex. 9. Solve (d2y/dx2) + 2(dy/dx) + 10y + 37 sin 3x = 0, and find the value of y when

x = 9/2 if it is given that y = 3 and dy/dx = 0 when x = 0. [I.A.S. 1997, Lucknow 1996]
Sol. Re-writing, the given equation is    (D2 " 2D " 10) y ! – 37 sin 3x., D 4 d/dx

Its auxiliary equation D2 " 2D " 10 ! 0 − D !
2 (4 40) 2 6

2 2
i# 3 # # 3

∃ ! – 1 ± 3i.

5 C.F. ! e–x (c1 cos 3x " c2 sin 3x), c1, c2 being arbitrary constants.

P.I. ! 2 2
1 1( 37 sin 3 ) 37 sin 3
2 10 3 2 10

x x
D D D

# ∃ #
∗ ∗ # ∗ ∗

 ! 
13 sin 3

2 1
x

D
#

∗
 ! 137(2 1) sin 3

(2 1)(2 1)
D x

D D
# #

# ∗

! 2 2
1 137(2 1) sin 3 37(2 1) sin 3

4 1 4( 3 ) 1
D x D x

D
# # ∃ # #

# # #

! (2D – 1) sin 3x ! 6 cos 3x – sin 3x.
Hence the general solution of the given equation is

y ! e–x (c1 cos 3x " c2 sin 3x) " 6 cos 3x – sin 3x. ... (1)
Differentiating both sides of (1) w.r.t. ‘x’, we have
dy/dx ! e–x (– 3 c1 sin 3x " 3 c2 cos 3x) – e–x (c1 cos 3x " c2 sin 3x)

– 18 sin 3x – 3 cos 3x. ... (2)
It is given that y ! 3, dy/dx ! 0 when x ! 0. So (1) and (2) give
3 ! c1 " 6 and 0 ! 3 c2 – c1 – 3 so that c1 ! – 3,           c2 ! 0.
5 From (1),                       y ! – 3 e–x cos 3x " 6 cos 3x – sin 3x. ... (3)
Putting x ! 9/2 in (3), the corresponding value of y is given by
y ! –3 e–9/2 cos (39/2) " 6 cos (39/2) – sin (39/2) ! 1, as cos (39/2) ! 0.
Ex. 10. Find the integral of the equation (d2x/dt2) + 2n cos ! (dx/dt) + n2x = a cos nt, which

is such that when t = 0, x = 0 and dx/dt = 0.
Sol. Let D 4 d/dt. Then the given equation can be written as

[D2 " (2n cos !) D " n2] x ! a cos nt.
Its auxiliary equation is D2 " (2n cos !) D " n2 ! 0.

5 D !
2 2 2

2 22 cos 4 cos 4
cos ( sin )

2
n n n

n n
# ! 3 ! #

∃ # ! 3 # ! ! – n cos ! ± i n sin a.

5 C.F. ! e–nt cos ! [c1 cos (nt sin !) " c2 sin (nt sin !)], c1, c2 being arbitrary constants

and P.I. ! 2 2 2 2
1 1cos cos

(2 cos ) (2 cos )
a nt a nt

D n D n n n D n
∃

∗ ! ∗ # ∗ ! ∗
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                               ! 2
sin1 cos cos

2 cos 2 cos 2 cos
a nta ant nt dt

n D n n
∃ ∃

! ! !% .

[Note that here (1/D) stands for integration w.r.t. ‘t’]
Hence the general solution of the given equation is                   x ! C.F. " P.I.

or x ! e–nt cos ! [c1 cos (nt sin !) " c2 sin (nt sin !)] " (a sin nt)/(2n2 cos !) . ... (1)
Differentiating both sides of (1) w.r.t. ‘t’, we have

dx/dt ! e–nt cos ! n sin ! [– c1 sin (nt sin !) " c2 cos (nt sin !)]
– n cos ! e–nt cos ! [c1 cos (nt sin !) " c2 sin (nt sin !)] " (a cos nt)/(2n cos !)      ... (2)
Since, it is given that x ! 0, dx/dt ! 0 when t ! 0, so from (1) and (2)
              0 ! c1             and               0 !  c2n sin ! – n c1 cos ! " a/(2n cos !)
−           c1 ! 0             and              c2 !  – a/(2n2 sin ! cos !) ! – a/(n2 sin 2!).
Putting the above values of c1 and c2 in (1), the required solution is

x ! [– a/(n2 sin 2!)] e–nt cos ! sin (nt sin !) " (a sin nt)/(2n2 cos !).
Ex. 11. Solve (D2 + 4) y = sin2x. [I.A.S. Prel. 1998; Merrut 1996]
Sol. Here auxiliary equation is D2 " 4 ! 0 so that D ! ± 2i.
Hence C.F. ! cos 2x " c2 sin 2x, c1, c2 being arbitrary constants

Also P.I. ! 2
2 2
1 1 1sin (1 cos 2 )

24 4
x x

D D
∃ #

∗ ∗
! 0.

2 2
1 1 1 cos 2
2 4 4

xe x
D D

& ∋#≅ Α∗ ∗( )

! 0.1 1 1 1sin 2 sin 2 .
2 0 4 2 2 8 8

x xe x x x& ∋: ;# ∃ #≅ Α< =∗ Η> ?( )
5 Solution is          y ! c1 cos 2x " c2 sin 2x " (1/8) – (x/8) sin 2x.

Exercise 5(D)
Solve the following differential equations :

1. y11 " y ! sin x [Delhi B.Sc. (Hons) II 2011] Ans. y ! c1 cos x " c2 sin x – (x/2) × cos x
2. (D3 " D2 – D – 1) y ! cos 2x. [Kanpur 2006] Ans. y ! c1ex " (c2 " c3x) e–x – (1/25) (2 sin 2x " cos 2x)
3. (D2 – 5D " 6) y ! sin 3x. [Gorakhpur 1995]       Ans. y ! c1e2x " c2e3x " (1/78) (5 cos 3x – sin 3x)

4. (D2 " D " 1) y ! sin 2x. Ans. y ! e–x/2 / 01 2cos( 3 / 2) sin( 3 / 2) (1/13)(2cos2 3sin 2 )c x c x x x∗ # ∗

5. (D2 – 4) y ! cos2x. Ans. y ! c1 e2x " c2 e–2x – (1/16) (2 " cos 2x)
6. (D2 – a2) y ! cos mx. Ans. y ! c1 eax " c2 e–ax – [1/(m2 " a2)] cos mx

7. (D2 " 1) y ! cos 2x.   Ans. y ! c1 e–x " /2
2 3{ cos( 3 / 2) sin( 3 / 2)}xe c x c x∗ + (cos 2x – 8 sin 2x)/65

8. (D2 " 9) y ! cos 2x " sin 2x. Ans. y ! c1 cos 3x " c2 sin 3x " (1/5) (cos 2x " sin 2x)
9. (a) (D2 " 4) y ! sin 2x. [Pune 2011] Ans. y = c1 cos 2x " c2 sin 2x – (x/4) × cos 2x

(b) (D2 "4) y ! 4 + sin2 x. [Guwahati 2007] Ans. y ! c1 cos 2x " c2 sin 2x " 9/8 – (x/8) × sin 2x
10. d2x/dt2 " 4x ! a sin t cos t. Ans. x ! c1 cos 2t " c2 sin 2t – (at/8) × cos 2t
11. (D2 " 1) y ! sin x sin 2x Ans. y ! c1 cos x " c2 sin x " (x/4) × sin x " (1/16) × cos 3x
12. (D2 " 1) y ! cos x sin 3x Ans. y ! c1 cos x  " c2 sin x – (1/30) × sin 4x – (1/6) × sin 2x
13. (D4 – 1) y ! sin 2x.[Delhi Maths.(G) 2000] Ans. y ! c1ex " c2 e–x " c3 cos x " c4 sin x " (1/15) × sin 2x

14. (D3 " 1) y ! cos 2x Ans. y ! c1e–x " ex/2 {c2 cos ( 3 / 2x ) " c3 sin ( 3 / 2x )} " (1/65) × (cos 2x – 8 sin 2x)

15. 2 2/ ( / ) 2 sin 2 .# # ∃d y dx dy dx y x [Meerut 2008, 10]
Ans. 2

1 2 (cos 2 3sin 2 ) / 20x xy c e c e x x#∃ ∗ ∗ #
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5.28 Linear Differential Equations with Constant Coefficients

5.18 Short method of finding P.I. when X ! xm, m being a positive integer.
Working rule for evaluating {1/f (D)} xm.
Step I. Bring out the lowest degree term from f (D) so that the remaining factor in the

denominator is of the form [1 " + (D)]n or [1 – + (D)]n, n being a positive integer.
Step II. We take [1 " + (D)]n or [1 – + (D)]n in the numerator so that it takes the form

[1 " + (D)]–n or [1 – + (D)]–n.
Step III. We expand [1 ± +(D)]–n by the binomial theorem, namely

(1 " x)n ! 1 " nx " 2 3( 1) ( 1)( 2) ....
2! 3!

n n n n nx x# # #
∗ ∗

In particular the following binomial expansions should be remembered.
(1 – x)–1 ! 1 " x " x2 " x3 " ... ;    (1 " x)–1  !  1 – x " x2 – x3 " ...
(1 – x)–2 ! 1 " 2x " 3x2 " 4x3 " ... ;       (1 – x)–2  ! 1 – 2x " 3x2 – 4x3 " ...
In any case, the expansion is to be carried upto Dm, since Dm " 1 xm ! 0, Dm " 2 xm ! 0, and all

the higher differential coefficients of xm vanish.
Remark. If we are given a polynomial xm " a1xm – 1 " ... " am – 1 x " am of degree m in place

of xm, then also we proceed to evaluate [1/f (D)] (xm " a1xm – 1 " ... " am) in the same manner as we
did for {1/f (D)} xm. Also, if X is a constant, the above method can be used.

5.19 Solved examples based on Art. 5.18
Ex. 1. Solve (D4 – D2) y = 2. [Agra 2005]
Sol. Here auxiliary equation is D4 – D2 ! 0 or D2 (D2 – 1) ! 0 − D ! 0, 0, 1, – 1
5 C.F. ! (c1 " c2x) e0.x " c3ex " c4e–x ! c1 " c2x " c3 ex " c4e–x,

where c1, c2, c3 and c4 are arbitrary constants.

P.I. ! 2 1
4 2 2 2 2

1 2 1 22 1 (1 ) 1
(1 )

D
D D D D D

#∃ # ∃ # # 6
# #

!
2

2 4 2
2 2

2 2 2(1 ...) 1 1 ( 2)
2
x

D D x x
DD D

# ∗ ∗ ∗ 6 ∃ # ∃ # ∃ # Η ∃ #

5 Solution is                     y ! c1 " c2 x " c3ex " c4e–x – x2

Ex. 2. Find the particular integral of (D2 + D) y = x2 + 2x + 4. [I.A.S. Prel. 1994]
Sol. The required particular integral

! 2
1

D D∗
 (x2 " 2x " 4) !

1
(1 )D D∗

 (x2 " 2x " 4) !
1
D

 (1 + D)–1 (x2 + 2x + 4)

! (1/D) (1 – D " D2 – D3 " ...) (x2 " 2x " 4)
! (1/D) [(x2 " 2x " 4) – D (x2 " 2x " 4) " D2 (x2 " 2x " 4)]
! (1/D) [x2 " 2x " 4 – (2x " 2) " 2] ! (1/D) (x2 " 4) ! x3/3 " 4x.

Ex. 3. Solve  (D4 – a4) y = x4. [Delhi Maths Hons. 1994]
Sol. Here the auxiliary equation is D4 – a4 ! 0 or (D2 – a2) (D2 " a2) ! 0

so that D2 – a2 ! 0 or D2 " a2 ! 0 and hence D ! a, – a, 0 ± ia.
5 C.F. ! c1 eax " c2 e–ax " c3 cos ax " c4 sin ax, c1, c2 being arbitrary constants

and P.I. !
14

4 4
4 4 4 4 4 4 4

1 1 1 1
(1 / )

Dx x
D a a D a a a

#
: ;

∃ ∃ # #< =
# # # > ?

! – (1/a4) {1 " (D4/a4) " ...} x4 ! – (1/a4) [x4 + (1/a4) × D4 x4]
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! – (1/a4) [x4 " (1/a4) × 24], as D4 x4 ! 4 × 3 × 2 × 1 ! 24
5 Solution is y ! c1 eax " c2 e–ax " c3 cos ax " c4 sin ax – (1/a4) (x4 " 24/a4).
Ex. 4. Solve (D3 + 8) y = x4 + 2x + 1. [Delhi Maths Hons. 1998]
Sol. Here the auxiliary equation is D3 " 23 ! 0 or (D " 2) (D2 – 2 D " 4) ! 0

so that D ! – 2, {2 ± (4 – 16)1/2}/2 ! – 2, 1 ± 3i .
5C.F. ! c1e–2x " ex (c2 cos 3x " c3 sin 3x ), c1, c2, c3 being arbitrary constans

5 P.I. ! 4 4
3 3
1 1( 2 1) ( 2 1)

8 8(1 / 8)
x x x x

D D
∗ ∗ ∃ ∗ ∗

∗ ∗

!
13 3

4 41 D 1 D1 ( 2 1) 1 .... ( 2 1)
8 8 8 8

x x x x
#

: ; : ;
∗ ∗ ∗ ∃ # ∗ ∗ ∗< = < =< = < =

> ? > ?

 !  (1/8) Η [ (x4 " 2x " 1) – (1/8) Η D3(x4 " 2x " 1)]
! (1/8) Η [(x4 " 2x " 1) – (1/8) (24x)] ! (1/8) Η (x4 " 2x " 1 –3x) ! (x4 – x " 1)/8.

5 Required solution is y ! c1e–2x " ex (c2 cos 3x " c3 sin 3x ) " (x4 – x " 1)/8.
Ex. 5. Solve (a) (D2 + 2D + 2) y = x2.

             (b) (D2 – 4D + 4) y = x2.
Sol. (a) Here the auxiliary equation is D2 " 2D " 2 ! 0 so that D ! – 1 ± i.

5 C.F. ! e–x (c1 cos x " c2 sin x), c1, c2 being arbitrary constants

and P.I. ! 2 2 2 1
2 2

1 1 1 {1 ( / 2)}
22 2 2[1 ( / 2)]

x x D D
D D D D

#∃ ∃ ∗ ∗
∗ ∗ ∗ ∗

! (1/2) {1 – (D " D2/2) " (D " D2/2)2 – ...}x2 ! (1/2) {1 – (D " D2/2) " D2 "...}x2

! (1/2) {1 – D " D2/2 " ...}x2 ! (1/2) (x2 – 2x " 1)
5 The required solution is y ! e–x (c1 cos x " c2 sin x) " (x2 – 2x " 1)/2.
(b) Try yourself. Ans. y ! (c1 " c2x) e2x " (2x2 " 4x " 3)/4.
Ex. 6. Solve (a) (D3 + 3D2 + 2D) y = x2. [Delhi Maths(G) 2006]
(b) (D3 " 3D2 " 2D) y ! x.
Sol. (a) Here the auxiliary equation is D3 " 3D2 " 2D ! 0 or D (D2 " 3D " 2) ! 0

or                    D (D " 1) (D " 2) ! 0                so that             D ! 0, – 1, – 2.
5 C.F. ! c1 " c2e–x " c2e–2x, where c1, c2, c3 are arbitrary constants.

and P.I. ! 2 2
3 2 2

1 1
3 2 2 [1 (3/ 2) (1/ 2) ]

x x
D D D D D D

∃
∗ ∗ ∗ ∗

!
1 22 2 2

2 21 3 1 3 31 1 ...
2 2 2 2 2 2 2 2

D D D D D Dx x
D D

# & ∋& ∋: ; : ; : ;
≅ Α∗ ∗ ∃ # ∗ ∗ ∗ #≅ Α< = < = < =≅ Α> ? > ? > ?( ) ( )

!
2 2 2

2 21 3 9 1 3 71 ... ... 1 ...
2 2 2 4 2 2 4

D D D D Dx x
D D

& ∋: ; : ; : ;
# ∗ ∗ ∗ ∗ ∃ # ∗ ∗≅ Α< = < = < =

> ? > ? > ?( )

!
3 2

2 21 3 7 1 7 3 7(2 ) (2) 3
2 2 4 2 2 6 4 4

x x x
x x x x dx

D
& ∋ : ;# ∗ ∃ # ∗ ∃ # ∗< =≅ Α( ) > ?% .

5 The required solution           y ! c1 " c2 e–x " c2 e–2x " (x3/6) – (3x2/4) " (7x/4).
(b) Try yourself. Ans. y ! c1 " c2 e–x " c2 e–2x " (x2/4) – (3x/4).
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5.30 Linear Differential Equations with Constant Coefficients

Ex. 7. Solve (D4 – 2D3 + D2) y = x.
Sol. Here the auxiliary equation is D4 – 2D3 " D2 ! 0 giving D ! 0, 0, 1, 1.
5 C.F. ! (c1 " c2x) e0.x " (c3 " c4x) ex ! c1 " c2x " (c3 " c4x) ex,

where c1, c2, c3 and c4 are arbitrary constants.

P.I. ! 4 3 2 2 2 2 2
1 1 1

2 ( 2 1) (1 )
x x x

D D D D D D D D
∃ ∃

# ∗ # ∗ #

! 2
2 2

1 1(1 ) (1 2 ...)D x D x
D D

## ∃ ∗ ∗ ! 2
1 ( 2)x

D
∗

!
2 2 3

21 1( 2) 2 2 .
2 2 6
x x x

x dx x x dx x
D D

: ; : ;
∗ ∃ ∗ ∃ ∗ ∃ ∗< = < =

> ? > ?% %
5 The required solution is y ! c1 " c2x " (c3 " c4x) ex " (x3/6) " x2.
Ex. 8. Solve (D4 + D2 + 16) y = 16x2 + 256.

Sol. Here the auxiliary equation is D4 " D2 " 16 ! 0 or (D2 " 4)2 – (D 7 )2 ! 0

or (D2 " D 7 " 4) (D2 – D 7 " 4) ! 0 − D2 + D 7 4 0∗ ∃ or D2 – D 7 4 0∗ ∃

5 D !
7 7 16 7 7 16 7 3 7 3, ,

2 2 2 2 2 2
i i# 3 # 3 #

∃ # 3 3

C.F. ! 7 / 2xe# (c1 cos 3x/2 " c2 sin 3x/2) " 7 / 2xe (c3 cos 3x/2 " c4 sin 3x/2),
c1, c2, c3 and c4 being arbitrary constants.

and P.I. ! 2
4 2 2 4

1 1(16 256)
16 16{1 ( ) /16}

x
D D D D

∗ ∃
∗ ∗ ∗ ∗

 (16x2 " 256)

!
12 4 2 4

2 21 11 (16 256) 1 ... (16 256)
16 16 16 16 16 16

D D D Dx x
#

& ∋ & ∋: ; : ;
∗ ∗ ∗ ∃ # ∗ ∗ ∗≅ Α ≅ Α< = < =

> ? > ?( ) ( )
! (1/16) × [(16x2 " 256) – (1/16) × (32)] ! x2 " (127/8)

Hence the required solution is             y ! 7 / 2xe#  (c1 cos 3x/2 " c2 sin 3x/2)

" 7 / 2xe  (c3 cos 3x/2 " c4 sin 3x/2) " x2 " (127/8).
Ex. 9. Solve the equation (d2y/dx2) = a + bx + cx2, given that dy/dx = 0 when x = 0 and y =

d, when x = 0.
Sol. Let D # d/dx. Then, we have D2y ! a " bx " cx2. The A.E. is D2 ! 0 so that D ! 0, 0. Hence

C.F. ! (c1 " c2x) e0.x ! c1 " c2x, c1 and c2 being arbitrary constants.

P.I. ! 2 2 2 3
2

1 1 1 1 1
( ) ( )

2 3
a bx cx a bx cx dx ax bx cx

D DD
: ;∗ ∗ ∃ ∗ ∗ ∃ ∗ ∗< =
> ?%

! 2 3 2 3 41 1 1 1 1( ) .
2 3 2 6 12

ax bx cx dx ax bx cx∗ ∗ ∃ ∗ ∗%
5 The general solution is y ! c1 " c2x " (1/2) ax2 " (1/6) bx3 " (1/12) cx4. ... (1)
From (1),                        (dy/dx) ! c2 " ax " 2 bx2 " (1/3) cx3. ... (2)
Putting x ! 0 and y ! d in (1), we get c1 ! d. Next, putting x ! 0 and dy/dx ! 0 in (2), we get

c2 ! 0. Putting values of c1 and c2 in (1), the desired solution is
                          y ! d " (1/2) × ax2 " (1/6) × bx3 " (1/12) × cx4.
Ex. 10. Find solution of (D3 – D2 – D – 2) y = x. [Agra 2005]
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Sol. Auxiliary equation of the given equation is given by
D3 – D2 – D – 2 ! 0, or (D – 2) (D2 " D " 1) ! 0

5            D ! 2, (– 1 ± 3# )/2                  i.e.,           D ! 2, (– 1/2) ± i ( 3 / 2 ).

5 C.F. ! c1 e2x " e–x/2 {c3 cos (x 3 / 2 ) " c4 sin ( 3 / 2x )}, c1, c2 being arbitrary constants

P.I. ! 3 2 2 3
1 1

2 2 {1 ( ) / 2}
x x

D D D D D D
∃

# # # # ∗ ∗ #

! 1
2

# {1 "
1
2  (D " D2 – D3)}–1 x ! 1

2
# {1

1
2

#  (D " D2 – D3) " ...}x

!
2

21 1 1 1 1 (4 )
2 2 2 2 2 8

x
x Dx x x x

: ;: ;# # ∃ # # Η ∃ # #< =< => ? > ?

5  The required solution is y ! c1e2x " e–x/2 {c3 cos ( 3 / 2x ) " c4 sin ( 3 / 2x )} – (1/8) × (4x – x2).
Ex. 11. Solve (D3 – D2 – 6D) y = x2 + 1. [Agra 1995, Garhwal 1996; Bangalore 1995,

Lucknow 1992, Allahabad 1994]
Sol. The auxiliary equation is D3 – D2 – 6D ! 0 giving
D (D2 – D – 6) ! 0  or D (D – 3) (D " 2) ! 0  so that D ! 0, 3, – 2
5 C.F. ! c1e0.x " c2 e3x " c3 e–2x ! c1 " c2 e3x " c3 e–2x.

P.I.! 2 2
3 2 2

1 1( 1) ( 1)
6 6 (1 / 6 / 6)

x x
D D D D D D

∗ ∃ ∗
# # # ∗ #

!
12

21
1 ( 1)

6 6 6
D D

x
D

#
& ∋: ;

# ∗ # ∗≅ Α< =
> ?( )

! 
22 2

21
1 ... ( 1)

6 6 6 6 6
D D D D

x
D

& ∋: ; : ;
≅ Α# # # ∗ # ∗< = < =≅ Α> ? > ?( )

! 2 21 7
1 ... ( 1)

6 6 36
D

D x
D

& ∋# # ∗ ∗ ∗≅ Α( )
! – (1/6) × (1/D) {x2 + 1 – (1/6) × D (x2 + 1) + (7/36) × D2 (x2 + 1)}

! 21 1 7
1 (2 0) (2 0) ...

6 6 36
x x

D
& ∋# ∗ # ∗ ∗ ∗ ∗≅ Α( )

!
3 2

21 1 25 1 25
.

6 3 18 6 3 6 18
x x

x x x
D

& ∋& ∋# # ∗ ∃ # # ∗≅ Α≅ Α( ) ( )
Hence the required solution is y ! C.F. " P.I., that is,

y ! c1 " c2 e3x " c3 e–2x – (1/18) × (x3 – x2/2 " 25 x/6)

Exercise 5(E)

Solve the following differential equations:
1. (D2 " D – 6) y ! x. Ans. y ! c1 e2x " c2 e–3x – (1/36) (6x " 1)
2. (D2 – 2D " 1) y ! x – 1. Ans. y ! (c1 " c2x ) ex " x " 1
3. (D2 – 4D " 4) y ! x2. Ans. y ! (c1 " c2x) e2x " (1/4) (x2 " 2x " 3/2)
4. (D2 – 4) y ! x2. Ans. y ! c1 e2x " c2 e–2x – (1/8) (2x2 " 1)

5. (D3 – 8) y ! x3. Ans.  y ! c1 e2x " e–x (c2 cos x 3 " c3 sin x 3 ) – (1/32) (3 " 4x3)
6. (D2 " 2D " 1) y ! 2x " x2. Ans. y ! (c1 " c2x) e–x " x2 – 2x " 2

7. (x3 " 8) y ! x4 " 2x " 1. Ans. y ! c1e–2x " ex (c2 cos 3x " c3 sin 3x ) + (1/8) (x4 – x " 1)
8. (D4 " 8D2 " 16) y ! 16x " 256. Ans. y ! (c1 " c2x) cos 2x " (c3 " c4x) sin 2x " x " 16
9. (D4 – 2D3 " 5D2 – 8D " 4) y ! x2.

Ans. y ! (c1 " c2x) ex " c3 cos 2x " c4 sin 2x " (1/4) (x2 " 4x " 11/2)
10. (D2 – 1) y ! 1 Ans. y ! c1 ex " c2 e–x – 1
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5.32 Linear Differential Equations with Constant Coefficients

11. (D2 " 2D " 1) y ! 2x " x2. Ans. y ! (c1 " c2x) e–x " x2 – 2x " 2
12. (D2 " 2D – 20) y ! (x " 1)2

Ans. y ! e–x {c1 cosh ( 21x ) " c2 sinh ( 21x )} – (1/20) × {x2 " (11/5) x " 33/25}
13. (D3 – 3D2 – 6D " 8) y ! x. Ans. y ! c1 ex " c2 e4x " c3 e–2x " (4x " 3)/32

14. (D4 " D3 " D2) y ! x2 (a " bx). Ans. y ! e–x/2 {c1 cos ( 3 / 2x ) " c2 sin ( 3 / 2x )} " c3 " c4x
[G.N.D.U. Amritsar 2010]     " (1/20) × bx5 " (1/12) × (a – 3b) x4 – (1/3) × ax3 – 3bx2.

5.20 Short method of finding P.I. when X ! eax V, where V is any function of x.

Theorem.
1 1 ,
( ) ( )

ax axe V e V V
f D f D a

∃
∗

being a function of x.

Proof. By successive differentiation, we have
D (eaxV) ! eax DV " a eax V ! eax (D " a) V,

D2 (eaxV) ! eax D2V " a eax DV " a eax DV " a2 eaxV
! eax (D2 " 2aD " a2) V ! eax (D " a)2 V.

Similarly, D3 (eaxV) ! eax (D " a)3 V,
.....................................................................................................

Dn (eaxV) ! eax (D " a)n V.
5 f (D) eaxV ! eax f (D " a) V. ... (1)
The above result (1) is true for any function of x. Taking {1/f(D " a)} V in place of V in

(1), we have

1 1( ) ( )
( ) ( )

ax axf D e V e f D a V
f D a f D a

Β Χ Β Χ
∃ ∗∆ Ε ∆ Ε∗ ∗Φ Γ Φ Γ

or                             
1( ) .

( )
ax axe V f D e V

f D a
Β Χ

∃ ∆ Ε∗Φ Γ
... (2)

Operating by 1/f (D) on both sides of (2), we have

                               
1 1 .
( ) ( )

ax axe V e V
f D f D a

∃
∗

... (3)

Working rule. Read carefully the above formula, (3). Accordingly, eax which is on the right of
1/f (D) may be taken to the left provided D is replaced by D " a. After applying the above formula,
{1/f (D " a)} V is evaluated by short methods of Art 5.16 or 5.18 as the case may be.

5.21 Solved examples based on Art. 5.20
Ex. 1. Solve (D2 – 2D + 1) y = x2 e3x.

[Purvanchal 2007, Delhi 1993, 2005, 08; Agra 2003]
Sol. The auxiliary equation of the given equation                 D2 – 2D " 1 ! 0 − D ! 1, 1.
5 C.F. ! (c1 " c2x) ex, c1, c2 being arbitrary constants.

P.I. ! 2 3 2 3 3 2
2 2 2

1 1 1
2 1 ( 1) ( 3 1)

x x xx e x e e x
D D D D

∃ ∃
# ∗ # ∗ #

!
2

3 2 3 2 3 2
2 2

1 1 1 1
4 2( 2) 4(1 / 2)

x x x De x e x e x
D D

#
: ;∃ ∃ ∗< =
> ?∗ ∗

!
2

3 2 3 2 2( 2)( 3)1 1 3
1 ... 1 ...

4 2 2! 4 4 2 4
x xD D D

e x e D x
& ∋# # : ;# ∗ ∗ ∃ # ∗ ∗< =≅ Α > ?( )
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! (1/4) × e3x {x2 – (1/2) × (2x) " (3/4) × 2} ! (1/8) × e3x (2x – 4x " 3).
5 Required solution is y ! (c1 " c2x) ex " (1/8) × e3x (2x2 – 4x " 3).
Ex. 2. Solve (a) (D2 – 2D + 1) y = x2ex   

            (b) (D2 – 6D + 9) y = x2 e3x [G.N.D.U. Amritsar 2010]
Sol. (a) Here the auxiliary equation                        D2 – 2D " 1 ! 0 − D ! 1, 1.
5 C.F. ! (c1 " c2x) ex, c1, c2 being arbitrary constants.

and P.I. ! 2 2 2
2 2 2

1 1 1
2 1 ( 1) ( 1 1)

x x xe x e x e x
D D D D

∃ ∃
# ∗ # ∗ #

!
3 3 4

2 2
2

1 1 1 .
3 3 3 4

x
x x x xx x e x

e x e x dx e e dx
D DD

∃ ∃ ∃ ∃ 6% %
Hence the required solution is y ! (c1 " c2x) ex " (1/12) × x4 ex.
(b) Try yourself. Ans. y ! (c1 " c2x) e3x " (x4/12)×e3x

Ex. 3. Find the particular solution of    (D – 1)2 y = ex sec2 x tan x. [Kuvempa 2005]

Sol.      P.I. ! 2 2
2 2

1 1
sec tan tan sec

( 1) ( 1 1)
x xe x x e x x

D D
∃

# ∗ #

!
2

2 21 1 tantan sec tan
2 2

x
x x x ee x x dx e x dx

D D
: ;

∃ ∃< =
> ?% %

! 2(sec 1) (tan )
2 2

x xe ex dx x x# ∃ #%
Ex. 4. Solve (D – a)2 y = eax f 1(x) [Agra 2006]
Sol. Here auxiliary equation of the given equation is (D – a)2 ! 0 so that D ! a, a.
5 C.F. ! (c1 " c2x) eax, c1 and c2 being arbitrary constants

P.I. ! 2 2
1 1( ) ( )

( ) ( )
ax axe f x e f x

D a D a a
1 ∃ 1

# ∗ #
!

1 1 1
( ) ( ) ( )ax ax axe f x e f x e f x dx

D D D
1 ∃ ∃ %

5 The required solution is               y ! (c1 " c2x) eax " eax ( )f x dx%
Ex. 5. Solve (D3 – 3D – 2) y = 540 x3 e–x [Lucknow 1994]
Sol. Here the auxiliary equation of the given equation is D3 – 3D – 2 ! 0

or (D – 2) (D2 " 2D " 1) ! 0 so that D ! 2, – 1, –1.
5 C.F. ! c1e2x " (c2 " c3x) e–x, c1, c2, c3 being arbitrary constants and

P.I. ! 3 3
3 3

1 1540 540
3 2 ( 1) 3 ( 1) 2

x xx e e x
D D D D

# #∃
# # # # # #

! 540 e–x 3
3 2

1
3

x
D D#

! 3
2

1540
3 (1 / 3)

xe x
D D

#

# #
!

1 2 3
3 3

2 2
1 1180 1 180 1 ...

3 3 9 27
x xD D D De x e x

D D

#
# # : ;: ;# # ∃ # ∗ ∗ ∗ ∗< =< =

> ? > ?

!
4 3 2

3 2
2

1 2 2 1 2180 180
3 9 4 3 3 9

x x x x x x
e x x x e

DD
# # : ;: ;# ∗ ∗ ∗ ∃ # ∗ ∗ ∗< =< =

> ? > ?

!
5 4 3 2

180
20 12 9 9

x x x x x
e# : ;

# ∗ ∗ ∗< =
> ?

!  – e–x (9x5 " 15x4 " 20x3 " 20x2).

5 Solution is y ! c1e2x " (c2 " c3x) e–x – e–x (9x5 " 15x4 " 20x3 " 20x2).
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Ex. 6. Solve (D2 + 3D + 2) y = e2x sin x.  [Delhi Maths (Prog.) 2007; Delhi Maths(H)  1996]
Sol. Here the auxiliary equation              D2 " 3D " 2 ! 0 − D ! – 2, – 1.

5 C.F. ! c1e–2x " c2 e–x, where c1 and c2 are arbitrary constants

P.I. ! 2 2
2 2

1 1sin sin
3 2 ( 2) 3( 2) 2

x xe x e x
D D D D

∃
∗ ∗ ∗ ∗ ∗ ∗

! 2
2

1
sin

7 12
xe x

D D∗ ∗

! 2 2
2

1 1sin sin
11 7–1 7 12

x xe x e x
DD

∃
∗∗ ∗

! 2 1(11 7 ) sin
(11 7 )(11 7 )

xe D x
D D

#
# ∗

! 2
2

1(11 7 ) sin
121 49

xe D x
D

#
#

!
2

2
2

1(11 7 ) sin (11 7 )sin
170121 49( 1 )

x
x ee D x D x# ∃ #

# #

! (1/170) × e2x (11 sin x – 7D sin x) ! (1/170) × e2x (11 sin x – 7 cos x).
5 Required solution is y ! c1e–2x " c2e–x " (1/170) e2x (11 sin x – 7 cos x).
Ex. 7.  Solve (D4 – 1) y = ex cos x.
Sol. Here the auxiliary equation is D4 – 1 ! 0 or (D2 – 1) (D2 " 1) ! 0

so that D2 – 1 ! 0 or D2 " 1 ! 0 giving D ! 1, –1, ± i.
5 C.F. ! c1ex " c2e–x " c3 cos x " c4 sin x, c1, c2, c3, c4 being arbitrary constants.

and P.I. ! 4 4
1 1cos cos

1 ( 1) 1
x xe x e x

D D
∃

# ∗ #
! 4 3 2

1 cos
( 4 6 4 1) 1

xe x
D D D D∗ ∗ ∗ ∗ #

! 2 2 2 2
1

( ) 4 6 4
xe

D D D D D∗ 6 ∗ ∗
 cos x ! 2 2 2 2

1
( 1 ) 4 ( 1 ) 6( 1 ) 4

x xe e
D D# ∗ # ∗ # ∗

!
1

cos
5

xe x#

5 Required solution is y ! c1 ex " c2 e–x " c3 cos x " c4 sin x – (1/5) × ex cos x.
Ex. 8. Solve (D3 – D2 + 3D + 5) y = ex cos x. [Delhi Maths (G) 1995]
Sol. Here the auxiliary equation is D3 – D2 " 3D " 5 ! 0

or (D " 1) (D2 – 2D " 5) ! 0 so that D ! – 1, 1 ± 2i.
5 C.F. ! c1 e–x " ex (c2 cos 2x " c3 sin 2x), c1, c2, c3 being arbitrary constants

P.I. ! 3 2 3 2
1 1cos cos

3 5 ( 1) ( 1) 3( 1) 5
x xe x e x

D D D D D D
∃

# ∗ ∗ ∗ # ∗ ∗ ∗ ∗

! 3 2 2 2
1 1cos cos

4 7 ( 1 ) ( 1 ) 4 7
x xe x e x

D D D D D
∃

# ∗ ∗ # # # ∗ ∗

 ! 
1 cos

3 5
xe x

D ∗
! 1(3 5) cos

(3 5)(3 5)
xe D x

D D
#

# ∗

 ! 2 2
1 1(3 5) cos (3 5) cos

9 25 9( 1 ) 25
x xe D x e D x

D
# ∃ #

# # #
! – (1/34) × ex (3D cos x – 5 cos x) ! (1/34) × ex (3 sin x " 5 cos x).

5 Required solution is  y ! c1 e–x " ex (c2 cos 2x " c3 sin 2x) " (1/34) Η ex (3 sin x " 5 cos x).
Ex. 9 (a). Solve (D2 – 1) y = cosh x cos x. [Rohilkhand 1994]
Sol. Given                  (D2 – 1) y ! cosh x cos x ! (1/2) × (ex " e–x) cos x.

or                                 (D2 – 1) y ! (1/2) × ex cos x " (1/2) × e–x cos x ... (1)
Here auxiliary equation is D2 – 1 ! 0, giving D ! 1, – 1. So                C.F. ! c1ex " c2 e–x.

P.I. corresponding to (1/2) × ex cos x
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!
2 2 2

1 1 1 1cos cos cos
2 2 21 ( 1) 1 2

x x
x e ee x x x

D D D D
∃ ∃

# ∗ # ∗

! 2
1 1cos (2 1) cos

2 2 (2 1) (2 1)1 2

x xe ex D x
D DD

∃ ∗ 6
∗ ## ∗

!
2
1 1(2 1) cos (2 1) cos (2 1)cos

2 2 4 1 104 1

x x xe e eD x D x D x
D

∗ 6 ∃ ∗ ∃ # ∗
# ##

! – (1/10) × ex (2D cos x " cos x) ! – (1/10) × ex (– 2 sin x " cos x)
P.I. corresponding to (1/2) × e–x cos x.

!
2 2 2

1 1 1 1 1cos cos cos
2 2 21 ( 1) 1 2

x
x x ee x e x x

D D D D

#
# #∃ ∃

# # # #

! 2
1 1cos (2 1) cos

2 2 (2 1)(2 1)( 1 2 )

x xe ex D x
D DD

#

∃ # #
# ∗# #

! 2 2
1 1(2 1) cos (2 1) cos

2 24 1 4( 1 ) 1

x xe eD x D x
D

# #
# # ∃ # #

# # #
! (1/10) × e–x (2D – 1) cos x ! (1/10) × e–x (– 2 sin x – cos x).

5 Solution is y ! c1ex " c2e–x – (1/10) Η ex (–2 sin x " cos x) " (1/10) Η e–x (–2sin x – cos x)
or y ! c1ex " c2e–x " (2/5) × sin x {(ex – e–x)/2} – (1/5) × cos x {(ex " e–x)/2}
or y ! c1ex " c2e–x " (2/5) × sin x sinh x – (1/5) × cos x cosh x.

Ex. 9 (b). Solve (D2 – 1) y = cosh x cos x + ax.
Sol. As in Ex. 19 (a), find C.F. and P.I. corresponding to cosh x cos x.
Now,  P.I. corresponding to ax.

! log log
2 2 2 2
1 1 1 1

1 1 (log ) 1 (log ) 1
x x a x a xa e e a

D D a a
∃ ∃ ∃

# # # #

5 solution is y ! c1ex " c2e–x " (2/5) sinh x sin x – (1/5) cosh x cos x " ax/{(log a)2 – 1}
Ex. 10. Solve (D4 + D2 + 1) y = e–x/2 cos ( 3 / 2x ) [I.A.S. 1993]

Sol. Given (D4 " D2 " 1) y ! e–x/2 cos ( 3 / 2x ). ... (1)
Here auxiliary equation is D4 " D2 " 1 ! 0 or (D2 " 1)2 – D2 ! 0

or (D2 " 1 + D) (D2 " 1 – D) ! 0 − D2 " D " 1 ! 0        or     D2 – D " 1 ! 0,
Solving these, D ! – (1/2) ± i ( 3 / 2 ), (1/2) ± i ( 3 / 2 ).

5C.F. ! e–x/2 [c1 cos ( 3 / 2x ) " c2 sin ( 3 / 2x )] " ex/2 [c3 cos ( 3 / 2x ) " c4 sin ( 3 / 2x )],    c1,
c2, c3 and c4 being arbitrary constants

P.I. ! / 2
4 2

1 cos( 3 / 2)
1

xe x
D D

#

∗ ∗
 ! / 2

4 2
1 cos ( 3 / 2)

( 1/ 2) ( 1/ 2) 1
xe x

D D
#

# ∗ # ∗

! 4 3 2 2 3 4 2
/ 2 1 3

cos
24 (1/ 2) 6 (1 / 2) 4 (1/ 2) (1/ 2) (1 / 4) 1

x x

D D D D D D
e#

# 6 ∗ # ∗ ∗ # ∗ ∗

! / 2
4 3 2

1 3cos
22 (5/ 2) (3 / 2) (21/16)

x xe
D D D D

#

# ∗ # ∗
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! / 2
2 2

1 3cos
2[( (3 / 4)] [ 2 (7 / 4)]

x xe
D D D

#

∗ # ∗
                           [Since denominator is zero

when D2 ! – 3/4 so D2 " (3/4) must be a factor of the denominator]

! / 2
2

1 1 3cos
( 3/ 4) 2 (7 / 4) 2(3/ 4)

x xe
DD

# 6
# # ∗∗

!
/ 2

2
1 1 3cos

1 2 2(3/ 4)
x xe

DD
#

#∗

! / 2
2

1 1 3(1 2 ) cos
(1 2 )(1 – 2 ) 2(3/ 4)

x xe D
D DD

# 6 ∗ 6
∗∗

! / 2
2 2

1 1 3(1 2 ) cos
2(3/ 4) 1 4

x xe D
D D

# ∗
∗ #

! / 2
2

1 1 3(1 2 ) cos
1 4 ( 3/ 4) 2(3/ 4)

x xe D
D

# ∗
# Η #∗

! / 2
2

1 1 3(1 2 ) cos
4 2(3/ 4)

x xe D
D

# ∗
∗

! / 2
2 2

1 1 3 3cos 3 sin
4 2 2( 3 / 2)

x x xe
D

# & ∋
#≅ Α( )∗

! / 2
2 2 2 2

1 1 3 1 3cos 3 sin
4 2 2( 3 / 2) ( 3 / 2)

x x xe
D D

# & ∋
#≅ Α

∗ ∗( )

! / 21 3 3sin 3 cos
4 2 22 ( 3 / 2) 2 ( 3 / 2)

x x x x xe# & ∋
∗ 6≅ Α

Η Η( )
, using results (4) and (5) of Art. 5.16

! / 2( / 4 3) {sin( 3 / 2) 3 cos ( 3 / 2)}xx e x x#Η ∗ .

5 The required solution is  y ! e–x/2 [c1cos( 3 / 2x ) " c2 sin ( 3 / 2x )] " ex/2 [c3 cos ( 3 / 2x )

" c4 sin ( 3 / 2x )] " (x/4 3 ) Η e–x/2 [ sin ( 3 / 2x ) " 3  cos ( 3 / 2x )]
Ex. 11. Solve (d4y/dx4) + 6(d3y/dx3) + 11 (d2y/dx2) + 6 (dy/dx) = 20 e–2x sin x.    [I.A.S. 1997]
Sol. Re - writing the given equation, (D4 + 6D3 + 11D2 + 6D) y ! 20 e–2x sin x. ...(1)
Its auxiliary equation is    D4 + 6D3 + 11D2 + 6D ! 0   or   D (D + 1) (D + 2) (D + 3) ! 0
Solving it, we get                              D ! 0, – 1, – 2, – 3.
5 C.F. ! c1 e0.x " c2 e–x " c3 e–2x " c4 e–3x, c1, c2, c3 and c4 being arbitrary constants.

P.I. ! 2
4 3 2

1 20 sin
6 11 6

xe x
D D D D

#

∗ ∗ ∗

! –2
4 3 2

120
( 2) 6( 2) 11( 2) 6( 2)

xe
D D D D# ∗ # ∗ # ∗ #

sin x

2
4 3 2 3 2 2

120 sin
8 24 32 16 6( 6 12 8) 11( 4 4) 6( 2)

xe x
D D D D D D D D D D

#∃
# ∗ ∗ ∗ ∗ # ∗ # ∗ # ∗ ∗ #

! 2
4 3 2

120 sin
2 2

xe x
D D D D

#

# # ∗
! 2

2 2 2 2
120 sin

( ) 2 ( ) 2
xe x

D D D D D
#

# # ∗

! 2 2
2 2 2 2

1 120 sin 20 sin
2(1 2 )( 1 ) 2( 1 ) ( 1 ) 2

x xe x e x
DD D

# #∃
∗# # # # # ∗

! 2 2
2 2

1 110 (1 2 ) sin 10 (1 2 ) sin
1 4 1 4( 1 )

x xe D x e D x
D

# ## ∃ #
# # #
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! 2 e–2x (1 – 2D) sin x ! 2 e–2x (sin x – 2 cos x)
5 The required solution is y ! c1 " c2 e–x " c3 e–2x " c4 e–3x – 2 e–2x (sin x – 2 cos x)

Ex. 12. Solve (D2 + 2D + 1) y = xex sin x. [Agra 1996, Lucknow 1996, Purvanchal 1998]
Sol. Here the auxiliary equation is D2 – 2D " 1 ! 0 so that D ! 1, 1.
5 C.F. ! (c1 " c2x) ex, c1, c2 being arbitrary constants.

P.I. ! 2 2 2
1 1 1( sin ) sin sin

( 1) ( 1 1)
x x xe x x e x x e x x

D D D
∃ ∃

# ∗ #

 !
1 1

sin cos 1 ( cos )x xe x x dx e x x x dx
D D

& ∋∃ # # 6 #( )% % , integrating by parts

 !
1 [ cos sin ] (sin cos )x xe x x x e x x x dx
D

# ∗ ∃ #%
 ! sin cos cos { sin 1 sin }x xe x dx x dx e x x x x dx& ∋ & ∋# ∃ # # # 6( ) ( )% % %
 ! ex (– cos x – x sin x – cos x) ! – ex (x sin x " 2 cos x).

5 The required solution is y ! (c1 " c2x) ex – ex (x sin x " 2 cos x).
Ex. 13(a) Solve (D2 – 4D + 4) y ! e2x sin 2x [Purvanchal 2007]
Sol. Given (D2 – 4D + 4) y ! e2x sin 2x, D 4 d/dx ... (1)
Its auxiliary equation is             D2 – 4D + 4 ! 0             or             (D – 2)2 ! 0 − 0 ! 2,2.
5 C.F. ! (c1 + c2x) e2x, c1, c2 being arbitrary constants

P.I. ! 2
2

1 sin
4 4

xe x
D D# ∗

! 2
2

1 sin
( 2)

xe x
D #

! 2
2

1 sin
( 2 2)

xe x
D ∗ #

! 2
2

1 sinxe x
D

! 2 1 sinxe x dx
D % ! 2 1 ( cos )xe x

D
# ! 2 2cos sinx xe x dx e x# ∃ #%

5 Required solution is y ! (c1 + c2x) e2x – e2x sin x
Ex. 13(b) Solve (D2 – 4D + 4) y = 8x2 e2x sin 2x. [Kanpur 1997, Lucknow 1993, 97]
Sol. Here the auxiliary equation is D2 – 4D " 4 ! 0 giving D ! 2, 2.
5 C.F. ! (c1 " c2x) e2x, c1, c2 being arbitrary constants.

P.I. ! 2 2 2 2 2 2
2 2 2

1 1 18 sin2 8 sin 2 8 sin2
( 2) ( 2 2)

x x xx e x e x x e x x
D D D

∃ ∃
# ∗ #

! 2 2 2 2 cos 21 1 cos 28 sin 2 8 (2 )
2 2

x x x xe x x dx e x x dx
D D

& ∋: ; : ;∃ # # #< = < =≅ Α> ? > ?( )% % , integrating by parts

! 2 21 18 cos 2 cos2
2

xe x x x x dx
D

& ∋# ∗≅ Α( )%  ! 2 2 sin 21 1 sin 28 cos 2 1
2 2 2

x x xe x x x dx
D

& ∋: ;# ∗ # 6< =≅ Α> ?( )%

! 2 21 1 1 18 cos 2 sin 2 cos 2
2 2 4

xe x x x x x
D

& ∋# ∗ ∗≅ Α( )
 ! 2 21 1 1

8 ( cos2 sin 2 cos2 )
2 2 4

xe x x x x x dx# ∗ ∗%

! 2 21 1 18 [ cos2 sin 2 cos 2 ]
2 2 4

xe x x dx x x dx x dx# ∗ ∗% % %

! 2 21 1 1 1 1
8 [ { ( sin 2 ) 2 ( sin 2 ) } sin 2 sin 2 ]

2 2 2 2 8
xe x x x x dx x x dx x# # ∗ ∗% %

!  2 21 1 18 [ sin 2 sin 2 sin 2 (1/ 8) sin 2 ]
4 2 2

xe x x dx x x dx x x dx x# ∗ ∗ ∗ Η% %
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! 2 21 18 [ sin 2 sin 2 sin 2 ]
4 8

xe x x x x dx x# ∗ ∗%

! 2 21 1 1 1
8 sin 2 ( cos 2 ) 1 ( cos2 ) sin 2

4 2 2 8
xe x x x x x dx x& ∋# ∗ # # 6 # ∗≅ Α( )%

! 2 21 1 1 1
8 [ sin 2 cos2 sin 2 sin 2 ]

4 2 4 8
xe x x x x x x# # ∗ ∗

! 2 21 1 3
8 [ sin 2 cos 2 sin 2 ]

4 2 8
xe x x x x x# # ∗

5 The required solution is y ! (c1 " c2x) e2x " e2x (3 sin 2x – 4x cos 2x – 2x2 sin 2x).
Ex. 14. Solve (D3 + 1) y = e2x sin x + ex/2 sin ( 3 / 2)x .

Sol. Given (D3 " 1) y ! e2x sin x " ex/2 sin ( 3 / 2)x . ... (1)
The auxiliary equation is D3 " 1 ! 0, or (D " 1) (D2 – D " 1) ! 0,

giving D = – 1, {13 (1– 4)1/2}/2 or D ! – 1, 1/ 2 ( 3 / 2)i3

5 C.F. ! c1e–x " ex/2 [c2 cos ( 3 / 2x ) " c3 sin ( 3 / 2x )],
c1, c2 and c3 being arbitrary constants.

P.I. corresponding to e2x sin x.

! 2 2
3 3
1 1sin sin

1 ( 2) 1
x xe x e x

D D
∃

∗ ∗ ∗
! 2

3 2 2 3
1 sin

3 2 3 2 2 1
xe x

D D D∗ 6 ∗ 6 ∗ ∗

! 2
3 2

1 sin
6 12 9

xe x
D D D∗ ∗ ∗

! 2 1 sin
6 12 9

xe x
D D# # ∗ ∗

! 2 1 sin
11 3

xe x
D ∗

! 2 2
2

1 (11 3)(11 3) sin sin
121 9121 9

x x De D x e x
D

#
# ∃

# ##

! – (1/130) × e2x (11 cos x – 3 sin x).

P.I. corresponding to ex/2 sin ( 3 / 2)x

! / 2 / 2
3 3
1 3 1 3sin sin

2 21 ( 1/ 2) 1
x xx xe e

D D

: ; : ;
∃< = < =

> ? > ?∗ ∗ ∗

! / 2
3 2 2 3

1 3sin
23 (1/ 2) 3 (1/ 2) (1/ 2) 1

x xe
D D D

: ;
< =
> ?∗ 6 ∗ 6 ∗ ∗

! / 2
3 2

1 3sin
2(3/ 2) (3 / 4) (9 / 8)

x xe
D D D

: ;
< =
> ?∗ ∗ ∗

! / 2
2

1 3sin
2[ (3/ 4)][ (3/ 2)]

x xe
D D

: ;
< =
> ?∗ ∗

[As denominator is zero when D2 ! – 3/4, factorize denominator]

! / 2
2 2

1 3 1 3sin
2 2(3/ 4) (9 / 4)

x xe D
D D

: ;: ;# 6< = < =
> ? > ?∗ #

! / 2
2

1 3 1 3sin
2 ( 3/ 4) (9 / 4) 2(3/ 4)

x xe D
D

: ;: ;#< = < =
# #> ? > ?∗

!
/ 2

2
1 3 3sin

3 2 2(3/ 4)

xe xD
D

: ;: ;# #< = < =
> ? > ?∗

!
/ 2

2
1 3 3 3 3cos sin

3 2 2 2 2(3/ 4)

xe x x
D

& ∋: ; : ;
# #≅ Α< = < =

> ? > ?∗ ( )
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!
/ 2

2 2 2 2
1 3 1 33 cos 3 sin

6 2 2( 3 / 2) ( 3 / 2)

xe x x
D D

& ∋: ; : ;
# #≅ Α< = < =

> ? > ?∗ ∗≅ Α( )

! 
/ 2 3 1 33 sin 3 cos

6 2 22( 3 / 2) 2( 3 / 2)

xe x x x& ∋: ; : ;
# ∗ 6≅ Α< = < =

> ? > ?( )

! 
/ 2 3 3sin 3 cos

6 2 2

xxe x x& ∋: ; : ;
# ∗≅ Α< = < =

> ? > ?( )
.

5 Required solution is y ! c1e–x " ex/2 [c2 cos ( 3 / 2)x " c2 sin ( 3 / 2)x ]

– (x/6) Η ex/2 [sin ( 3 / 2)x " 3  cos ( 3 / 2)x ].
Ex. 15. Solve (d2y/dx2) – 5 (dy/dx) + 6y = e4x (x2 + 9). [I.A.S. 1998]
Sol. Given (D2 – 5D " 6) y ! e4x (x2 " 9), where               D 4 d/dx ... (1)
Its auxiliary equation is D2 – 5D " 6 ! 0 so that D ! 2, 3.
Hence, here C.F. ! c1 e2x " c2 e3x, c1 and c2 being arbitrary constants.

P.I. ! 4 2 4 2
2 2

1 1( 9) ( 9)
5 6 ( 4) ( 4) 6

x xe x e x
D D D D

∗ ∃ ∗
# ∗ ∗ # ∗ ∗

! 4 2
2

1 ( 9)
3 2

xe x
D D

∗
∗ ∗

!  
4

2
2

1 ( 9)
2 1 / 2 3 / 2

xe x
D D

∗
∗ ∗

! 4 2 11 {1 ( / 2 3 / 2)}
2

xe D D #∗ ∗

! / 04 2 2 2 2(1/ 2) 1 ( / 2 3 / 2) ( / 2 3 / 2) ...... ( 9)xe D D D D xΗ # ∗ ∗ ∗ ∗

! (1/2) × e4x [1 – (D2/2) – (3D/2) " 9D2/4 " ...] (x2 " 9)
! (1/2) × e4x {(x2 " 9) – (3/2) D (x2 " 9) " (7/4) D2 (x2 " 9)]
! (1/2) × e4x {x2 " 9 – (3/2) (2x) " (7/4) (2)}
! (1/2) × e4x (x2 – 3x " 25/2) ! (1/4) e4x (2x2 – 6x " 25)

Hence the required solution is y ! c1 e2x " c2 e3x " (1/4) e4x (2x2 – 6x " 25).
Ex. 16. Solve d2y/dx2 – 4 (dy/dx) – 5y = xe–x, given that y = 0 and dy/dx = 0 when x = 0.
Sol. Re-writting the given equation, (D2 – 4D – 5) y ! xe–x where D ! d/dx ... (1)
Also, given that y ! 0, when x ! 0 ... (2)

and dy/dx ! 0, when   x ! 0 ... (3)
The auxiliary equation of (1) is D2 – 4D – 5 ! 0     or     (D – 5) (D " 1) ! 0 − D ! 5, – 1.
So C.F. ! c1e5x " c2e–x, c1, c2 being arbitrary constants

and P.I. ! 2 2
1 1
4 5 ( 1) 4( 1) 5

x xxe e x
D D D D

# #∃
# # # # # #

! 2
1 1 1

6 (1 / 6)6
x xe x e x

D DD D
# #∃ #

##
!

11 1 1 11 1 ...
6 6 6 6

x xD De x e
D D

#
# #: ; : ;# # ∃ # ∗ ∗< = < =

> ? > ?
x

!
21 1 1 1 .

6 6 6 2 6
x x x xe x e

D
# # : ;: ;# ∗ ∃ # ∗< =< =

> ? > ?

5 The solution of (1) is y ! c1 e5x " c2 e–x 2(1/12) ( / 3)xe x x## ∗ ... (4)
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Putting x ! 0, y ! 0 (due to (2)), in (4), we get c1 " c2 ! 0. ... (5)

From (4),               
dy
dx ! 5c1e5x – c2e–x " 21 1 1

2
12 3 12 3

x xx
e x e x# #: ; : ;∗ # ∗< = < =

> ? > ?
... (6)

Putting x ! 0, dy/dx ! 0 (due to (3)) in (6), we get 5c1 – c2 – (1/36) ! 0. ... (7)
Solving (5) and (7), c1 ! 1/216 and c2 ! – (1/216). With these values, (4) reduces to

y ! (1/216) × (e5x – e–x) – (1/12) Η e–x (x2 " x/3).

Exercise 5(F)
Solve the following differential equations:

1. (D – 2)3 y ! xe2x. Ans. y ! (c1 " c2x " c3x2) e2x " (x4/24) × e2x

2. (D " 1)3 y ! x2 e–x Ans. y ! (c1 " c2x " c3x2) e–x " (x5/60) × e–x

3. (D2 – 3D " 2) y ! xex [Agra 1994] Ans. y ! c1ex " c2 e2x  " (1/2)ex(x2 " 2x)
4. (D2 – 1) y ! ex cos x. Ans. y ! c1 ex " c2 e–x " (1/5) ex (2 sin x – cos x)

5. (D2 – 4D " 1) y ! e2x sin x. Ans. y ! c1 e2x cosh (x 3 " c2) – (1/7) e2x sin 3x

6. (D2 – 2D " 5) y ! e2x sin x [Agra 1996, Rohilkhand 1996]
Ans. y ! ex (c1 cos 2x  " c2 sin 2x) – (1/10) e2x (cos x – 2 sin x)

7. (D2 – 2D " 4) y ! ex cos x [Agra 1995; Calcutta 1996, Delhi Math(H) 1995, Kanpur 1996, S.V.

University (A.P.) 1997] Ans. y ! ex [c1 cos (x 3 ) " c2 sin (x 3 )] " (1/2) ex cos x

8. D2y ! ex cos x. Ans. y ! c1x " c2 " (1/2) ex sin x
9. (D2 " 4D – 12) y ! (x – 1) e2x [Bangalore 1996; Lucknow 1997, 98]

Ans. y ! c1e2x " c2 e–6x " (1/64) e2x (4x2 – 9x)
10. (D3 – 7D – 6) y ! (x " 1) e2x [Delhi Maths (G) 2002, Kanpur 1996]

Ans. y ! c1 ex " c2 e–2x " c3 e3x – (1/144) e2x (12x " 17)

11. (D3 – D – 6) y ! (x " 1) e2x Ans. y ! c1 e2x " c2 e–x cos (x 2 " c3) " (1/242) (10x " 11x2)

12. (D3 – 3D2 " 3D – 1) y ! (x " 1) ex Ans. y !(c1 " c2x " c3x2) ex " (1/24) (x " 1)4 ex

13. (D2 – 2D " 6) y ! ex cos x [Agra 1996; Meerut 1999]

Ans. y ! ex (c1 cos x 5  + c2 sin x 5 ) ∗ 7ΙΜΝ8 Η ex cos x

14. (D2 – 2D " 4) y ! ex sin x Ans. y ! ex {c1 cos (x 3 ) " c2 sin (x 3 )} " (1/2) ex sin x

15. (D2 – 4D " 1) y ! e2x sin 2x. Ans. y ! e2x{c1 cosh (x 3 ) " c2 sinh (x 3 )} " (1/7) e2x sin 2x

16. (D2 – 2D " 4) y ! e2x cos x.

Ans. y ! ex{c1 cos (x 3 ) " c2 sin (x 3 )} " (1/13) e2x (2 sin x " 3 cos x)

17. (D2 " 1) y ! xe2x. Ans. y ! c1 cos x " c2 sin x " (1/25) (5x – 4) e2x

18. (D2 " 2) y ! x2 e3x. [Delhi Maths (G) 1996]

Ans. y ! c1 cos (x 2 ) " c2 sin (x 2 ) – (1/11) {x2 – (12/11) x – (50/121)}e3x

19. (D2 – 1) y ! ex (1 " x2). Ans. y ! c1ex " c2e–x  " (1/12) ex (2x3 – 3x2 " 9x)
20. (D2 – 1) y ! sinh x cosh x cos x Ans. y ! c1 ex " c2 e–x " (1/20) × (cos x sinh 2x – 2 sin x cosh 2x)

5.22 Short method of finding P.I. when X ! xV, where V is any function of x.
For this purpose, we have the following theorem
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Theorem. To prove that
1 1 ( )
( ) ( )

dxV x V f D V
f D f D dD

: ;∃ ∗ < =
> ?

.

Proof. Let U be a function x. If u and v be functions of x, then by Leibnitz’s theorem,
              Dn (uv) ! Dnu6v " nc1 Dn – 1 u6Dv " nc2 Dn – 2 u6D2v " ... u. Dn v. ... (1)

Using Leibnitz’s theorem (1), we have
            Dn (xU) ! Dn (Ux) ! DnU 6 x " nc1 Dn – 1U 6 1 ! x DnU " n Dn –1 U

or             Dn (xU) ! x Dn U "
d

dD  (Dn) U,            as            
d

dD Dn ! n Dn – 1 ... (2)

Since f (D) is a polynomial in D, from (2) we have

                              f (D) (xU) ! x f (D) U " ( )
d

f D U
dD

: ;
< =
> ?

. ... (3)

Putting f (D) U ! V, we have
1 1( ( ) )
( ) ( )

f D U V
f D f D

∃ so that U ! 1 .
( )

V
f D

Moreover, since U is function of x, so is V.

5 From (3), 1 1( ) ( ) .
( ) ( )

df D x V xV f D V
f D dD f D

: ; : ;∃ ∗ < =< = > ?> ?
... (4)

Operating on both sides of (4) by 1/f (D), we have

2
1 1 ( )( ) ,
( ) ( ) [ ( )]

f D
x V xV V

f D f D f D
1

∃ ∗ where f 1(D) !
( )df D

dD

or                              2
1 1 ( )( )
( ) ( ) [ ( )]

f D
xV x V V

f D f D f D
1

∃ # ... (5A)

or                                   1 1 1( )
( ) ( ) ( )

dxV x V V
f D f D dD f D

: ;∃ ∗ < =
> ?

... (5B)

Working rule of finding P.I. when X ! xV. We shall apply the formula (5B) to compute
{1/f (D)} (xV). Proceeding by repated application of the above formula, {1/f(D)} (xmV) can be
evaluated, if m is a positive integer. We shall apply the above formula (5A) when V is of the form
sin ax or cos ax. In practice the above formula should not be used when V ! sin ax or cos ax and
f (– a2) ! 0 i.e., f (D2) vanishes by putting – a2 for D2. In such situations we shall apply the
following alternative method. This alternative method can also be applied even when f (– a2) . 0.

Alternative Working rule for finding P.I. when X ! xm sin ax or xm cos ax.

(i) P.I !
1 cos
( )

mx ax
f D

! Real part of 
1 (cos sin )
( )

mx ax i ax
f D

∗

                 ! R.P. of 
1 ,
( )

m aixx e
f D

by Euler’s theorem, where R.P. stands for real part

(ii) P.I !
1 sin
( )

mx ax
f D

! Imaginary part of
1 (cos sin )
( )

mx ax i ax
f D

∗

     ! I.P. of 
1
( )

m aixx e
f D

, by Euler’s theorem, where I.P. stands for imaginary part.
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5.23 Solved examples based an Art. 5.22
Ex. 1. Solve (D2 + 9) = x sin x.
Sol. Method I. Here auxilary equation                 D2 + 9 ! 0 − D ∃ 3 3i.
5   C.F. ! c1 cos 3x " c2 sin 3x, c1, c2 being arbitrary constants.

P.I ! 2 2
1 1sin I.P. of

9 9
ixx x x e

D D
∃

∗ ∗
, where I.P. stands for imaginary  part

! I.P. of 2
1 1 1, as

( ) ( )( ) 9
ix ax axe x Ve e V

f D f D aD i
∃

∗∗ ∗

! I.P. of eix
2 3

1 1
I .P .of

2 8 8 [1 (1/ 8)( 2 )]
ixx e x

D iD D iD
∃

∗ ∗ ∗ ∗

! I.P. of 
12

1 I. P. of 1 ...
8 4 8 8 4

ix ixe iD D e iDx x
#

& ∋: ; & ∋∗ ∗ ∃ # ∗≅ Α< = ≅ Α( )> ?( )
! I.P. of (1/8) × (cos x " i sin x) (x – i/4) ! (1/8) × {x sin x – (1/4) cos x}.

5 Required solution is y ! c1 cos 3x " c2 sin 3x " (1/8) x sin x – (1/32) cos x.
Method II. As in Method I, C.F. ! c1 cos 3x " c2 sin 3x.

P.I. ! 2 2 2
1 1 1sin sin sin

9 9 9
dx x x x x

dDD D D
& ∋∃ ∗ ≅ Α∗ ∗ ∗( )

1 1 1
( ) ( ) ( )

dxV x V V
f D f D dD f D

& ∋Β Χ
∃ ∗ ∆ Ε≅ Α

Φ Γ( )
�

! 2 2 2 2 2 2
1 2 1 1sin sin sin 2 sin

9 ( 9) 1 9 ( 1 9)
Dx x x x x D x

D D
# ∃ #

∗ ∗ # ∗ # ∗
! (x/8) × sin x – (1/32) × D sin x ! (x/8) × sin x – (1/32) × cos x

5 Required solution is y ! c1 cos 3x " c2 sin 3x " (1/8) x sin x – (1/32) cos x.
Ex. 2. Solve (a) (D2 + 2D + 1) y = x cos x [Agra 1995]
(b) (D2 " 2D " 1) y ! x sin x [IAS 1998, Delhi Maths (G) 1995]
Sol. (a) Here the auxiliary equation is D2 " 2D " 1 ! 0 so that D ! – 1, – 1.
5 C.F. ! (c1 " c2x) e–x, c1, c2 being arbitrary functions.

P.I. ! 2 2
1 1cos R.P .of

( 1) ( 1)
ixx x x e

D D
∃

∗ ∗
 , where R.P. stands for real part

! R.P. of 
2

2 2
1 R .P. of 1

1[( ) 1)] (1 )

ix
ix e De x

iD i i

#
: ;∃ ∗< =∗∗ ∗ ∗ > ?

! R.P. of 
2 21 ... R.P. of

2 1 2 1

ix ixe D ex x
i i i i

: ; : ;# ∗ ∃ #< = < =∗ ∗> ? > ?

! R.P. of 2
2(1 ) 2(1 )R .P. of

(1 )(1 ) ( 2) 1 12

ix ixi ie iei x x
i ii

# #& ∋ & ∋# ∃ #≅ Α ≅ Α# ∗ # ∗( ) ( )
! R.P. of (– i/2) × (cos x " i sin x) {(x – 1) " i}
! R.P. of (– 1/2) × (i cos x – sin x) {(x – 1) " i} ... (1)
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5                  P.I.! (– 1/2) × [– sin x 6 (x – 1) – cos x] ! (1/2) × [(x – 1) sin x " cos x]
Solution is y ! (c1" c2x) e– x " (1/2) × [(x – 1) sin x " cos x].
(b) Proceed as in part (a). As before C.F. ! (c1 " c2x) e–x

P.I. ! 2 2
1 1

sin I .P .of
( 1) ( 1)

ixx x x e
D D

∃
∗ ∗

, where I.P. stands for imaginary part

 !  I.P. of (– 1/2) × (i cos x – sin x) [(x – 1) " i],
[Proceeding as in part (a) upto equation (1) replacing R.P. by I.P.]

       ! (–1/2) Η {(x–1) cos x–sin x} ! (1/2) Η {sin x–(x–1) cos x}.
5 The required solution is y ! (c1 " c2x) e–x " (1/2) Η {sin x – (x – 1) cos x}.
Ex. 3. Solve (D2 – 2D + 1) y = x sin x.

[Agra 1996, Kanpur 1994, Allahabad 1998, Meerut 1993, Ravishankar 1994]
Sol. Here the auxiliary equation  D2 – 2D " 1 ! 0   so that   D ! 1, 1.
5 C.F. ! (c1 " c2x) ex, c1, c2 being arbitrary constants.

P.I. ! 2 2 2
1 1 1sin sin sin
2 1 2 1 2 1

dx x x x x
dDD D D D D D

: ;∃ ∗ < =# ∗ # ∗ # ∗> ?

! 2 2 2
1 (2 2)sin sin

1 2 1 ( 2 1)
Dx x x

D D D
#

# # ∗ # ∗
! 2 2

1 1sin 2( 1) sin
2 ( 1 2 1)
x

x D x
D D

# # #
# # ∗

! 2
1 1 1 1cos ( 1) sin cos ( 1) sin

2 2 2 24
x xx D x x D x dx

DD
# # ∃ # # %

!
1 1 1cos ( 1) ( cos ) cos ( 1) ( cos )

2 2 2 2
x xx D x x D x dx

D
# # # ∃ # # #%

! (x/2) cos x " (1/2) (D – 1) sin x ! (x/2) cos x " (1/2) (cos x – sin x)
5 Required solution is y ! (c1 " c2x) ex " (1/2) (x cos x  " cos x – sin x).
Ex. 4. Solve (D2 + 1) y = x2 sin 2x. [Kanpur 1995 Delhi Maths (H) 2000]
Sol. Here the auxiliary equation is D2 " 1 ! 0 so that D ! ± i.
5 C.F. ! c1 cos x " c2 sin x, c1, c2 being arbitrary constants.

P.I. ! 2 2 2
2 2
1 1sin 2 I.P . of

1 1
ixx x x e

D D
∃

∗ ∗
, where I.P. stands for imaginary part

! I.P. of 2 2 2 2 2
2 2

1 1I.P. of , as 1
( 2 ) 1 4 3

ix ixe x e x i
D i D iD

∃ ∃ #
∗ ∗ ∗ #

! I.P. of 
12 2 2

2 2
2

1 4I.P. of 1
3 3 3 3{1 (4 ) / 3}

ix ixe e iD D
x x

iD D

#
& ∋: ;

∃ # ∗≅ Α< =
# # > ?# ∗ ( )

! I.P. of 
22 2 2

24 41 ...
3 3 3 3 3

ixe iD D iD D x
& ∋: ; : ;
≅ Α∗ ∗ ∗ ∗ ∗< = < =≅ Α# > ? > ?( )

! I.P. of 
2 2 2

24 161 ...
3 3 3 9

ixe iD D D
x

& ∋
∗ ∗ # ∗≅ Α# ( )

! I.P. of 
2 2 2

2 24 13 4 131 ... I .P .of 2 2
3 3 9 3 3 9

ix ixe iD D e ix x x
& ∋ & ∋: ; : ;∗ # ∗ ∃ ∗ Η # Η≅ Α < = < =≅ Α# #( ) > ? > ?( )
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! I.P. of (–1/3) (cos 2x " i sin 2x) {x2 " (8/3) ix – (26/9)}
! – (1/3) [(x2 – 26/9) sin 2x " (8/3) x cos 2x]

5 Solution is y ! c1 cos x " c2 sin x – (1/3) [(x2 – 26/9) sin 2x " (8/3) x cos 2x)].
Ex. 5. Solve (D4 + 2D2 + 1) y = x2 cos x.  [Purvanchal 2007; Agra 1995, Meeruth 1997,

    Kumaun 1995, Kanpur 1998, Lucknow 1998, Delhi Maths (H) 2004]
Sol. Here the auxiliary equation is  D4 " 2D2 " 1 ! 0  or  (D2 " 1)2 ! 0  so that  D ! ± i, ± i.
5   C.F. ! (c1 " c2x) cos x " (c3 " c4x) sin x, c1, c2, c3, c4 being arbitrary constants.

P.I. ! 2
2 2
1 cos

( 1)
x x

D ∗
! R.P. of 2

2 2
1

( 1)
ixx e

D ∗
, where R.P. stands for real part

! R.P. of 
2 2

2 2 2 2
1 1R . P. of

{( ) 1} ( 2 )
ix ixe x e x

D i D Di
∃

∗ ∗ ∗

! R.P. of 
2

2 2
2 2 2

1 R . P. of 1
2(2 ) (1 / 2 ) 4

ix
ix e De x x

iDi D i D

#
: ;∃ ∗< =
> ?∗ #

! R.P. of 
2 2 2

2 2
2 2

31 R .P . of 1 ...
2 44 4

ix ixe iD e i Dx iD x
D D

# : ;: ;# ∃ ∗ ∗ ∗< = < =
> ? > ?# #

! R.P. of 
2

2 2
2 2

3 31 R.P.of 2 2
4 44 4

ix ixe D eiD x x ix
D D

: ; & ∋∗ # ∃ ∗ # 6< = ≅ Α> ? ( )# #

! R.P. of 
3 4 3 2

21 3 3R . P. of
4 3 2 4 12 3 4

ix ixe x e x ix xix x
D

& ∋ & ∋
∗ # ∃ ∗ #≅ Α ≅ Α# #( ) ( )

! R.P. of (–1/4) × (cos x " i sin x) {(x4/12) – (3x2/4) " i (x3/3)}
! – (1/4) × [(x4/12 – 3x2/4) cos x – (x3/3) sin x]

5 Solution is y ! (c1 " c2x) cosx " (c3 " c4x) sinx – (1/4) × [(x4/12 – 3x2/4) cosx – (x3/3) × sin x].
Ex. 6. Solve (D4 – 1) y = x sin x. [Meerut 2000, Lucknow 1993, 98]
Sol. Here the auxiliary equation is                     D4 – 1 ! − D ! 1, – 1 ± i.
5 C.F. ! c1ex " c2e–x " c3cos x " c4 sin x, c’s being arbitrary constants.

P.I. ! 4 4
1 1sin . .

1 1
ixx x I P of xe

D D
∃

# #
, where I.P. stand for imaginary part

! I.P. of 4 4 3 2 2 3 4
1 1I .P . of

( ) 1 4 6 4 1
ix ixe x e x

D i D D i D i Di i
∃

∗ # ∗ ∗ ∗ ∗ #

! I.P of eix
4 3 2 2 3

1 1I.P. of
44 6 4 [1 3 /2 /4 ]

ixex x
iDD iD D iD D i D D i

∃
#∗ # # ∗ # #

! I.P. of 
13

231
4 2 4

ixie Di iDD x
D

#
& ∋: ;

∗ # # ∗≅ Α< =
> ?( )

! I.P. of 
3

23 1 31 ... I .P. of
4 2 4 4 2

ix ixie Di iD ie iD x x
D D

& ∋: ; : ;∗ ∗ # ∗ ∃ ∗≅ Α< = < =
> ? > ?( )

! I.P. of (1/4) × ieix {(x2/2) " (3/2) ix} ! I.P. of (1/8) × (cosx " i sin x) (ix2 – 3x)
Thus,                                 P.I. ! (1/8) × (x2 cos x – 3x sin x)
5 Solution is y ! c1ex " c2 e–x " c3 cos x " c4 sin x " (1/8) × (x2 cos x – 3x sin x).
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Ex. 7. Solve (D2 + 1)2 = 24x cos x given that y = Dy = D2y = 0 and D3y = 12 when x = 0.
[I.A.S. 2001]

Sol. Given                                   (D2 " 1)2 y ! 24 x cos x ... (1)
with y ! 0,        y1 ! 0,        yΟ ! 0 and        y111 ! 12        when x ! 0.

... (2)
The auxiliary equation is (D2 " 1)2 ! 0 giving D ! ± i (twice)

5      C.F. ! (c1 " c2x) cos x " (c3 " c4 x) sin x, c1, c2, c3, c4 being arbitrary constants  ... (3)

P.I. ! 2 2
1 24 cos

( 1)
x x

D ∗
! Real part of 2 2

1 24
( 1)

ixxe
D ∗

... (4)

Now, 2 2 2 2 2 2
1 1 124 24 24

( 1) {( ) 1} ( 2 )
ix ix ixx e e x e x

D D i D Di
∃ ∃

∗ ∗ ∗ ∗

  !
2

2 2
24124 1 1 ......

2(2 ) ( 4 )

ix
ix eD De x x

i iDi D

#
: ; : ;∗ ∃ # ∗< = < =
> ? > ?#

!
3 2

2
16 ( ) 6

6 2
ix ix x ix

e x i e
D

: ;
# ∗ ∃ # ∗< =

> ?
... (5)

Using (5), from (4) we, have
P.I. ! Real part of (cos x " sin x) (– x3 " 3i x2) ! 3x2 sin x – x3 cos x
Hence the general solution of (1) is             y ! C.F. " P.I.    i.e.

y ! c1 cos x " c3 sin x " x (c2 cos x " c4 sin x) " 3x2 sin x – x3 cos x ... (6)
Putting x ! 0, in (6) and noting that y ! 0 when x ! 0, we get c1 ! 0. Putting c1 ! 0 in (6),

y ! c3 sin x " x (c2 cos x " c4 sin x) " 3x2 sin x – x3 cos x                    ... (7)
Differentiating (7) w.r.t. ‘x’, we get          y1 ! c3 cos x " c2 cos x " c4 sin x

" x (– c2 sin x " c4 cos x) " 6x sin x " 3x2 cos x – (3x2 cos x – x3 sin x) ... (8)
Putting x ! 0 in (8) and noting that y1 ! 0 when x ! 0, we get

                  0 ! c3 " c2                 so that                 c3 ! – c2 ... (9)
5 (8) gives y1 ! c4 sin x " x (–c2 sin x " c4 cos x) " 6 x sin x " x3 sin x ... (10)
Differentiating (10) w.r.t. ‘x’, we get              y11 ! c4 cos x – c2 sin x " c4 cos x

" x (–c2 cos x – c4 sin x) " 6 sin x " 6x cos x " 3x2 sin x " x3 cos x ... (11)
Putting x ! 0 in (11) and noting that y11 ! 0 when x ! 0   (11) gives c4 ! 0. Putting c4 ! 0 in (11),
                 y11 ! –c2 sin x – c2 x cos x " 6 sin x " 6x cos x " 3x2 sin x " x3 cos x ... (12)

Differentiating (12) w.r.t. ‘x’, we get y111 ! – c2 cos x – c2 (cos x – x sin x) " 6 cos x
" 6 (cos x – x sin x) " 3 (2x sin x " x2 cos x) " 3x2 cos x – x3 sin x ... (13)

Putting x ! 0 in (13) and noting that y111 ! 12 when x ! 0, (13) reduces to
   12 ! – 2 c2 " 12     so that       c2 ! 0.                     So by (9),            c3 ! 0.
Thus, finally, c1 ! c2 ! c3 ! c4 ! 0 and so (6) reduces to

               y ! 3x2 sin x – x3 cos x. which is the required solution.

Exercise 5(G)

Solve the following differential equations :
1. (a) (D2 " 4) y ! x sin x [Delhi Maths (G) 1994)

Ans.  y ! c1 cos 2x " c2 sin 2x " (x/3) 6 sin x – (2/9) cos x
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(b) (D2 " m2) y ! x cos mx Ans. y ! c1 cos mx " c2 sin mx " (x/4m2) cos mx " (x2/4m) sin mx
2. (D2 – 5D " 6) y ! x sin 3x [Delhi Maths (G) 1996]

Ans. y ! c1 e2x " c2 e3x – {(78 x " 40) sin 3x – (123 – 390x) cos 3x}/6084
3. (D2 " D) y ! x cos x. Ans. y ! c1 " c2 e–x " (1/2) × (sin x – cos x) " (1/2) × sin x
4. (D2 – 1) y ! x2 cos x [Delhi:Maths(H) 2007] Ans. y ! c1 ex " c2 e–x " (1/2) × (1 – x2) cos x " x sin x
5. (D2 – 1) y ! x2 sin x Ans. y ! c1ex " c2 e–x – x cos x – (1/2) × (x2 – 1) sin x
6. (D2 " 4) y ! x sin2 x. Ans. y !  c1 cos 2x " c2 sin 2x " (x/8) × (1 " 2 sin 2x)

5.24 More about particular integral of f(D) y ! X
We now consider examples in which X is sum of two or more special functions of x

considered sperarately. In such cases we obtain P.I. corresponding each function separately and
then add these to get the required P.I. of a differential equation.

5.25 Solved Examples based on Art. 5.24 and Miscellaneous examples
Ex. 1. Solve (D2 – 4D + 4) y = x2 + ex + sin 2x. [Delhi B.A. (Prog) II 2010]
Sol. Given (D2 – 4D " 4) y ! x2 " ex " sin 2x. ... (1)
Here the auxiliary equation is D2 – 4D " 4 ! 0 so that D ! 2, 2.
5 C.F. ! (c1 " c2x) e2x, c1, c2 being arbitrary constants.
P.I. corresponding to x2

!
2

2 2 2 2
2 2 2

1 1 1 1 1
4 24 4 (2 ) 4[1 ( / 2)]

Dx x x x
D D D D

#
: ;∃ ∃ ∃ #< =
> ?# ∗ # #

!
2

2 2 2( 2)( 3)1 1 31 ... (1 ...)
4 1 2 4 4 4

D
D x D D x

& ∋# #
∗ ∗ 6 ∗ ∃ ∗ ∗ ∗≅ Α( )6

! 21 3
2

4 2
x x: ;∗ ∗< =

> ?

P.I. corresponding to ex ! 2
1 1

1 4 44 4
x x xe e e

D D
∃ ∃

# ∗# ∗
and  P.I. Corresponding to sin 2x

 ! 2 2
1 1 1 1 1sin 2 sin 2 sin 2 cos 2

4 84 4 2 4 4
∃ ∃ # 6 ∃

# ∗ # # ∗
x x x x

DD D D
5 Required solution is y ! (c1 " c2x) e2x " (1/8) × (2x2 " 4x " 3) + (1/8) × cos 2x.
Ex. 2. Solve (D2 – 1) y = x ex + cos2x. [Delhi Maths 2006, I.A.S. 1992]
Sol. Given:                         (D2 – 1) y ! x ex " (1/2) Η (1 " cos 2x). ... (1)
The auxiliary equation is D2 – 1 ! 0 so that D ! ± 1.
So            C.F. ! c1ex " c2 e–x, c1, c2 being arbitrary constants.
P.I. corresponding to xex

!
2 2 2
1 1 1 1

2 (1 / 2)1 ( 1) 1 2

x
x x x ex e e x e x x

D DD D D D
∃ ∃ ∃

∗# ∗ # ∗
!

11 1
2 2

xe D x
D

#
: ;6 ∗< =
> ?

! 1 1 1
1 ...

2 2 2 2

x xe D e
x x

D D
: ; : ;6 # ∗ ∃ 6 #< = < =
> ? > ?

!
2

21 1 ( )
2 2 2 4

x xx xe e x x
: ;

# ∃ #< =< =
> ?

P.I. corresponding to 0. .
2 2

1 1 1 1 1 1
2 2 2 21 1

x O xe e
D O

∃ ∃ ∃ #
# #

.
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P.I. corresponding to 
1
2

 cos 2x ! 2 2
1 1 1 1 1cos2 cos 2 cos 2 .
2 2 101 2 1

x x x
D

∃ ∃ #
# # #

5 The required solution y ! c1 ex " c2 e–x " (1/4) Η ex (x2 – x) – (1/2) – (1/10) Η cos 2x.
Ex. 3. Solve (D4 – 4D2 – 5) y = ex (x + cos x) [I.A.S. 2004]
Sol. Here auxiliary equation is D4 – 4D2 – 5 ! 0 or (D2 – 5) (D2 " 1) ! 0

giving               D2 ! 5    or   – 1        so that       D ! 5, i3 3

5 C.F. ! c1 cosh 25x c∗  sinh 35x c∗  cos x " c4 sin x
P.I. corresponding to x ex

! 4 2 4 2
1 1
4 5 ( 1) 4( 1) 5

x xxe e x
D D D D

∃
# # ∗ # ∗ #

! 4 3 2
1

4 2 4 8
xe x

D D D D∗ ∗ # #

! 2 3 4
1

8 1 / 2 / 4 / 2 / 8

xe x
D D D D

#
∗ # # #

!
12 3 4

1
8 2 4 2 8

xe D D D D x
#

: ;
# ∗ # # #< =< =

> ?
! – (ex/8) × {1 – (D/2 – D2/4 – D3/2 – D4/8) " ...} x ! – (ex/8) × (x – 1/2) ! – (ex/16) × (2x – 1)

P.I. corresponding to ex cos x ! 4 2 4 2
1 1cos cos
4 5 ( 1) 4( !) 5

x xe x e x
D D D D

∃
# # ∗ # ∗ #

! 4 3 2 2 2 2 2
1 1cos cos

4 2 4 8 ( ) 4 2 4 8
x xe x e x

D D D D D D D D D
∃

∗ ∗ # # ∗ ∗ # #

! 2 2 2 2
1 cos

( 1 ) 4 ( 1 ) 2 ( 1 ) 4 8
xe x

D D# ∗ # ∗ # # #

! 
9 81 cos cos

9 8 (9 8 ) (9 8 )
x x D

e x e x
D D D

#
# ∃ #

∗ ∗ #

! 2 2
9 8 9 8cos cos

81 64 81 64 ( 1 )
x xD De x e x

D
# #

# ∃ #
# # Η #

!
1 ( 9 8sin )

145
xe cos x x# ∗

5 Required solution is  y ! c1 cosh 2 35 sinh 5x c x c∗ ∗  cos x " c4 sin x – (ex/16) × (2x – 1)
– (1/145) ex (9 cos x " 8 sin x), c1, c2, c3, c4 being arbitrary constants.
Ex. 4. Solve (d3y/dx3) – 3 (d 2y/dx2) + 4 (dy/dx) – 2y = ex + cos x. [I.A.S. 1999]
Sol. Given (D3 – 3D2 " 4D – 2) y ! ex " cos x,        where D 4 d/dx ... (1)

Its auxiliary equation is D3 – 3D2 " 4D – 2 ! 0 or D2(D – 1) – 2D (D – 1) " 2(D – 1) ! 0
or (D – 1) (D2 – 2D " 2) ! 0 giving D ! 1,       ( 2 4 8) / 23 # ,       i.e.,       D ! 1, 1 ± i.

5 C.F. ! c1 ex " ex (c2 cos x " c3 sin x), c1, c2, c3 being arbitrary constants

P.I. corresponding to ex  ! 3 2 2
1 1

3 4 2 ( 1)( 2 2)
x xe e

D D D D D D
∃

# ∗ # # # ∗

! 
1 1

1 1 2 2
xe

D # # ∗
 !

1 1 11
1 ( 1) 1

x x x xe e e xe
D D D

6Ι ∃ 6 ∃ 6Ι ∃
# ∗ #

P.I. corresponding to cos x ! 3 2 2 2
1 1cos cos

3 4 2 3 4 1
x x

D D D D D D D
∃

# ∗ # 6 # ∗ #
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! 2 2 2
1 1 1cos cos (3 1) cos

3 1( 1 ) 3( 1 ) 4 2 9 1
x x D x

DD D D
∃ ∃ #

∗# # # ∗ # #

! 2
1 1 1(3 1) cos (3 cos cos ) ( 3sin cos )

10 109( 1 ) 1
D x D x x x x# ∃ # # ∃ # # #

# #
5 Required solution is y ! ex (c1 " c2 cos x " c3 sin x) " x ex " (3 sin x " cos x)/10
Ex. 5. Solve (D2 + a2) y = sin ax + x e2x [Delhi Maths (G) 1999]
Sol. Auxiliary equation D2 " a2 ! 0 gives D2 ! – a2 or D ! ± ia.
5  C.F. ! c1 cos ax " c2 sin ax,  c1, c2 being arbitrary constants

P.I. corresponding to sin ax ! 2 2
1 sin cos

2
x

ax ax
aD a

∃ #
∗

P.I. corresponding to e2x x

! 2 2 2
2 2 2 2 2 2

1 1 1
( 2 ) 4 4

x x xe x e x e x
D a D a a D Da a

∃ ∃
∗ ∗ ∗ ∗ ∗ ∗

!
12 22 2

2 2 2 2
4 4

1 1 ...
4 4 4 4

x xD D D De ex x
a a a a

#
& ∋ & ∋∗ ∗

∗ ∃ # ∗≅ Α ≅ Α
∗ ∗ ∗ ∗( ) ( )

!
2 2

2
2 2 2 2

4 { (4 ) 4}
4 4 (4 )

x xe ex x a
a a a

: ;# ∃ ∗ #< =∗ ∗ ∗> ?
5 Solution is y ! c1 cos x " c2 sin ax – (x/2a) cos ax " e2x (4 " a2)–2 (4x " x a2 – 4)

Ex. 6. Solve (D2 – 6D + 8) y = (e2x – 1)2 + sin 3x. [Delhi Maths (G) 2000]
Sol. The auxiliary equation is D2 – 6D " 8 ! 0 giving D ! 4, 2.
5 C.F. ! c1 e2x " c2 e4x,    c1, c2 being arbitrary constants

P.I. corresponding to (e2x – 1)2 ! 4 21 ( 2 1)
( 4)( 2)

x xe e
D D

# ∗
# #

! 4 2 0.1 1 12
( 4)( 2) ( 2)( 4) ( 4)( 2)

x x xe e e
D D D D D D

# ∗
# # # # # #

! 4 2 0.1 1 1 12
4 (4 2) ( 2)(2 4) (0 4)(0 2)

x x xe e e
D D

# ∗
# # # # # #

! 2 21 1
2 8

x xx e x e∗ ∗

P.I. corresponding to sin 3x ! 2 2
1 1sin 3 sin 3
6 8 3 6 8

x x
D D D

∃
# ∗ # # ∗

! 
1 sin 3

6 1
x

D
#

∗
 ! 2 2

6 1 (6 1)sin 3 1sin 3 (18cos3 sin 3 )
32536 1 36( 3 ) 1

D D xx x x
D

# #
# ∃ # ∃ #

# # #
5 Solution is y ! c1e2x " c2e4x " (x/2) e4x " xe2x " 1/8 " (1/325) (18 cos3x – sin 3x)
Ex. 7(a). Solve (D4 + 4) y = ex + x2,   where  D 4 d/dx. [Delhi Maths (Prog) 2007]
Sol. Auxiliary equation of the given equation is                        D4 + 4 ! 0

or (D2 + 2)2 – (2D)2 ! 0 or (D2 + 2D + 2) (D2 – 2D + 2) ! 0 − D ! 1 ± i, – 1 ± i
5 C.F. ! ex (c1 cos x + c2 sin x) + e–x (c3 cos x + c4 sin x), c1, c2, c3, c4 being arbitrary constants

P.I.  corresponding to ex ! 4 4
1 1 1

54 1 4
x x xe e e

D
∃ ∃

∗ ∗
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and P.I. corresponding to x2 !
14

2 2 2
4 4
1 1 1 1

4 44 4(1 / 4)
Dx x x

D D

#
: ;

∃ ∃ ∗< =< =∗ ∗ > ?
! (1/4) × (1 – D4/4 + ...) x2 ! x2/4

5 Required solution is y ! ex (c1 cos x + c2 sin x) + e–x (c3 cos x + c4 sin x) + (1/5) × ex + x2/4
Ex. 7(b). Solve (D2 + 2) y = x2 e3x + ex cos 2x [Delhi Maths (H) 2006, 08]
Sol. Here auxiliary equation is           D2 " 2 ! 0           giving           D ! 2i3

5 C.F. ! c1cos ( 2)x " c2sin ( 2)x , c1, c2 being arbitrary constants
P.I. corresponding to x2 e3x

! 2 3 3 2 3 2
2 2 2
1 1 1

2 ( 3) 2 6 11
x x xx e e x e x

D D D D
∃ ∃

∗ ∗ ∗ ∗ ∗
! 3 2

2
1

11 (1 6 /11 /11)
xe x

D D∗ ∗

!
123

2(6 )1
11 11

x D De x
#

Β Χ: ;∗Π Π∗ < =∆ Ε< =Π Π> ?Φ Γ
!

23 2 2
26 61 .....

11 11 11

xe D D D D x
Β Χ: ;∗ ∗Π Π# ∗ #< =∆ Ε> ?Π ΠΦ Γ

!
3 2 2 3 2

2 26 36 6 251 ... 1 ...
11 11 11 121 11 11 121

x xe D D D e D Dx x
: ; : ;

# # ∗ ∗ ∃ # ∗ ∗< = < =
> ? > ?

! 
3

2 12 50
11 11 121

xe x
x: ;# ∗< => ?

! 3 2 3(121 132 50) / (11)xe x x# ∗
P.I. corresponding to ex cos 2x

! 2 2 2
1 1 1cos2 cos 2 cos2

2 ( 1) 2 2 3
x x xe x e x e x

D D D D
∃ ∃

∗ ∗ ∗ ∗ ∗

! 2 2
2 11 1cos 2 cos2 cos 2

2 12 2 3 4 1
x x x De x e x e x

DD D
∗

∃ ∃
## ∗ ∗ #

! 2
2 1 cos 2 (2 1)cos2 ( 4sin 2 cos2 )

17 174 (–2 ) 1

x x
x D e ee x D x x x∗

∃ # ∗ ∃ # # ∗
Η #

5 The required solution is      y ! c1 cos ( 2)x " c2 sin ( 2)x
" {1/(11)3} × e3x (121x2 – 132x " 50) – (1/17) × ex (cos 2x – 4 sin 2x).

Ex. 8. Solve (D4 + D2 + 1) y = ax2 " be–x sin 2x. [Ravishankar 1994]
Sol. Given (D4 " D2 " 1) y ! ax2 " be–x sin 2x. ... (1)
A.E. is D4 " D2 " 1 ! 0 or (D2 " 1)2 – D2 ! 0 or (D2 " D " 1) (D2 – D " 1) ! 0

so that D2 " D " 1 ! 0   or   D2 – D " 1 ! 0, giving D ! ( 1 3) / 2, (1 3 / 2)i i# 3 3 .

5 C.F. ! / 2
1 2[ cos( 3 / 2) sin( 3 / 2)]xe c x c x# ∗ / 2

3[ cos( 3 / 2)xe c x∗ 4 sin ( 3 / 2)]c x∗ ,
c1, c2, c3 and c4 being arbitrary constants

Now, P.I. corresponding to ax2

! 2 4 2 1 2
4 2

1
[1 ( )]

1
a x a D D x

D D
#∃ ∗ ∗

∗ ∗
! a [1 – D2 " ...] x2 ! a (x2 – 2).

Next, P.I. corresponding to be–x sin 2x

! 4 2 4 2
1 1sin 2 sin 2

1 ( 1) ( 1) 1
x xb e x be x

D D D D
# #∃

∗ ∗ # ∗ # ∗
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! 4 3 2 2
1 sin 2

4 6 4 1 2 1 1
xbe x

D D D D D D
#

# ∗ # ∗ ∗ # ∗ ∗

! 2 2 2 2
1 sin 2

( ) 4 ( ) 7 6 3
xbe x

D D D D D
#

# ∗ # ∗

! 2 2 2 2
1 sin 2

( 2 ) 4 ( 2 ) 7( 2 ) 6 3
xbe x

D D
#

# # # ∗ # # ∗

! 2
1 1sin 2 (10 9) sin 2

10 9 100 81
x xbe x be D x

D D
# #∃ ∗ 6

# #

! 2
1(10 9) sin 2

(100) ( 2 ) 81
xbe D x# ∗

Η # #

! 1(10 9) sin 2 (20cos2 9sin 2 ).
481 481

x
x bebe D x x x

#
## ∗ ∃ # ∗

5  Required solution is y ! e–x/2 [c1 cos ( 3 / 2x ) " c2 sin ( 3 / 2x )] " ex/2 [c3 cos ( 3 / 2x )

" c4 sin ( 3 / 2x )] " a (x2 – 2) – (b/481) e–x (20 cos 2x " 9 sin 2x).
Ex. 9. Solve (D – 1)2 (D2 + 1)2 y = sin2 (x/2) + ex + x.
Sol. Re-writing, (D – 1)2 (D2 " 1)2 y ! (1 – cos x)/2 " ex " x.
Here auxiliary equation (D – 1)2 (D2 " 1)2 ! 0 gives D ! 1, 1,  ± i (twice).
So C.F. ! (c1 " c2x) ex " (c3 " c4x) cos x " (c5 " c6x) sin x,

where c1, c2, c3, c4, c5 and c6 are arbitrary constants.

5 P.I. corresponding to 
1
2

! 0. 0.
2 2 2 2 2

1 1 1 1 1 ,
2 2 2( 1) ( 1) (0 1) (0 1)

x xe e
D D

∃ ∃
# ∗ # ∗

P.I. corresponding to (– 1/2) × cos x

! 2 2 2
1 1 cos
2 ( 1) ( 2 1)

x
D D D

#
∗ # ∗

! 2 2 2
1 1 cos
2 ( 1) ( 1 2 1)

x
D D

#
∗ # # ∗

! 2 2 2 2
1 1 1 1 1cos sin
4 4( 1) ( 1)

x x
DD D

∃
∗ ∗

! Imaginary part of 2 2
1 1
4 ( 1)

ixe
D ∗

... (1)

Now, 2 2 2 2 2 2
1 1 11 1 1

( 1) [( ) 1] ( 2 )
ix ix ixe e e

D D i D iD
6 ∃ 6 ∃ 6

∗ ∗ ∗ ∗
! 0.

2 2
1

(2 ) (1 / 2 )
ix xe e

iD D i∗

        ! 0.
2 2

1 1 1
4 (1 0)

ix xe e
D

#
∗

 !
2

2
2

1 1 1 11 (cos sin ).
4 4 2 8

ix ix x
e e x x i x

D
: ;

# 6 ∃ # ∃ # ∗< =
> ?

... (2)

Using (1) and (2), P.I. corresponding to (– 1/2) × cos x 2( / 32) sinx x∃ # Η

Again, P.I. corresponding to ex

! 2 2 2 2 2
1 1

( 1) ( 1) ( 1) (1 1)
x xe e

D D D
∃

# ∗ # ∗
!

2 2

2
1 1 1 .
4 4 2! 8( 1)

x x xx xe e e
D

: ;
∃ ∃ < =

> ?#
Finally, P.I. corresponding to x.

! 2 2 2
2 2 2
1 (1 ) (1 )

( 1) ( 1)
x D D x

D D
# #∃ # ∗

# ∗
! (1 " 2D " ...) (1 " ...) x ! (1 " 2D " ...) x ! x " 2.
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5 Required solution is y ! (c1 " c2x) ex " (c3 " c4x) cos x " (c5 " c6x) sin x
" (1/2) – (x2/32) sin x " (x2/8) ex " x " 2.

Ex. 10. solve (D5 – D) y = 12 ex + 8 sin x - 2x.
Sol. A.E. D (D4 – 1) ! 0 − D (D2 – 1) (D2 " 1) ! 0   −   D ! 0, 1, – 1, ± i.
5 C.F. ! c1 " c2ex " c3e–x " c4 cos x " c5 sin x, c1, ... , c5 being arbitrary constants
Now P.I. corresponding to 12ex

! 2
1 112 12

( 1)1 (1 1)(1 1)( 1) ( 1)( 1)
xe

DD D D D
∃

# 6 ∗ ∗# ∗ ∗
ex ! 13 3 3 .

1 1!
x x xxe e xe

D
∃ 6 ∃

#
P.I. corresponding to 8 sin x is

! 2 2 2 2
1 18 sin 8 sin

( 1) ( 1) ( 1) ( 1 1)
x x

D D D D D
∃

∗ # ∗ # #
! 2

1 14 sin
( 1)

x
DD

& ∋# ≅ Α( )∗

! 2
1

4 cos
1

x
D ∗

! 4 sin
2 1

x x: ;
< =Η> ?

! 2x sin x 2 2
1 cos sin

2
xax x
aD a

& ∋∃≅ Α∗( )
�

P.I. corresponding to (– 2x) is

! 2 2 2 2
1 12 2

( 1) ( 1) (1 ) (1 )
x x

D D D D D D
# ∃

# ∗ # ∗
! 2 1 2 11

2 (1 ) (1 )D D x
D

# ## ∗

! 2 212 (1 ...) (1 – ...)D D x
D

∗ ∗ ∗ !
2

2 2 21 12 (1 ...) 2 2 .
2
xD D x x x

D D
: ;

∗ # ∗ ∃ ∃ ∃< =
> ?

5 Solution is y ! c1 " c2ex " c3e–x " c4 cos x " c5 sin x " 3 xex " 2x sin x " x2.

Exercise 5(H)

1. d3y/dx3 " d2y/dx2 " dy/dx ! e2x " x2 " x. [Meerut 2009; Lucknow 1994, 98]
Ans. y ! c1 " (c2 " c3x) e–x " (1/18) Η e2x " (1/3) Η x3 – (3/2) Η x2 " 4x

2. (D2 – 4D " 4) y ! sin 2x " x2. [G.N.D.U. Amritsar 2011]
Ans. y ! (c1 + c2 x) e2x + (3 sin 2x + 8 cos 2x)/25 " (2x2 " 4x + 3)/8

3. (D2 " 4) y ! ex " sin 2x. [Allahabad 1994 ; Agra 2005 ; Rohilkhand 1994]
Ans. y ! c1 cos 2x " c2 sin 2x " (1/5) Η ex – (1/4) Η x cos 2x

4. (D4 " 2D3 – 3D2) y ! 3e2x " 4 sin x. [Kanpur 1993]
Ans. y ! c1 " c2x " c3ex " c4e–3x " (3/20) Η e2x " (2/5) Η (2 sin x " cos x)

5. (D2 " D – 2) y ! x " sin x. [Guwahati 1998; Meerut 1998 ; Delhi 2007, 09  ; Utkal 2003]
Ans. y ! c1ex " c2e–2x – (x/2) – (1/4) – (1/10) Η (cos x " 3 sin x)

6. (i) D3 – 3D2 " 3D – 1) y ! x e–x " ex.Ans. y ! (c1 " c2x " c3x2) ex – (1/16) Η (2x " 3) e–x " (x3/6) ex

(ii) (D3 – 3D2 " 3D – 1) y ! x ex " ex. Ans.  y ! ex [c1 " c2x " c3x2 " (1/6) Η x3 " (1/24) Η x4]
7. (D2 " 5D " 6) y ! e–2x " 5 sin 4x. Ans. y ! c1e–3x " c2e–2x " xe–2x – (1/10) Η (sin 4x " 2 cos 4x)
8. (D2 " 1) y ! e–x " cos x. Ans. y ! c1cos x " c2 sin x " (1/2) Η e–x " (1/2) Η x sin x
9. (D2 " 4) y ! sin2 x. Ans. y ! c1 cos 2x " c2 sin 2x " (1/8) Η (9 – x sin 2x)

10. (D2 " 1) y ! e–x " cos x " x3 " ex sin x.
Ans. y ! c1 cos x " c2 sin x " (1/2) × e–x  " (1/2) × x sin x " x3 – 6x – (1/5) Η ex  (2 cos x – sin x)

11. (D2 " 1) y ! cos2 (x/2). Ans. y ! c1 cos x " c2 sin x " (1/2) " (1/4) Η x sin x
12. (D2 " 4) y ! x2 " 3 sin x Ans. y ! c1 cos 2x " c2 sin 2x " (2x – 1)/8 " sin x.
13. (D2 " 4) y ! sin 2x " x2. Ans. y ! c1 cos 2x " c2 sin 2x – (1/4) Η x cos 2x " (1/8) Η (2x2 – 1)
14. (2D2 – D – 6) y ! e– (3x/2) + sin x          [Pune 2010]

Ans. y ! c1 e2x " c2 e– (3x/2) " (cos x – 8 sin x) & '( )** (x/7) Η e–(3x/2)
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15. (D2 " 1) y ! x3 " ex sin x. Ans. y ! c1 cos x " c2 sin x " x3 – 6x – (1/5) Η ex (2 cos x – sin x)
16. (D2 – 1) y ! x sin x " ex (1 " x2).

Ans. y ! c1 ex " c2e–x " (1/12) Η ex (9x – 3x2 " 2x3) – (1/2) Η (x sin x " cos x)
17. (D3 – 3D2 " 4D – 2) y ! ex " cos x. [I.A.S. 1999 ; Kanpur 1994]

Ans. y ! ex (c1 " c2 cos x " c3 sin x " x) " (1/10) Η (3 sin x " cos x)
18. (D2 – 4D " 4) y ! e2x " sin 2x. Ans. y ! (c1 " c2x) e2x " (1/2) Η x2 e2x " (1/8) Η cos 2x
19. (D2 – 5D " 6) y ! x " sin 3x Ans. y ! c1e3x " c2e2x " (1/36) Η (6x " 5) " (1/78) Η (5 cos 3x – sin 3x)
20. (D2 – 3D " 2) y ! 6 e3x " sin 2x. [Kanpur 1994]

Ans. y ! c1ex " c1e2x " 3e3x – (1/20) Η (3 cos 2x – sin 2x)
21. (a) (D2 – 4D " 4) y ! x2 " e2x [Delhi Maths (G) 1998]

(b) (D2 " 10 D " 29) y ! xe5x " sin 2x [Delhi Maths (G) 1998]
Ans. (a) y ! (c1 " c2 x) e2x " (1/8) Η (2x2 " 4x " 3) " (x2/2) Η e2x

(b) y ! e–5x (c1 cos 2x " c2 sin 2x) " (1/104) Η e5x (x – 5/26) " (1/205) Η (5 sin 2x – 4 cos 2x)
22. (D2 " 2) y ! x2 e2x " x2 cos 2x [Delhi Maths (G) 1997]

Ans. y ! c1 cos ( 2x ) " c2 sin ( 2x ) " (1/6) Η e2x {x2 – (4/3) x " (5/9)} – (1/2) Η {(x2– 7) cos 2x – 4x sin 2x}
23. (d2y/dx2) – 5 (dy/dx) + 6y ! x + emx [Kanpur 2007]

Ans. 2 3 2
1 2 (6 5) / 36 /( 5 6), where 2and 3.x x mxy c e c e x e m m m m∃ ∗ ∗ ∗ ∗ # ∗ . .

PART II: METHOD OF UNDETERMINED COEFFICIENTS
5.26 Method of undetermined coefficients for solving linear differential equation, with
constant coefficients f (D) y ! X. [Pune 2010]

As explained in Art. 5.4, we first evaluate C.F. of the given equation f (D) y ! X. The method
of undetermined coefficients is yet another method of finding a particular integral of f (D) y ! X.
Now, we shall not make use of various short methods discussed is articles 5.14, 5.16, 5.18, 5.20
and 5.22 for finding P.I. In place of using these methods we shall use the method of undetermined
coefficients. This method is useful only when X contains terms in some special forms given in the
following table. The method of undetermined coefficients consists in making a guess of the trial
solution y* from the form of X. Then we substitute the trial solution y* in f (D) y ! X and
determine constants by comparing like terms on both sides of the equation f (D) y* ! X. Finally
the required general solution is given by y ! C.F. " y*.

The following table suggests the form of the trial solution y* (for particular integral) to be
used corresponding to a speical form of X.

Table

S.No. Special form of X Trial solution y* for P.I.

1. xn     or     an xn      or     a0 " a1x " a2x2 " ... " an xn         A0 " A1x " ... " An xn

2. eax          or             peax Aeax

3. an xn eax      or      eax (a0 " a1x " a2x2 " ... " an xn) eax (A0 " A1x " A2x2 " ... " An xn)
4. p sin ax     or     q cos ax     or     p sin ax " q cos ax             A sin ax " B cos ax
5. p ebx sin ax or q ebx cos ax or ebx (p sin ax " q cos ax)       ebx (A sin ax " B cos ax)
6. xn sin ax or an xn sin ax or (a0 " a1x " ... " an xn) sin ax (A0 " A1x " ... " An xn) sin ax

or xn cos ax or an xn cos ax or (a0 " a1x " ... " an xn) cos ax " (A01 " A11 x " ... " An1 xn) cos ax

Remark 1. In the above table, n is a positive integer and a0, a1 ..., an, p, q, a, b, A0, A1, ...An,
A01, A11, ..., An1 are constants. The constants occuring in second column are known and the
constants occuring in third column are determined by substituting the trial solution in given
equation i.e. they are found from the resulting identity f (D) y* ! X.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Linear Differential Equations with Constant Coefficients 5.53

Remark 2. If R.H.S. X of given equation f (D) y ! X is a linear combination of more than one
special forms of the above table, then the trial solution must be taken as the sum of the
corresponding trial solutions with appropriate constant coefficients to be evaluated later on.

Remark 3.  The trial solution indicated in the above table is modified in the following
situations (say) :

Situation (i) A term of X is also a term of C.F. of the given equation.
If a term of X, say u is also a term of the C.F. corresponding to an

s-fold root m, then in the trial solution y* of the table we introduce a term xs u plus terms arising
from it by differentiation.

For example, consider (D – 2)2 (D " 3) y ! e2x " x2. ... (1)
As usual,                 C.F. of (1) ! (c1 " c2x) e2x " c3 e–3x. ... (2)
Note x2 is not occurring in C.F., so the corresponding contribution to trial solution y* is A1 "

A2 x " A3 x2. Next, note carefully that e2x occurs in X and e2x is also present in C.F. corresponding
to a double root m ! 2; hence we employ x2 e2x and all terms arising from it by differentiation. Thus
contribution to trial solution y* corresponding to e2x of X is taken as A4 e2x

" A5 x e2x " A6 x2 e2x. Thus, the total P.I. y* is
y* ! A1 " A2 x " A3 x2 " A4 e2x " A5 x e2x " A6 x2 e2x.

Situation (ii) A term of X is xr u and u is a term of the C.F.
If u correspond to an s-fold root m, the trial solution y* must contain the term xr + s u plus

terms arising from it by differentiation.
For example, consider (D – 2)3 (D " 3) y ! x2 e2x " x2. ... (1)
AS usual, C.F. of (1) ! (c1 " c2 x " c3 x2) e2x " c4 e–3x. ... (2)
Note carefully that x2 e2x occurs in X and e2x is also present in C.F. corresponding to triple

root m ! 3; hence we employ x2 " 3 e2x, i.e. x5 e2x and all terms arising from it by differentiation.
Thus the contribution to trial solution y* corresponding to x2 e2x of X is taken as A1 e2x " A2 x e2x

" A3 x2 e2x " A4 x3 e2x " A5 x4 e2x " A6 x5 e2x. Note that x2 is not occuring in C.F., so the
corresponding contribution to trial solution y* is A7 " A8 x " A9 x2. Hence the net trial solution y*
for P.I. is given by

y* ! A1 e2x " A2 x e2x " A3 x2 e2x " A4 x3 e2x " A5 x4 e2x " A6 x5 e2x " A7 " A8 x " A9 x2.

5.27 Solved examples based on Art. 5.26
Ex. 1. (a) By the method of undetermined coefficients, solve (D2 + 4) y = x2.
Sol. Here given that (D2 " 4) y ! x2. ... (1)
Its auxiliary equation is D2 " 4 ! 0 so that D ! ± i.
5 C.F. ! c1 cos 2x " c2 sin 2x, c1, c2 being arbitrary constants. ... (2)
Let the trial solution be  y* ! A0 " A1 x " A2 x2. [Refer result 1 in table of Art. 5.26]  ... (3)

Since y* must satisfy (1), we have (D2 " 4) y* ! x2   or   D2 y* " 4y* ! x2. ... (4)
Now, (3) − D y* ! A1 " 2A2x and D2 y* ! 2A2. ... (5)
Using (3) and (5), (4) reduces to 2A2 " 4 (A0 " A1x " A2x2) ! x2

or 2A2 " 4A0 " 4A1x " 4A2 x2 ! x2. ... (6)
(6) is an identify. Comparing the coefficients of like terms, we get
2A2 " 4A0 ! 0, 4A1 ! 0, 4A2 ! 1. ... (7)
Solving (7), A1 ! 0, A2 ! 1/4. A0 ! – 1/8. Then, from (3), we have

                       y* ! – (1/8) " x2/4 ! (1/8) (2x2 – 1).
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Hence the required general solution is y ! C.F. " P.I. ! C.F. " y*
or y ! c1 cos 2x " c2 sin 2x " (1/8) (2x2 – 1).

Ex. 1(b). Using the method of undetermined coefficients, solve y2 – 2y1 + y = x2.
[Delhi Maths (G) 1995]

Sol. Let D # d/dx. Then, we have        (D2 – 2D " 1) y ! x2. ... (1)
Its auxiliary equation is D2 – 2D " 1 ! 0 so that D ! 1, 1.
5 C.F. ! (c1 " c2x) ex, c1, c2 being arbitrary constants. ... (2)
Let the trial solution be y* ! A0 " A1x " A2 x2. [Refer result 1 in table of Art. 5.26] ... (3)
Since y* must satisfy (1), we have         D2 y* – 2D y* + y* ! x2. ... (4)
Now, (3) − D y* ! A1 " 2A2 x and D2 y* ! 2A2. ... (5)
Using (3) and (5), (4) reduces to 2A2 – 2(A1 " 2A2x) " A0 " A1x " A2x2 ! x2

or (A0 – 2A1 " 2A2) " x (A1 – 4A2) " A2x2 ! x2.
Comparing the coefficients of like terms in above identity, we have
A0 – 2A1 " 2A2 ! 0, A1 – 4A2 ! 0 and A2 ! 1 so that A2 ! 1, A1 ! 4, A0 ! 6.
From (3), y* ! 6 " 4x " x2 and so solution is   y ! C.F. " y* ! (c1 " c2x) ex " 6 " 4x " x2.
Ex. 2. Using the method of undetermined coefficients, solve y2 + 2y1 + y = x – ex.

[Delhi Maths (G) 1996]
Sol. Re-writing the given equation, (D2 " 2D " 1) y ! x – ex ... (1)
Its auxiliary equation D2 " 2D " 1 ! 0 so that D ! – 1, – 1.
5 C.F. ! (c1 " c2x) e–x, c1, c2 being arbitrary constants. ... (2)

Let the trial solution be y* ! Ax " B " C ex. [Refer results 1 and 2 in table of Art. 5.26] ... (3)
Since y* must satisfy (1), (D2 " 2D " 1) y* ! x – ex or D2 y* " 2D y* " y* ! x – ex. ... (4)
From (3), D y* ! A " C ex and D2 y* ! Cex. ... (5)
Using (3) and (5), (4) gives C ex " 2(A " C ex) " Ax " B " C ex ! x – ex

or (2A " B) " Ax " 4C ex ! x – ex.
Equating the coefficients of like terms in the above identity, we get
2A " B ! 0, A ! 1, 4C ! – 1 so that A ! 1, B ! – 2, C ! – 1/4.
5 from (3), y* ! x – 2 – (1/4) ex and so the general solution is
y ! C.F. " y* or y ! (c1 " c2x) e–x " x – 2 – (1/4) ex.
Ex. 3(a). Solve (D2 + 3D + 2) y = x + cos x by using the method of undetermined coefficients.
[Delhi Maths (Prog) 2007]
Sol. Given (D2 + 3D + 2) y ! x + cos x, where D 4 d/dx ... (1)
Its auxiliary equation is D2 + 3D + 2 ! 0 giving D ! – 1, – 2
5 C.F. ! c1e–x + c2e–2x, c1, c2 being arbitrary constants ... (2)
Corresponding to special form x of R.H.S. of (1), we choose trial solution for P.I. as             A0

+ A1x and corresponding to special form cos x of R.H.S. of (1), we choose trial solution for P.I. as
A2 cos x + A3 sin x. Combining these, we attempt a trial solution for P.I. as

                              y* ! A0 + A1x + A2 cos x + A3 sin x, ... (3)
where A0, A1, A2 and A3 are constants to be determined. Since y* must satisfy (1), we get

(D2 + 3D + 2)y* ! x + cos x or D2y* + 3D y* + 2y* ! x + cos x ... (4)
From (3), Dy* ! A1 – A2 sin x + A3 cos x ... (5)
From (5), D2y* ! – A2 cos x – A3 sin x ... (6)
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Using (3), (5) and (6), (4) reduces to
– A2 cos x – A3 sin x + 3 (A1 – A2 sin x + A3 cos x) + 2 (A0 + A1 x + A2 cos x + A3 sin x) ! x + cos

x
or 3A1 + 2A0 + 2A1 x + (A2 + 3A3) cos x + (A3 – 3 A2) sin x ! x + cos x,
which is an identity and so equating the coefficients of like terms, we get

3A1 + 2A0 ! 0,    2A1 ! 1,   A2 + 3A3 ! 1     and     A3 – 3A2 ! 0.
Solving these, A0 ! –(3/4), A1!1/2, A2 ! 1/10, A3 ! 3/10. Then, from (3), we get

         y* ! – (3/4) + x/2 + (1/10) × (cos x + 3 sin x)
Hence the required general solution is y = C.F. + P.I. or y ! C.F.+ y*

or            y ! c1e–x + c2e–2x – (3/4) + x/2 + (1/10) × (cos x + 3 sin x)
Ex. 3(b). Using the method of undetermined coefficients, solve y2 – 2y1 + 3y = cos x + x2.

[Delhi Maths (G) 1996]
Sol. (a) Let D 4 d/dx. Then given (D2 – 2D " 3) y ! cos x " x2. ... (1)
Its auxiliary equation is D2 – 2D " 3 ! 0 so that D ! 1 ± 2.i

5 C.F. ! ex (c1 cos 2x " c2 sin 2x ), c1, c2 being arbitrary constants ... (2)
Let the trial solution be y* ! A0 " A1x " A2 x2 " A3 cos x " A4 sin x. ... (3)

[Refer results 1 and 4 in table of Art. 5.26]
Since y* must satisfy (1),                   D2y* – 2D y* " 3y* ! cos x " x2.   ... (4)
From (3), D y* ! A1 " 2A2 x – A3 sin x " A4 cos x ... (5)

and from (6), D2 y* ! 2A2 – A3 cos x – A4 sin x. ... (6)
Using (3), (5) and (6), (4) reduces to
2A2 – A3 cos x – A4 sin x – 2 (A1 " 2A2x – A3 sin x " A4 cos x)

            + 3 (A0 + A1x " A2x2 " A3 cos x " A4 sin x) ! cos x " x2.
or (2A2 " 2A1 " 3A0) " x (3A1 – 4A2) " 3A2 x2 " (2A3 – 2A4) cos x

" (2A4 – 2A3) sin x ! cos x " x2.
Equating the coefficients of like terms on both sides, we get
2A2 " 2A1 – 3A0 ! 0, 3A1 – 4A2 ! 0, 3A2 ! 1, 2(A3 – A4) ! 1, 2(A4 – A3) ! 0
Solving these, A0 ! 2/27, A1 ! 4/9, A2 ! 1/3, A3 ! 1/4, A4 ! – 1/4.
5 From (3), y* ! (2/27) " (4/9) x " (1/3) x2 " (1/4) (cos x – sin x).
Hence the required general solution is                   y ! C.F. " y*, i.e.,
y ! ex (c1 cos 2x " c2 sin 2x ) " (1/27) (2 " 12x " 9x2) " (1/4) (cos x – sin x)
Ex. 3(c). Solve (D2 – 2D + 3) y = x3 + sin x [Delhi Maths (Hons) 2001]
Sol. Given                                (D2 – 2D " 3) y ! x3 " sin x ... (1)
Its auxiliary equation is D2 – 2D " 3 ! 0, giving D ! 1 ± 2i

5 C.F. ! ex {c1 cos ( 2x ) " c2 sin ( 2x )}, c1, c2 being arbitrary constatns ... (2)
Corresponding to special form x3 of R.H.S. of (1), we choose trial solution for P.I. as A0 " A1x

" A2x2 " A3x3 and corresponding to special form sin x of R.H.S. of (1), we choose trial solution for
P.I. as A4 cos x " A5 sin x. Combining these, we attempt a trial solution for P.I. of the form

y* ! A0 " A1x " A2x2 " A3x3 " A4 cos x " A5 sin x. ... (3)
Since y* must satisfy (1), we have

                   (D2 – 2D " 3) y* ! x3 " sin x − D2 y* – 2Dy* " 3 y* ! x3 " sin x. ... (4)
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From (3), D y* ! A1 " 2A2x " 3A3x2 – A4 sin x " A5 cos x. ... (5)
From (5), D2 y* ! 2A2 " 6A3x – A4 cos x – A5 sin x. ... (6)
Using (3), (5) and (6), (4) reduces to

2A2 " 6 A3x – A4 cos x – A5 sin x – 2 (A1 " 2A2x " 3A3x2 – A4 sin x " A5 cos x) " 3 (A0 " A1x " A2x2

" A3x3 " A4 cos x " A5 sin x) ! x3 " sin x
or 3A0 – 2A1 " 2A2 " x (6A3 – 4A2 " 3A1) " (3A2 – 6A3) x2 " 3A3x3

 " 2 (A4 – A5) cos x " 2 (A4 " A5) sin x ! x3 " sin x.
which is an identity and so equating coefficients of like terms, we have
3A0 – 2A1 " 2A2 ! 0, 6A3 – 4A2 " 3A1 ! 0, 3A2 – 6A3 ! 0, 3A3 ! 1, 2(A4 – A5) ! 0, 2(A4 " A5) ! 1

− A0 ! – (8/27), A1 ! 2/9, A2 ! 2/3, A3 ! 1/3, A4 ! A5 ! 1/4.
5 (3) − P.I. ! – (8/27) " (2/9) x " (2/3) x2 " (1/3) x3 " (1/4) sin x " cos x)
and hence the required general solution of (1) is y ! C.F. + P.I., i.e.,

y ! ex (c1 cos 2x " c2 sin 2x ) " (1/27) (9x3 " 18x2 " 6x – 8) " (1/4)(sin x " cos x).
Ex. 4. Using the method of undetermined coefficients to solve (d2y/dx2) – 2(dy/dx) – 3y = 2ex

– 10 sin x.  [Delhi Maths Hons. 1997]
Sol. Given (D2 – 2D – 3) y ! 2 ex – 10 sin x, where D 4 d/dx. ... (1)
Its auxiliary equation is  D2 – 2D – 3 ! 0  so that D ! – 1, 3.
5 C.F. ! c1 e–x " c2 e3x, c1, c2 being arbitrary constants. ... (2)
Let the trial solution be y* ! A ex " B sin x " C cos x. ... (3)
Since y* must satisfy (1), D2 y* – 2D y* – 3 y* ! 2 ex – 10 sin x. ... (4)

From (3), D y* ! Aex " B cos x – C sin x, D2 y* ! Aex – B sin x – C cosx ... (5)
Using (3) and (5), (4) reduces to

(Aex – B sin x – C cos x) – 2 (Aex " B cos x – C sin x) – 3 (Aex " B sin x " C cos x) ! 2ex – 10 sin x
or  – 4 Aex – (4B – 2C) sin x – (4C " 2B) cos x ! 2ex – 10 sin x.

Equating the coefficients of like terms in above identity, we have
– 4A ! 2, – (4B – 2C) ! – 10 and – (4C " 2B) ! 0  − A ! – 1/2, B ! 2, C ! – 1

5 From (3),              y* ! (– 1/2) ex " 2 sin x – cos x.
and general solution is y ! C.F. + y* i.e., y ! c1 e–x " c2 e3x – (1/2) ex " 2 sin x – cos x.

Ex. 5(a). Solve (d2y/dx2) – 9y = x + e2x – sin 2x, using method of undetermined coefficients
for finding particular integral. [Delhi Maths Hons. 1995, Delhi Maths (G) 2002, 06]

Sol. Given                               (D2 – 9) y ! x " e2x – sin 2x, where D 4 d/dx. ... (1)
The auxiliary equation is               D2 – 9 ! 0               so that               D ! ± 3.
5 C.F. ! c1 e3x " c2 e–3x, c1, c2 being arbitrary constants ... (2)
Corresponding to special form x of R.H.S. of (1), we choose trial solution for P.I. as A0 " A1x.

Next, corresponding to special form e2x of R.H.S. of (1), we choose trial solution for P.I. as A2 e2x.
Finally corresponding to the special form sin 2x of R.H.S. of (1), we choose trial solution for P.I.
as A3 cos 2x " A4 sin 2x. Combining these, we attempt a trial solution y* for P.I. of the form

y* ! A0 " A1x " A2 e2x " A3 cos 2x " A4 sin 2x. ... (3)
Since y* must satisfy (1),      D2 y* – 9 y* ! x " e2x – sin 2x. ... (4)
From (3), D y* ! A1 " 2A2 e2x – 2A3 sin 2x " 2A4 cos 2x ... (5)

and so D2 y* ! 4A2 e2x – 4A3 cos 2x – 4A4 sin 2x. ... (5)
Using (5) and (6), (4) reduces to       4A2 e2x – 4A3 cos 2x – 4A4 sin 2x
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– 9 (A0 " A1x " A2 e2x " A3 cos 2x " A4 sin 2x) ! x " e2x – sin 2x
or – 9 A0 – 9 A1x – 5 A2e2x – 13A3 cos 2x – 13A4 sin 2x ! x " e2x – sin 2x,
which is an identity and so equating coefficients of like terms, we have

– 9 A0 ! 0,  9A1 ! 1,  – 5A2 ! 1,  – 13A3 ! 0,  and  – 13A4 ! – 1
− A0 ! 0,   A1 ! – (1/9),  A2 ! – (1/5), A3 ! 0 and A4 ! 1/13.

(3) − y* ! – (1/9) x – (1/5) e2x – (1/13) sin x and solution of (1) is
y ! C.F. " y* ! c1 e3x " c2 e–3x – (1/9) x – (1/5) e2x – (1/13) sin x.

Ex. 5(b). Use the method of undetermined coefficients to solve (d2y/dx2) + 9y = e3x + e–3x

+ e3x sin 3x.         [Delhi Maths (G) 1993]
Sol. Given  (D2 " 9) y ! e3x " e–3x " e3x sin 3x, where D ! d/dx. ... (1)
Its auxiliary equation is D2 " 9 ! 0 so that D ! ± 3i.
5 C.F. ! c1 cos 3x " c2 sin 3x, c1, c2 being arbitrary constants. ... (2)

Let the trial solution be y* ! A e3x " B e–3x " C e3x cos 3x " D e3x sin 3x ... (3)
Since y* must satisfy (1), D2 y* " 9y* ! e3x " e–3x " e3x sin x. ... (4)

From (3),D y* ! 3A e3x – 3Be–3x " C (3e3x cos 3x – 3 e3x sin 3x) " D (3 e3x sin 3x " 3 e3x cos 3x)
or D y* ! 3 [A e3x – B e–3x " (C " D) e3x cos 3x " (D – C) e3x sin 3x]
and D2 y* ! 3 [3 A e3x " 3 Be–3x " (C " D) (3 e3x cos 3x – 3 e3x sin 3x)

" (D – C) (3 e3x sin 3x " 3 e3x cos 3x)]
or                    D2 y* ! 9 (A e3x – B e–3x " 2D e3x cos 3x – 2C e3x sin 3x)

Putting the above values of D2 y* and y* in (4), we have
9 (A e3x " B e–3x " 2D e3x cos 3x – 2C e3x sin 3x) " 9 (A e3x " B e–3x

" C e3x cos 3x " D e3x sin 3x) ! e3x " e–3x " e3x sin 3x.
or 18 A e3x " 18 B e–3x " (18D " 9C) e3x cos 3x " (9D – 18C) e3x sin 3x

! e3x " e–3x " e3x sin 3x. ... (5)
Equating the coefficients of like terms on both sides of (5), we get
18A ! 1, 18 B ! 1, 18D " 9C ! 0, 9D – 18C ! 1. Solving these,
A ! 1/18, B ! 1/18,  C ! – 2/45,  D ! 1/45  and so from (3), we have
           y* ! (1/18) (e3x " e–3x) " (1/45) e3x (sin 3x – 2 cos 3x).
Hence the required general solution is y ! C.F. " y*

or y ! c1 cos 3x " c2 sin 3x " (1/18) (e3x " e–3x) " (1/45) e3x (sin 3x – 2 cos 3x)
Ex. 5. (c) Solve by using the method of undetermined coefficients (D2 + 1) y = 12 cos2x.

[Kuvempa 2005]
Sol. Given (D2 " 1) y ! 6 (1 " cos 2x) or (D2 " 1) y ! 6 " 6 cos 2x ... (1)
Here auxiliary equation is   D2 " 1 ! 0 so that D ! ± i.
5 C.F. ! c1 cos x " c2 sin x, c1, c2 being arbitrary constants. ... (2)
Let the trial solution be y* ! A0 " A1 cos 2x " A2 sin 2x ... (3)

[Using results 1 and 4 of table of Art. 5.26]
Since y* must satisfy (1), D2 y* " y* ! 6 " 6 cos 2x ... (4)
From (3), D y* ! – 2A1 sin 2x " 2A2 cos 2x, ... (5A)
and                      D2 y* ! – 4A1 cos 2x – 4A2 sin 2x ... (5B)
Using (3) (5A) and (5B), (4) reduces to

– 4A1 cos 2x – 4 A2 sin 2x " A0 " A1 cos 2x " A2 sin 2x ! 6 " 6 cos 2x
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or A0 – 3 A1 cos 2x – 3A2 sin 2x ! 6 " 6 cos 2x ... (6)
Equating the coefficients of like terms on both sides of (6), we get
A0 ! 6, – 3A1 ! 6 and – 3A2 ! 0 − A0 ! 6, A1 ! – 2, A2 ! 0
5 From (3),  y* ! 6 – 2 cos 2x.
5 the required solution is  y ! C.F. " y*, i.e.,   y ! c1 cos x " c2 sin x " 6 – 2 cos 2x
Ex. 6(a). Using the method of undetermined coefficients, solve (D2 – 2D) y ! ex sin x.

[Delhi Maths (G) 1997]
Sol. Given that                      (D2 – 2D) y ! ex sin x. ... (1)
Its auxiliary equation is             D2 – 2D ! 0     so that D ! 0, 2.
5 C.F. ! c1 e0.x " c2 e2x ! c1 " c2 e2x, c1, c2 are arbitrary constants. ... (2)
Let the trial solution be                 y* ! ex (A1 cos x " A2 sin x). ... (3)

[Refer result 5 in table of Art. 5.26]
Since y* must satisfy (1), (D2 – 2D) y* ! ex sin x or D2 y* – 2D y* ! ex sin x.   ... (4)

Now, (3) − D y* ! ex (A1cos x " A2sin x) " ex (– A1sin x " A2 cos  x). ... (5)
and (5) − D2 y* ! ex (A1 cos x " A2 sin x) " 2ex (– A1sin x " A2 cos x)

" ex (– A1 cos x – A2 sin x). ... (6)
Using (5) and (6), (4) reduces to
ex (A1 cos x " A2 sin x) " 2ex (– A1 sin x " A2 cos x) " ex (– A1 cos x

– A2sin x) – 2[ex (A1cos x " A2sin x) " ex (– A1sin x " A2cos x)] ! exsin x
or –2 A1 ex cos x – 2 A2 ex sin x ! ex sin x ... (7)

Comparing the coefficients of ex cos x and ex sin x in identity (7), we get
– 2A1 ! 0     and     – 2A2 ! 1     so that     A1 ! 0    and    A2 ! – 1/2     So     (3) − y* ! (–1/2) ex sin x

5 The general solution is                y ! C.F. " y* ! c1 " c2 e2x – (1/2) ex sin x
Ex. 6(b). Solve (d2y/dx2) + 2 (dy/dx) + 4y = 111 e2x cos 3x, using the method of undetermined

coefficients. [Delhi Maths Hons. 1993]
Sol. Given, (D2 " 2D " 4) y ! 111 e2x cos 3x. ... (1)

The auxiliary equation D2 " 2D " 4 ! 0 − D ! ( 2 12) / 2# 3 # ! –1 ± 3i

5 C.F. ! e–x (c1 cos 3x " c2 sin 3x ), c1, c2 being arbitrary constants ... (2)
Since R.H.S. contains 111 e2x cos 3x, as a P.I. we take trial solution

                                   y* ! e2x (A1 cos 3x " A2 sin 3x). ... (3)
Since y* must satisfy (1), we have (D2 " 2D " 4) y* ! 111 e2x cos 3x

or                           D2 y* " 2D y* " 4 y* ! 111 e2x cos 3x. ... (4)
(3)  −  D y* ! A1 (2e2x cos 3x – 3e2x sin 3x) " A2 (2e2x sin 3x " 3e2x cos 3x)

or                     Dy* ! (2A1 " 3A2) e2x cos 3x " (2A2 – 3A1) e2x sin 3x. ... (5)
(5) − D2 y* ! (2A1 " 3A2) (2 e2x cos 3x – 3 e2x sin 3x) " (2A2 – 3A1) (2e2x sin 3x " 3 e2x cos 3x)
or                    D2 y* ! (12A2 – 5A1) e2x cos 3x – (12A1 " 5A2) e2x sin 3x. ... (6)

Using (3), (5) and (6), (4) reduces to
(12A2 – 5A1) e2x cos 3x – (12A1 " 5A2) e2x sin 3x " 2 {(2A1 " 3A2) e2x cos 3x

" (2A2 – 3A1) e2x sin 3x} " 4 e2x (A1 cos 3x " A2 sin 3x) ! 111 e2x cos 3x
or               (3A1 " 18A2) e2x cos 3x " (3A2 – 18A1) e2x sin 3x ! 111 e2x cos 3x,
which is an identity and hence equating coefficients of like terms, we have
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3A1 " 18A2 ! 111 and 3A2 – 18A1 ! 0. ... (7)
Solving (7), A1 ! 1 and A2 ! 6 and so form (3), we have

P.I. ! e2x (cos 3x " 6 sin 3x) and hence the required solution is      y ! C.F. + P.I.,
or y ! e–x (c1 cos 3x " c2 sin 3x ) " e2x (cos 3x " 6 sin 3x).

Ex. 7(a). Using the method of undetermined coefficients, solve (D3 + 3D2 + 2D) y = x2 + 4x + 8.
[Delhi Maths (G) 1997]

Sol. Given that (D3 " 3D2 " 2D) y ! x2 " 4x " 8. ... (1)
Its auxiliary equation is D3 " 3D2 " 2D ! 0 so that D ! 0, – 1, – 2.
5 C.F. ! c1 " c2 e–x " c3 e–2x, c1, c2 and c3 being arbitrary constants. ... (2)
Since constant 8 occurs in R.H.S. of (1) and it also occurs as constant c1 in the C.F. (2)

corresponding to root of multiplicity one, so we choose trial solution y* as x (A0 " A1x " A2 x2)
[Refer result 1 in table of Art. 5.26 and situation (i) of remark 3 of Art. 5.26].

Thus, here y* ! A0 x " A1 x2 " A2 x3. ... (3)
Since y* must satisfy (1), D3y* " 3D2y* " 2Dy* ! x2 " 4x " 8. ... (4)
(3) − D y* ! A0 " 2A1x " 3A2x2,            D2y* ! 2A1 " 6A2 x,            D3 y* ! 6A2. ... (5)

Using (5), (4) gives              6A2 " 3(2A1 " 6A2x) " 2 (A0 " 2A1x " 3A2x2) ! x2 " 4x " 8
or                 2A0 " 6A1 " 6A2 " x (4A1 " 18A2) " 6A2 x2 ! 8 " 4x " x2.

Comparing the coefficients of like terms in above identity, we have
2A0 " 6A1 " 6A2 ! 8, 4A1 " 18A2 ! 4, 6A2 ! 1 − A0 ! 11/4, A1 ! 1/4, A2 ! 1/6
5 (3) − y* ! (11/4) x " (1/4) x2 " (1/6) x3 ! (x/12) (33 " 3x " 2x2).
Hence solution is     y = C.F. + y* or y ! c1 " c2 e–x " c2 e–2x " (x/12) (33 " 3x " 2x2)
Ex. 7(b). Using the method of undetermined coefficients, solve(D2 + 5D + 6) y = 2e–3x + 4e–2x.

[Delhi Maths (G) 1994]
Sol. Given                              (D2 " 5D " 6) y ! 2e–3x " 4e–2x. ... (1)
Its auxiliary equation is D2 " 5D " 6 ! 0 so that D ! – 3, – 2.
5 C.F. ! c1 e–3x " c2 e–2x, c1, c2 being arbitrary constants. ... (2)
Since the terms e–3x and e–2x in the R.H.S. of (1) appear in C.F. (2) corresponding to the roots

– 3 and – 2 respectively, each occuring once, hence we take the trial solution y* as
                                  y* ! A x e–3x " Bx e–2x. ... (3)

Since y* must satisfy (1),         D2 y* " 5D y* " 6 y* ! 2 e–3x " 4 e–2x ... (4)
Now,                   (3) − D y* ! – 3Ax e–3x " 3A e–3x – 2Bx e–2x " B e–2x ... (5)

and D2 y* ! – 3A(e–3x – 3x e–3x) – 3A e–3x – 2B (e–2x – 2x e–2x) – 2B e–2x

or                       D2 y* ! – 6A e–3x " 9x A e–3x – 4B e–2x " 4Bx e–2x. ... (6)
Using (3), (5) and (6), (4) reduces to

– 6A e–3x " 9x A e–3x – 4B e–2x " 4Bx e–2x " 5 (– 3Ax e–3x " A e–3x – 2Bx e–2x

" B e–2x) " 6 (Ax e–3x " Bx e–2x) ! 2e–3x " 4e–2x

or               – A e–3x " B e–2x ! 2 e–3x " 4 e–3x − A ! – 2, B ! 4
5 (3) − y* ! – 2x e–3x " 4x e–2x

and solution is             y ! C.F. + y*             or              y ! c1 e–3x " c2 e–2x – 2x e–3x " 4x e–3x.
Ex. 7(c). Using the method of undetermined coefficients, solve y11 + y ! 2 cos x.

[Lucknow 1996]
Sol. Let D 4 d/dx. Then given equation reduces to (D2 " 1) y ! 2 cos x. ... (1)
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Its auxiliary equation is D2 " 1 ! 0 so that D ! ± i.
5 C.F. ! c1 cos x " c2 sin x, c1, c2 being arbitrary constants. ... (2)
Since cos x occurs on R.H.S. of (1) and cos x is a part of C.F. (2) corresponding to root of

multiplicity one, choose trial solution y* of the form
                    y* ! x (A cos x " B sin x) ! Ax cos x " Bx sin x. ... (3)

Since y* must satisfy (1)                  D2 y* " y* ! 2 cos x. ... (4)
From (3), Dy* ! A cos x – A x sin x " B sin x " Bx cos x. ... (5)

and                    D2y* ! – A sin x – A (sin x " x cos x) " B cos x " B (cos x – sin x). ... (6)
Using (3) and (6), (4) reduces to

– 2A sin x – Ax cos x " 2B cos x – Bx sin x " Ax cos x " Bx sin x ! 2 cos x
or – 2A sin x " 2B cos x ! 2 cos x − – 2A ! 0, 2B ! 2 − A ! 0, B ! 1.

From (3), y* ! x sin x and solution is y ! C.F. + y* ! c1 cos x " c2 sin x " x sin x.
Ex. 7(d). Using the method of undetermined coefficients, solve y3 + y1 = 2x2 + 4 sin x.

[Delhi Maths (G) 1998]
Sol. Let D 4 d/dx. Then, given equation reduced to (D3 " D) y ! 2x2 " 4 sin x. ... (1)
Its auxiliary equation is D3 " D ! 0 so that D ! 0, ± i

5                      C.F. ! c1 e0.x " e0.x (c2 cos x " c3 sin x) ! c1 " c2 cos x " c3 sin x. ... (2)
Since the constant term c1 appears in C.F. (2), corresponding to the term x2 on R.H.S. of (1),

contribution to trial solution y* is taken x (A0 " A1x " A2 x2). Again, since c2 sin x appears is C.F.
(2), corresponding to the term 4 sin x on R.H.S. of (1), contribution to trial solution y* is taken as
x (A3 cos x " A4 sin x). So, suppose that

                    y* ! A0 x " A1 x2 " A2 x3 " A3 x cos x " A4 x sin x. ... (3)
Since y* satisfies (1), D3y* " D y* ! 2x2 " 4 sin x. ... (4)
Differentiate (3) w.r.t. ‘x’, we have
D y* ! A0 " 2A1 x " 3A2 x2 " A3 cos x – A3x sin x " A4 sin x " A4 x cos x,
D2y* ! 2A1 " 6A2 x – A3 sin x – A3 (sin x " x cos x) " A4 cos x " A4 (cos x – x sin x)

or D2 y* ! 2A1 " 6A2x – 2A3 sin x – A3x cos x " 2A4 cos x – A4 x sin x
and D3 y* ! 6A2 – 2A3 cos x – A3 (cos x – x sin x) – 2A4 sin x – A4 (sin x " x cos x)
or                 D3 y* ! 6A2 – 3A3 cos x " A3x sin x – 3A4 sin x – A4x cos x.

Putting the above values of D y* and D3 y* in (4), we have
6A2 – 3A3 cos x " A3x sin x – 3A4 sin x – A4 x cos x " A0 " 2A1 x

" 3A2 x2  " A3 cos x – A3 x sin x " A4 sin x " A4 x cos x ! 2x2 " 4 sin x
or (6A2 " A0) " 2A1 x " 3A2 x2 – 2A3 cos x – 2A4 sin x ! 2x2 " 4 sin x.

Equating the coefficients of like terms, we have
6A2 " A0 ! 0, 2A1 ! 0, 3A2 ! 2, –2A3 ! 0 and –2A4 ! 4. These give

A0 ! – 4,   A1 ! 0,   A2 ! 2/3, A3 ! 0, A4 ! – 2. So (3) − y* ! – 4x " (2/3) x3 – 2x sin x.
5 Required solution is y ! C.F. + y* = c1 " c2 cos x " c3 sin x – 4x " (2/3) x3 – 2x sin x.
Ex. 7(e). Solve (D3 + 2D2 – D – 2) y = ex + x2.
Sol. Given (D3 " 2D2 – D – 2) y ! ex " x2 ... (1)

The auxiliary equation is D3 " 2D2 – D – 2 ! 0 or (D2 – 1) (D + 2) ! 0 − D ! 1, – 1, – 2.
5 C.F. ! c1 ex " c2 e–x " c2 e–2x, c1, c2, c3 being arbitrary constants. ... (2)
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Corresponding to special form x2 of R.H.S. of (1), we choose trail solution for P.I. as A0 " A1x
" A2x2. Since ex occurs in R.H.S. of (1) and it also occurs in the C.F. (2) corresponding to a root of
multiplicity one, so we choose trial solution for P.I. as A3x ex (note that term ex is not included,
since it already appears in C.F. (2) with arbitrary coefficient c1). Combining the above two trial
solutions, we attempt a trial solution for P.I. of the form

                           y* ! A0 " A1x " A2 x2 " A3x ex. ... (3)
Since y* must satisfy (1), we have (D3 " 2D2 – D – 2) y* ! ex " x2

or D3 y* " 2D2 y* – Dy* – 2y* = ex + x2. ... (4)
Now,                              (3) − Dy* ! A1 " 2A2x " A3ex (x " 1). ... (5)
                                     (5) − D2y* ! 2A2 " A3 ex (x " 2). ... (6)

and                      (6) − D3y* ! A3 ex (x " 3). ... (7)
Using (3), (5), (6) and (7), (4) reduces to
A3 ex (x " 3) " 4A2 " 2A3ex (x " 2) – A1 – A2x – A3 ex (x " 1) – 2A0

– 2A1x – 2A2 x2 – 2A3x ex ! ex " x2

or – 2A2 x2 – 2(A1 " A2) x " 4A2 – A1 – 2A0 " 6A3 ex ! ex " x2,
which is an identity and so equating coefficients of like terms,
–2A2 ! 1, –2 (A1 " A2) ! 0,                      4A2 – A1 – 2A0 ! 0,                      6A3 ! 1; hence
A2 ! – (1/2), A1 ! 1/2, A0 ! – (5/4), A3 ! 1/6. So from (3),

P.I. ! – (5/4) " (1/2) x – (1/2) x2 " (1/6) x ex and general solution is  y = C.F. + P.I., i.e.,
y ! c1 ex " c2 e–x " c3 e–2x – (5/4) " (1/2) x – (1/2) x2 " (1/6) x ex.

Ex. 8(a). Solve (D2 – 4D + 4) y = x3 e2x + x e2x.
Sol. Given (D2 – 4D " 4) y ! x3 e2x " x e2x ... (1)
The auxiliary equation is D2 – 4D " 4 ! 0 so that D ! 2, 2.
C.F. ! (c1 " c2x) e2x, c1 and c3 being arbitrary constants. ... (2)
Here e2x occurs in R.H.S. of (1) and it also occurs in the C.F. corresponding to a root of

multiplicity two. So here, as a trial solution for P.I., we choose
y* ! A1x5 e2x " A2 x4 e2x " A3 x3 e2x " A4 x2 e2x, ... (3)

wherein the terms involving e2x and x e2x are not included, since they already appear in the C.F. (2)
with arbitrary constants c1 and c2 respectively.

Since y* must satisfy (1), so (D2 – 4D " 4) y* ! x3 e2x " x e2x.
or D2 y* – 4Dy* " 4y* ! x3 e2x ! x e2x. ... (4)
(3) − Dy* ! 2A1x5 e2x " (5A1 " 2A2) x4 e2x " (4A2 " 2A3) x3 e2x

" (3A3 " 2A4) x2 e2x " 2A4 x e2x   ... (5)
(5) − D2y* ! 4A1x5 e2x " (20A1 " 4A2) x4 e2x " (20A1 " 16A2 " 4A3) x3 e2x

" (12A2 " 12A3 " 4A4) x2 e2x " (6A3 " 8A4) x e2x " 2A4 e2x.   ... (6)
Using (3), (5) and (6), (4) reduces, after simplification, to
               20 A1x3 e2x " 12A2 x2 e2x " 6A3x e2x " 2A4e2x ! x3 e2x " xe2x,

which is an identity and so equating coefficients of like terms, we have
20A1 ! 1, 12A2 ! 0, 6A3 ! 1, 2A4 ! 0, so that A1 ! 1/20, A2 ! 0, A3 ! 1/6, A4 ! 0.
5 (3) − y* ! (1/20) x5 e2x " (1/6) x3 e2x and general solution of (1) is

y ! C.F. " y* ! (c1 " c2x) e2x " (1/20) x5 e2x " (1/6) x3 e2x.
Ex. 8(b). Solve (D2 + 4) y ! x2 sin 2x.
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Sol. Given                                 (D2 " 4) y ! x2 sin 2x. ... (1)
Auxiliary equation  D2 " 4 ! 0 − D ! ± 2i.     Hence     C.F. ! c1 cos 2x " c2 sin 2x.... (2)

Since x2 sin 2x occurs on R.H.S. of (1) and sin 2x is a part of the C.F. (2) corresponding to a root
of multiplicity one, we choose trial solution y* as

y* ! A1x3 cos 2x " A2x3 sin 2x " A3x2 cos 2x " A4x2 sin 2x " A5x cos 2x " A6 x sin 2x, ... (3)
wherein A7 cos x " A6 sin x is not included, since these terms are already occuring in the C.F. with
arbitrary coefficients c1 and c2.

Since y* must satisfy (1),   so D2y* " 4y* ! x2 sin 2x. ... (4)
(3) − Dy* ! 2A2x3 cos 2x – 2A1 x3 sin 2x " (3A1 " 2A4) x2 cos 2x + (2A2 – 3A3) x2 sin 2x

                " (2A3 " 2A6) x cos 2x " (2A4 – 2A5) x sin 2x " A5 cos 2x " A6 sin 2x, ... (5)
(5) − D2y* ! – 4A1 x3 cos 2x – 4A2 x3 sin 2x " (12A2 – 4A3) x2 cos 2x
– (12A1 " 4A4) x2 sin 2x " (6A1 " 8A4 – 4A5) x cos 2x " (6A2 – 8A3 – 4A6) x sin 2x
                           " (2A3 " 4A6) cos 2x " (2A4 – 4A5) sin 2x  (on simplification)     ... (6)
Using (3) and (6), (4) reduces to
12A2x2 cos 2x – 12A1x2 sin 2x " (6A1 " 8A4) x cos 2x " (6A2 – 8A3) x sin 2x
                                                  " (2A3 " 4A6) cos 2x " (2A4 – 4A5) sin 2x ! x2 sin 2x,

which is an identity and so equating coefficients of like terms, we have
–12A1 ! 1, 12A2 ! 0, 6A1 " 8A4 ! 0, 6A2 – 8A3 ! 0, 2A3 " 4A6 ! 0, 2A4 – 4A5 ! 0;

hence, A1  ! – 1/12, A2 ! 0, A3 ! 0, A4 ! 1/16, A5 ! 1/32, A6 ! 0 and so from (3),
P.I. ! y* ! – (1/12) x3 cos 2x " (1/16) x2 sin 2x " (1/32) x cos 2x.
Solution is       y ! C.F. + y*,  i.e., y ! c1 cos 2x " c2 sin 2x – (1/12) Η x3 cos 2x

" (1/16) Η x2 sin 2x " (1/32) Η x cos 2x, where c1 and c2 are arbitrary constants.
Ex. 9. Using the method of undetermined coefficients, solve
(a) (d2y/dx2) – 6 (dy/dx) + 9y = x2 e3x.
(b) (D2 – 2D + 1) y = x2 ex [Delhi Maths (Hons.) 2000, 06]
(c) (d3y/dx3) – 3 (d2y/dx2) + 2 (dy/dx) = x2 ex.
Sol. (a) Given (D2 – 6D " 9) y ! x2 e3x, where, D # d/dx. ... (1)
Its auxiliary equation is D2 – 6D " 9 ! 0 so that D ! 3, 3
5 C.F. ! (c1 " c2x) e3x, c1, c2 being arbitrary constants ... (2)
Here x2 e3x appears on the R.H.S. of (1) and e3x is a term of C.F. (2) corresponding to the root

3 occuring twice. So the trial solution y* will contain x2 " 2 e3x i.e. x4 e3x plus terms arising from it by
differentiation. Therefore, suppose that

y* ! Ax4 e3x " B x3 e3x " C x2 e3x, ... (3)
in which the terms involving Dx e3x and E e3x are not included, since they already appear in the C.F.
(2) with arbitrary constants c1 and c2.

Since y* must satisfy (1), D2y* – 6D2y* " 9y* ! x2 e3x. ... (4)
(3) − Dy* ! 4Ax3 e3x " 3Ax4 e3x " 3Bx2 e3x " 3Bx3 e3x " 2Cx e3x " 3C x2 e3x

! 3Ax4 e3x " (4A " 3B) x3 e3x " (3B " 3C) x2 e3x " 2Cx e3x ... (5)
and D2y* ! 12Ax3 e3x " 9A x4 e3x " 3(4A " 3B) x2 e3x " 3 (4A " 3B) x3 e3x

" 2(3B " 3C) x e3x " 3(3B " 3C) x2 e3x " 2C e3x " 6Cx e3x

! 9A x4 e3x " (24A " 9B) x3 e3x " (12A " 18B " 9C) x2 e3x " (6B " 12C) x e3x " 2C e3x. ... (6)
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Using (3), (5) and (6), (4) reduces to
9Ax4 e3x " (24A " 9B) x3 e3x " (12A " 18B " 9C) x2 e3x " (6B " 12C) x e3x " 2C e3x – 6 [3A x4 e3x

" (4A " 3B) x3 e3x " (3B " 3C) x2 e3x " 2C x e3x] " 9 (Ax4 e3x " Bx3 e3x " Cx2 e3x) ! x2 e3x.
or 12Ax2 e3x " 6Bx e3x " 2C e3x ! x2 e3x. ... (7)

Equating the coefficients of like powers on both sides of (7), we get
12A ! 1, B ! 0, C ! 0 so that A ! 1/12, B ! 0, C ! 0. So y* ! (x4/12) Η e3x

5 required solution is y ! C.F. " y* ! (c1 " c2x) e3x " (x4/12) Η e3x

(b) Proceed by taking y* ! Ax4 ex " Bx3 ex " Cx2 ex. Ans. y ! (c1 " c2x) ex " (x4/12) Η ex

(c) Proceed as is part (a) by taking y* ! Ax3 ex " Bx2 ex " C x ex.
Ans. y ! c1 " c2 ex " c3 e2x – 2x ex – (x3/3) Η ex

Ex. 10. Using the method of undetermined coefficients, solve (d3y/dx3) – 3 (d2y/dx2)
+ 2(dy/dx) = 3x e2x + 5x2.

Sol. Given (D3 – 3D2 " 2D) y ! 3x e2x " 5x2, where D 4 d/dx. ... (1)
Its auxiliary equation is D3 – 3D2 " 2D ! 0 so that D ! 0, 1, 2.
5 C.F. ! c1 " c2 ex " c3 e2x, c1, c2, c3 being arbitrary constants. ... (2)
Here x e2x appears on the R.H.S. of (1), where e2x is a term of the C.F. (2) corresponding to

the root 2 occuring once. So the trial solution y* will contain the term x1 " 1 e2x i.e. x2 e2x plus terms
arising from it by differentiation. Thus, contribution of 3x e2x to y* will be Dx2 e2x " Ex e2x, which
does not involve the term F e2x because it already appears in C.F. (2) with arbitrary constants c2.
Since constant c1 appears in C.F. (2), the contribution of 5x2 on R.H.S. of (1) to trial solution y* is
taken as x (Ax2 " Bx " C). Hence the total trial solution y* is taken as

y* ! Ax3 " Bx2 " Cx " Dx2 e2x " Ex e2x. ... (3)
Since y* must satisfy (1), D3y* – 3D2y* " 2Dy* ! 3x e2x " 5x2. ... (4)

 (3) − Dy* ! 3Ax2 " 2Bx " C " 2Dx2 e2x " (2D " 2E) x e2x " E e2x ... (5)
 (5) − D2y* ! 6Ax " 2B " 4Dx2 e2x " (8D " 4E) x e2x " (2D " 4E) e2x ... (6)
 (6) − D3y* ! 6A " 8Dx2 e2x " (24D " 8E) x e2x " (12D " 12E) e2x. ... (7)

Using (3), (5), (6) and (7), (4) reduces to
4Dx e2x " (6D " 2E) e2x " 6Ax2 " (4B – 18A) x " (6A – 6B " 2C) ! 3x e2x " 5x2.

Equating the coefficients of like terms in above identity, we have
4D ! 3, 6D " 2E ! 0, 6A ! 5, 4B – 18A ! 0 and 6A – 6B " 2C ! 0.
Solving these, A ! 5/6, B ! 15/4, C ! 35/4, D ! 3/4, E ! – 9/4.
5 from (3), y* ! (5/6) x3 " (15/4) x2 " (35/4) x " (3/4) e2x (x2 – 3x).
Hence the required general solution is y ! C.F. " y*, i.e.

y ! c1 " c2 ex " c3 e2x " (5/6) x3 " (15/4) x2 " (35/4) x " (3/4) e2x (x2 – 3x).
Ex. 11. Find the complementary solution of the differential equation      y(4) + 9y11 =

(x2 + 1) sin 3x. Set up the appropriate form of a particular solution, but do not determine the values
of the coefficients. [Delhi B.Sc. (Hons) II 2011]

Sol. The Given equation may be written
                (D4 – 9D2) y = +x% + 1) sin 3x,     where     D 4 d/dx. ... (1)

Auxiliary equation of (1) is              D4 + 9D2 = 0 giving D ! 0, 0, ± 3i.
Hence the complementary solution (i.e., complementary function yc (x) is given by
yc (x) ! c1 + c2x + c3 cos 3x + c4 sin 3x, c1, c2, c3 and c4 being arbitrary constants. ... (2)
As a first step toward the form of a particular solution, let us examine the following sum
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(A + Bx + Cx2) cos 3x + (D + Ex + Fx2) sin 3x
In order to eliminate duplication of terms of yc (x), both parts given in (3) must be multiplied

by x. Hence, the desired appropriate particular solution y*(x) is given by
y* (x) ! x (A + Bx + Cx2) cos 3x + x (D + Ex + Fx2) sin 3x,

where A, B, C, D, E and F are six unknown coefficients.
Ex. 12. (a) The method of undetermined coefficients to solve x2 y11 – xy1 – 3y = x2 log x

[Mumbai  2010]
Sol. Re-writing, the given equation can be written as

(x2 D2 – x D – 3) y = x% log x,  where     D 4 d/dx. ... (1)
Let x ! ez, log x = z and D1 4 d/dz  then, xD ! D1, x2 D2 ! D1 (D1 – 1) and so (1) yields
{D1 (D1 – 1) – D1 – 3} y = ze2z            or              (D1

2 – 2D1 – 3) y ! z e2z ... (2)
which is linear differential equation with consten coefficients. We shall now apply the usual
method of undetermined coefficients in order to solve (2). In what follows note carefully that we
have new independent variable z in place of old variable x. Also, note that we have operator D1 in
place of D.

Auxiliary equation of (2) is                 D1
2 – 2D1 – 3 ! 0   giving   D1 ! 3, – 1.

Hence, C.F. of (2) is           c1 e3z + c2 e–z, c1 and c2 being arbitrary constants
Let the trial solution y* be given by (using result 3 of the table on page 5.52)
               y* ! (A0 + A1z) e2z, where A0 and A1 are unknown coefficients ... (3)
Since y* must satisfy (2), we have               (D1

2 – 2D1 – 3) y* ! z e2z ... (4)
or                                         D1

2 y* – 2 D1 y* – 3 y* ! z e2z

Now, from (3),           D1 y* ! A1 e2z + (A0 + A1z) × (2 e2z) ! (2 A0 + A1 + 2A1z) e2z ... (5)
Then, from (5), D1

2 y* ! 2 A1 e2z + (2A0 + A1 + 2A1z) × (2 e2z) ! (4 A0 + 4A1 + 4A1z) e2z ... (6)
Using (3), (5) and (6), (4) reducer to
(4A0 + 4A1 + 4A1z) e2z – (4A0 + 2A1 + 4A1z) e2z – 3 (A0 + A1z) e2z ! ze2z ... (7)
Equating the coefficients of e2z and ze2z in the above identity, we get
          – 3A0 + 2A1 ! 0        and     – 3A0 ! 1 so that A1 ! – (1/3) and A0 ! – (2/9)
Hence, (3) yields               y* ! – (2/9 + z/3) e2z ! – (2 + 3z) × (e2z/9)
Therefore, the general solution of (2) is y ! C.F. + y*, i.e.,
                           y = c1 e2z + c2 e–z – (2 + 3z) × (e2z/9) ... (8)
Since ez = x and log x = z, from (8) the required solution is given by

y ! c1 (ez)3 + c2 (ez)–1 – (2 + 3z) × {(ez)2/9} ! c1x3 + c2x–1 – (x2/9) × (2 + 3 log x)
Ex. 12(b). Use the method of undetermined coefficients to solve x2 y11 + xy1 + 4y = 2 x log x

[Mumbai  2010]
Hint. Try like Ex. 12(a).                             Ans. y = c1 x2 + c2 x–2 – (2x/9) × (2 + 3 log x)

Exercise 5(J)

Solve, using the method of undetermined coefficients :

1. y11 " y ! sin x  [Delhi B.Sc. (Hons) II 2011] Ans. y ! c1 cos x " c2 sin x – (x/2) cos x

1. y111 ) 7y1 – 6y ! x–2x  [Mumbai 2010] Ans. y ! c1 e–x " c2 e3x + c3 e–2x + (x/5) × e–2x

3. (D2 – D – 2) y ! 4x2   [Nagpur 2002] Ans. y ! c1 e2x " c2 e–x – 3 " 2x – 2x2

4. (D2 – 1) y ! ex sin 2x. Ans. y ! c1 ex " c2 e–x – ex (sin 2x " cos 2x)/8
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5. (D2 – 4D " 4) y ! ex sin x [Delhi Maths (Hons.) 2004]

Ans. y ! ex {c1 cos ( 2)x " c2 sin ( 2)x } " x/3 " 2/9 " (sin x " cos x)/4

6. (D2 – 3D " 2) y ! e2x sin x [Delhi Mahts (Hons.) 1996]
Ans. y ! c1 e–x " c2 e–2x – (1/170) e2x (11 sin x – 7 cos x)

7. (D2 " 2D " 1) y ! x2 – cos x  [Delhi 1998]             Ans. y ! (c1 " c2x) e–x " x2 – 4x " 6 – (1/6) sin x
8. (D2 " 2D " 2) y ! sin x " x2 [Delhi Maths (G) 1998]

Ans. y ! e–x (c1 cos x " c2 sin x)  " (1/2) x2 – x " (1/2) " (sin x – 2 cos x)/5
9. (D2 – 2D " 3) y ! x " sin x [Delhi Maths (G) 2004, 06]

Ans. y ! c1 cos ( 2)x " c2 sin ( 2)x " (3x " 2)/9 " (sin x " cos x)/4.

10. y11 " y1 – 2y ! – 2 e–x – 5 cos x [Delhi Maths (H) 2009; Delhi Maths (G) 1995, 2005]
Ans. y ! c1 ex " c2 e–2x " e–x " (3 cos x " sin x)/2

11. y11 – 2y1 " 3y ! x2 " cos x [Delhi Maths (Hons.) 2005]

Ans. y ! ex (c1 cos 2x " c2 sin 2x ) " (2 " 12x " 9x2)/27 " (cos x – sin x)/4

12. (4D2 " 4D " 1) y ! ex " 2 cos 2x [Delhi Maths (G) 1999)
Ans. y ! (c1 " c2x) e–x/2 " (1/9) ex " (16 sin 2x – 30 cos 2x)/289

13. y3 – 3y2 " 2y1 ! 3x e2x " 5x3 [Delhi Maths (Hons) 1999]
Ans. y ! c1 " c2 ex " c3 e2x –(9/4) x e2x " (5x4 " 30 x3 " 105 x2 " 225 x)/8

14. (D2 " 1) y ! 4x cos x – 2 sin x. Ans. y ! c1 cos x " c2 sin x " 2x cos x " x2 sin x
15. (D2 – 3D) y ! 8 e3x " 4 sin x Ans. y ! c1 " c2 e3x " (8/3) x e3x " (6 cos x – 2 sin x)/5
16. (D2 " 4) y ! x2 sin 2x Ans. y ! c1 cos 2x " c2 sin 2x – (1/12) x3 cos 2x" (1/16) x2 sin 2x " (1/32) x cos 2x
17. (D3 – D2 – 4D " 4) y ! 2x2 – 4x – 1 " 2x2 e2x " 5x e2x " e2x

Ans. y ! c1 ex " c2 e2x " c3 e–2x " (1/2) x2 " (1/6) x3 e2x.
18. (D2 + 3D + 2) y ! x + cos x [Delhi BA / B.Sc. Maths (Prog) 2007]

Ans. y ! c1 e–x + c2e–2x + (x/2) – (3/4) + (1/10) × (3 sin x + cos x)
19. 2 2( 4) sin 3∗ ∃ ∗ ∗xD y x e x                                                [Delhi B.A. (Prog) II 2010]

Ans. 2
1 2cos 2 sin 2 (1/5) sin3 (1/ 5) (2 1) /8∃ ∗ # Η ∗ Η ∗ #xy c x c x x e x

Obejective Problems on Chapter 5
Ex. 1. The solution of (D2 + 1)2y ! 0,is : (a) A cos x + B sin x (b) ex (A cos x + B sin x)
(c) (A1 + A2) cos x + (A3 + A4) sin x (d) (A1 + A2x) cos x + (A3 + A4x) sin x
Sol. Ans. (d). See Ex. 8(a), Art. 5.5 [I.A.S. Prel. 1993]
Ex. 2. A particular integral of (d2y/dx2) – (dy/dx) – 2y = cos x + 3 sin x is (a) sin x
(b) cos x (c) – sin x (d) – cos x [I.A.S. Prel. 1995]
Sol. Ans. (c). Given equation is (D2 – D – 2) y ! cos x " 3 sin x

P.I. ! 2 2
1 1cos 3 sin

2 2
x x

D D D D
∗

# # # #
 ! 2 2

1 1cos 3 sin
1 2 1 2

x x
D D

∗
# # # # # #

! 1 1cos 3 sin
3 3

x x
D D

# #
∗ ∗

! 2 2
3 3 3 3cos 3 sin cos 3 sin

( 10) ( 10)9 9
D D D Dx x x x

D D
# # # #

# # ∃ # #
# ## #

! (1/10) [(D – 3) cos x " 3 (D – 3) sin x] ! (1/10) [– sin x – 3 cos x " 3 cos x – 9 sin x] ! – sin x.

Ex. 3. A particular integral of d2y/dx2 – (a + b) (dy/dx) + aby = Q(x) is
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5.66 Linear Differential Equations with Constant Coefficients

(a) ( ){ ( )}ax a b x bxe e Qe dx dx#%          (b) ( ){ ( )}ax b a x bxe e Qe dx dx# #%
(c) ( ){ ( )}ax b a x bxe e Qe dx dx# #%         (d) ( ){ ( )}ax b a x bxe e Qe dx dx# # #% [I.A.S. Prel. 1999]

Sol. Ans. (b). Given{D2 – (a " b) D " ab} y ! Q(x) or (D – a) (D – b) y ! Q(x),   D # d/dx

P.I. ! 1 1( ) ,
( )( )

bx bxQ x e Qe dx
D a D b D a

#∃
# # # %  using result of Art. 5.8

              ! ( ){ ( )} { ( )} .ax ax bx bx ax b a x bxe e e Qe dx dx e e Qe dx dx# # # #∃% % %
Ex. 4. The solution of d2s/dt2 = g. (g is a constant, s = 0 and ds/dt = u when t = 0), is
(a) s = gt (b)s = ut + (1/2) Η gt2 (c) s = (1/2) Η gt2 (d)none of these [I.A.S. Prel. 2000]
Sol. Ans. (b). Integrating d2s/dt2 ! g, we get ds/dt ! gt " c. ... (1)
Given that ds/dt ! u when t ! 0. So (1) gives               c ! u.
Then (1) becomes ds/dt ! gt " u or ds ! (gt " u) dt
Integrating it, s ! (1/2) Η gt2 " ut " c1, c1 is another arbitrary constant ... (2)
Given that s ! 0 when t ! 0. So (2) gives c1 ! 0. So (2) − s ! (1/2) Η gt2 " ut.
Ex. 5. The solution of (d2y/dx2) – y = k, (k = a non-zero constant) which vanishes when x

= 0 and which tends to finite limit as x tends to infinity is
(a) y = k (1 + e–x)                 (b) y = k (e–x – 1)
(c) y = k (ex + e–x – 2)                 (d) y = k (ex – 1) [I.A.S. Prel. 2001]
Sol. Ans. (b). Re-writing given equation,       (D2 – 1) y ! k ... (1)
Its auxiliary equation is D2 – 1 ! 0 so that D ! 1, – 1.
Hence its C.F. ! C1 ex " C2 e–x, c1, c2 being arbitrary constants

and its P.I. ! 0. 0.
2 2 2
1 1 1 .

1 1 0 1
x xk k e k e k

D D
∃ ∃ ∃ #

# # #
So solution of (1) is                        y ! C1 ex " C2 e–x – k ... (2)
Given that y ! 0 when x ! 0. Hence (2) gives 0 ! C1 " C2 – k or C1 " C2 ! k. ... (3)
Multiplying both sides of (2), by e–x, we get y e–x ! C1 " C2 (e–x)2 – k e–x ... (4)
Given that y Κ m when x Κ Λ, m being a finite quantity
So (4) − m × 0 ! C1 " (C2 × 0) – (k × 0) or C1 ! 0 ... (5)
Solving (4) and (5), C1 ! 0 and C2 ! k So from (2), the required solution is y ! k (e–x – 1).
Ex. 6. If +1(x) is a particular integral of Ly = d2y/dx2 – a (dy/dx) + by = eax + f (x) and

+2 (x) is a particular integral of Ly = eax – f (x), a, b being constants, then the particular integral
of Ly = 2b eax is       (a) b +1(x) + +2(x)                    (b) +1(x) – b+2 (x)

                        (c) a +1(x) + b +2 (x)       (d) b {+1(x) + +2 (x)} [I.A.S. Prel. 2002]
Sol. Ans. (d). Note that a particular solution of a given differential equation will satisfy the

entire given equation. Therefore,
+1(x) satisfies d2y/dx2 – a (dy/dx) " by ! eax " f (x)

                                − d2+1 / dx2 – a (d+1 / dx) " b +1 ! eax " f (x) ... (1)
+2 (x) satisfies d2 y/dx2 – a (dy/dx) " by ! eax – f (x)

− d2+2 / dx2 – a (d+2 / dx) " b+2 ! eax – f (x) ... (2)
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Adding (1) and (2),                    
2

1 2 1 2
1 22

( ) ( ) ( ) 2 .axd da b e
dxdx

+ ∗ + + ∗ +
# ∗ + ∗ + ∃

Multiplying both sides by b and rewriting, we get
2

1 2 1 2
1 22

{ ( )} { ( )}
{ ( )} 2 ,axd b d b

a b b be
dxdx

+ ∗ + + ∗ +
# ∗ + ∗ + ∃

showing that b (+1 " +2) is a particular integral of d2y/dx2 – a (dy/dx) – by ! 2b eax i.e. Ly ! 2b eax

Ex. 7. If eax u(x) is particular integral of d2y / dx2 – 2a(dy / dx) + a2y = f (x), where a is a
constant, then d2u/dx2 is equal to

(a) f (x) (b) f (x) eax (c) f (x) e–ax (d) f (x) (eax + e–ax) [I.A.S. Prel. 2002]
Sol. Ans. (c). Recall the following formula for finding a particular integral (Refer Art. 5.8)

1 x xX e e X dx
D

! #!∃
# ! %  where D # d/dx and X is a function of x. ... (1)

Given equation is            (D2 – 2aD " a2) y ! f (x)          or              (D – a)2 y ! f (x)

5 P.I. ! 2
1 ( )

( )
f x

D a#
 or 1 1 1( ) ( ) ( )ax ax axe u x f x e e f x dx

D a D a D a
#∃ ∃

# # # %
[Using (1) and the given value of P.I. namely, eax u (x)]

or eax u (x) ! { ( ) }ax ax ax axe e e e f x dx dx# #% % , using result (1) again

− ( ) ( )   ( )ax axduu x e f x dx e f x dx
dx

# #∃ − ∃% % % − d2u/dx2 ! e–ax f (x).

Ex. 8. If y = + (x) is a particular solution of y11 + (sin x) y1 + 2y = ex and y = Θ (x) is a
particular solution of y11 + (sin x) y1 + 2y= cos 2x, then a particular solution of y11 + (sin x) y1 +
2y = ex + 2 sin2 x, is given by

(a) + (x) – Θ (x) + 1/2                         (b) Θ (x) – +(x) + 1/2
(c) + (x) – Θ (x) + 1                         (d) Θ (x) – + (x) + 1 [GATE 2004]
Sol. Ans. (a). By definition of particular solution (i.e. particular integral), taking D 4 d/dx

+ (x) ! 2
1

(sin ) 2
xe

D x D∗ ∗
and Θ (x) ! 2

1 cos2
(sin ) 2

x
D x D∗ ∗

... (1)

5 Particular solution (P.S.) of [D2 " (sin x) D " 2] y ! ex " 2 sin2 x is

! 2
2 2

1 1 (2 sin )
(sin ) 2 (sin ) 2

xe x
D x D D x D

∗
∗ ∗ ∗ ∗

! 2
1( ) (1 cos 2 ),

(sin ) 2
x x

D x D
+ ∗ #

∗ ∗

! 0.
2 2

1 1( ) (cos 2 )
(sin ) 2 (sin ) 2

xx e x
D x D D x D

+ ∗ #
∗ ∗ ∗ ∗

! +(x) " 1/2 – Θ(x), using (1).

Ex. 9. The set of linearly independent solutions of the differential equation (dy4/dx4)
– (dy2/dx2) = 0 is

(a) {1, x, ex, e–x}  (b) {1, x, e–x, x e–x}   (b) {1, x, ex, x ex}  (d) {1, x, ex, x e–x} [GATE 2005]
Sol. Ans. (a). Here auxiliary equation is D4 – D2 ! 0, i.e. D2 (D2 – 1) ! 0 so that D ! 0, 0, 1, – 1.

Hence C.F. ! C1 " C2 x " C3 ex " C4 e–x and so {1, x, ex, e–x} forms a set of linearly independent
solutions.

Ex. 10. All real solutions of the differential equation y11 + 2ay1 + by = cos x (where a and b
are real constants) are periodic if (a) a = 1 and b = 0       (b) a = 0 and b = 1

                                            (c) a = 1 and b . 0     (d) a = 0 and b . 1   [GATE 2003]
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5.68 Linear Differential Equations with Constant Coefficients

Ex. 11. Let y (x) be the solution of the initial value problem 4 4 0,111 11 1# ∗ # ∃y y y y

(0) (0) 21∃ ∃y y and (0) 0.11 ∃y  Then, the value of ( / 2)9y is

(a) / 2(4 6) /59 #e     (b) / 2(6 4) /59 #e   (c) / 2(8 2) /59 #e    (d) / 2(8 2) / 59 ∗e [GATE 2010]

Sol. Ans. (c). Re-writing the given equation,       3 2( 4 4) 0# ∗ # ∃D D D y , where D ! d/dx.

Its auxiliary equation is 3 2 4 4 0# ∗ # ∃D D D   or   2( 1)( 4) 0# ∗ ∃D D  giving D ! 1, 23 i .
Hence, the general solution of the given differential equation is given by

1 2 3 1 2( ) sin 2 cos 2 , ,∃ ∗ ∗xy x c e c x c x c c  and c3 bening arbitrary constants ... (1)

From (1), 1 2 3( ) 2 cos 2 2 sin 21 ∃ ∗ #xy x c e c x c x ... (2)

From (2), 1 2 3( ) 4 sin 2 4 cos 211 ∃ # #xy x c e c x c x ... (3)
Putting x ! 0 in (1), (2), (3) and using the given initial values y(0) ! 2, (0) 21 ∃y

and (0) 011 ∃y , we obtain

  1 3 1 2 1 3 1 2 32 2 2 4 0 8 5 4 5 2 5∗ ∃ ∗ ∃ # ∃ ∃ ∃ # ∃givingc c , c c , c c c / , c ( / ), c /

Hence, from (1) ,   ( ) (8 / 5) (4 / 5) sin 2 (2 / 5) cos 2∃ Η # Η ∗ Ηxy x e x x ... (4)

Now from (4), / 2 / 2( / 2) (8 /5) (2 / 5) (8 2) / 59 99 ∃ Η # ∃ #y e e

MISCELLANEOUS  PROBLEMS ON  CHAPTER  5
Ex. 1. Describe the general solution of the differential equation dny/dxn + an–1 (dn–1y/dxn–1)

+ ... + a1 (dy/dx) + a0 y ! 0 where a0, a1, a2, ..., an–11 are constants depending on the roots of
multiplicity of auxiliary equation. [Mumbai 2010]

Hints. Refer Art. 5.3, page 5.2

Ex.2 A particular solution of 2( 4) , /D y x D d dx∗ ∃ 4  is
(a) x e2x (b) x cos 2x (c) x sin 2x (d) d/4
Sol. Ans. (d) As usual particular integral

12

2 2
1 1 1 1

4 44 4(1 / 4)
Dx x x

D D

#
: ;

∃ ∃ ∃ ∗< =< =∗ ∗ > ?

   
21 1

4 4 4
D xx

: ;
∃ # ∃< =< =

> ?
.

Ex. 3. The number of lineraly independent solutions of
4 4 3 3/ ( / ) 3 ( / )d y dx d y dx dy dx# # 5( / ) 2 0dy dx y∗ # ∃

of the form eax (a being a real number) is
(a) 1 (b) 2 (c) 3 (d) 4
Sol. Ans. (b). Re-writing, the given equation

4 3 2( 3 5 2) 0, /D D D D y D d x# # ∗ # ∃ 4
Itsw auxiliary equation is

4 3 23 5 2 0D D D D# # ∗ # ∃

or      3( 1) ( 2) 0D D# ∗ ∃                so that             D = 1, 1, 1, –2

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Linear Differential Equations with Constant Coefficients 5.69

Hence, the general solution of the given equation is given by
2 2

1 2 3 4( ) ,x xy c c x c x e c e#∃ ∗ ∗ ∗
Which contain two solutions ex and e–2x of the form eax. Now, we here

        2( , )x xW e e#

= Wronskian of ex and e–2x

2

22

x x

x x

e e

e e

#

#
∃

#

                                     2 3 0,x x xe e e# # #∃ # ∃ ∃ # .

Showing that two linearly independent solutions of the given equation are of the form eax.
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6
Homogeneous Linear Equations

Or Cauchy-Euler Equations
6.1 Homogeneous linear equations (or Cauchy-Euler-Equations)

A linear differential equation of the form
a0 xn (d ny/dxn) + a1 xn – 1 (d n – 1y/dxn – 1) + ...+ an–1 x (dy/dx) + an  y ! X ... (1)

i.e., (a0xnDn + a1 xn – 1 Dn – 1 + ... + an – 1 x D + an) y ! X, D ! d/dx ... (2)
where a0, a1, a2, ... an are constants, and X is either a constant or a function of x only is called a
homogeneous linear differential equation. Note that the index of x and the order of derivative is
same in each term of such equations. These are also known as Cauchy-Euler equations.

6.2 Method of solution of homogeneous linear differential equation [Mumbai 2010]
                  (a0xnDn + a1xn – 1 Dn – 1 + ... + an–1 x D + an) y ! X. ... (1)

In order to solve (1) introduce a new independent variable z such that
x ! ez               or               log x ! z               so that               1/x ! dz/dx. ... (2)

Now, 1 , using (2)dy dy dz dy
dx dz dx x dz

� # �                                      ... (3)

or 1or , saydy dy d dx xD x D
dx dz dx dz

� � ! � ... (4)

Again,
2

2
d y
dx

! 2
1 1 1d dy d dy dy d dy

dx dx dx x dz dz x dx dzx
∃ % ∃ % ∃ %� � & ∋( ) ( ) ( )
∗ + ∗ + ∗ +

!
2

2 2 2 2
1 1 1 1 , by (2)dy d dy dz dy d y

dz x dz dz dx dzx x x dz
∃ %& ∋ # � & ∋( )
∗ +

or x2D2 !
2 2

2 2
1 1 1 12 2 ( ) ( 1) .d y d y dyx D D y D D y

dzdx dz
� & � & � &                ... (5)

and so on. Proceeding likewise, we can show that

xnDn !
n

n
n

d y
x

dx
! D1 (D1 – 1) (D1 – 2) ... (D1 – n + 1) y.                     ... (6)

Substituting the above values of x, xD, x2D2, x3D3, ..., xnDn in (1) and thus changing the
independent variable from x to z, we have
[a0D1(D1 – 1) ... (D1 – n + 1) +...+ an– 2D1(D1 – 1) + an – 1D1 + an]y ! Z   or   f (D1) y ! Z, ... (7)
where Z is now a function of z only. The method of solving (7) is same as done in chapter 5.

6.1
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6.2 Homogeneous Linear Equations or Cauchy-Euler Equations

6.3 Working rule for solving linear homogeneous differential equation
(a0xnDn + a1xn – 1Dn – 1 + a2xn – 2Dn – 2 +...+ an – 2x2D2 + an – 1xD + an) y ! X,          ... (1)

Step I. Put    x ! ez    or     z ! log x, where x > 0
Step II. Assume that D1 ! d/dz and D " d/dx. Then, we have
xD ! D1,        x2D2 ! D1(D1 – 1),       x3D3 ! D1(D1 – 1) (D1 – 2)        and so on.
Then (1) reduces to f (D1) y ! Z, where Z is now function of z only ... (2)
Step III. Using methods of chapter 5, (2) gives the general solution       y ! , (z). ... (3)
Since z ! log x, the desired solution is                             y ! , (log x), x > 0. ... (4)
Note. While solving any equation, remember that em log n ! nm.

6.4 Solved examples based on Art. 6.3
Ex. 1. (a) Solve x2y2 + xy1 – 4y = 0 [Delhi Maths (G) 1993]
Sol. Given               (x2D2 + xD – 4) y ! 0,               where               D ! d/dx. ... (1)
Let x ! ez (or z ! log x) and D1 ! d/dz so that       xD ! D1       and       x2D2 ! D1(D1 – 1).
Then (1) reduces to         [D1(D1 – 1) + D1 – 4] y ! 0         or (D1

2 – 4) y ! 0. ... (2)
Its auxiliary equation is   D1

2 – 4 ! 0 so that D1 ! 2, – 2. Hence the general solution of (2) is
y ! c1 c2z + c2 e–2z ! c1 e2 log x + c2 e–2 log x ! c1x2 + c2x–2, as z ! log x,

where c1 and c2 are arbitrary constants.
Ex. 1. (b) Solve x2(d2y/dx2) – 3x (dy/dx) + 4y = 0 [I.A.S. Prel. 1994]
Sol. Let d/dx ! D. Then the given equation reduces to       (x2D2 – 3xD + 4) y ! 0.  ... (1)
Let       x ! ez,           i.e.,             z ! log x                 and                 D1 ! d/dz   ... (2)
Then,   xD ! D1   and   x2D2 ! D1 (D1 – 1). Hence (1) reduces to

{D1(D1 – 1) – 3D1 + 4} y ! 0                 or                           (D1 – 2)2 y ! 0
Its auxiliary equation is               (D1 – 2)2 ! 0                    giving D1 ! 2, 2.
The general solution is   y ! (c1 + c2z) e2 z ! (c1 + c2 z) (ez)2! (c1 + c2 log x) x2, using (2).

where c1 and c2 are arbitrary constants.
Ex. 1. (c) Solve x3(d3y/dx3) + 2x2 (d2y/d2x) + 3x (dy/dx) –3y = 0 [Meerut 2007]
Sol. Rewriting the given equation, (x3 D3 + 2x2 D2 + 3xD –3)y ! 0, D ! d/dx ....(1)
Let          x ! ez,              i.e.,            z ! log x                and            D1 ! d/dz     ...(2)
Then,      xD ! D1,                x2D2 ! D1(D1–1)            and          x3D3 ! D1 (D1–1) (D1–2)

Using (2) and (3), (1) becomes {D1 (D1 – 1) (D1 – 2) + 2D1 (D1 – 1) + 3 D1 – 3} y ! 0 ...(4)
Auxiliary equation of (4) is D1 (D1 – 1) (D1 – 2) + 2D1 (D1 – 1) + 3D1 – 3 ! 0

or              (D1 – 1) (D2
1 + 3) ! 0                   giving                    D1 ! 1, ± i 3

− Solution of (4) is                        y ! c1 ez + c2 sin 3( 3) cos ( 3)z c z∋

or y ! c1x + c2 sin 3 1 2 3( 3 log ) cos ( 3 log ), using (2); , , beingarbitraryconstants.x c x c c c∋

Ex. 2. Solve (x3D3 + 3x2D2 – 2xD + 2) y = 0, where D ! d/dx.
Sol. Let x ! ez (or z ! log x) and D1 ! d/dz, so that xD ! D1, x2D2 ! D1(D1 – 1) and x3D3

! D1(D1 – 1) (D1 – 2). Then the given equation reduces to
                        [D1(D1 – 1) (D1 – 2) + 3D1(D1 – 1) – 2D1 + 2] ! 0

or                     [D1(D1 – 1) (D1 – 2) + 3D1 (D1 – 1) – 2 (D1 – 1)] y ! 0
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.3

or (D1 – 1) [D1(D1 – 2) + 3D1 – 2] y ! 0             or (D1 – 1) (D1
2 + D1 – 2) y ! 0

or (D1 – 1) (D1 – 1) (D1 + 2) y ! 0                 or               (D1 – 1)2 (D1 + 2) y ! 0
Its auxiliary equation is   (D1 – 1)2 (D1 + 2) ! 0          so that D1 ! 1, 1, – 2.
− The general solution is y ! C.F. i.e., y ! (c1 + c2z) ez + c3e–2z

or         y ! (c1 + c2 z) ez + c3 (ez)–2                or y ! (c1 + c2 log x) x + c3 x–2, as x ! ez, z ! log x
Ex. 3. Solve the following differential equations :
(i) x2y2 + y = 3x2 [Delhi Maths (G) 1993]
(ii) xy3 + y2 ! 1/x. [Delhi Maths (G) 1995, 96]
(iii) (x2D2 – 3xD + 4) y = 2x2. [Agra 2005, Lucknow 1992]
(iv) x2D2 – 2y = x2 + (1/x) [Rohilkhand 1993]
Sol. (i) Given        x2y2 + y ! 3x2         or             (x2D2 + 1) y ! 3x2, where D ! d/dx.  ... (1)
Let x ! ez (or z ! log x)                    and      D1 ! d/dz     so that         x2D2 ! D1(D1 – 1).
−     (1) . [D1(D1 – 1) + 1] y ! 3 e2z                   or                   (D1

2 – D1 + 1) ! 3e2z.
Its auxiliary equation is D2

1 – D1 + 1 ! 0 so that D1 ! (1 3) / 2.i/

− C.F.! ez/2 [c1 cos ( 3 / 2)z  + c2 sin ( 3 / 2)z ] ! (ez)1/2 [c1 cos ( 3 / 2)z  + c2 sin ( 3 / 2)z ]
! x1/2 [c1 cos { ( 3 / 2)  log x} + c2 sin { ( 3 / 2) ) log x}], as x ! ez;

c1 and c2 being arbitrary constants.

and                      P.I. ! 2 2 2 2
2 2
1 1

1 13 3 ( ) .
1 2 2 1

z z ze e e x
D D

� � �
& ∋ & ∋

Hence the required general solution is y ! C.F. + P.I.,  i.e.,
                   1/ 2 2

1 2[ cos {( 3 / 2) log } sin {( 3 / 2) log } .y x c x c x x� ∋ ∋
(ii) Given x3 (d3y/dx3) + x2 (d2y/dx2) ! x or (x3D3 + x2D2) y ! x, D ! d/dx ... (1)
Let                 x ! ez (or z ! log x)                 and                 D1 ! d/dz ... (2)

so that x2D2 ! D1(D1 – 1), x3D3 ! D1(D1 – 1) (D1 – 2). Then (1) transforms to
[D1(D1 – 1) (D1 – 2) + D1 (D1 – 1)] y ! ez or (D1

3 – 2D1
2 + D1) y ! ez.

Here the auxiliary equation is           D1
3 – 2D1

2 + D1 ! 0         so that  D1 ! 0, 1, 1.
− C.F. ! c1e0.z + (c2 + c3z) ez ! c1 + (c2 + c3 log x) x, as         ez ! x         and         z ! log x.

P.I. ! 3 2 2 2
1 11 1 1 1 1

1 1 1 1 1, as
2 ( 1) ( 1)

z z z z z ze e e e e dz e
D DD D D D D

� � � �
& ∋ & & 0

                                           !
2

1

1, since
2! !( )

m
z z z

m
z ze e e

mD
1 1�

& 1

                                           ! 2( / 2) (log ) , since and     logzx x x e z x2 � �
− The required solution is y ! c1 + (c2 + c3 log x) x + (x/2) 2  (log x)2,
c1, c2 and c3 being arbitrary constants.

(iii) Given that (x2D2 – 3xD + 4) y ! 2x2.                             ... (1)
Let x ! ez (or z ! log x) and D1 ! d/dz. Then (1) becomes
{D1(D1 – 1) – 3D1 + 4} y ! 2 e2z                    or (D1 – 2)2 y ! 2 e2z

Its auxiliary equation is          (D1 – 2)2 ! 0                   so that D1 ! 2, 2.
− C.F. ! (c1 + c2z) e2z ! (c1 + c2 z) (ez)2 ! (c1 + c2 log x) x2, since x ! ez and z ! log x
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6.4 Homogeneous Linear Equations or Cauchy-Euler Equations

P.I. !
2

2 2 2 2 2 2
2

1 1

1 12 2 ( ) (log ) , as
2! !( 2) ( )

m z
z z z z

m
z z e

e e z e x x e
mD D

1
1� � � �

& & 1

Hence the required solution is                     . . .1,y C F P� ∋

i.e.,    2 2 2
1 2( log ) (log )y c c x x x x� ∋ ∋            or 2 2

1 2[ log (log ) ]y x c c x x� ∋ ∋

(iv) Given       2 2 2 1( 2) .x D y x x&& � ∋ ,               where               D ! d / dx            ...(1)
Let x ! ez (or z ! log x) and D1 ! d/dz Then (1) becomes

2
1 1[ ( 1) 2] z zD D y e e&& & � ∋ or 2 2

1 1( 2) .z zD D y e e&& & � ∋

Its  auxilary equation is   2
1 1 2 0D D& & �                      so that D1 ! 2, –1.

− C.F. ! 2 2 1 2 1
1 2 1 2 1 2( ) ( )z z z zc e c e c e c e c x c x& & &∋ � ∋ � ∋ , as x ! ez,

2 2
2

1 1 1 11

1 1 1 1 1P.I. = ( )
( 2) ( 1) ( 1) ( 2)( 2)

z z z ze e e e
D D D DD D

& &∋ � ∋
& ∋ ∋ && &

2 2

1 1

1 1 1 1 1 1
2 2 1 1 1 2 3 1! 3 1!

z z z zz ze e e e
D D

& &� ∋ � &
& ∋ ∋ & & 3 42 11 log

3
x x x&� ∋ , as x ! ez

− Solution is 2 1 2 1
1 2 1 2(1/3) ( ) log , and being arbitrary constantsy c x c x x x x c c& &� ∋ ∋ 2 ∋ .

Ex. 4. Solve the differential equations

(i) 2 2 2( / ) 2 ( / ) log .x d y dx x dy dx x∋ � [Agra 1994]

(ii) 2 2( 7 13) log .x D xD y x∋ ∋ � [Meerut 1997, 99]

Sol. (i) given 2 2( 2 ) logx D xD y x∋ � ,          where           D ! d/dx ... (1)
Let   x ! ez (or z ! log x  and  D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) + 2D1] y ! z  or (D1

2 + D1) y ! z.
Its auxiliary equation is             D1

2 + D1 ! 0                   so that           D1 ! 0, –1.
− C.F. !  0. 1 1

1 2 1 2 1 2( ) .z z zc e c e c c e c c x& & &∋ � ∋ � ∋ , c1 and c2 being arbitrary constants.

1
1 12

1 1 1 1 11 1

1 1 1 1 1P.I. = (1 ) (1 ...) ( 1)
(1 )

z D z D z z
D D D D DD D

&� � ∋ � & ∋ � &
∋∋

         2 2(1/ 2) (1/ 2) (log ) log , as and log .zz z x x x e z x� 2 & � 2 & � �

− The required solution is y ! c1 + c2x–1 + (1/2) × (log x)2 – log x,
(ii)  Given that (x2D2 + 7xD + 13) y ! log x, D ! d/dx ...(1)
Let     x ! ez (or z ! log x)     and     D1 ! d/dz.  Then, (1) becomes
[D1(D1 – 1) + 7D1 + 13] y ! z                         or (D1

2 + 6D1 + 13) y ! z.
Its auxiliary equation is            D1

2 + 6D1 + 13 ! 0            so that   D1 ! – 3 / 2i.

− C.F. !  3 3
1 2 1 2( cos2 sin 2 ) [ cos(2log ) sin(2log )]ze c z c z x c x c x& &∋ � ∋ ,

where c1 and c2 being arbitrary constants.

2 2
1 1 1 1

1 1P.I. = 
6 13 13[1 (6 /13) (1/13) ]

z z
D D D D

�
∋ ∋ ∋ ∋

1
2

1 1
1 6 11

13 13 13
D D

&
5 6∃ %� ∋ ∋( )7 8∗ +9 :

z

2
1 1

1 6 11 ...
13 13 13

D D z5 6∃ %� & ∋ ∋( )7 8∗ +9 :

1 6 1 6 1log (13 log 6)
13 13 13 13 169

z x x∃ % ∃ %� & � & � &( ) ( )
∗ + ∗ +

− Required solution is 3
1 2[ cos (2 log ) sin (2 log )] (1/169) (13 log 6)y x c x c x x&� ∋ ∋ 2 &
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.5

Ex. 5. Solve x3 (d3y/dx3) + 3x2 (d2y/dx2) + x (dy/dx) + y = log x + x.
[Agra 1995, Lucknow 1996, Meerut 1995, Rohilkhand 1997]

Sol. Given  (x3D3 + 3x2D2 + xD + 1) y ! log x + x, where            D ! d/dx.           ... (1)
Let x ! ez (or z ! log x) and D1 " d/dz. Then (1) becomes

[D1(D1 – 1) (D1 – 2) + 3D1(D1 – 1) + D1 + 1] y ! z + ez or  (D1
3 + 1) y ! ez + z.

Its auxiliary equation is       D1
3 + 1 ! 0                  or  (D1 + 1) (D1

2 – D1 + 1) ! 0

so that              D1 ! – 1,   (1 3) / 2i/    i.e., D1 ! – 1, (1/2) ( 3 / 2).i/

−C.F. ! c1 e–z + ez/2 [c2 cos {( 3 / 2) }z  + c3 sin {( 3 / 2) }]z

! c1x–1 + x1/2 [c2 cos {( 3 / 2)  log x} + c3 sin {( 3 / 2) log x}], as x ! ez

where c1 and c2 being arbitrary constatns

P.I. ! 3 1
13 3 3 3

1 1 1

1 1 1 1( ) (1 )
1 1 1 1 1

z z ze z e z e D z
D D D

&∋ � ∋ � ∋ ∋
∋ ∋ ∋ ∋

! (1/2) 2 ez + (1 – D1
3 + ...) z ! (1/2) 2 ez + z ! x/2 + log x

Hence the required general solution is y ! C.F. + P.I. i.e.,
1 1/2

1 2 3[ cos{( 3/2) log } sin{( 3/2) log }] / 2 logy c x x c x c x x x&� ∋ ∋ ∋ ∋

Ex. 6. Solve the following differential equations :
(i) (x2D2 – 3xD + 5) y ! sin (log x).

(ii) 3x2y2 – 5xy1 + 5y = sin (log x). [S.V. (Univ.) A.P. (1997)]
(iii) x3(d3y/dx3) + 3x2 (d2y/dx2) + x (dy/dx) + 8y = 65 cos (log x).
(iv) x4(d4y/dx4) + 6x3(d3y/dx3) + 4x2(d2y/dx2) – 2x (dy/dx) – 4y =  2 cos (log x).
Sol. (i) Given         (x2D2 – 3xD + 5) ! sin (log x),          where         D ! d/dx ... (1)
Let x ! ez (or z ! log x) and D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) – 3D1 + 5] y ! sin z or                         (D1

2 – 4D1 + 5) y ! sin z.
Its auxiliary equation is             D1

2 – 4D1 + 5 ! 0             so that D1 ! 2 ± i.
− C.F. ! e2z (c1cos z + c2 sin z) ! x2 [c1 cos (log x) + c2 sin (log x)],

where c1 and c2 are arbitrary constants

P.I. ! 2 2
11 1 1

1 1 1 1sin sin sin
4 14 5 1 4 5

z z z
DD D D

� �
&& ∋ & & ∋

  ! 1 2
1

1 1(1 ) sin
4 1

D z
D

∋
&

! 1 12
1 1 1(1 ) sin (sin sin )
4 81 ( 1 )

D z z D z∋ � ∋
& &

!  (1/8) 2 [sin z + cos z] ! (1/8) × [sin (log x) + cos (log x)], as z ! log x
− Solution is y ! x2[c1 cos (log x) + c2 sin (log x)] + (1/8) × [sin (log x) + cos (log x)].
(ii) Ans. y ! c1x + c2 x5/3 + (1/16) × [sin (log x) + cos (log x)].
(iii) Ans. y ! c1x–2 + x [c2 cos( 3 log )x + c3 sin( 3 log )]x  + 8 cos (log x) – sin (log x).
(iv) Given (x4D4 + 6x3D3 + 4x2D2 – 2xD – 4) y ! 2 cos (log x), D ! d/dx ... (1)

Let x ! ez (or z ! log x) and D1 ! d/dz. Then (1) becomes
[D1(D1 – 1)(D1 – 2)(D1 – 3) + 6D1(D1 – 1)(D1 – 2) + 4D1(D1 – 1)– 2D1 – 4] y ! 2 cos z

or {(D1
3 – 3D1

2 + 2D1)(D1 – 3) + 6(D1
3 – 3D1

2 + 2D1) + 4D1
2 – 6D1 – 4} y ! 2 cos z

or [D1
4 + 11D1

2 – 6D1 + 6(D1
3 – 3D1

2 + 2D1) + 4D1
2 – 6D1 – 4] y ! 2 cos z

or            (D1
4 – 3D1

2 – 4) y ! 2 cos z
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6.6 Homogeneous Linear Equations or Cauchy-Euler Equations

Its auxiliary equation is    D1
4 – 3D1

2 – 4 ! 0              so that D1 ! 2, – 2, 0 ± i.
− C.F. ! c1 e2z + c2 e–2z + e0.z (c3 cos z + c4 sin z)

 ! c1x2 + c2x–2 + c3 cos (log x) + c4 sin (log x), as x ! ez, z ! log x,
where c1, c2, c3 and c4 are arbitrary constants.

P.I. ! 4 2 2 2 2 2
1 1 1 1 1

1 1 1 12cos 2 cos 2 cos
3 4 ( 1)( 4) 1 1 4

z z z
D D D D D

� �
& & ∋ & ∋ & &

!
2
1

log sin (log )2 1 2cos sin ,
5 5 (2 1) 51

x xzz z as
D

& � & � &
2∋

2 2
1

1 cos sin
2
zaz az
aD a

�
∋

− Solution is y ! c1x2 + c2 x–2 + c3 cos (log x) + c4 sin (log x) – (1/5) × log x sin (log x).
Ex. 7. Solve the following differential equations :
(i) x2(d2y/dx2) + 5x (dy/dx) + 4y = x log x. [Allahabad 1994]
(ii) {x2D2 – (2m – 1) xD + (m2 + n2)} y = n2 xm log x, where D " d/dx
Sol. (i) Given                   (x2D2 + 5xD + 4) y ! x log x,         where     D " d/dx     ... (1)
Let x ! ez (or z ! log x) and D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) + 5D1 + 4] y ! zez or  (D1 + 2)2 y ! zez.
Its auxiliary equation is               (D1 + 2)2 ! 0               so that               D1 ! – 2, – 2.

− C.F. ! (c1 + c2z) e–2z ! (c1 + c2z) (ez)–2 ! (c1 + c2 log x) x–2,
where c1and  c2 are arbitrary constants.

P.I.   ! 2 2 2
1 1 1

1 1 1
( 2) [( 1) 2] (3 )

z z zze e z e z
D D D

� �
∋ ∋ ∋ ∋

2
1

2
1

1 1
9 9 3(1 / 3)

z z De ez
D

&
∃ %� � ∋( )

∋ ∗ +
z

! 12D1 ...
9 3

ze z
∃ %

& ∋( )( )
∗ +

! 1
2 2 (3 2) (3 log 2).

9 3 9 3 27 27

z z ze e e x
z D z z z x∃ % ∃ %& � & � & � &( ) ( )

∗ + ∗ +

Hence the solution is              y ! (c1 + c2 log x) x–2 + (x/27) × (3 log x – 2)
(ii) Let x ! ez or z ! log x and D1 ! d/dz. So the given equation becomes

[D1(D1 – 1) – (2m – 1) D1 + (m2 + n2)] y ! n2 emz z   or   [D1
2 – 2 mD1 + (m2 + n2)] y ! n2 emz z.

Its auxilary equations is    D1
2 – 2 mD1 + (m2 + n2) ! 0      so that  D1 ! m ± in.

− C.F. ! emz [c1 cos nz + c2 sin nz] ! xm [c1 cos (n log x) + c2 sin (n log x)], as x ! ez

where c1 and c2 are arbitrary constants

P.I.   ! 2 2
2 2 2 2 2 2
1 1 1 1

1 1
2 ( ) ( ) 2 ( )

mz mzn e z n e z
D mD m n D m m D m m n

�
& ∋ ∋ ∋ & ∋ ∋ ∋

! 2
2 2
1

1mzn e z
D n∋

! 2 2 2 1
12 2 2

1

1 {1 ( / )}
(1 / )

mz mzn e z e D n z
n D n

&� ∋
∋

! 2 2
1{1 ( / ) ...} ( ) log , asmz mz z m m ze D n z e z e z x x x e& ∋ � � � �

− Solution is y ! C.F. + P.I. !  xm [c1 cos (n log x) + c2 sin (n log x)] + xm log x.
Ex. 8. Solve (x2D2 – xD + 4) y = cos (log x) + x sin (log x). [Delhi Maths (H) 2009]
Sol. Let x ! ez or z ! log x and D1 ! d/dz. So given equation gives

[D1(D1 – 1) – D1 + 4]y ! cos z + ezsin z              or              (D1
2 – 2D1 + 4) y ! cos z + ezsin z.

Its auxiliary equation is              D1
2 – 2D1 + 4 ! 0              so that              D1 ! 1 3.i/
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.7

− C.F. ! 1 2 1 2[ cos( 3) sin( 3) [ cos( 3 log ) sin( 3 log )]ze c z c z x c x c x∋ � ∋ , as x ! ez

P.I. corresponding to cos z

! 2 2
11 1 1

1 1 1cos cos cos
3 22 4 1 2 4

z z z
DD D D

� �
&& ∋ & & ∋

! 1 1 2
1 1 1

1 1(3 2 ) cos (3 2 ) cos
(3 2 ) (3 2 ) 9 4

D z D z
D D D

∋ � ∋
∋ & &

! 1 12
1 1

(3 2 ) cos (3 cos 2 cos )
139 4( 1 )

D z z D z∋ � ∋
& &

! (1/13) × (3 cos z – 2 sin z) ! (1/13) × [3 cos (log x) – 2 sin (log x)], as x ! ez

P.I. corresponding to ez sin z

! 2 2
1 1 1 1

1 1sin sin
2 4 ( 1) 2 ( 1) 4

z ze z e z
D D D D

�
& ∋ ∋ & ∋ ∋

! 2 2
1

1 1 1sin sin sin (log ), as and log
23 1 3

z z ze z e z x x x e z x
D

� � � �
∋ & ∋

− Solution is y ! 1 2[ cos( 3 log ) sin ( 3 log )]x c x c x∋

 + (1/13) 2 [3 cos (log x) – 2 sin (log x)] + (x/2) 2  sin (log x).
Ex. 9. Solve x2 (d2y/dx2) – 2x (dy/dx) + 2y = x + x2 log x + x3.
Sol. Given (x2D2 – 2xD + 2) y ! x + x2 log x + x3, where D ! d/dx ... (1)
Let x ! ez   or   z ! log x and D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) – 2D1 + 2] y ! ez + ze2z + e3z           or           (D1

2 – 3D1 + 2) y ! ez + ze2z + e3z.
Here auxiliary equation is              D1

2 – 3D1 + 2 ! 0                so that              D1 ! 1, 2.
− C.F. ! c1 ez + c2 e2z ! c1 ez + c2 (ez)2 ! c1x + c2x2, c1, c2 being arbitrary constants
P.I. corresponding to  (ez + e3z)

! 3 3
2

1 1 1 11 1

1 1 1( )
( 1)( 2) ( 1)( 2)3 2

z z z ze e e e
D D D DD D

∋ � ∋
& & & && ∋

! 3 3 3

1 1

1 1 1 1 1 1 ( )
11 2 (3 1)(3 2) ( 1) 2 1! 2

z z z z z zz
e e e e e e

D D
∋ � & ∋ � & ∋

& & & & &

! – z ez – (1/2) 2 (ez)3 ! –x log x + (x3/2), as x ! ez and z ! log x
P.I. corresponding to ze2z

! 2 2 2
2 2 2

1 1 1 1 1 1

1 1 1
3 2 ( 2) 3 (( 2) 2

z z zze e z e z
D D D D D D

� �
& ∋ ∋ & ∋ ∋ ∋

! 2 1 2 2 2 2
1 1

1 1 1

1 1 1(1 ) (1 ......) ( 1) ( ) {( / 2) }z z z ze D z e D z e z e z z
D D D

&∋ � & ∋ � & � &

! x2 [(1/2) 2  (log x)2 – log x] ! (x2/2)2 [(log x)2 – 2 log x]
− Solution is y ! c1x + c2x2 – x log x + x3/2 + (x2 / 2) 2 [(log x)2 – 2 log x].

Ex. 10. Solve (x4D3 + 2x3D2 – x2D + x) y = 1. [Purvanchal 1996, Agra 1994]
Sol. Re-writing       (x3D3 + 2x2D2 – xD + 1) y ! 1/x.,           where          D ! d/dx ... (1)
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6.8 Homogeneous Linear Equations or Cauchy-Euler Equations

Let x ! ez so that z ! log x and let D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) (D1 – 2) + 2D1 (D1 – 1) – 2D1 + 1] y ! e– z     or (D1

3 – D1
2 – D1 + 1) y ! e– z...(2)

Here auxiliary equation is D1
3 – D1

2 – D1 + 1 ! 0         gives          D1 ! 1, 1, – 1.
− C.F. ! (c1 + c2 z) ez + c3 e–z ! (c1 + c2 log x) x + c3 x–1, c1, c2 being arbitrary constants

P.I. ! 2 2
1 11 1

1 1 1 1 1 1
( 1) 4 1( 1) ( 1) ( 1 1)

z z ze e e
D DD D

& & &� � #
∋ ∋& ∋ & &

! 1

1

1 1 1 11 log ,
4 1 1 4 4

z ze e z x x
D

& & &# � # �
& ∋

− Solution is y ! (c1 + c2 log x) x + c3 x–1 + (1/4) 2 x–1 log x.
Ex. 11. Solve (x2D2 – xD + 2) y = x log x. [Delhi Maths (G) 2002; Bangalore 1993;

Kanpur 1997, 98; Lucknow 1997 ; Utkal 2003]
Sol. Let        x ! ez        so that        z ! log x        and let D1 " d/dz.... (1)
Then the given equation becomes [D1(D1 – 1) – D1 + 2] y ! zez  or  (D1

2 – 2D1 + 2) y ! zez,
Its auxiliary equation is             D1

2 – 2D1 + 2 ! 0. giving D1 ! 1 ± i.
− C.F. ! ez (c1 cos z + c2 sin z) ! x [c1 cos (log x) + c2 sin (log x)], using (1)

where c1 and c2 are arbitrary constants.

P.I. ! 2 2
1 1 1

1 1
2 2 ( 1) 2 ( 1) 2

z zze e z
D D D D

�
& ∋ ∋ & ∋ ∋

! 2
1

1
1

ze z
D

#
∋

2 1
1(1 ) (1 ...)z ze D z e z&� ∋ # � & ! ez # z ! x log x, using (1)

− Required solution is             y ! x [c1 cos (log x) + c2 sin (log x)] + x log x.

Ex. 12. Solve  
2

2 2
12 log xd y 1 dy

x dxdx x
∋ # � . [Delhi Maths (G) 1997]

Sol. Given (x2D2 + xD) y ! 12 log x, where D ! d/dx. ... (1)
Let           x ! ez          i.e.           z ! log x           and           D1 " d/dz. Then (1) becomes

[D1(D1 – 1) + D1] y ! 12 z        or        D1
2 y ! 12 z.        A.E. D1

2 ! 0        gives        D1 ! 0, 0
C.F. ! c1 + c2z ! c1 + c2 log x, c1and c2 being arbitrary constants.

and P.I. !
2 3

3
2 2

11 1

1 1 112 12 12 12 2(log ) .
2 6
z z

z z x
DD D

� � # � 2 �

− Required Solution is y ! c1 + c2 log x + 2 (log x)3, c1, c2 being arbitrary constants.
Ex. 13. Solve x2D2y – 3x Dy + 5y = x2 sin log x.

[Delhi Maths (G) 2001; Delhi Maths (Hons) 2007]
Sol. Given           (x2D2 – 3xD + 5) y ! x2 sin log x,            where        D ! d/dx ... (1)
Let       x ! ez       so that       z ! log x       and       let D1 ! d/dz ... (2)
Then                x D ! D1                and                x2D2 ! D1 (D1 – 1) ... (3)
Using (2) and (3), (1) reduces to
[D1(D1 – 1) – 3D1 + 5] y ! e2z sin z                 or (D1

2 – 4D1 + 5) y ! e2z sin z.... (4)
Auxiliary equation for (4) is     D1

2 – 4D1 + 5 ! 0, giving D1 ! (4 16 20) / 2/ & ! 2 ± i.
− C.F. ! e2z (c1 cos z + c2 sin z) ! x2 (c1 cos log x + c2 sin log x), by (2)
where c1 and c2 are arbitrary constants.
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.9

P.I. !  2 2 2
2 2 2
1 1 1 1 1

1 1 1sin sin sin
4 5 ( 2) 4( 2) 5 1

z z ze z e z e z
D D D D D

� �
& ∋ ∋ & ∋ ∋ ∋

!
2

2
2 2

1

1cos log cos log , by (2); as sin cos
2 2 2

z z x ze z x x az az
aD a

∃ %& � & � &( )
∗ + ∋

− Required solution is      y ! x2 (c1 cos log x + c2 sin log x) – (x2/2) × log x cos log x.
Ex. 14(a). Solve x3 (d3y/dx3) + 2x2 (d2y/dx2) + 2y = 10(x + 1/x). [Agra 2006, I.A.S. 1999,

 Delhi Maths (G) 1996, Delhi Maths (H) 1997, Rohilkhand 1997, Kanpur 1995]
Sol. Given           (x3D3 + 2 x2D2 + 2) y ! 10 (x + x–1),     where       D ! d/dx. ... (1)
Let x ! ez so that x ! log x and let D1 ! d/dx. Then (1) becomes

[D1(D1 – 1) (D1 – 2) + 2D1(D1 – 1) + 2] y ! 10 (ez + e–z)
or (D1

3 – D1
2 + 2) y ! 10 ez + 10 e–z. ... (2)

A.E. of (2) is D1
3 – D1

2 + 2 ! 0 or (D1 + 1)(D1
2 – 2D1 + 2) ! 0 giving D1 ! – 1, 1 ± i.

C.F. ! c1e–z + ez (c1 cos z + c2 sin z) ! c1x–1 + x (c2 cos log x + c3 sin log x)

P.I. corresponding to 10 ez  ! 2
1 1 1

1 110 10 5
2(1 2 2)( 1) ( 2 2)

z ze e x
D D D

� �
& ∋∋ & ∋

and P.I. corresponding to 10 e–z ! 2
11 1 1

1 1 110 10
1 1 2 2( 1)( 2 2)

z ze e
DD D D

& &� #
∋ ∋ ∋∋ & ∋

! 1

1 1 1

1 1 12 1 2 1 2 1 2 2 log .
1 1 1

z z z ze e e e z x x
D D D

& & & & &# � # � # � �
∋ & ∋

− Required solution is        y ! c1x–1 + x (c2 cos log x + c3 sin log x) + 5x + 2x–1 log x.

Ex. 14(b). Solve 2 3 3 2 2( / ) 2 ( / ) 2( / )x d y dx x d y dx y x∋ ∋ ! 10(1 + 1/x2). [I.A.S. 2006]
Sol. Multiplying both sides by x, the given equation becomes

                            3 3 3 2 2 2( / ) 2 ( / ) 2 10( 1/ )x d y dx x d y dx y x x∋ ∋ � ∋
which is same as given in Ex. 14(a). Now, proceed as in Ex. 14(a).

Ex. 15. (x4D4 + 6x3D3 + 9x2D2 + 3xD + 1) y = (1 + log x)2.
Sol. Given (x4D4 + 6x3D3 + 9x2D2 + 3xD + 1) y ! (1 + log x)2, where D ! d/dx ... (1)
Let           x ! ez           so that           z ! log x           and           let D1 ! d/dz. ...(2)
Then (1) becomes
[D1(D1 – 1) (D1 – 2) (D1 – 3) + 6D1(D1 – 1) (D1 – 2) + 9D1 (D1 – 1)+ 3D1 + 1] y ! (1 + z)2

or                            (D1
4 + 2D1

2 + 1) y ! (1 + z)2, on simplification. .. (3)
− Auxiliary equation for (3) is      D1

4 + 2D1
2 + 1 ! 0  or  (D1

2 + 1)2 ! 0   so D1 ! 0 ± i (twice).
− C.F. ! e0.z [(c1 + c1z) cos z + (c3 + c4z) sin z]

    ! (c1 + c2 log x) cos log x + (c3 + c4 log x) sin log x, using (2)
where c1, c2, c3 and c4 are arbitrary constant.

P.I. ! 2 2 2 2 2 2
1 12 2

1

1 (1 ) (1 ) (1 ) (1 2 ...)(1 2 )
( 1)

z D z D z z
D

&∋ � ∋ ∋ � & ∋ ∋ ∋
∋

! (1 + 2z + z2) – 2D1
2 (1 + 2z + z2) ! 1 + 2z + z2 – 4 ! z2 + 2z – 3 ! (log x)2 + 2 log x – 3,

− Solution is         y ! (c1 + c2log x) cos log x + (c3 + c4 log x)sin log x + (log x)2 + 2 log x – 3.
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6.10 Homogeneous Linear Equations or Cauchy-Euler Equations

Ex. 16. Solve (x2D2 + xD + 1) y = log x. sin log x.
Sol. Let x ! ez or z ! log x and D1 ! d/dz. Given equation becomes
[D1(D1 – 1) + D1 + 1] y ! z sin z   or                         (D1

2 + 1) y ! z sin z.
Its auxiliary equation is                   D1

2 + 1 ! 0                   so that                   D1 ! ± i.

P.I. ! 2 2
1 1

1 1sin I.P. of ,
1 1

izz z ze
D D

�
∋ ∋

by Euler’s theorem.

[Here I.P. stands for imaginary part.]

! 2 2
1 1 1

1 1I .P. of I .P. of
( ) 1 2

iz ize z e z
D i D D i

�
∋ ∋ ∋

!
1 1

1I .P . of
2 (1 / 2 )

ize z
iD D i∋

!
1

1

1

1I .P. of 1
2 2

ize D z
i D i

&
∃ %∋( )
∗ +

! 1

1 1

1 1 1I.P. of 1 ... I .P. of
2 2 2 2

iz izDe e
z z

i D i i D i
∃ % ∃ %& ∋ � &( ) ( )
∗ + ∗ +

! I.P. of (– i/2) eiz {(z2/2) + (z/2) i} ! I.P. of (1/4) 2 (cos z + i sin z)(– iz2 + z)
! (1/4) 2 (z sin z – z2 cos z) ! (1/4) × log x sin (log x) – (1/4) 2 (log x)2 cos (log x).

− Solution is      y ! c1cos log x + c2sin log x + (1/4) 2 log x sin(log x) – (1/4) 2 (log x)2cos (log x)

Ex. 17. Solve 
2

2
2

log x sinlog x 1d y dy
x 3x y

dx xdx
∋

& ∋ � . [Meerut 1996, Agra 1993]

Sol. Given (x2D2 – 3xD + 1) y ! x–1[1 + log x sin log x], where D ! d/dx ... (1)
Let x ! ez so that z ! log x and let D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) – 3D1 + 1] y ! e–z(1 + z sin z) or (D1

2– 4D1 + 1) y ! e–z + e–z z sin z.

Here auxiliary equation for (2) is          D1
2 – 4D1 + 1 ! 0 so that D1 ! 2 3./

C.F. ! e2z [c1 cosh ( 3 )z  + c2 sinh ( 3 )z ] ! 2
1 2[ cosh( 3 log ) sinh ( 3 log )],x c x c x∋

where c1 and c2 are arbitrary constants.

P.I. corresponding to e–z ! 1
2
1 1

1 1 1
.

1 4 1 64 1
z ze e x

D D
& & &� �

∋ ∋& ∋

and P.I. corresponding to e–z z sin z

! 2 2
1 1 1 1

1 1( sin ) sin
4 1 ( 1) 4( 1) 1

z ze z z e z z
D D D D

& &�
& ∋ & & & ∋

! 12 2 2 2
1 1 1 1 1 1

1 1 1sin sin (2 6) sin
6 6 6 6 ( 6 6)

z ze z z e z z D z
D D D D D D

& & 5 6� & &7 8& ∋ & ∋ & ∋9 :
[Using result of theorem of Art. 5.22, Chapter 5]

! 1 2
1 1

1 1sin (2 6) sin
1 6 6 ( 1 6 6)

ze z z D z
D D

& 5 6& &7 8& & ∋ & & ∋9 :

! 1 2
1 1

1 1sin (2 6) sin
5 6 (5 6 )

ze z z D z
D D

& 5 6& &7 8& &9 :

! 1 12 2
1 1 1

1 1(5 6 ) sin (2 6) sin
25 36 25 60 36

ze z D z D z
D D D

& 5 6∋ & &7 8& & ∋9 :

! 1 1
1

1 1(5 6 ) sin (2 6) sin
25 36 25 60 36

ze z D z D z
D

& 5 6∋ & &7 8∋ & &9 :
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.11

! 1 1
1

1(5 6 ) sin (2 6) sin
61 11 60

z ze D z D z
D

& 5 6∋ ∋ &7 8∋9 :

! 1 1 2
1

1(5 sin 6 cos ) (2 6)(60 11) sin
61 3600 121

z ze z z D D z
D

& 5 6∋ ∋ & &7 8&9 :

!
2
1 1120 382 66(5 sin 6 cos ) sin

61 3600 121
z z D De z z z& 5 6& ∋

∋ ∋7 8& &9 :

!
120 ( sin ) 382 cos 66 sin(5 sin 6 cos )

61 3721
z z z zze z z& & & ∋5 6∋ ∋7 8&9 :

!
log 54 sin log 382 cos log1

(5 sin log 6 cos log )
61 3721

x x x
x x

x
∋5 6∋ ∋7 89 :

Solution is   2
1 2[ cosh( 3 log ) sinh( 3 log )] 1/(6 )y x c x c x x� ∋ ∋

54 sin log 382 cos log1 log
(5 sin log 6 cos log )

61 3721
x xx

x x
x

∋5 6∋ ∋ ∋7 89 :

Ex. 18. Reduce   2x2y (d2y/dx2) + 4y2 = x2 (dy/dx)2 + 2xy (dy/dx) to homogeneous form
by making the substitution y =  z2 and hence solve it.

Sol. Given               2x2y(d2y/dx2) + 4y2 ! x2(dy/dx)2 + 2xy(dy/dx) ... (1)
and                                              y ! z2. ... (2)

From (2),     
2 2

2 2
2 and 2 2 .dy d ydz dz d zz z

dx dx dxdx dx
∃ %� � ∋( )
∗ +

... (3)

Using (2) and (3), (1) reduces to
2 22

2 2 4 2 2 2
22 2 2 4 4 2 2dz d z dz dzx z z z x z xz z

dx dx dxdx

; <= =∃ % ∃ %∋ ∋ � # ∋ #> ( ) ? ( )
∗ + ∗ += =≅ Α

or x2(d2z/dx2) – x (dz/dx) + z ! 0                      or (x2D2 – xD + 1) z ! 0... (4)
Let      x ! et    so that    t ! log x    and    let D1 ! d/dt.    Also, here    D ! d/dx. ... (5)
Then    xD ! D1 and x2D2 ! D1(D1 – 1).... (6)
Using (5) and (6), (4) reduces to [D1(D1 – 1) – D1 + 1] z ! 0 or (D1

2 – 2D1 + 1) z ! 0... (7)
The auxiliary equation of (7) is               (D1 – 1)2 ! 0,             giving  D1 ! 1, 1.
− The solution of (4) is                 z ! (c1 + c2t) et ! (c1 + c2 log x) x, by (5)
From (2),   y ! z2 ! (c1 + c2 log x)2 x2, giving the required solution,

where c1 and c2 are arbitrary constants.
Ex. 19. Solve  (d3y/dx3) – (4/x) 2  (d2y/dx2) + (5/x2) 2 (dy/dx) – (2y/x3) = 1

[Delhi Maths (Prog) 2007), Delhi Maths 2000, Delhi Maths (G) 2000]
Sol. Re-writing, the given equation is x3 (d3y/dx3) – 4x2 (d2y/dx2) + 5x (dy/dx) – 2y ! x3

or            (x3D3 – 4x2D2 + 5xD – 2) y ! x3,           where           D ! d/dx ... (1)
Let                 x ! ez, log x ! z        and                 D1 ! d/dz ... (2)
Then         xD ! D1,   x2D2 ! D1(D1 – 1)         and  x3D3 ! D1(D1 – 1) (D1 – 2).
− (1) gives               {D1(D1 – 1) (D1 – 2) – 4D1 (D1 – 1) + 5D1 – 2}y ! e3z

or                            (D1
3 – 7D1

2 + 11D1 – 2) y ! e3z ... (3)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



6.12 Homogeneous Linear Equations or Cauchy-Euler Equations

The auxiliary equation for (3) is D1
3 – 7D1

2 + 11D1 – 2 ! 0

or           (D1 – 2) (D1
2 – 5D1 + 1) ! 0                      giving         D1 ! 2, (5 21) / 2/

C.F. ! 2 (5 21) / 2 (5 21) / 2
1 2 3

z z zC e C e C e∋ &∋ ∋ , c1 and c2 being arbitrary constants.

or                          C.F.  ! 2 (5 21) /2 (5 21) / 2
1 2 3 , using (2)C x C x C x∋ &∋ ∋

P.I. ! 3 3 3
3 2 3 2
1 1 1

1 1 1
57 11 2 3 (7 3 ) (11 3) 2

z ze e x
D D D

� � &
& ∋ & & 2 ∋ 2 &

The required solution is 2 (5 21) / 2 (5 21) / 2 3
1 2 / 5.y C x C x x x∋ &� ∋ ∋ &

Ex. 20. Solve   x3 (d3y/dx3) + 2x (dy/dx) – 2y = x2 log x + 3x.
[Delhi Maths (H) 2001; Delhi Maths (G) 2005; Delhi B.Sc. (Prog) II 2011]

Sol. Re-writing, the given equation is (x3D3 + 2xD – 2) y ! x2 log x + 3x, D ! d/dx. ... (1)
Let                  x ! ez,             log x ! z             and             D1 ! d/dz ... (2)
Then xD ! D1   and   x3D3 ! D1 (D1 – 1) (D1 – 2) and so (1) becomes

{D1(D1 – 1)(D1 – 2) + 2D1 – 2} y ! ze2z + 3ez          or (D1
3 – 3D1

2 + 4D1 – 2) y ! ze2z + 3ez

Its auxiliary equation is                   D1
3 – 3D1

2 + 4D1 – 2 ! 0,                  giving
(D1 – 1) (D1

2 – 2D1 + 2) ! 0 so that D1 ! 1, 1 ± i
               − C.F. ! C1ez + ez (C2 cos z + C3 sin z) ! x (C1 + C2 cos log x + C3 sin log x),
where C1, C2 and C3 are arbitrary constants.

P.I. corresponding to ze2z

! 2 2
3 2 3 2
1 1 1 1 1 1

1 1
3 4 2 ( 2) 3( 2) 4( 2) 2

z zze e z
D D D D D D

�
& ∋ & ∋ & ∋ ∋ ∋ &

!
13 22

2 1 1 1
3 2
1 1

3 41 1
2 23 4 2

z
z D D De

e z z
D D D

&
5 6∋ ∋

� ∋7 89 :∋ ∋ ∋

! (e2z / 2) {1 – (1/2) × (D1
3 + 3 D1

2 + 4D1) + ...) z ! (e2z / 2) {z – (1/2) × 4} ! (x2 / 2) (log x – 2)
P.I. corresponding to 3 ez

! 2 2
11 1 1

1 1 13 3 3
1 1!( 1) ( 2 2) 1 2 1 2

z z zz
e e e

DD D D
� �

&& & ∋ & # ∋
! 3zez ! 3 x log x

− Solution is y ! x (C1 + C2 cos log x + C2 sin log x) + (x2/2) (log x – 2) + 3x log x.
Ex. 21. Find the values of Β for which all solutions of x2 (d2y/dx2) – 3x (dy/dx) – Β y = 0

tend to zero x Χ ∆.       [I.A.S. 2002]
Sol. Given           (x2D2 – 3xD + Β) y ! 0,           where           D ! d/dx. ... (1)
Let          x ! ez            so that          z ! log x.         Also let     D1 ! d/dz. ... (2)
Then xD ! D1 and x2D2 ! D1 (D1 – 1) and so (1) reduces to
{D1(D1 – 1) + 3D1 – 1} y ! 0 or (D1

2 + 2D1 – Β) y ! 0 ... (3)
Its auxiliary equations is   D1

2 + 2D1 – Β ! 0,   giving
       D1 ! {–2 ± (4 + 4Β)1/2}/2 ! – 1 ± (1 + Β)1/2, where Β Ε – 1. ... (4)
Hence the required general solution is given by

1/ 2 1/2[1 (1 ) ] {1 (1 ) }
1 2

z zy C e C e& & ∋Β & ∋ ∋Β� ∋
1 / 2 1 / 2[1 (1 ) ] {1 (1 ) }

1 2 , using (2)C x C x& & ∋ Β & ∋ ∋ Β! ∋ ... (5)
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.13

Since all solutions (4) must tend to zero as x Χ ∆, Β must be chosen to satisfy the following
condition          1 – (1 + Β)1/2 > 0         or         (1 + Β)1/2 < 1       so that         Β < 0     ... (6)

(4) and (6)   .   – 1 Φ Β < 0, which are the required values of Β.

Exercise 6(A)

Solve the following differential equations, taking D ! d/dx
1. (x2D2 – 4xD + 6) y ! x4.   [Meerut 1998] Ans. y ! c1x2 + c2x3 + x4/2
2. (x2D2 + xD – 1) y ! xm,   [G.N.D.U. Amritser 2010] Ans. y ! c1x + c2x–1 + {1/ (m2 – 1)} xm

3. x2 (d2y / dx2) + 2x (dy/dx) – 20 y ! (x + 1)2. [Delhi Maths (Prog) 2007; [Delhi Maths (G) 2000]
Ans. y ! c1x4 + c2 x–5 – (x2/14) – (x/9) – (1/20)

4. (x3D3 – x2D2 + 2xD – 2) y ! x3 + 3x Ans. y ! x (c1 + c2 log x) + c3x2 + (x3/4) – (3x/2) × (log x)2

5. x2 (d2y/dx2) + 2 (dy/dx) ! 6 x   [Kanpur 1997] Ans. y ! c1 + c2 x–1 + x2

6. (x2D2 + xD – 4) y ! x2 [I.A.S. 1992 ; Kanpur 1995] Ans. y ! c1x2 + c2 x–2 + (x2/4) × log x
7. (a) (x2D2 + 7xD + 5) y ! x5. Ans. y ! c1x–1 + c2x–5 + (x5/60)

(b) 2x2 (d 2y/dx2) + 3x (dy/dx)  – 3y = x3 [I.A.S. 2007] Ans. y ! c1x + c2x–3/2 + (x3/8)
8. (x2D2 – 2xD – 4) y ! x4   [Guwahati 2007] Ans. y ! c1x4 + c2x–1 + (x4/5) × log x
9. x3 (d3y/dx3) + 2x2 (d2y/dx2) + 3x (dy/dx) – 3y ! x2 + x [Agra 1995]

Ans. 2
1 2 3cos( 3 log ) sin( 3 log ) ( / 7) ( / 4) logy c x c x c x x x x� ∋ ∋ ∋ ∋ 2

10. x2 (d2y/dx2) – x (dy/dx) + y ! 2 log x [Agra 1995, Osmania 2005]
Ans. y ! x (c1 + c2 log x) + 2 log x + 4

11. (x2D2 – xD + 3) y ! x2 log x [Gulberga 2005; Guwahati 1996; Kanpur  2006, 2007
 Guwahati 2007; Garhwal 2010; Lucknow 1998; Madras 2005; Meerut 1994; Rohilkhand 1996;]

Ans. 2
1 2{ cos( 2 log ) sin ( 2 log } ( / 9)(3log 2)y x c x c x x x� ∋ ∋ &

12. d2y/dx2 – (6/x2) y ! x log x.   [Delhi 2008] Ans. y ! c1x–2 + c2x–3 + (x2/50) {5 (log x)2 – 2 log x}
13. (a) (x3D3 + 3x2D2 + xD + 1) y ! log x

Ans. 1 1/2
1 2 3[ cos{( 3/2)log } sin{( 3/2) log }] logy c x x c x c x x&� ∋ ∋ ∋

(b) (x3D3 + 3x2D2 + xD + 1) y ! x log x [I.A.S. 1996]

Ans. 1 1/2
1 2 3[ cos{( 3/2)log )} sin{( 3/2)log }] ( /4) (2 log 3)y c x x c x c x x x&� ∋ ∋ ∋ 2 &

14. (x3D3 – 3x2D2 + 6 xD – 6) y ! (log x)2

Ans. y ! c1x + c2x2 + c3x3 – (1/6) {(log x)2 – (11/3) log x + (85/18)}
15. (x2D2 – xD – 3) y ! x2 (log x)2. Ans. y ! c1x3 + c2x–1 – (x3/3) {(log x)2 + (4/3) log x + (14/9)}
16. x2 (d2y/dx2) + x (dy/dx) – y ! x8. Ans. y ! c1x + c2x–1 + (x8/63)
17. (x2D2 + xD – 1) y ! 4 Ans. y ! c1x + c2x–1 – 4
18. (x2D2 – 2xD + 2) y ! 1/x Ans. y ! c1x + c2x2 + (1/6x)
19. x2 y2 – 2xy1 + 2 y ! (log x)2 – log x2 [Delhi Maths (G) 2004]

Ans. y ! c1x + c2x2 + {2 (log x)2 + 2 log x + 1}/4
20. x2 yΓΓ + xyΓ – 16 y ! 0   [Nagpur 2002]  Ans. y ! c1x4 + c2x–4

6.5 Definition of {1/f(D1)} X, where D1 ! d/dz, x ! ez  and X is a function of x
Definition. The function [1/f (D1)] X is defined to be that function which when operated upon

by f (D1) gives X.
Note that the operator 1/f (D1) can be resolved into factors which can occur in any order and

can be resolved into partial fractions.
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6.14 Homogeneous Linear Equations or Cauchy-Euler Equations

To find the valule of 1
1

1 where .dX D xD x
D a dx

! !
&

Let 1
1

1 or ( )X u D a u X
D a

� & �
&

     or ordu du a Xx au X u
dx dx x x

� ∋ & �

which is linear differential equation in variables u and x.

Its integrating factor ! ( / ) loga x dx a x ae e x& & &0 � �  and solution is

1( / ) or .a a a aux X x x dx u x x Xdx& & & &� �0 0
Thus,                             1

1

1 .a aX x x X dx
D a

& &�
& 0 (Remember) ... (1)

Replacing a by – a in the above result, we have

                                1

1

1 .a aX x x X dx
D a

& &�
∋ 0 (Remember) ... (2)

6.6A An alternative method of getting P.I. of homogeneous equation f (D1) y ! X, where
x ! ez, D1 ! d/dz and X is any function of x

P.I. !
1

1
( )f D

X can be obtained in either of the following two ways:

(i) The operator 1/f (D1) may be resolved into fators. Then

               P.I. !
1 1 1 1 2 1

1 1 1 1.... ,
( ) n

X X
f D D a D a D a

�
& & &

wherein the operations indicated by factors are to be taken in succession beginning with the first
on the right (making use of results of result Art 6.5).

(ii) The operator 1/f (D1) may be resolved into partial fractions. Then

P.I. ! 1 2

1 1 1 1 2 1

1 ...
( )

n

n

AA AX X
f D D a D a D a

5 6� ∋ ∋ ∋7 8& & &9 :

! 1 1 2 2 11 1
1 2 ... n na aa a a a

nA x x X dx A x x X dx A x x X dx& & && & & & & &∋ ∋ ∋0 0 0 , using result (1) of Art 6.5

6.6B Particular cases

Case I. To find 
1

1 ,
( )

mx
f D

 where f (m) Η 0.

We have           D1xm ! ( )mdx x
dx

! mxm.

− D1
2xm ! D1(D1xm) ! D1(mxm)  ! 2( ) .m m md d

x mx mx x m x
dx dx

� �

− In general,                D1
n xm ! mn xm.                Hence                f (D1) xm ! f (m) xm.

Operating both sides of the above result by 1/f (D1), we have

1
1 1 1

1 1 1( ) { ( ) } or ( )
( ) ( ) ( )

m m m mf D x f m x x f m x
f D f D f D

� �
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Dividing both sides by f (m) we have

P.I. !
1

1 1 ,
( ) ( )

m mx x
f D f m

�  where f (m) Η 0 (Remember) ... (1)

Thus, D1 is replaced by m provided f (m) Η 0.
Case II. If f (m) ! 0, the above formula (1) fails. Then we shall use the following formula

1

1 (log ) .
!( )

n
m m

n
xx x

nD m
�

&
(Remember) ... (2)

Proof. We have 1

1

1
( )

m mX x x X dx
D m

& &�
& 0                                  ... (3)

L.H.S. of (2) 1
1 1

11 1

1 1 1
( ) ( )

m m m m
n nx x x x dx

D mD m D m
& &

& &� � #
&& & 0 , by formula (3)

! 1 1
1 1

1 1 1 ( log )
( ) ( )

m m
n nx dx x x

xD m D m& &�
& &0

! 1
2 2

11 1

1 1 1
( log ) ( log )

( ) ( )
m m m m

n nx x x x x x dx
D mD m D m

& &
& &� #

&& & 0 , by formula (3) again

!
2

2 2
1 1

1 1 1 (log )log
2!( ) ( )

m m
n n

xx x dx x
xD m D m& &# �

& &0

!
2 2

1
3 3

11 1

1 1 (log ) 1 (log )
2 2( ) ( )

m m
m m

n n
x x x xx x dx

D mD m D m
& &

& &� #
&& & 0 , by formula (3) again

!
3

2
3 3

1 1

1 1 1 (log )(log )
2 3!( ) ( )

m
m

n n
x xx dx x

xD m D m& &�
& &0

Proceeding likewise and using formula (3), we finally obtain

                    
1 1

1 1 (log ) (log ) .
! !( ) ( )

n n
m m m

n n n
x x

x x x
n nD m D m &

� �
& &

6.7 Solved examples based an Art. 6.5 and Art. 6.6A
Ex. 1. Solve (x2D2 + 3xD + 1) y ! 1/(1 – x)2.

[S.V. (Univ.) A.P. 1997,  Purvanchal 1998, Garhwal 1996]
Sol. Put         x ! ez        i.e.        z ! log x          and               take d/dz " D1.
Then without changing R.H.S., the given equation becomes
[D1(D1 – 1) + 3D1 + 1] y ! 1/(1 – x)2             or             (D1 + 1)2 y ! 1/(1 – x)2. ... (1)
The auxiliary equation for (2)  is            (D1 + 1)2 ! 0            giving            D1 ! – 1, – 1.
−         C.F. ! (c1 + c2z) e– z ! (c1 + c2 log x) x–1, c1, c2 being arbitrary constants

P.I. ! 2 1 1 1 2

1 1 1

1 1 1(1 ) (1 )
1 1 1

x x x x dx
D D D

& & & &# & � &
∋ ∋ ∋ 0

! 1 1 1 1 1 1 1

1

1 (1 ) (1 )
1

x x x x x x dx
D

& & & & & && � &
∋ 0
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! 1 1 1 1
(1 ) 1
dxx x dx

x x x x
& & ∃ %� ∋( )& &∗ +

0 0
! x–1 [log x – log (1 – x)] ! x–1 log {x/(1 – x)}.

− The solution is        y ! (c1 + c2 log x) x–1 + x–1 log {x/(1 – x)}.
Ex. 2. Solve x2 (d2y/dx2) + 4x (dy/dx) + 2y = ex. [Madurai Kamraj 2008; Rajsthan 2010]
Sol. Let x ! ez i.e., z ! log x and d/dz ! D1. ...(1)
Then the given equation becomes
[D1(D1 – 1) + 4D1 + 2] y ! ex                  or                  (D1

2 + 3D1 + 2) y ! ex. ...(2)
− The auxiliary equation is D1

2 + 3D1 + 2 ! 0 so that D1 ! – 2, – 1. ...(3)

− C.F. ! c1 e–2z + c3 e–z ! 2 1 2 1
1 2 1 2( ) ( ) , asz z zc e c e c x c x x e& & & &∋ � ∋ �

P.I. !
1 1 1 1 1 1

1 1 1 1 1
( 2)( 1) 1 2 1 2

x x x xe e e e
D D D D D D

5 6� & � &7 8∋ ∋ ∋ ∋ ∋ ∋9 :

! 1 1 1 2 2 1 1 2x x x xx x e dx x x e dx x e dx x xe dx& & & & & && � &0 0 0 0
! 1 2 1 2 2[ 1 ] [ ] .x x x x x x xx e x xe e dx x e x xe e x e& & & & && & # � & & �0

− Solution is   y ! c1x–2 + c2x–1 + x–2 ex, c1, c2, c3 being arbitrary constants.
Ex. 3. Solve x2 (d2y/dx2) + 4x (dy/dx) + 2y = x + sin x.
Sol. Given (x2D2 + 4xD + 2) y ! x + sin x.                               ...(1)
Let x ! ez so that z ! log x and let D1 ! d/dz. Then (1) becomes ....(2)

[D1(D1 – 1) + 4D1 + 2] y ! ez + sin ez or (D1
2 + 3D1 + 2) y ! ez + sin ez     ...(3)

Auxiliary equation for (3) is D1
2 + 3D1 + 2 ! 0 gives D1 ! – 2, – 1.

− C.F. ! 2 2 1 2 1
1 2 1 2 1 2( ) ( )z z z zc e c e c e c e c x c x& & & & & &∋ � ∋ � ∋ , using (2)

P.I. corresponding to 2
1 1

1 1 1 .
1 3 2 63 2

z z ze e e x
D D

� � �
∋ ∋∋ ∋

P.I. corresponding to sin ez   or   sin x (as ez ! x)

                         ! 1 1 1 1

1 1 1 1

1 1 1sin sin ( cos )
( 2)( 1) 2 2

x x x x dx x x
D D D D

& & &� � &
∋ ∋ ∋ ∋0

                  ! 2 2 1 1
2 2

1 sin( cos ) cos .xx x x x dx x dx
x x

& & && � & � &0 0
−Solution is     y ! c1x–2 + c2x–1 + x/6 – (1/x2) 2 sin x, c1, c2 being arbitrary constants

Exercise 6(B)

Solve the following differential equations, taking D ! d/dx
1. (x2D2 + xD – 1) y ! x2 ex Ans. y ! c1x + c2x–1 + ex (1 – x)
2. (x2D2 + xD – 1) y ! x2 e2x Ans. y ! c1x + c2 x–1 + (1/8) × e2x (2 – x–1)

6.8 Solved examples based on Art. 6.5 and Art. 6.6B
Ex. 1. Solve x2(d2y/dx2) – 4x (dy/dx) + 6y ! x.
Sol. Given                 (x2D2 – 4xD + 6) y ! x,            where             D ! d/dx. ... (1)
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.17

Let             x ! ez             or             z ! log x             and             D1 ! d/dz. ... (2)
Then (1) gives, [D1(D1 – 1) – 4D1 + 6] y ! x or (D1

2 – 5D1 + 6) y ! x. ... (3)
Auxiliary equation for (3) is            D1

2 – 5D1 + 6 ! 0            so that D1 ! 2, 3.
− C.F. ! c1 e2z + c2 e3z ! c1 (ez)2 + c2 (ez)3 ! c1x2 + c2x3., using (2)

P.I. ! 2 2
11 1

1 1 1 1, as
2 ( ) ( )5 6 1 (5 1) 6

m mx
x x x x

f D f mD D
� � �

& ∋ & # ∋
− Solution is          y ! C.F. + P.I. = c1x2 + c2x3 + x/2, c1, c2 being arbitrary constants
Ex. 2. Solve   (x2D2 – 3xD + 4) y = 2x2.
Sol. Let x ! ez or z ! log x and D1 ! d/dz. ...(1)
Then, the given equation becomes [D1(D1 – 1) – 3D1 + 4] y ! 2x2  or (D1 – 2)2 y ! 2x2...(2)
Its auxiliary equation for (2) is             (D1 – 2)2 ! 0              so that D1 ! 2, 2
− C.F. ! (c1 + c2z) e2z ! (c1 + c2z) (ez)2 ! (c1 + c2 log x) x2, using (1)

P.I. !
2

2 2
2

1 1

1 (log ) 1 (log )2 2 , as
2! !( 2) ( )

n
m m

n
x xx x x x

nD D m
� �

& &

− Solution is                  y ! C.F. + P.I. ! (c1 + c1 log x) x2 + x2 (log x)2.
Ex. 3. Solve (x3D3 + 2x2D2 + 2) y = 10 (x + 1/x).

[Agra 1996, Delhi Maths (G) 1996, Delhi (Hons) 1994, 97, Rohilkhand 1997]
Sol. Given                   (x3D3 + 2x2D2 + 2) y ! 10 (x + x–1)                               ...(1)
Let x ! ez or z ! log x and D1 ! d/dz. ...(2)
Then (1) becomes [D1(D1 – 1) (D1 – 2) + 2D1(D1 – 1) + 2] y ! 10 (x + x–1)

or                                      (D1
3 – D1

2 + 2) y ! 10x + 10x–1 ...(3)
Auxiliary Equation  for (3) is            D1

3 – D1
2 + 2 ! 0          giving           D1 ! – 1, 1 ± i.

− C.F. ! c1e–z + ez [c2cos z + c3sin z] ! c1x–1 + x [c2cos log x + c3sin log x], as x ! ez

where c1, c2 and c3 are arbitrary constants.
P.I. corresponding to 10x

! 3 2 3 2
11 1

1 1 1 110 10 5 , as ,if ( )
( ) ( )2 1 1 2

m mx x x x x f m
f D f mD D

� � � Η Ι
& ∋ & ∋

P.I. corresponding to 10 x–1

! 1 1 1
3 2 2

1 11 1 1 1

1 1 1 1 110 10 10
( 1) 1 52 ( 2 2)

x x x
D DD D D D

& & &� �
∋ ∋& ∋ & ∋

!
1

1 1 1

1 1

1 (log ) 1 (log )2 2 2 log , as .
( 1) 1! !( )

n
m m

n
x xx x x x x x

D nD m
& & &� � �

∋ &

− Require soluion is             y ! c1x–1 + x[c2cos log x + c3sin log x] + 5x + 2x–1log x.
Ex. 4. Solve x2(d2y/dx2) + x (dy/dx) – 4y = x2.
Sol. Given (x2D2 + xD – 4) y ! x2, where D ! d/dx ... (1)
Let x ! ez   or   z ! log x and D1 ! d/dz. Then (1) becomes
[D1(D1 – 1) + D1 – 4] y ! x2                      or                      (D1

2 – 4) y ! x2.         ... (2)
Its auxiliary equation is            D1

2 – 4 ! 0            so that            D1 ! 2, – 2.
− C.F. ! c1 e2z + c2 e–2z ! c1 (ez)2 + c2 (ez)–2 ! c1x2 + c2x–2, as x ! ez
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6.18 Homogeneous Linear Equations or Cauchy-Euler Equations

P.I. !
2

2 2
2

1 1 1 11

1 1 1 1 1 1as
2 2 2 2 2 ( ) ( )4

m mxx x x x
D D D f D f mD

� � �
& ∋ & ∋&

!
1

2 2

1 1

1 1 1 (log ) 1 (log ), as
4 2 4 1! !( )

n
m m

n
x xx x x x

D nD m
� �

& &

− the required solution is   y ! C.F. + P.I. ! c1x2 + c2 x–2 + (1/4) x2 log x.

Exercise 6(C)
Solve the following differential equations:

1. 3x2 (d2y/dx2) + x (dy/dx) + y ! x Ans. 1 / 3
1 2[ cos {( 2 / 3)log } sin {( 2 / 3)log }] ( / 2)y x c x c x x� ∋ ∋

2. x4 (d3y/dx3) + 2x3 (d2y/dx2) – x2 (dy/dx) + xy ! 1 Ans. y ! (c1 + c2 log x) x + c3 x–1 + (1/4x) × log x

6.9 Equations reducible to homogeneous linear form. Legendre’s linear equation

A linear differential equation of the form
[a0(a + bx)n Dn + a1 (a + bx)n – 1 Dn – 1 + ... + an–1(a + bx) D + an]y ! X, ... (1)

where a, b, a0, a1, a2, ..., an are constants and X is either a constant or a function of x only, is called
Legendre’s linear equation. Note that the index of (a + bx) and the order of derivative is same in
each term of such equations.

Method of solution. To solve (1), introduce a new variable z such that
                    a + bx = ez                        or                         log (a + bx) ! z   ... (2)

Let                     D1 ! d/dz                          and                       D ! d/dx .. (3)
From (2), we have                          dz/dx ! b/(a + bx). ... (4)

− , using (4)dy dy dz b dy
dx dz dx a bx dz

� # �
∋

... (5)

                     .   (a + bx) (dy/dx) ! b (dy/dz)           .           (a + bx) D ! bD1  ... (6)

Again, 
2

2 , using (5)d y d dy d b dy
dx dx dx a bx dzdx

∃ % ∃ %� �( ) ( )∋∗ + ∗ +

!
2 2

2 2( ) ( )
b dy b d dy b dy b d dy dz

dz a bx dx dz dz a bx dz dz dxa bx a bx
∃ % ∃ %& ∋ � & ∋( ) ( )∋ ∋∗ + ∗ +∋ ∋

!
2 2

2 2 , using (4)
( )

b dy b d y b
dz a bx a bxa bx dz

& ∋
∋ ∋∋

.
2 2

2 2
2 2( ) d y d y dy

a bx b
dzdx dz

∃ %
∋ � &( )

∗ +
. (a + bx)2 D2 y ! b2(D1

2 – D1) y.

−                                       (a + bx)2 D2 ! b2D1(D1 – 1). ... (7)
Similarly,                             (a + bx)3 D3 ! b3D1 (D1 – 1) (D1 – 2). ... (8)

and so on. Proceeding likewise, we finally have
               (a + bx)n Dn ! bn D1 (D1 – 1) (D1 – 2) ... (D1 – n + 1).

Substituting the above values of (a + bx)n Dn, ..., (a + bx)2 D2,  (a + bx) D etc in (1), we have
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.19

               [a0bn D1(D1 – 1) (D1 – 2)..(D1 – n + 1) +...+ an – 1bD + an] y ! Z, ... (9)
which is a linear differential equation with constant coefficients in variables y and z; Z is now
function of z only and is obtained by using transformation (2) by replacing x by (ez – a)/b. Let a
solution of (1) be y ! F (z). Then, the required solution is given by

y ! F [log (a + bx)], as z ! log (a + bx)

6.10 Working rule for solving Legendre’s linear equation, i.e.
                  {a0(a + bx)nDn + a1(a + bx)n – 1 Dn – 1 + ... + an – 1(a + bx) D + an} y ! X, ... (1)
where D ! d/dx, a, b, a0, a1, ..., an are constants and X is either a constant or a function of x only.

Step I. Introduce a new variable z such that a + bx ! ez    or    log (a + bx) ! z  ... (2)
Step II. Assume that D1 ! d/dz. Then, we have
(a + bx) D ! bD1, (a + bx)2D2 ! b2D1(D1 – 1),   (a + bx)3 D3 ! b3D1(D1 – 1) (D1 – 2) and so on.
As a particular case, when b ! 1, we have
(a + x) D ! D1, (a + x)2D2 ! D1(D1 – 1), (a + x)3 D3 ! D1(D1 – 1)(D1 – 2) and so on.

        Then (1) reduces to          f (D1) y ! Z,where Z is now function of z only.   ... (3)
Step III. We now use the methods of Chapter 5 to solve (3) and get a solution of the form

y ! F (z)                                                      ... (4)
Using (2), the required solution is given by y ! F {log (a + bx)}             ... (5)

6.11 Solved examples based on Art. 6.10
Ex. 1(a). Solve (1 + x)2 (d 2y/dx2) + (1 + x) (dy/dx) + y = 4 cos log (1 + x).

[Andhra 1997,  Delhi Maths (H) 1993, Delhi Maths (G) 2005, Meerut 1997, Purvanchal 1999]
Sol. Given [(1 + x)2 D2 + (1 + x) D + 1] y ! 4 cos log (1 + x), D ! d/dx. ... (1)
Let        1 + x ! ez          or       log (1 + x) ! z.      Also, let              D1 ! d/dz. ... (2)
Then, we have   (1 + x) D ! D1, (1 + x)2 D2 ! D1(D1 – 1) and hence (1) gives
[D1(D1 – 1) + D1 + 1] ! 4 cos z                   or (D1

2 + 1) y ! 4 cos z. ... (3)
Its auxiliary equation is                D1

2 + 1 ! 0               so that D1 ! 0 ± i.
− C.F. ! e0.z (c1cos z + c2sin z) ! c1cos log(1 + x) + c2sin log(1 + x), using (2)
where, c1 and c2 are arbitrary constants.

P.I. ! 2 2
1 1

1 14cos R.P .of 4
1 1

izz e
D D

�
∋ ∋

, where R.P. stands for real part

! 2 2
1 1

1 1R.P. of 4 R.P .of
1 ( ) 1

iz ize e
D D i

# � # ϑ
∋ ∋ ∋

! 2
1 11

1 1R .P . of 4 R . P . of
2 (1 / 2 )2

iz ize e
D i D iD Di

� # ϑ
∋∋

!
1

1 1

1 1

1 1R.P . of 1 4 R.P . of (1 ...) 4
2 2 2 2

iz ize D e D
i D i i D i

&
∃ %∋ � & ∋( )
∗ +

! R.P. of eiz (1/2i) 2 (4z) ! R.P. of (– 2iz) × (cos z + i sin z), as 1/i ! – i
! 2z sin z ! 2 log (1 + x) sin log (1 + x) as z ! log (1 + x)

− Solution is y ! c1 cos log (1 + x) + c2 sin log (1 + x) + 2 log (1 + x) sin log (1 + x).
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Ex. 1(b) Solve {(x + 1)4 D3 +2 (x + 1)3 D2 – (x + 1)2D + (x + 1)}y ! 1/(x + 1), D " d/dx.
[I.A.S. 2005]

Sol. Dividing both sides by (x + 1), the given equation reduces to

                             3 3 2 2 2{( 1) 2( 1) ( 1) 1} (1 )x D x D x D y x &∋ ∋ ∋ & ∋ ∋ � ∋ ...(1)

Let           1 + x ! ez           or           log (1 + x) ! z, Also, let D1 ! d/dz ...(2)
Then, we have    xD ! D1,    x2 D2 ! D1(D1 – 1)    and    x3D3 ! D1 (D1 – 1)(D1 – 2) ...(3)
Using (2) and (3), (1) reduces to

2
1 1 1 1 1 1{ ( 1)( 2) 2 ( 1) 1} zD D D D D D y e&& & ∋ & & ∋ �

or 3 2 2
1 1 1( 1) zD D D y e&& & ∋ � or (D1–1)2 (D1+1)y ! e–2z   ...(4)

Here auxiliary equation for (4) is       (D1–1)2 (D1 + 1) ! 0       giving       D1 ! 1, 1, –1
− C.F. ! (c1 + c2z) ez + c3e–z, c1, c2 and c3 being arbitrary constants

and P.I. ! 2 2 2
2 2

1 1

1 1 1
9( 1) ( 1) ( 2 1) ( 2 1)

z z ze e e
D D

& & &� � &
& ∋ & & & ∋

− The required solution is y ! (c1 + c2z) ez + c3 (ez)–1 – (1/9) 2  (ez)–2

or 1 2
1 2 3{ log (1 )}(1 ) (1 ) (1/ 9) (1 )y c c x x c x x& &� ∋ ∋ ∋ ∋ ∋ & 2 ∋ , using (2)

Ex. 2(a). Solve (x + a)2 (d2y/dx2) – 4(x + a) (dy/dx) + 6y = x. [Kanpur 2011]
Sol. Given [(x + a)2 D2 – 4(x + a) D + 6] y ! x.                       ... (1)
Let         x + a ! ez         or         log (x + a) ! z.         Also, let         D1 ! d/dz. ... (2)
Then, (a + x) D ! D1, (a + x)2 D2 ! D1(D1 – 1) and (1) hence gives
[D1(D1 – 1) – 4D1 + 6] y ! ez – a             or              (D1

2 – 5D1 + 6) y ! ez – a. ... (3)
Its auxiliary equation is             D1

2 – 5D1 + 6 ! 0              so that              D1 ! 2, 3.
− C.F. ! c1e2z + c2e3z ! c1(ez)2 + c2(ez)3 ! c1(x + a)2 + c2(x + a)3.

P.I. ! 0. 0.
2 2 2
1 1 1 1 1 1

1 1 1
( )

5 6 5 6 5 6
z z z ze ae e a e

D D D D D D
& � &

& ∋ & ∋ & ∋

! 0.
2 2

3 21 1
2 6 61 (5 1) 6 0 (5 0) 6

z z x a x aae a e ∋ ∋
& � & �

& # ∋ & # ∋
− Solution is y ! c1 (x + a)2  +  c2(x + a)3 + (3x + 2a)/6.
Ex. 2(b). Solve (x + 3)2 y2 – 4(x + 3) y1 + 6y = x. [Delhi Maths (G) 1998]
Sol. Given                     [(x + 3)2 D2 – 4(x + 3) D + 6] y ! x, D ! d/dx ...(1)

which is the same as equation (1) of Ex. 2(a). Here a ! 3. Proceeding as before, the solution is
y ! c1 (x + 3)2 + c2 (x + 3)3 + (x + 2)/2, c1, c2 being arbitrary constants.

Ex. 3. Solve (x + 1)2 (d2y/dx2) – 4(x + 1) (dy/dx) + 6y = 6(x + 1), [Delhi Maths (G) 2006]
Sol. Given [(x + 1)2 D2 – 4 (x + 1) D + 6] y ! 6 (x + 1), where D " d/dx ... (1)
Let                 x + 1 ! ez           or          z ! log (x + 1). Also,        D1 ! d/dz... (2)
Then, (x + 1) D ! D1   and   (x + 1)2 D2 ! D1(D1 – 1). So (1) gives
[D1(D1 – 1) – 4D1 + 6} y ! 6 ez              or              (D1

2 – 5D1 + 6) y ! 6 ez ... (3)
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Auxiliary equation of (3) is               D1
2 – 5D1 + 6 ! 0              giving D1 ! 2, 3.

− C.F. !  c1 e2z + c2 e3z ! c1 (ez)2 + c2 (ez)3 ! c1(x + 1)2 + c2(x + 1)3

P.I.  ! 2 2
1 1

1 16 6 3 3 ( 1)
5 6 1 (5 1) 6

z z ze e e x
D D

� � � ∋
& ∋ & 2 ∋

, as x + 1 ! ez

− Solution is y ! c1(x + 1)2 + c2 (x + 1)3 + 3 (x + 1), c1, c2 being arbitrary constants.
Ex. 4. Solve (x + 1)2 (d2y/dx2) + (x + 1) (dy/dx) = (2x + 3) (2x + 4)

[Delhi Maths (G) 2006; Nagpur 1993; Rajasthan 1995]
Sol. Let D ! d/dx. Given equation reduces to {(x + 1)2 D2 + (x + 1) D} y ! 4x2 + 14x + 12   .. (1)
Let         x + 1 ! ez         or         z ! log (x + 1)         Also let         D1 ! d/dz ... (2)
Then, (x + 1) D ! D1   and   (x + 1)2 D2 ! D1(D1 – 1). Hence, (1) gives

{D1(D1 – 1) + D1} y ! 4 (ez – 1)2 + 14 (ez – 1) + 12         or D1
2y ! 4 e2z + 6 ez + 2 ... (3)

Auxiliary equation of (5) is             D1
2 ! 0              giving                 D1 ! 0, 0.

− C.F. ! (c1 + c2z) e0.z ! c1 + c2z ! c1 + c2 log (x + 1), using (2)

P.I. ! 2 2
2

11

1 1(4 6 2) (2 6 2 )z z z ze e e e z
DD

∋ ∋ � ∋ ∋ ! e2z + 6 ez + z2 ! (ez)2 + 6 ez + z2

! (1 + x)2 + 6 (1 + x) + [log (1 + x)]2, using (2)
Thus, P.I. ! x2 + 8x + 7 + [log (1 + x)]2 and solution of (1) is

y ! c1 + c2 log (1 + x) + x2 + 8x + 7 + [log (1 + x)]2 ! c1Γ + c2 log (1 + x) + x2 + 8x + [log (1 + x)]2,
where c1Γ (! c1 + 7) and c2 are arbitrary constants.

Ex. 5. Solve 16 (x + 1)4 (d4y/dx4) + 96 (x + 1)3 (d3y/dx3) + 104(x + 1)2 (d2y/dx2)
+ 8 (x + 1) (dy/dx) + y = x2 + 4x + 3.

Sol. Let D ! d/dx. Then the given equation reduces to
             {16(x + 1)4D4 + 96(x + 1)3D3 + 104(x + 1)2D2 + 8(x + 1)D + 1}y ! x2 + 4x + 3 ... (1)

Let          x + 1 ! ez          or          z ! log (x + 1).         Also, let         D1 ! d/dz  ... (2)
Then, (x + 1) D ! D1, (x + 1)2 D2 ! D1(D1 – 1), (x + 1)3D3 ! D1(D1 – 1) (D1 – 2)

and  (x + 1)4D4  ! D1(D1 – 1) (D1 – 2) (D1 – 3). Hence, (1) reduces to
{16D1(D1 – 1) (D1 – 2)(D1 – 3) + 96D1(D1 – 1)(D1 – 2)

          + 104D1(D1 – 1) + 8D1 + 1} y ! (ez – 1)2 + 4(ez – 1) + 3
or                     (16D1

4 – 8D1
2 + 1) y ! e2z + 2 ez, on simplifying ...(3)

Auxiliary equation of (3) is  16D1
4 – 8D1

2 – 1 ! 0   or   (4D1
2 – 1)2 ! 0,

giving                                          D1 ! 1/2, 1/2, – 1/2, – 1/2.
− C.F. ! (c1 + c2z)ez/2 + (c3 + c4z)e–z/2 ! (c1 + c2z)(ez)1/2 + (c3 + c4z)(ez)–1/2

! [c1 + c2 log (1 + x)] (1 + x)1/2 + [c3 + c4 log (1 + x)] (1 + x)–1/2, using (2)

P.I. corresponding to e2z !
2

2 2 2
2 2 2
1

1 1 1 (1 )( )
225 225(4 1) (16 1)

z z z xe e e
D

∋
� � �

& &

P.I. corresponding to 2ez ! 2 2 2 2
1

1 1 22 2 (1 ), using (2)
9(4 1) {(4 1 ) 1}

z ze e x
D

� � ∋
& 2 &

Hence the required solution is y ! C.F. + P.I., i.e.
y ! {c1 + c2 log (1 + x)} (1 + x)1/2 + {c3 + c4 log (1 + x)} (1 + x)– 1/2  + (1/225) × (1 + x)2

+ (2/9) × (1 + x), c1, c2, c3 and c4 being arbitrary constants.
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Ex. 6. Solve [(3x + 2)2 D2 + 3 (3x + 2) D – 36] y = 3x2 + 4x + 1, D ! d/dx.
[Agra 1994, Allahabad 1996, Delhi Maths (H.) 1997, Indore 1993]

Sol. Given  [(3x + 2)2 D2 + 3 (3x + 2) D – 36] y ! 3x2 + 4x + 1.                ... (1)
Let        3x + 2 ! ez         or        log (3x + 2) ! z.         Also, let        D1 ! d/dz. .. (2)

−   (2 + 3x) D ! 3D1, (2 + 3x)2 D2 ! 32 D1(D1 – 1). Then (1) gives
              [32 D1(D1 – 1) + 3#3D1 – 36] y ! 3 {(ez – 2)/3}2 + 4{(ez – 2)/3} + 1

[! (2) . 3x ! ez – 2 . x ! (ez – 2)/3]
or 9[D1(D1 – 1) + D1 – 4] ! (1/3) × (e2z – 4ez + 4) + (4/3) × (ez – 2) + 1
or 9(D1

2 – 4) ! (1/3) × e2z – (1/3)                   or (D1
2 – 4) ! (1/27) × e2z – (1/27)

Here auxiliary equation is                D1
2 – 4 ! 0                 so that D1 ! 2, – 2.

− C.F. ! c1e2z + c2e–2z ! c1(ez)2 + c2(ez)–2 ! c1(3x + 2)2 + c2(3x + 2)–2.

P.I. corresponding to 
1
27

e2z ! 2 2 2
2

1 1 11

1 1 1 1 1 1 1 1
27 27 2 2 27 2 2 24

z z ze e e
D D DD

� �
& ∋ & ∋&

! 2 2

1 1

1 1 1 1, as
108 ( 2) 108 1! !( )

n
z z az az

n
z ze e e e

D nD a
� �

& &
 ! (1/108) 2 z(ez)2 ! (1/108) × (3x + 2)2 log (3x + 2), using (2)

P.I. corresponding to 1
27

& ! 0 0
2 2 2
1 1

1 1 1 1 1 1 11
27 27 27 1084 4 0 4

z ze e
D D

& # � & � & �
& & &

− Solution is y ! c1(3x + 2)2 + c2(3x + 2)–2 + (1/108) [(3x + 2)2 log (3x + 2) + 1]
where c1 and c2 are arbitrary constants.

Ex. 7(a).  Solve [(1 + 2x)2 D2 – 6(1 + 2x) D + 16] y = 8(1 + 2x)2.
(b) Solve [(1 + 2x)2 (d2y/dx2) – 6 (1 + 2x) (dy/dx) + 16y = 8 (1 + 2x)2 given that y (0) = 0,

yΓ (0) = 2. [I.A.S. 1997]
Sol. (a) Given                 [(1 + 2x)2 D2 – 6(1 + 2x) D + 16] y ! 8(1 + 2x)2. ... (1)
Let          1 + 2x ! ez          or          log(1 + 2x) ! z.           Also, let D1 ! d/dz. ... (2)
Then (1 + 2x) D ! 2D1, (1 + 2x)2 D2 ! 22 D1(D1 – 1) and so (1) becomes
[22D1(D1 – 1) – 6#2 D1 + 16] y ! 8 e2z or (D1 – 2)2 y ! 2e2z. ... (3)
Its auxiliary equation is              (D1 – 2)2 ! 0                so that D1 ! 2, 2.
− C.F. ! (c1 + c2z) e2z ! (c1 + c2z) (ez)2 ! [c1 + c2 log (1 + 2x)](1 + 2x)2,

where c1 and c2 are arbitrary constants.

P.I. !
2

2 2
2

1 1

1 12 2 , as
2! !( 2) ( )

n
z z az az

n
z ze e e e

nD D a
� �

& &
! z2 (ez)2 ! [log (1 + 2x)]2 (1 + 2x)2, using (2)

− Solution is y ! [c1 + c2 log (1 + 2x)] (1 + 2x)2 + [log (1 + 2x)]2 (1 + 2x)2

or                     y ! (1 + 2x)2 [c1 + c2 log (1 + x) + {log (1 + 2x)}2]. ... (4)
(b) Proceed as in part (a) upto equation (4) to get
                  y (x) ! (1 + 2x)2 [c1 + c2 log (1 + 2x) + {log (1 + 2x)}2]. ... (5)
Differentiating both sides of (5) w.r.t. ‘x’ we have

..
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Homogeneous Linear Equations or Cauchy-Euler Equations 6.23

yΓ (x) ! (2 × 2) (1 + 2x)2 [c1 + c2 log (1 + 2x) + {log (1 + 2x)}2]

                              + (1 + 2x)2 22 2 log (1 2 ) 2
1 2 1 2

c x
x x

∋5 6∋ 27 8∋ ∋9 :
         ... (6)

Putting x ! 0 in (5) and noting that y (0) ! 0 (given), we get
0 ! 1 × [c1 + (c2 × 0) + 02]                         so that                             c1 ! 0.
Putting x ! 0 in (6) and noting that yΓ (0) ! 2 (given), we get
2 ! 4[c1 + (c2 × 0) + 02] + 1 × [2c2 + (2 × 0 × 2)] so that c2 ! 1, as c1 ! 0
Putting the above values of c1 and c2 in (5), the required solution is

y (x) ! (1 + 2x)2 log (1 + 2x) [1 + log (1 + 2x)].

Exercise 6(D)

Solve the following differential equations, taking D ! d/dx
1. (x + 1)2 (d2y/dx2) – 3 (x + 1) (dy/dx) + 4 y ! x. [Delhi Maths. 1999, 2004]

Ans. y ! (x + 1)2 {c1 + c2 log (x + 1)} + x + (3/4)
2. (x + 1)2 y2 – 3 (x + 1) y1 + 4y ! x2 [Kanpur 2010; Delhi Maths (G) 2005]

Ans. y ! (x + 1)2 {c1 + c2 log (x + 1)} + (1/2) × (x + 1)2 {log (x + 1)}2 – 2x – (7/4)
3. {(5 + 2x)2 D2 – 6 (5 + 2x) D + 8}y ! 0 [Delhi Maths 2001]

Ans. 2 2 2
1 2(5 2 ) { (5 2 ) (5 2 ) }y x c x c x &� ∋ ∋ ∋ ∋

4. {(2x – 1)3 D3 + (2x – 1) D – 2} y ! 0 [Delhi 2008]

Ans. y ! c1(2x – 1)  + (2x – 1) [c2 cosh{ ( 3 / 2) log (2x – 1)} + c3 sinh { ( 3 / 2)  log (2x – 1)}]

5. (1 + x)2 (d2y/dx2) + (1 + x) (dy/dx) + y ! 2 sin log (1 + x)
Ans. y ! c1 cos log (1 + x) + c2 sin log (1 + x) – log (1 + x) cos log (1 + x)

6. (3x + 2)2 y2 + 5 (3x + 2) y1 – 3y ! x2 + x + 1 [G.N.D.U. Amritsar 2010]
Ans. y ! c1 (3x + 2)1/3 + c2 (3x + 2)–1 + (36 x2 + 3x – 434)/620

MISCELLANEOUS  PROBLEMS  ON  CHAPTER  6

Ex. 1. Let / .!D d dx  Then, the value of  1{1/( 1)} &∋xD x  is

(a) log x (b) (log x)/x        (c) (log x)/x2       (d) (log x) /x3

      [GATE 2009]

Sol. Ans. (b). Let x ! eZ  or    z ! log x.  Then xD = D1, where 1 /!D d dz . Then,

1

1 1 1

1 1 1 1 log1 1
1 1 ( 1) 1

z z z z x
x e e e e z

xD D D D x
& & & & &� � � � �

∋ ∋ & ∋

Ex.2. Let  y(x) be the solution of the initial value problem 2 ,ΓΓ Γ∋ ∋ �x y xy y x (1) (1) 1Γ� �y y .

Then, the value of / 2( )Κy e  is
(a) / 2(1 ) / 2Κ& e   (b) / 2(1 ) / 2Κ∋ e         (c) 1/ 2 / 4∋ Κ      (d) 1/ 2 / 4& Κ   [GATE 2010]

Sol. Ans. (b). Re-writing the given equation, 2 2( 1) , where /x D xD y x D d dx∋ ∋ � !    ... (1)

Let           1or    log and let / .zx e z x D d dz� � !    ... (2)
Then, 2 2

1 1 1and ( 1)xD D x D D D� � & . Hence, (1) may be re-written as

1 1 1{ ( 1) + 1}& ∋ � zD D D y e                or                       2
1( 1)∋ � zD y e                ... (3)
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6.24 Homogeneous Linear Equations or Cauchy-Euler Equations

whose auxiliary equation is                         2
1 1 0∋ �D        giving      1 .� /D i

Hence,                  C.F. ! 1 2 1 2cos sin cos log sin log∋ � ∋c z c z c x c x

and                              P.I. ! 2 2
1

1 1 1 ,
21 1 1

� � �
∋ ∋

z z ze e x as e x
D

Hence the general solution of the given differential equation is given by

1 2 1( ) cos log sin log / 2,� ∋ ∋y x c x c x x c  and c2 being arbitrary constants     ... (4)

From (4),     1 2( ) ( / ) sin log ( / 2) cos log 1/ 2Γ � & 2 ∋ 2 ∋y x c x x c x ... (5)
Putting x ! 1 in (4) and (5) and using the given intial conditions, we get

1 21/ 2 1 and 1/ 2 1∋ � ∋ �c c    so that   1 2 1/ 2.� �c c

Hence, from (4)                ( ) (cos log sin log ) / 2y x x z x� ∋ ∋      ... (6)

Now from (6), / 2 / 2 / 2( ) {cos( / 2) sin( / 2) }/ 2 (1 ) / 2y e e eΚ Κ Κ� Κ ∋ Κ ∋ � ∋

Ex. 3. A particular solution of 4x2 (d2y/dx2) + 8x (dy/dx) + y = 4/ x  is

(a) 1/ 2 x                                     (b) (log ) / 2x x

(c) 2(log ) / 2x x                            (d) {(log ) }/ 2x x [GATE 2006]
Sol. Ans. (c). Let d/dx ! D. Then, the given equation becomes
                                    (4x2D2 + 8xD + 1) y ! 4/ x                                        ... (1)
Let x ! ez   or   z ! log x. Also, let D1 ! d/dz. Then,   xD ! D1  and x2D2 ! D1(D1 – 1) and

hence (1) reduces to {4D1(D1 – 1) + 8D1 + 1} y ! 4e–z/2 or (2D1 + 1)2 y ! 4 e–3/2

− Required particular integral

!
2

/ 2 / 2 / 2
2 2

1 1

1 14
2!(2 1) ( 1/ 2)

z z zze e e
D D

& & &� �
∋ ∋

!
2

2 11 (log )( ) , as
2 2

z zxz e x e
x

& � �

Ex. 4. Solve  2 2 3( 5 8) 2x D xD y x& ∋ � [Delhi Maths (Prog.) 2009]

Sol. Do like Ex. 3, page 6.3 Ans. 2 4 3
1 2 2y c x c x x� ∋ &

Ex. 5. Show that the substitution x ! ez transforms the differential equation xn (dny/dxn)
+ p1 xn–1 (dn–1y/dxn–1) + ... + pn–1 x (dy/dx) + pny ! R into a linear differential equation with
constant coefficients (where p0, p1, ... pn are real constants). [Mumbai 2010]

Hints. Refer Art. 6.2, Page 6.1
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7
Method of Variation of Parameters

7.1 Method of variation of parameters for solving dy/dx + P(x) y ! Q(x)
Consider a first order linear differential equation
   dy/dx " Py ! Q, i.e., y1 " Py ! Q, where             y1 ! dy/dx ... (1)

and P and Q are functions of x or constants. Suppose that the general solution of
y1 " Py ! 0, ... (2)

be given by                 y ! au, ... (3)
where a is an arbitrary constant and u is a function of x. Since u must be a solution of (2), we have

u1 " Pu ! 0 where u1 ! du/dx. ... (4)
When Q ! 0, (3) cannot be the general solution of (1).
Now assume that y ! Au ... (5)

is the general solution of (1), where A is no longer constant but function of x to be so chosen that
(1) is satisfied.

From (3) and (5), we note that the form of y is the same for two equations (1) and (2), but
the constant which occurs in the former case is changed in the latter into a function of the
independent variable x. For this reason, the present method is known as variation of parameters.

Differentiating (5) w.r.t. ‘x’, we have
y1 ! A1u " Au1, where A1 ! dA/dx ... (6)

Putting the values of y and y1 given by (5) and (6) in (1), we get
A1u " Au1 " PAu ! Q or A1u " A(u1 " Pu) ! Q

or A1u ! Q, using (4) ... (7)
From (7), A1 ! Q/u or dA/dx ! Q/u or dA ! (Q/u) dx

Integrating, ( / ) ,A Q u dx c� #∃  where c is an arbitrary constant ... (8)

Using (8) in (5), the general solution of (1) is given by

( ){ ( / ) } or ( ) ( ) ( / )y u x c Q u dx y c u x u x Q u dx� # � #∃ ∃ ... (9)

7.2 Working rule for solving y1 + Py ! Q by variation of parameters, where P and Q are
functions of x or constants.                                        [Meerut
2009]

Step 1. Re-write the given equation in the standard form
(dy/dx) +Py = Q, i.e., y1 " Py ! Q, ... (1)

in which the coefficient of y1 must be unity.
Step 2. Consider y1 " Py ! 0,  ... (2)

which is obtained by taking Q ! 0 in (1). Solve (2) by methods of chapter 2. Let the general
solution of (2) be y ! au, a being an arbitrary constant  ... (3)

7.1
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7.2 Method of Variation of Parameters

Step 3. General solution of (1) is given by

y ! c u (x) " u(x) ( / ) ,Q u dx∃  where c is an arbitrary constant.  ... (4)

An illustrative solved example: Solve (x + 4) (dy/dx) + 3y = 3 by the method of variation of
parameters. [Calicut 2004]

Sol. Re-writing the given equation in standard form dy/dx " {3/(x " 4)} y ! 3/(x " 4) ... (1)
Compare (1) with dy/dx " Py ! Q, here Q ! 3/(x " 4) ! 3(x " 4)–1 ... (2)
Now with Q ! 0, we consider the following equation

3 30 or 0
4

dy dyy dx
dx x y x y

# � # �
# #

Integrating,         log y " 3 log (x " 4) ! log a or y ! a (x " 4)–3,
where a in an arbitrary constant.

Hence, we choose u ! (x " 4)–3  ... (3)
Then the required general solution is given by

1
3 3

3
3( 4)

( ) ( ) or ( 4) ( 4)
( 4)

xQy c u x u x dx y c x x dx
u x

%
% %

%

#
� # � # # #

#∃ ∃
or y ! c (x " 4)–3 " 3(x " 4)–3 2( 4)x dx#∃ or y ! c (x " 4)–3 " 3(x " 4)–3 × 3{( 4) / 3}x #

& Required solution is                y ! c (x " 4)–3 " 1, c being an arbitrary constant.

7.3 Method of variation of parameters for solving d2y/dx2 + P(dy/dx) + Qy ! R, where P, Q
and R are functions of x or constants

Consider a second order linear differential equation
d2y/dx2 " P (dy/dx) " Q y ! R, i.e., y2 " P y1 " Q y ! R ...(1)

where P, Q and R are functions of x or constants.
Suppose that C.F. of (1), i.e., the general solution of y2 " Py1 " Q y ! 0         ... (2)

be given by y ! au " bv, ... (3)
where a and b are arbitrary constants and u and v are functions of x. Again, u and v must be
solutions of (2). Hence, we have

u2 " Pu1 " Qu ! 0 and v2 " Pv1 " Qv ! 0 ... (4)
When R ! 0, (3) cannot be the general solution of (1).
Now assume that y ! Au " Bv ... (5)

is the general solution of (1), where A and B are no constants but functions of x to be so chosen
that (1) is satisfied.

From (3) and (5), we note that the form of y is the same for the two equations (1) and (2),
but the constants which occur in the former case are changed in the latter into functions of the
independent variable x. For this reason, the present method is known as variation of parameters.

In order to find A and B, we take uA1 " vB1 ! 0 ... (6)
Now differentiating (5) and using (6), we get y1 ! Au1 " Bv1 ... (7)
Differentiating (7), we get y2 ! Au2 " A1u1 " Bv2 " B1v1 ... (8)
Putting values of y, y1 and y2 given by (5), (7) and (8) in (1), we get

Au2 " A1u1 " Bv2 " B1v1 " P(Au1 " Bv1) " Au " Bv ! R
or A(u2 " Pu1 " Qu) " B (v2 " Pv1 " Ov) " A1u1 " B1v1 ! R
or A1u1 " B1v1 ! R, using (4) ... (9)
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Method of Variation of Paramers 7.3

Solving (6) and (9) for A1 and B1, we get

1
1 1 1 1

anddA vR vR dB uR uRA
dx uv u v W dx uv u v W

%
� � � % � �

% %
, ... (10)

where                           W ! Wronskian of u and v !
1 1

u v
u v

! uv1 – u1v ! 0 ... (11)

Here W is non-zero because u and v are linearly independent.
Integrating (10), A ! f (x) " C1 and B ! g (x) " C2 ... (12)

where                 ( )
vRf x dx
W

� % ∃ and ( )
uRg x dx
W

� ∃ ... (13)

and C1 and C2 are arbitrary constants.
Using (12) in (5), the general solution of (1) is given by

y ! u{f (x) " C1} " v{g(x) " C2} ! C1u " C2v " u f (x) " v g(x)

7.4A. Working rule for solving y2 + Py1 + Q y ! R by variation of parameters, where P, Q and R
are functions of x or constants [Mumbai 2010]

Step 1. Re-write the given equation as y2 " Py1 " Q y ! R, ... (1)
Step 2. Consider                         y2 " Py1 " Q y ! 0 ... (2)

which is obtained by taking R ! 0 in (1). Solve (2) by methods of chapters 4 and 5 as the case may
be. Let the general solution of (2) i.e., C.F. of (1) be

y ! C1u " C2v, C1, C2 being arbitrary constants ... (3)
Step 3. General solution of (1) is y ! C.F. " P.I. ... (4)

where C.F. ! C1u " C2v, C1, C2 being arbitrary constants ... (5)
and P.I. ! u f (x) " v g(x) ... (6)

where ( ) vRf x dx
W

� % ∃ and ( ) ,
uRg x dx
W

� ∃ ... (7)

where 1 1
1 1

Wronskian of and
u v

W u v uv u v
u v

� � � % ... (8)

Important Note. Variation of parameters is an elegant but somewhat artificial method for
finding the complete primitive of a linear equation whose complementary function is known. This
method is very effective to find particular integral and it can be applied where the earlier methods
cease to be applicable.

7.5A. Solved examples based on Art. 7.4A
Ex. 1. Apply the method of variation of parameters to solve
(i) y2 + n2y = sec nx [Agra 2006, Madras 2005; Gulbarga 2005; Delhi Maths 99, 2004;

Bundelhand 2001; Himachal 2004; Kanpur 2007; Meerut 2008, 09; Madurai 2001;
Rohilkhand

 2004; Ravishanka 2002, 2004;Purvanchal 2007, I.A.S. 99 Venkenkateshwar 2003]
(ii) y2 + y = sec x [Mysore 2004;Delhi Maths (P) 2001; 02, Delhi Maths (G) 2002]

(iii) y2 + 4y = sec 2x
(iv) y2 + 9y = sec 3x [Meerut 2007; Delhi Maths (H) 1999]
Sol. (i) Given                 y2 " n2y ! sec nx ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, we have R ! sec nx
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7.4 Method of Variation of Parameters

Consider     y2 " n2y ! 0 or (D2 " n2) y ! 0, where D # d/dx ... (2)
Auxiliary equation of (2) is D2 " n2 ! 0 so that D ! ± in.
C.F. of (1) ! C1 cos nx " C2 sin nx, C1 and C2 being arbitrary constants ... (3)
Let      u ! cos nx,     v ! sin nx               Also, here R ! sec nx ... (4)

Here
1 1

cos sin
0

sin cos
u v nx nx

W n
u v n nx n nx

� � � !
%

... (5)

Then, P.I. of (1) ! u f (x) " v g (x)  ... (6)

where 2
sin sec 1

( ) log cos , by (4) and (5)
nx nxvRf x dx dx nx

W n n
� % � % �∃ ∃

and                
cos sec( ) , (4) and (5)nx nxuR xg x dx dx by

W n n
� � �∃ ∃

& P.I. of (1) ! (cos nx) ∋ (1/n2) log cos nx " (sin nx) ∋ (x/n), by (6)
Hence the general solution of (1) is                     y ! C.F. " P.I.

i.e., y ! C1 cos nx + C2 sin nx + (1/n2) × cos nx log cos nx + (x/n) ∋ sin nx
(ii) Compare it with part (i). Here n ! 1. Now do as in part (i).
The required solution is             y ! C1 cos x " C2 sin x + cos x log cos x " x sin x.
(iii) Proceed as in part (i). Note that here n ! 2.

Ans. y ! C1cos 2x " C2sin 2x " (1/4) ∋ cos 2x log cos 2x " (x/2) × sin 2x
(iv) Proceed as in part (i). Note that here n ! 3.

Ans. y ! C1cos 3x " C2sin 3x " (1/9) ∋ cos 3x log cos 3x " (x/3) × sin 3x
Ex. 2. Apply the method of variation of parameters to solve
(i) y2 + a2y = cosec ax [Meerut 2004, 10; Kakatiay 2003; S.V. University A.P. 199,

Rajsthan 2003, 01]
(ii) y2 + y = cosec x [Meerut 2007, 11; Bangalore 1996, Delhi Maths (G) 1998, 2003]
Nagpur 2002, Delhi Maths (H) 1997; Guwahati 1996; Bilaspur 2000, 04 Indore 2001, 07]
(iii) y2 + 9y = cosec 3x [Delhi Maths (Pass) 2004]
Sol. (i) Given y2 " a2y ! cosec ax ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, we have R ! cosec ax
Consider y2 " a2y ! 0 or (D2 " a2) y ! 0, D ( d/dx ... (2)
Auxiliary equation of (2) is D2 " a2 ! 0         so that        D ! ± ai
& C.F. of (1) ! C1 cos ax " C2 sin ax, C1 and C2 being arbitrary constants ... (3)
Let         u ! cos ax,           v ! sin ax.           Also, here            R ! cosec ax ... (4)

Here
1 1

cos sin
0

sin cos
u v ax ax

W a
u v a ax a ax

� � � !
%

... (5)

Then, P.I. of (1) ! u f (x) " v g (x), ... (6)

where           sin cosec( ) , by (4) and (5)ax axvR xf x dx dx
W a a

� % � % � %∃ ∃

and 2cos cosec( ) (1/ ) logsin , by (4) and (5)uR ax axg x dx dx a ax
W a

� � � ∋∃ ∃
& P.I. of (1) ! (cos ax) × (– x/a) " (sin ax) × (1/a2) × log sin ax, by (6)
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Hence the general solution of (1) is y ! C.F. " P.I.
i.e., y ! C1 cos ax " C2 sin ax – (x/a) ∋ cos ax " (1/a2) × sin ax log sin ax

(ii) Proceed as in part (i). Note that here a ! 1.
Ans. y ! C1 cos x " C2 sin x – x cos x " sin x log sin x

(iii) Proceed as in part (i). Note that have a ! 3
Ans. y ! C1 cos 3x " C2 sin 3x – (x/3) ∋ cos 3x " (1/9) ∋ sin 3x log sin 3x

Ex. 3. Apply the method of variation of parameters to solve
(i) y2 + a2y = tan ax [Osmania 2004]

(ii) y2 + 4y = 4 tan 2x [Himiachal 2002, 03;Garhwal 2005, Delhi Maths (G) 1997, 2001;
Rohilkhanad 2001; Delhi B.A. (Prog) II 2010; Kanpur 2002, 08; Nagpur 1996]

(iii) y2 + y = tan x [Delhi B.A (Prog.) H 2007, 08, 11; Delhi B.A (G) 2000;
Bangalore 2005; Delhi B.Sc. (Prog.) II 2008; Delhi Maths (H.) 1996, 2002]

(iv) y2 + a2y = cot ax [Delhi Maths (G) 2005]
(v) y2 + 4y = cot 2x
Sol. (i) Given y2 " a2y ! tan ax ... (1)
Comparing (1) with y2 " Py1 " Q y ! Q, we have R ! tan ax
Consider           y2 " a2y ! 0    or      (D2 " a2) y ! 0,   where      D ( d/dx ... (2)
Auxiliary equation of (2) is          D2 " a2 ! 0             so that           D ! ± ia
& C.F. of (1) ! c1cos ax " c2sin ax, c1 and c2 being arbitrary constants ... (3)
Let           u ! cos ax,          v ! sin ax.          Also, here           R ! tan ax ... (4)

Here
1 1

cos sin
0

sin cos
u v ax ax

W a
u v a ax a ax

� � � !
%

... (5)

Then P.I. of (1) ! u f (x) " v g (x),  ... (6)

where
2sin tan 1 1 cos( )

cos
%

� % � % � %∃ ∃ ∃
vR ax ax axf x dx dx dx
W a a ax

, using (4) and (5)

!
1 1 1 sin

(sec cos ) log (sec tan )
axax ax dx ax ax

a a a a
) ∗% % � % # %+ ,− .∃

! (1/a2) ∋ {sin ax – log (sec ax " tan ax)}

and 2
cos tan 1 1( ) sin cos , using (4) and (5)uR ax axg x dx dx ax dx ax

W a a a
� � � � %∃ ∃ ∃

Using (6), P.I. of (1) ! cos ax × (1/a2) {sin ax – log (sec ax " tan ax)} " sin ax × (–1/a2) cos ax
                            ! – (1/a2) × cos ax log (sec ax " tan ax)

Hence the general solution of (1) is y ! C.F. " P.I.
i.e., y ! c1 cos ax " c2 sin ax – (1/a2) ∋ cos ax log (sec ax " tan ax)

(ii) Given y2 " 4y ! 4 tan 2x ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, here R ! 4 tan 2x
Consider             y2 " 4y ! 0 or (D2 " 4) y ! 0, D # d/dx ... (2)
Auxiliary equation of (2) is D2 " 4 ! 0 so that D ! ± 2i.

C.F. of (1) ! C1cos 2x " C2sin 2x, C1 and C2 being arbitrary constants ... (3)
Let           u ! cos 2x,          v ! sin 2x.          Also, here          R ! 4 tan 2x ... (4)
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7.6 Method of Variation of Parameters

Here
1 1

cos2 sin 2
2 0

2sin 2 2cos2
u v x x

W
u v x x

� � � !
%

... (5)

Then, P.I. of (1) ! uf (x) " vg (x), ... (6)

where
2sin 2 tan 2 1 cos 2

( ) 4 2
2 cos 2

x x xvRf x dx dx dx
W x

%
� % � % � %∃ ∃ ∃ , using (4) and (5)

! 2 (cos 2 sec 2 ) sin 2 log(sec 2 tan 2 )x x dx x x x% � % #∃
and cos 2 tan 2( ) 4 cos 2

2
x xuRg x dx dx x

W
� � � %∃ ∃ , by (4) and (5)

& P.I of (1) ! (cos 2x){sin 2x – log (sec 2x " tan 2x)} " (sin 2x) (– cos 2x), by (6)
or P.I. of (1) ! – cos 2x log (sec 2x " tan 2x)

Hence the general solution of (1) is y ! C.F. " P.I.
i.e., y ! C1 cos 2x " C2 sin 2x – cos 2x log (sec 2x " tan 2x).

(iii) Proceed as in part (i) by taking a ! 1. The general solution is
y ! C1 cos x " C2 sin x – cos x log (sec x " tan x)

(iv) Given y2 " a2y ! cot ax ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, we have R ! cot ax
Consider y2 " a2y ! 0 or (D2 " a2) y ! 0, D ( d/dx ...(2)
Auxiliary equation of (2) is              D2 " a2 ! 0             so that              D ! ± ia.
& C.F. of (1) ! c1cos x " c2 sin ax, c1 and c2 being arbitrary constants ... (3)
Let            u ! cos ax,          v ! sin ax.           Also, here           R ! cot ax ...(4)

Here
1 1

cos sin
0

sin cos
u v ax ax

W a
u v a ax a ax

� � � !
%

... (5)

Then P.I. of (1) ! u f (x) " v g (x), ... (6)

where 2
sin cot 1 sin

( ) cos
ax axvR axf x dx dx ax dx

W a a a
� % � % � % � %∃ ∃ ∃ , using (4) and (5)

and   
2cos cot 1 1 sin( ) , by (4) and (5)

sin
ax axuR axg x dx dx dx

W a a ax
%

� � �∃ ∃ ∃

! 2
1 1(cosec sin ) (log tan cos )

2
axax ax dx ax

a a
% � #∃

Using (6), P.I. of (1) ! cos ax × (–1/a2) × sin ax " sin ax × (1/a2) × {log tan (ax/2) " cos ax}
! (1/a2) ∋ log tan (ax/2)

Hence, the general solution of (1) is y ! C.F. " P.I.
i.e., y ! c1 cos ax " c2 sin ax " (1/a2) × log tan (ax/2)

(v) Proceed like part (iv) with a ! 2. The solution is
y ! c1 cos 2x " c2 sin 2x " (1/4) × log tan x

Ex. 4. Apply the method of variation of parameters to solve
(i) y2 – y = 2/(1 + ex) [Delhi Maths (H) 2001; Delhi Maths (G) 1999; Rohilkhand 2002;

Allahabad 2000, 05; Kanpur 2007; Nagpur 2001, 06; Bangalore 2004
(ii) y2 – 3y1 + 2y = ex/(1 + ex)  Delhi B.Sc. (Prog) 2009]

(iii) y2 – 4y1 + 3y = ex/(1 + ex).
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Method of Variation of Paramers 7.7

Sol. (i) Given y2 – y ! 2/(1 " ex) ... (1)
Comparing (1) with y2 " Py1 " 6 y ! R, here R ! 2/(1 " ex)
Consider          y2 – y ! 0 or (D2 – 1) y ! 0, D # d/dx ... (2)
Its auxiliary equation is                D2 – 1 ! 0           so that             D ! ± 1.
& C.F. of (1) ! C1 ex + C2 e–x, C1 and C2 being arbitrary constants ... (3)
Let             u ! ex,             v ! e–x.              Also, here             R ! 2/(1 + ex)   ... (4)

Here
1 1

2 0
x x

x x

u v e e
W

u v e e

%

%
� � � % !

%
... (5)

Then, P.I. of (1) ! u f (x) + v g (x), ... (6)

where {2 /(1 )}( )
( 2) ( 1)

x x

x x
vR e e dxf x dx dx
W e e

% #
� % � % �

% #∃ ∃ ∃ , by (4) and (5) ... (7)

Putting ex ! z so that ex dx ! dz or dx  ! (1/z) dz in (7), we get

2 2
1 1 1( )

1(1 )
dzf x dz

z zz z z
/ 0� � % #1 2## 3 4∃ ∃ , on resolving into partial fractions.

!  – z–1 – log z + log (1 + z) ! – e–x – x " log (1 " ex), as z ! ex and log z ! x

and {(2 /(1 )}( ) log(1 ), using (4) and (5)
( 2)

x x
xuR e eg x dx dx e

W
#

� � � % #
%∃ ∃

& P.I. of (1) ! ex {– e–x – x " log (1 " ex)} " e–x {– log (1 " ex)}, by (6)
! – 1 – x ex + (ex – e–x) log (1 + ex)

Hence the general solution of (1) is y ! C.F. " P.I.
i.e.,                              y ! C1 ex " C2 e–x – 1 – x ex " (ex – e–x) log (1 " ex)

(ii) Given y2 – 3 y1 + 2 y ! ex/(1 + ex) ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, here R ! ex/(1 " ex)
Consider y2 – 3y1 " 2y ! 0 or (D2 – 3D " 2) y ! 0, D # d/dx ... (2)
Auxiliary equation of (2) is D2 – 3D " 2 ! 0 so that D ! 1, 2.
& C.F. of (1) ! C1 ex " C2 e2x, C1 and C2 being arbitrary constants ... (3)
Let              u ! ex,              v ! e2x.              Also, here              R ! ex/(1 " ex) ... (4)

Here
2

3
2

1 1
0

2

x x
x

x x

u v e e
W e

u v e e
� � � !  ... (5)

Then, P.I. of (1) ! u f (x) " v g (x), ... (6)

where f(x) !
2

3
{ /(1 )} , by (4) and (5)

1

x x x

x x
vR e e e dxdx dx
W e e

#
% � % � %

#∃ ∃ ∃

!
( ) log ( 1)

1

x
x

x
e dx e

e

%
%

%
%

� #
#∃

and g(x) ! 3
{ /(1 )} , by (4) and (5)

(1 )

x x x

x x x
uR e e e dxdx dx
W e e e

#
� �

#∃ ∃ ∃

! 2
1, putting and

(1 )
xdz e z dx dz

zz z
� �

#∃
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7.8 Method of Variation of Parameters

! 2
1 1 1 ,

1
dx

z zz
/ 0% #1 2#3 4

∃  resolving into partial fractions

! – (1/z) – log z " log (1 " z) ! – e–x – x " log (1 " ex)
& P.I. of (1) ! ex log (e–x " 1) " e2x {– e–x – x " log (1 " ex)}, by (6)
Hence the required general solution is y ! C.F. " P.I.

i.e., y ! C1 ex " C2 e2x – ex – x e2x " ex log (e–x " 1) " e2x log (1 " ex).
(iii) Try Yourself. Ans. y ! C1 ex " C2 e3x " (1/2) ∋ (ex – e3x) log (1 " e–x) " (1/2) ∋ e2x

Ex. 5.(a) Solve by using the method of variation of parameters. d2y/dx2 – 2(dy/dx) ! ex sin
x.

[Delhi B.Sc. (Prog) II 2010; Delhi Maths (G) 1998; Delhi Maths(H) 2008]
Sol. Given     (D2 – 2D) y ! ex sin x, where    D ( d/dx ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, here R ! ex sin x
Consider (D2 – 2D) y ! 0 ... (2)
Auxiliary equation of (2) is D2 – 2D ! 0 so that D ! 0, 2.

C.F. of (1) ! C1 " C2 e2x, C1 and C2 being arbitrary constants. ... (3)
Let             u ! 1 and           v ! e2x. Also, here R ! ex sin x ... (4)

Here
2

2
2

1 1

1
2 0

0 2

x
x

x

u v e
W e

u v e
� � � ! ... (5)

Then, P.I. of (1) ! u f (x) " v g (x), ... (6)

where
2

2
sin 1( ) sin , by (4) and (5)

22

x x
x

x
vR e e xf x dx e x dx
W e

� % � % � %∃ ∃ ∃

! 2 2 2 2
1

(sin cos ),as sin ( sin cos )
2 1 1

x ax
axe ex x e bx dx a bx b bx

a b
% % � %

# #∃
! – (1/4) ∋ ex (sin x – cos x)

and 2
sin 1( ) sin ,by (4) and (5)

22

x
x

x
uR e xg x dx dx e dx
W e

%� � �∃ ∃ ∃

! 2 2
1 {( 1) sin cos } (sin cos )
2 4( 1) 1

x xe ex x x x
% %

% % � % #
% #

& P.I. of (1) ! – (1/4) ∋ ex(sin x – cos x) " e2x ∋ (– 1/4) ∋ e–x (sin x " cos x), by (6)
! – (1/4) ∋ ex {(sin x – cos x) " (sin x " cos x)} ! – (1/2) ∋ ex sin x

Hence the required general solution is y ! C.F " P.I.
i.e., y ! C1 " C2 e2x – (1/2) ∋ ex sin x, C1, C2 being arbitrary constants.

Ex. 5(b) Solve (d2y / dx2) – 2 (dy/dx) ! ex cos x Ans. y ! c1 + c2e2x – (1/2) × ex cos x
Ex. 6. Using method of variation of parameters, solve d2y/dx2 – 2(dy/dx) + y = x ex sin x with

y (0) = 0 and (dy/dx)x = 0 = 0. [I.A.S. 2002]
Sol. Given                   (D2 – 2D " 1) y ! x ex sin x,        where D ( d/dx ... (1)
Comparing (1) with                y2 + Py1 + Q y ! R, here             R ! x ex sin x
Consider (D2 – 2D " 1) y ! 0 or (D – 1)2 y ! 0, D ( d/dx ... (2)
Auxiliary equation of (2) is (D – 1)2 ! 0 so that D ! 1, 1.
& C.F. of (1) ! (C1 " C2x) ex ! C1ex " C2 x ex, C1 and C2 being arbitrary constants. ... (3)
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Method of Variation of Paramers 7.9

Let              u ! ex,              v ! x ex.              Also, here             R ! x ex sin x ...(4)

Here 2

1 1
0

x x
x

x x x

u v e xe
W e

u v e e xe
� � � !

#
...(5)

Then, P.I. of (1) ! u f (x) " v g (x), ... (6)

where 2
2

( sin )( ) sin , by (4) and (5)
x x

x
vR xe xe xf x dx dx x x dx
W e

� % � % � %∃ ∃ ∃
! – {x2 (– cos x) – (2x) (– sin x) " (2) (cos x)}, using chain rule of integration by parts

and 2
( sin )( ) sin ,by (4) and (5)

x x

x
uR e x e xg x dx dx x x dx
W e

� � �∃ ∃ ∃
! (x) (– cos x) – (1) (– sin x) ! sin x – x cos x

& P.I. of (1) ! ex(x2cos x – 2x sin x – 2cos x) " x ex(sin x – x cos x), by (6)
! – x ex sin x – 2 ex cos x.

Hence the general solution of (1) is y ! C.F. " P.I.
i.e., y ! C1ex " C2 xex – xex sinx – 2excos x ! ex (C1 " C2 x – x sin x – 2cos x) ... (7)

Given that y ! 0 when x ! 0. Hence (7) gives 0 ! C1 – 2 or C1 ! 2. Putting C1 ! 2 in (7),
y ! ex (2 " C2 x – x sin x – 2 cos x) ... (8)

(8) 5 dy/dx ! ex(2 " C2 x – x sin x – 2cos x) " ex{C2 – (sin x " x cos x) " 2 sin x}
Given that dy/dx ! 0 when x ! 0. So the above equation gives 0 ! C2. Putting C1 ! 2 and

C2 ! 0 in (8), the required solution is y ! ex (2 – x sin x – 2 cos x).
Ex. 7. Apply the method of variation oof parameters to solve.
(i) x2y2 + xy1 – y = x2ex [Purvanchal 2007; Agra 2000, 02; Delhi Maths (Prog.) 2009;

Indore 2000; Delhi Maths (H.) 2004, 06; Kanpur 2006; Calcutta 2003;
Garhwal 2011; Meerut 2011; Rajsthan 2010]

(ii) x2y2 + xy1 – y = x, given that the C.F. is C1 x + C2 x–1. [Meerut 2008]
(iii) x2y2 – xy1 = x3 ex.

Sol. (i) Re-writing the given equation, y2 " (1/x) y1 – (1/x2) y ! ex ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, here R ! ex

Consider y2 " (1/x) y1 – (1/x2) y ! 0 or (x2D2 " xD – 1) y ! 0, D ( d/dx ... (2)
Let x ! ez, log x ! z and D1 ( d/dz ... (3)
Then xD ! D1 and x2D2 ! D1(D1 – 1). Now, (2) becomes

{D1 (D1 – 1) " D1 – 1} y ! 0 or (D1
2 – 1) y ! 0 ... (4)

Auxiliary equation of (4) is D1
2 – 1 ! 0 so that D1 ! 1, – 1

& C.F. of (1) ! C1 ez " C2 ez ! C1x " C2x–1, as x ! ez ... (5)
Let            u ! x and v ! x–1. Also, here R ! ex ... (6)

Here
1

1
2

1 1

22 0
1

u v x x
W x

u v xx

%
%

%
� � � % � % !

%
... (7)

Then P.I. of (1) ! u f (x) " v g (x),

where f (x) !
1

1
1
2( 2 )

%

%

6
% � % �

%∃ ∃
x

xR x edx dx e
W x

, by (6) and (7)

and 2
1

1( )
2( 2 )

x
xx e dxuRg x dx x e dx

W x%� � � %
%∃ ∃ ∃ , by (6) and (7)
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7.10 Method of Variation of Parameters

! – (1/2) ∋ [(x2) ∋ (ex) – (2x) ∋ (ex) " (2) ∋ (ex)], using chain rule of integration by parts
& P.I. of (1) ! x × (1/2) × ex – x–1 × (1/2) × ex (x2 – 2x " 2) ! ex – x–1 ex , using (6)
Hence the general solution of (1) is y ! C.F. " P.I.
i.e.,y ! C1 x " C2 x–1 " ex (1 – x–1), C1, C2 being arbitrary constants
(ii) We have the same problem. Start with given C.F.

(iii) Try yourself. Ans. y ! C1 " C2 x2 " (x – 1) ex.
Ex. 8. Apply the method of variation of parameters to solve
(i) x2y2 + 3xy1 + y = 1/(1 – x)2

(ii) x2y2 + xy1 – y = x2 log x, x > 0

(iii) 2 277 7%x y xy + 2y = x log x, x > 0 [I.A.S. 2005]

Sol. (i) Re-writing, y2 " (3/x) y1 " (1/x2) y ! x–2(1 – x)–2 ... (1)
Comparing (1) with y2 " Py1 " Q y ! R, here R ! x–2 (1 – x)–2

Consider y2 " (3/x) y1 " (1/x2) y ! 0 or x2D2 " 3xD " 1) y ! 0, D # d/dx ... (2)
Let x ! ez, log x ! z and D1 ( d/dz. ... (3)
Then xD ! D1, and x2D2 ! D1(D1 – 1) and so (2) becomes

{D1(D1 – 1) " 3D1 " 1} y ! 0 or (D1 " 1)2 y ! 0
whose auxiliary equation is (D1 + 1)2 ! 0 giving D1 ! – 1, – 1

& C.F. of (1) ! (C1 " C 2z) e–z ! (C1 " C2 log x) x–1, by (3)
& C.F. ! C1 x–1 " C2 x–1 log x, C1 and C2 being arbitrary constants ... (4)
Let             u ! x–1,         v ! x–1 log x.           Also, here         R ! x–2 (1 – x)–2 ... (5)

Here
1 1

3
2 2 2

1 1

log
0

log

u v x x x
W x

u v x x x x

% %
%

% % %
� � � !

% %
... (6)

& P.I. of (1) ! u f (x) " v g (x), where ... (7)
1 2 2

2
3

log . (1 )
( ) (1 ) log

x x x xvRf x dx dx x x dx
W x

% % %
%

%

%
� % � % � % %∃ ∃ ∃ , using (5) and (6)

! 1 1log , integrating by parts
1 (1 )

x dx
x x x

) ∗% %+ ,% %− .
∃

! 1log 1 1 (1 ) log log log (1 )
1 1

x dx x x x x
x x x

%/ 0% # # � % % # % %1 2% %3 4
∃

and
1 2 2

1
3

(1 )
( ) (1 )

x x xuRg x dx dx x
W x

% % %
%

%

8 %
� � � %∃ ∃ , by (5) and (6)

& Using (7), P.I. of (1) ! x–1{–(1 – x)–1log x " log x – log (1 – x)} " x–1log x8(1 – x)–1

! x–1 {log x – log (1 – x)} ! x–1 log {x/(1 – x)}
Hence the general solution of (1) is y ! C1x–1 " C2x–1 log x " x–1 log{x/(1 – x)}
(ii) Try yourself Ans. y ! C1x " C2x–1 " (x3/3) × log x – (4x2/9)

(iii) Re-writing, given equation is y77 – (2/x)) y7 " (2/x2) y ! (1/x)log x ... (1)
or {D2 – (2/x)D " (2/x2)} y ! (1/x)log x, where D ( d/dx

Comparing (1) with y77 " Py7 " Q y ! R, here R ! (1/x) log x
Consider {D2 – (2/x) D " (2/x2)} y ! 0 or {x2D2 – 2xD " 2} y ! 0 ...(2)
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Method of Variation of Paramers 7.11

Let            x ! ez             or             log x ! z.             Also let             D1 ( d/dz ...(3)
Then xD ! D1 and x2D2 ! D1 (D1 – 1) and so (2) reduces to

{D1(D1 – 1) – 2D1 " 2} y ! 0 or (D1
2 – 3D1 " 2) y ! 0

whose auxiliary equation is D1 – 3D1 + 2 ! 0 giving D1 ! 1, 2
& C.F. of (1) ! C1 ez " C2 e2z ! C1 ez " C2 (ez)2 ! C1 x " C2 x2, ... (4)

C1 and C2 being arbitrary constants.
Let u ! x and v ! x2. Also, here R ! (1/x) log x ... (5)

Here
2

2 2 2

1 1
2 0,

1 2
u v x xW x x x
u v x

� � � % � ! ... (6)

& P.I. of (1) ! u f (x) " v g (x), ... (7)

where
9 :22

2

loglog 1( ) log . , using (5) and (6)
2
xx xvRf x dx dx x dx

W xx x
� % � % � % � %

∋∃ ∃ ∃

and 2
2

log( ) log , by (5) and (6)uR xg x dx dx x x dx
W x

%� � � 8∃ ∃ ∃

!
1 11log ,

( 1) ( 1)
x xx dx

x

% %
∋ % ∋

% %∃  on integrating by parts

!
1

2log log 1 (1 log )
( 1)

x x xx dx x
x x x

%
%% # � % # � % #

%∃
& Using (7), P.I. of (1) ! x × (– 1/2) × (log x)2 " x2 × (–1/x) × (1 " log x)

! – (x/2) × (log x)2 – x (1 " log x)
& The solution of (1) is y ! C1x " C2x2 – (x/2) × (log x)2 – x (1 " log x)
Ex. 9. Solve y2 – 2y1 + y = x ex log x, x > 0 by the method of variation of parameters.

[Delhi Maths (Prog) 2007, Delhi Maths (H) 2005, 09; Delhi Maths (G) 2005]
Sol. Given (D2 – 2D " 1) y ! x ex log x,        x > 0,          D # d/dx ... (1)
Comparing (1) with y2 "  Py1 " Q y ! R, here R ! xex log x
Consider (D2 – 2D " 1) y ! 0 or (D – 1)2 y ! 0 ... (2)
Auxiliary equation of (2) is (D – 1)2 ! 0 so that D ! 1, 1.
& C.F. of (1) ! (C1 " C2x) ex ! C1 ex " C2 x ex, C1 and C2 being arbitrary constants ... (3)
Let             u ! ex,             v ! x ex.             Also, here R ! x ex log x. ... (4)

Here 2

1 1
0

x x
x

x x x

u v e x e
W e

u v e e xe
� � � !

#
... (5)

Then, P.I. of (1) ! u f (x) " v g (x), ...(6)

where 2
2

log( ) log , (4) and (5)
x x

x
vR x e x e xf x dx dx x x dx by
W e

8
� % � % � %∃ ∃ ∃

!
3 3

3 31 1 1log log
3 3 3 9
x xx dx x x x

x
) ∗ ) ∗% 8 % 8 � % %+ , + ,− . − .∃

and 2
log( ) log , by (4) and (5)

x x

x
e x e xuRg x dx dx x x dx

W e
8

� � �∃ ∃ ∃

!
2 2 2 21log log

2 2 2 4
x x x xx dx x

x
% 8 � %∃
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& (6) 5 P.I. ! – ex {(x3/3) log x – (x3/9)} " x ex {(x2/2) log x – (x2/4)}
or P.I ! x3 ex log x (1/2 – 1/3) – x3 ex (1/4 – 1/9) ! (1/6) × x3 ex log x – (5/36) × x2 ex

Hence the general solution of (1) is y ! C1 ex " C2 x ex " (1/6) × x3 ex log x – (5/36) × x3 ex

Ex. 10. Solve the following equations by the method of variations :
(i) y77 + y = sec2x [Delhi Maths (H) 2004]

(ii) y77 + 4y = 4 sec2 2x [Delhi Maths(G) 2006]
(iii) y77 + 4y = 4 cosec2 2x
(iv) y77 + y = cosec2x [Delhi B.Sc. (Hons) II 2011]

Sol. (i) Given y77 " y ! sec2x ... (1)
Comparing (1) with y77 " Py7 " Q y ! R, here R ! sec2x
Consider             y77 " y ! 0             or             (D2 " 1) y ! 0,              D # d/dx ... (2)
Auxiliary equation of (1) is D2 " 1 ! 0 so that D ! ± i.
& C.F. of (1) ! C1 cos x " C2 sin x, C1 and C2 being arbitrary constants ... (3)
Let             u ! cos x,              v ! sin x.             Also, here             R ! sec2x ... (4)

Here
1 1

cos sin
1 0

sin cos
u v x x

W
u v x x

� � � !
%

... (5)

Then, P.I. of (1) ! u f (x) " v g (x), ... (6)

where 2( ) sin sec sec tan sec , by (4) and (5)vRf x dx x x dx x x dx x
W

� % � % � % � %∃ ∃ ∃
2( ) cos sec sec log (sec tan ), by (4) and (5)uRg x dx x x dx x dx x x

W
� � � � #∃ ∃ ∃

& P.I. ! cos x (– sec x) " sin x log (sec x " tan x), using (6)
Hence the general solution of (1) is y ! C1 cos x " C2 sin x – 1 " sin x log (sec x " tan x).
(ii) Given y77 " 4y ! 4 sec2 2x ... (1)
Comparing (1) with y77 " Py7 " Qy ! R, here R ! 4 sec2 2x
Consider          y77 " 4y ! 0          or          (D2 " 4) y ! 0,           D # d/dx ... (2)
Auxiliary equation of (2) is D2 " 4 ! 0 so that D ! ± 2i
& C.F. of (1) ! C1cos 2x " C2sin 2x, C1 and C2 being arbitrary constants ... (3)
Let            u ! cos 2x,            v ! sin 2x.            Also, here            R ! 4 sec2 2x ... (4)

Here
1 1

cos 2 sin 2
2 0.

2sin 2 2cos 2
u v x x

W
u v x x

� � � !
%

... (5)

Then, P.I. of (1) !  u f (x) " v g (x), ... (6)

where
2(sin 2 ) (4sec 2 )( ) , by (4) and (5)

2
vR x xf x dx dx
W

∋
� % � %∃ ∃
! 2 sec 2 tan 2 sec 2x x dx x% � %∃

and
2(cos2 ) (4sec 2 )( ) , by (4) and (5)

2
uR x xg x dx dx
W

∋
� �∃ ∃
! 2 sec 2 log(sec 2 tan 2 )x dx x x� #∃
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& P.I. of (1) ! cos 2x × (– sec 2x) " sin 2x log (sec 2x " tan 2x), by (6)
! sin 2x log (sec 2x " tan 2x) – 1

Hence the required general solution is y ! C.F. " P.I.
i.e., y ! C1 cos 2x " C2 sin 2x " sin 2x log (sec 2x " tan 2x) – 1

(iii) Given                           y77 " 4y ! 4 cosec2 2x ... (1)
Comparing (1) with y77 " Py7 " Q y ! R, here R ! 4 cosec2 2x
Consider             y77 " 4y ! 0 or (D2 " 4) y ! 0, D # d/dx ... (2)
Auxiliary equation of (2) is D2 " 4 ! 0 so that D ! ± 2i
& C.F. of (1) ! C1 cos 2x " C2 sin 2x, C1 and C2 being arbitrary constants ... (3)
Let         u ! cos 2x,         v ! sin 2x.         Also,         here         R ! 4 cosec2 2x ... (4)

Here
1 1

cos 2 sin 2
2 0

2sin 2 2 cos 2
u v x x

W
u v x x

� � � !
%

... (5)

Then, P.I. of (1) ! u f (x) " v g (x), where ... (6)
2(sin 2 ) (4cosec 2 )( ) 2 cosec 2 log tan , by (4) and (5)

2
vR x xf x dx dx x dx x
W

∋
� % % � % �∃ ∃ ∃

and
2(cos2 ) (4cosec 2 )( ) 2 cosec 2 cot 2 cosec 2 , by (4) and (5)

2
uR x xg x dx dx x x dx x
W

∋
� � � � %∃ ∃ ∃

& Using (6) P.I. of (1) ! cos 2x × (– log tan x) " sin 2x (– cosec 2x) ! – 1 – cos 2x log tan x
& The solution is y ! C1 cos 2x " C2 sin 2x – 1 – cos 2x log tan x
(iv) Do as it part (iii). Ans. y ! C1cos x " C2sin x – 1 – cos x log tan(x/2)
Ex. 11(a). Solve the differential equaion (D2 – 2D + 2) y ! ex tan x, D ( d/dx by method of

variation of parameters. [I.A.S. 2006]
Sol. Given (D2 – 2D + 2) y ! ex tan x or y2 – 2y1 + 2y ! ex tan x ...(1)
Comparing (1) with            y2 + P y1 + Q y ! R, here R ! ex tan x
Consider               y2 – 2y1 + 2y ! 0               or               (D2 – 2D + 2)y ! 0. ...(2)
Auxiliary equation for (2) in           D2 – 2D + 2 ! 0         giving         D ! 1 ± i
& C.F. of (1) ! ex (C1 cos x + C2 sin x), C1 and C2 being arbitrary constants ...(3)
Let         u ! ex cos x         and        sinxv e x� .        Also, here         R ! ex tan x ...(4)

Here
9 : 9 :1 1

cos sin

cos sin cos sin

x x

x x

e x e xu v
W

u v e x x e x x
� �

% #

or W ! e2x {cos x (cos x + sin x ) – sin x (cos x – sin x)} ! e2x ! 0 ...(5)
Then P.I. of (1)  ! u f (x) + vg (x), ...(6)

where f (x) ! – 2
( sin ) ( tan )x x

x
vR e x e xdx dx
W e

∋
� %∃ ∃ , using (4) and (5)

! 9 :
21 cos cos sec

cos
x dx x x dx

x
%

% � %∃ ∃ ! sin x – log (sec x + tan x) ...(7)

and g(x) !
2

( cos ) ( tan ) ,
x x

x
uR e x e xdx dx
W e

∋
�∃ ∃  using (4) and (5)

! sin cosx dx x� %∃ ...(8)
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7.14 Method of Variation of Parameters

Using (6), (7) and (8), we have

P.I. of (1) ! cos {sin log (sec tan )} ( sin ) ( cos )x xe x x x x e x x% # # ∋ %

! cos log (sec tan )xe x x x% #

& The required solution of (1) y ! ex (C1 cos x + C2 sin x) – ex cos x log (sin x + tan x)
Ex. 11(b). Let y = C1 u(x) + C2 v(x) be the general solution of y77 + P(x) y7 + Q(x) y = 0. Show

that y = f(x) u(x) + g(x) v(x) is a solution of y77 + P(x) y7 + Q(x) y = R(x), where

f(x) = vR dx
W

%∃  and g(x) = ,uR dx
W∃  W being the Wronskian of u and v..

Hence find particular solution of y77 + 2y7 + 5y = e–x sec 2x. [Nagpur 1996]
Sol. For the first part refer Art. 7.3
Second part. given y77 " 2y7 " 5y ! e–x sec 2x ... (1)
Comparing (1) with y77 " Py7 " Q y ! R, here R ! e–x sec 2x
Consider           y77 " 2y " 5y ! 0 or (D2 " 2D " 5) y ! 0, D # d/dx ... (2)
Auxiliary equation of (2) is D2 " 2D " 5 ! 0 giving D ! – 1 ± 2i
& C.F. of (1) ! e–x (C1cos 2x " C2 sin 2x), C1 and C2 being arbitrary constants ... (3)
Let         u ! e–x cos 2x,         v ! e–x sin 2x.         Also, here R ! e–x sec 2x ... (4)

Here
1 1

cos2 sin 2

(cos2 2sin 2 ) (2 cos2 sin 2 )

x x

x x

u v e x e x
W

u v e x x e x x

% %

% %
� �

% # %

! e–2x cos 2x (2 cos 2x – sin 2x) " e–2x sin 2x (cos 2x " 2 sin 2x)
Thus, W ! 2e–2x (cos2 2x " sin2 2x) ! 2 e–2x ! 0 ... (5)
Then, P.I. of (1) ! u f (x) " v g (x), where ... (6)

2
( sin 2 ) ( sec 2 )( )

2

x x

x
e x e xf x dx

e

% %

%
∋

� % ∃ ! 1 1tan 2 log cos 2
2 4

x dx x% ∋ � ∋∃ , by (4) and (5)

and 2
( cos2 ) ( sec 2 )( )

2

x x

x
e x e xg x dx

e

% %

%
∋

� ∃ !
1
2 2

xdx �∃
(6)  5  P.I. of (1) ! (e–x cos 2x) × (1/4) log cos 2x " (e–x sin 2x) × (1/2).
Ex. 12. Use the method of variation of parameters to solve y'' + y = 1 / (1+ sin x)

[Delhi Maths(H) 2007]
Sol.  Given y'' + y ! 1/ (1 + sin x) ... (1)
Comparing (1) with           y'' + Py' + Q y ! R,           here           R ! 1/ (1 + sin x)... (2)
Consider y'' + y ! 0 or (D2 + 1) y ! 0, where D ( d/dx ... (3)
The auxilary equation is      D2 + 1 ! 0       giving        D ! ± i.

& C.F. of (1) ! C1 cos x + C2 sin x, C1 and C2 being arbitrary constants.
Let u ! cos x and v ! sin x ... (4)

Here W ! 2 2cos sin
cos sin 1 0

sin cos
u v x x

x
u v x x

� � # � !
7 7 %

... (5)

Then, P.I. of (1) ! u f (x) + v g(x), where
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f(x) ! 2
sin (1 sin )sin , (2), (4) and (5)

1 sin 1 sin
x xvR xdx dx dx by

W x x
%

% � % � %
# %∃ ∃ ∃

!
2

2
2

sin sin (sec tan tan )
cos
x x dx x x x dx

x
%

� % %∃ ∃
! 2{sec tan (sec 1)} (sec tan )x x x dx x x x% % % � % % #∃

and g(x) = cos log (1 sin )
1 sin

uR xdx dx x
W x

� � #
#∃ ∃  by (2), (4) and (5)

& From (6), P.I. of (1) ! cos (sec tan ) sin log (1 sin )x x x x x x% % # # #

! 9 :1 sin cos sin log 1 sinx x x x x% # % # #

& Required solution is y ! C1 cos x + C2 sin x –1 + sin x – x cos x + sin x log (1 + sin x)
Ex. 13. Solve y'' + 3y' + 2y ! x + cos x  by the method of variation of parameters.

[Delhi Maths (Prog) 2007]
Sol. Given y'' + 3y' + 2y ! x + cos x ... (1)
Compains (1) with y'' + Py' + Qy ! R, here R ! x + cos x ...(2)
Consider y'' + 3y' + 2y ! 0 or (D2 + 3D + 2) y ! 0, D ( d/dx ...(3)
Its auxilary equation is D2 + 3D + 2 ! 0 giving D ! –1, –2
& C.F. of (1) ! C1 e–x + C2 e–2x, C1 and C2 being arbitrary constants.
Let u ! e–x and v ! e–2x ...(4)

Here
2

3 3 3
2

2 0
2

x x
x x x

x x

u v e e
W e e e

u v e e

% %
% % %

% %
� � � % # � % !

7 7 % %
...(5)

Then, P. I. of (1) ! u f(x) + v g(x), where ...(6)

( cos )( ) ( cos ),
( )

x
x

x
vR e x xf x dx dx e x x
W e

%

%
#

� % � % � #
%∃ ∃ ∃

2

3  by (2), (4) and (5)

 ! cos ( ) ( / 2) (cos sin )x x x x xxe dx e x dx xe e dx e x x# � % ∋ # ∋ #∃ ∃ ∃ 1 1

cos { /( )} ( cos sin )� ax axe bx dx a b e a bx b bx) ∗� # ∋ #+ ,− .∃ 2 21

Thus   9 :( ) ( / ) cos sinx x xf x xe e e x x� % # ∋ #1 2 ...(7)

and  g(x) ! ( cos ) ( cos )
( )

x
x

x
uR e x xdx dx e x x dx
W e

%

%
#

� � % #
%∃ ∃ ∃ 2

3

! – cos ( / ) { ( / ) } ( cos sin )x x x x xxe dx e x dx x e e dx e x x) ∗% � % ∋ ∋ % ∋ ∋ % #+ ,− .∃ ∃ ∃2 2 2 2 211 2 1 1 2 2
5

Thus,                    ( ) ( / ) ( / ) ( / ) ( cos sin )x x xg x x e e e x x� % ∋ # ∋ % ∋ #2 2 22 1 4 1 5 2 ...(8)
From (4), (6), (7) and (8), we have
P.I. of (1) ! { ( / ) (cos sin )} { ( / ) ( / )x x x x x x xe xe e e x x e x e e% %% # ∋ # # % ∋ # ∋2 2 21 2 2 1 4

( / ) ( cos sin )}xe x x% ∋ #21 5 2 ! 9 :1 (cos sin ) / 2 / 2 1/ 4 (2 cos sin ) / 5x x x x x x% # # % # % #
! / 2 (3 / 4) (1/10) (3 sin cos )x x x% # ∋ #

& Required solution is / ( / ) ( / ) ( sin cos )x xy C e C e x x x% %� # # % # ∋ #2
1 2 2 3 4 1 10 3
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Ex. 14. Use the variation of parameters method to show that the solution of equation d2y/dx2

+ k2y = ;(x) satisfying the initial conditions ( ) , ( )y y7� �0 0 0 0 is ( ) ( ) sin ( )
x

y x t k x t dt
k

� ; %∃0
1 .

[Himachal 2002, 05, 06, Kolkata 2003, 04, 06]
Sol. Given y'' + k2y ! ; (x), i.e., (D2 + k2)y ! ; (x), D # d/dx ...(1)
Comparing (1) with y'' + Py' + Qy ! R here R ! ; (x) ...(2)
Consider                     (D2 + k2)y ! 0                    whose auxiliary equation is

D2 + k2 ! 0 so that D ! ± ik
& C.F. of (1) ! c1 cos kx + c2 sin kx, c1 and c2being arbitrary constants. ...(3)

Let cos�u kx and sin�v kx ...(4)

Here W ! Wranskian of u and v !
cos sin

sin cos
u v kx kx

k
k kx k kxu v

� � !
%1 1

0 ...(5)

& P.I. of (1) ! ( ) ( ), whereu f x v g x# ...(6)

& sin ( )( ) ( )sin
x xvR kx xf x dx dx t kt dt

W k k
;

� % � % � % ;∃ ∃ ∃0 0

1 ...(7)

and g(x) !
cos ( )

( ) cos
x xu R kx x

dx dx t kt dt
W k k

;
� � ;∃ ∃ ∃0 0

1 ...(8)

Using (6), (7) and (8), we have

P.I. of (1) ! cos ( ) sin sin ( ) cos
x x

kx t kt dt kx t kt dt
k k

% ; # ;∃ ∃0 0

1 1

! 9 :( ) sin cos cos sin ( ) sin( )
x x

t kx kt kx kt dt t k x kt dt
k k

; % � ; %∃ ∃0 0

1 1

Hence the general solution of (1) is                         y ! C.F. + P.I.,

i.e., 9 :cos sin ( ) sin
x

y c kx c kx t k x t dt
k

� # # ; %∃1 2
0

1 ...(9)

Putting x ! 0 in (9) and using the given condition y(0) ! 0, we get c1 ! 0

& (9) 5 9 :sin ( ) sin
x

y c kx t k x t dt
k

� # ; %∃2
0

1 ...(10)

Differentiating both sides of (10) w.r.t. ‘x’ and using * Leibnitz’s rule of differentiation  under
integral sign, we have

y7(x) ! c2 k cos kx + < =( )sin ( ) ( )sin ( ) ( )sin
x dx dot k x t dt x k x x kx

k x dx dx
>) ∗; % # ; % % ;+ ,>− .∃0

1
0

or ( ) cos ( ) cos ( )
x

y x c k kx t k x t dt7 � # ; %∃2
0

...(11)

*Leibnitz’s rule of differentiation under integral sign
Let F(x, t) and /F x> >  be continuous functions of both x and t and let the first deviatives of G(x)

and H(x) be continous. Then
( ) ( )

( ) ( )
( , ) ( , ( )) ( , ( ))

H x H x

G x G x

d F dH dGF x t dt dt F x H x F x G x
dx x dx dx

>
� # %

>∃ ∃
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Putting x ! 0 in (11) and using the boundary condition y7(0) ! 0, we get
0 ! c k #2 0 so that , asc k� !2 0 0

Putting c1 ! 0 and c2 ! 0 (10), the required solution is ( ) sin ( )
x

y t k x t dt
k

� ; %∃0
1

7.4B Alternative working rule for solving y2 + P y1 + Qy ! R, where P, Q and R are functions
of x or contants by variation of parameters, where    y1 ! dy/dx      and       y2 ! d2y/dx2

Step 1. In order to make coefficient of y2 unity, divide the given equation by the coefficient
of y2 throughout and obtain it in the standard form y2 + P y1 + Q y ! R ...(1)

Step 2. Consider y2 + P y1 + Q y ! 0 ...(2)
which is obtained from (1) by taking R ! 0. Solve (2) completely by any method of Chapter 5 or
6. Let y ! au + bv be solution of (2), where a and b are arbitarary constants and u and v are known
functions of x. Then au + bv is complementary function of (1).

Step 3. Let y ! Au + Bv ...(3)
be the general solution of (1). Then A and B are functions of x to be determined.

Step 4. Differentiating (3) w.r.t. ‘x’, we get y1 ! Au1 + A1u + Bv1 + B1v ...(4)
where u1 ! du/dx, v1 ! dv/dx, A1 ! dA/dx and B1 ! dB/dx

Step 5. Choose A and B such that A1u + B1v ! 0 ...(5)
Then (4) reduces to                    y1 ! Au1 + Bv1 ...(6)
Step 6. Differentiating (6) w.r.t. ‘x’, we get y2 ! A1 u1 + Au2 + B1v1 + Bv2 ...(7)
Put these values of y, y1 and y2  from equations (3), (6) and (7) repectively in (1). We observe

that the terms containing A and B disappear, giving finally A1 u1 + B1 v1 ! R ...(8)
Note that L.H.S. of (8) is free from A and B and R.H.S. of (8) is the same as R.H.S. of (1).

This fact will be used in all problems.
Step 7. Solve (5) and (8) and get A1 and B1 i.e., dA/dx and dB/dx. Integrate these to get A and

B. Putting the values of A and B so obtained in (3), we get the desired general solution.

7.5B Solved examples based on working rule 7.4B
Apply the method of variation of parameters to solve the following equations:
(a) y2 + n2y ! sec nx [Agra 2005; I.A.S. 1999 Delhi Maths (G) 2004]
(b) y2 + a2y ! cosec ax [Kakatiya 2003, S.V. Univ. A.P. 1997]
(c) y2 + y ! x [Delhi Maths (G)1993, Meerut  2005; Nagpur 2000; Ravishankar 2007]
(d) y2 + 4y ! 4 tan 2x [Gorhwal 2005; Delhi Maths (G) 2004]
(e) y2 – y ! 2/(1 + ex) [Delhi Maths (H) 2001, Rohilkhand 2000]
(f) y2 – 3y1 + 2y ! ex/ (1 + ex) [Delhi Maths (G) 1993]
(g) (d2y/dx2) – 2(dy/dx) ! ex sin x [Delhi Maths (G) 1998]
(h) x2 y2 + xy1 –y ! x2 ex [Delhi Maths (H) 2004, 06, Kanpur 2006]
(i) x2y2 + 3xy1 + y ! 1/(1 – x)2

Sol (a) Given y2 + n2y ! sex nx ...(1)
Consider y2 + n2y ! 0 or (D2 + n2)y ! 0, where D ( d/dx. ...(2)
Its auxiliary equation is D2 + n2 ! 0 so that D ! ± i n and hence solution of (2) is

                         y = a cos nx + b sin nx, a and b being arbitrary constants.
Let y ! A cos nx + B sin nx ...(3)

be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) w.r.t. ‘x’, we have
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y1 ! A1 cos nx – A n sin nx + B1 sin nx + B n cos nx. ...(4)
Choose A and B such that A1 cos nx + B1 sin nx ! 0 ...(5)
Then (4) becoms y1 ! –A n sin nx + B n cos nx. ...(6)
Differentiating both sides of (6) with respect to x, we get

y2 ! –(A1n sin nx + A n2 cos nx) + (B1n cos nx – B n2 sin nx). ...(7)
Using (3) and (7), (1) reduces to –A1n sin nx + B1n cos nx ! sec nx ...(8)
We now solve (5) and (8). Multiplying (5) by n sin nx and (8) by cos nx and adding the

resulting equations, we have
nB1 (cos2 nx + sin2 nx) ! sec nx cos nx         or        B1 ! dB/dx ! 1/n ...(9)
Integrating it, B ! (x/n) + c1, c1 being an arbitrary constant. ...(10)
Using (9), (5) gives A1 ! dA/dx ! –(1/n) tan nx. ...(11)
Integrating it, A ! (1/n2) log cos nx + c2, c2 being an arbitrary constant ...(12)
Using (10) and (12) in (3), the required general solution of (1) is

y ! [(1/n2) log con nx + c2] cos nx + [(x/n) + c1] sin nx
or y ! c1 sin nx + c2 cos nx + (x/n) sin nx + (1/n2) cos nx log cos nx.

(b) Given y2 + a2y ! cosec ax. ...(1)
Consider y2 + a2y ! 0 or (D2 + a2)y ! 0, where D ( d/dx ...(2)
Its auxiliary equation is D2 + a2 ! 0 so that D ! ? ia and hence solution of  (2) is

                                y ! a7 cos ax + b7 sin ax, a7 and b7 being arbitrary constants.
Let y ! A cos ax + B sin ax. ...(3)

be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) with respect to x, we have

y1 ! A1 cos ax – Aa sin ax + B1 sin ax + Ba cos ax. ...(4)
Choose A and B such that A1 cos ax + B1 sin ax ! 0 ...(5)
Then (4) becomes y1 ! –A a sin ax + B a cos ax. ...(6)
Differentiating both sides of (6) with respect to x, we get

y2 ! – (A1 a sin ax + Aa2 cos ax) + (B1a cos ax – Ba2 sin ax). ...(7)
Using (3) and (7), (1) reduces to –A1 a sin ax + B1a cos ax ! cosec ax ...(8)
Solving (5) and (8), A1 ! dA/dx ! –1/a and B1 ! dB/dx ! (1/a) cot ax.
Integrating these, A ! (–x/a) + c1 and B  !  (1/a2) log sin ax + c2

where c1 and c2  are arbitrary constants.
Putting these values of A and B in (3), the required solution is

y ! [–(x/a) + c1] cos ax + [(1/a2) log sin ax + c2] sin ax.
or y ! c1 cos ax + c2 sin ax – (x/a) cos ax + (1/a2) sin ax log sin ax.

(c) Given equation is y2 + y ! x. ...(1)
Consider y2 + y  ! 0 or (D2 + 1)y ! 0, where D ( d/dx. ...(2)
Its auxiliary equation is D2 + 1 ! 0 so that D ! ± i and hence solution of (2) is

                          y ! a cos x + b sin x, a, b being arbitrary constants.
Let y ! A cos x + B sin x ...(3)

be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) with respect to x, we have

y1 ! A1 cos x – A sin x + B1 sin x + B cos x. ...(4)
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Choose A and B such that A1 cos x + B1 sin x ! 0 ...(5)
Then (4) becomes             y1 ! –A sin x + B cos x ...(6)
Differentiating (6), y2 ! –(A1 sin x +  A cox x) + (B1 cos x – B sin x) ...(7)
Using (3) and (7), (1) reduces to – A1 sin x + B1 cos x ! x. ...(8)
Solving (5) and (8),                  A1 ! dA/dx ! –x sin x,                  B1 ! dB/dx ! x cos x.

Integrating these, A ! %∃ x sin x dx + c1 ! –[x(–cos x) 11.( cos )x dx c% % #∃
or A ! x cos x –sin x + c1, c1 being an arbitrary constant. ...(9)

and B ! 2 2cos sin (1 sin )x x c x x x dx c# � % ∋ #∃ ∃
or B ! x sin x + cos x + c2, c2 being an arbitrary constant. ...(10)

Using (9) and (10) in (3), the required general solution is
y ! (x cos x – sin x + c1) cos x + (x sin x + cos x + c2) sin x     or     y ! c1 cos x + c2 sin x + x.

(d) Given that y2 + 4y ! 4 tan 2x. ...(1)
Consider y2 + 4y ! 0 or (D2 + 4)y ! 0, where D ( d//dx ...(2)

Its auxiliary equation is D2 + 4 ! 0 so that D ! ?  2i and hence solution of (2) is
y ! a cos 2x + b sin 2x, a and b being arbitrary constants.

Let y ! A cos 2x + B sin 2x ...(3)
be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) w.r.t. x, we have

y1 ! A1 cos 2x – 2A sin 2x + B1 sin 2x + 2B cos 2x. ...(4)
Choose A and B such that A1 cos 2x + B1 sin 2x ! 0 ...(5)
Then (4) becomes y1 ! –2A sin 2x + 2B cos 2x. ...(6)
Differentiating both sides of (6) with respect to x, we have

y2 ! –(2A1 sin 2x + 4A cos 2x) + 2B1 cos 2x – 4B sin 2x. ...(7)
Using (3) and (7), (1) reduces to
–2A1 sin 2x + 2B1 cos 2x ! 4 tan 2x or –A1 sin 2x + B1 cos 2x ! 2 tan 2x ...(8)
Solving (5) and (8), A1 ! dA/dx ! –(2 sin2 2x)/cos 2x, B1 ! dB/dx ! 2 sin 2x.

Integrating these, A !$ %
2

1 1
1 cos 22 2 (sec 2 cos 2 )

cos 2
x dx c x x dx c

x
%

# � % % #∃ ∃
or A ! –log (sec 2x + tan 2x) + sin 2x + c1, c1 being an arbitrary constant. ...(9)

and B ! 2 22 sin 2 cos 2 ,x dx x c c� % #∃  being an arbitrary constant. ...(10)

Using (9) and (10) in (3), the required general solution is
y ! [–log (sec 2x + tan 2x) + sin 2x + c1] cos 2x + [–cos 2x + c2] sin 2x

or y ! c1 cos 2x + c2 sin 2x – $cos 2x log (sec 2x + tan 2x).
(e) Given y2 – y ! 2/(1 + ex) ...(1)
Consider y2 – y ! 0 or (D2 – 1)y ! 0 where D ( d/dx. ...(2)
Its auxiliary equation is D2 – 1 ! 0 so that D ! ?  1 and hence solution of (2) is

                               y ! aex + be–x, a and b being arbitrary constants.
Let y ! Aex + Be–x
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be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) with respect to x, we have

y1 ! A1 ex + Aex + B1 e–x – Be–x ...(4)
Choose A and B such that A1ex + B1e–x ! 0 ...(5)
Then (4) becomes            y1! Aex –Be–x. ...(6)
Differentiating (6), we get y2 ! A1ex + Aex – (B1e–x – Be–x) ...(7)
Using (3) and (7), (1) reduces to A1ex – B1e–x ! 2/(1 + ex) ...(8)

Solving (5) and (8), 1 1and
1 1

x x

x x
dA e dB eA B
dx dxe e

%

� � � � %
# #

Integrating these in succession, we have

11 121 ( 1) (1 )

x

x x x
e dx dzA dx c c c

e e e z z

%

� # � # � #
# # #∃ ∃ ∃

[Putting ex ! z so that ex dx ! dz or z dx ! dz or dx ! (1/z)dz]

or A 2
1 1 1

1z zz
/ 0� % #1 2#3 4∃ dz + c1, on breaking into partial fractions.

or A ! –(1/z) – log z + log (1 + z) +c1 ! –(1/z) + log [(1+ z)/z] +c1

or A ! –e–x + log [(1 + ex)/ex] + c1, as z ! ex, c1 being an arbitrary constant ...(9)

and B !$$ % 2 2log (1 )
1

x
x

x
e dx c e c

e
# � % # #

#∃ , c2 being an arbitrary constant ...(10)

Using (9) and (10) in (3), the required general solution is
y ! [–e–x + log {(1+ex)/ex} + c1]ex + [ –log (1 + ex) + c2] e–x

or                    y ! c1ex + c2e–x –1 + ex log {(1 + ex)/ex} –e–x log (1+ex).
(f) Given y2 – 3y1 + 2y ! ex/(1+ex) ...(1)
Consider y2 – 3y1 + 2y ! 0 or (D2 – 3D + 2)y ! 0, where D ( d/dx ...(2)
Its auxiliary equation is D2 – 3D  + 2 ! 0  so that D ! 1, 2 and hence solution of (2) is

y ! aex + be2x, a and b being arbitrary constants.
Let y ! Aex + Be2x ...(3)

be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) with respect to x, we have

y1 ! A1ex + Aex + B1e2x + 2Be2x. ...(4)
Choose A and B such that A1ex + B1e2x ! 0 ...(5)
Then (4) becomes y1 ! Aex + 2Be2x. ...(6)
Differentiating (6), we get y2 ! A1ex + Aex + 2B1e2x + 4Be2x. ...(7)
Using (3), (6) and (7), (1) reduces to A1ex + 2B1e2x ! ex/(1 + ex). ...(8)

Solving (5) and (8),    A1 ! 1
1 1and .

(1 ) 1x x x
dA dBB
dx dxe e e

� � � %
# #

Integrating these in succession, we get

1 1 12 2
1 1 1

1(1 ) (1 )x x
dx dzA c c c

z ze e z z z
/ 0� # � # � % # #1 2## # 3 4∃ ∃ ∃

[Putting ex ! z so that ex dx ! dz or z dx ! dz or dx ! (1/z)dz]
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or A ! (1/z) – log z + log (1 + z) + c1! (–1/z) + log [(1+ z)/z] + c1 ...(9)
or A ! –e–x + log [(1+ex) /ex] + c1, as z ! ex; c1 being an arbitrary constant

and B ! 2 2 2
( ) log( 1)

1 1

x
x

x x
dx ec dx c e c

e e

%
%

%
%

% # � # � # #
# #∃ ∃ , c2 being an arbitrary constant....(10)

Using (9) and (10) in (3), the required general solution is
y ! [–e–x + log (e–x + 1) + c1]ex + [log (e–x + 1) + c2]e–x

or y ! c1ex + c2e–x –1 + (ex + e–x) log (e–x + 1).
(g) Given that y2 –2y1 ! ex sin x. ...(1)
Consider y2 – 2y1 ! 0 or (D2 –2D) y ! 0, where D ( d/dx.  ...(2)
Its auxiliary equation is D2 –2D ! 0 so that D ! 0, 2 and hence solution of (2) is

                      y ! ae0x + be2x ! a + be2x , a and b being arbitrary constants.
Let y ! A + Be2x ...(3)

be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiationg (3) with respect to x, we have

y1 ! A1 + B1e2x + 2Be2x ...(4)
Choose A and B such that A1 + B1e2x ! 0. ...(5)
Then (4) reduces to                 y1! 2Be2x. ...(6)
Differentitting (6), we get y2 ! 2B1e2x + 4Be2x. ...(7)
Using (6) and (7), (1) reduces to            2B1e2x ! ex sin x. ...(8)

Solving (5) and (8), 1 1
1 1sin , sin .
2 2

x xdA dBA e x B e x
dx dx

%� � % � �

Integrating these, 1 2
1 1sin and sin ,
2 2

x xA e x dx c B e x dx c%� % # � #∃ ∃

or 1 22 2 2 2
1 (sin cos ) 1 ( sin cos )and
2 21 1 ( 1) 1

x xe x x e x xA c B c
%% % %

� % # � #
# % #

2 2sin ( sin cos )�
ax

ax ee bx dx a bx b bx
a b

) ∗
� %+ ,

#− .
∃

Putting these values of A and B in (3), the required solution is
y ! –(1/4) ∋ ex (sin x – cos x) + c1 + e2x [–(1/4) ∋ e–x (sin x + cos x ) + c2]

or y ! c1 + c2e2x – (1/2) ∋ ex sin x, c1 and c2 being arbitrary constants
(h) The given equation in standard form         y2 + Py1 + Qy ! R         is given by

y2 + (1/x)y1 – (1/x2)y  ! ex ...(1)
Consider y2 + (1/x)y1 – (1/x2)y ! 0 or x2y2 + xy1 – y ! 0

or (x2D2 + xD – 1)y ! 0,                 where                 D # d/dx. ...(2)
which is a homogeneous equation. Putting x ! ez and D1# d/dz, (2) becomes

[D1(D1–1) + D1– 1]y ! 0 or (D2
1 – 1)y ! 0 ...(2)

Its auxiliary equation  is D1
2 –1 ! 0 so that D1 ! ?  1 and hence solution of (2) is

y ! aez + be–z ! aez + b (ez)–1 !  ax + bx–1, a and b being arbitrary constants.
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Let y ! Ax + Bx–1 ...(3)
be the complete solution of (1). Then A and B are functions of x which are so chosen  that (1)
will be satisfied. Differentiating (3) with respect to x, we have

y1 ! A1x + A + B1x–1 – Bx–2  ...(4)
Choose A and B  such that A1x + B1x–1  ! 0. ...(5)
Then, (4) reduces to y1 ! A – Bx–2 ...(6)
Differentiating (6), we get y2 !  A1 – (B1 x–2 – 2Bx–2) ...(7)
Using (3), (6) and (7), (1) reduces to A1 – B1 x–2 ! ex ...(8)
Solving (5) and (8),             A1 ! dA/dx ! (1/2)∋ ex,              B1 ! dB/dx ! –(1/2)∋ x2ex.

Integrating these, 1 1(1 / 2) (1 / 2)x xA e dx c e c� ∋ # � ∋ #∃ ...(9)

and B ! 2 2
2 2(1/ 2) (1/ 2) [ (2 ) ]x x xx e dx c c x e x e dx% ∋ # � % ∋ %∃ ∃

or B ! c2 – (1/2)∋ x2 ex + [xex – ∃ (1.ex) dx] ! c2 – (1/2) ∋ x2ex + xex – ex ...(10)

Substituting these values of A and B in (3), the required solution is
y ! [(1/2)∋ ex + c1]x + [c2 –(1/2)∋ x2ex + xex – ex] x–1

or y ! c1x + c2x–1 + ex – x–1 ex, c1 and c2 being arbitrry constants
(i) The given equation in standard form y2 + Py1 + Qy ! R is

y2 + (3/x)y1 + (1/x2) y ! x–2 (1–x)–2 ...(1)
Consider y2 + (3/x)y1 + (1/x2)y ! 0 or (x2D2 + 3xD + 1 ) y ! 0,      D ( d/dx, ...(2)

which is a homogeneous equation. Putting x ! ez (or z ! log x) and D1 ! d/dz, (2) becoms
[D1(D1 –1) + 3 D1 + 1]y ! 0 or (D1 + 1)2y ! 0 ...(2)

Its auxiliary equation is (D1 + 1)2 ! 0 so that D1 ! –1, –1 and hence solution of (2) is
y ! (a + bz)e–z !(a + bz)(ez)–1 ! (a + b log x) x–1, a and b being arbitrary constants.

Let y ! Ax–1 + Bx–1 log x ...(3)
be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3) with respect to x, we have

y1 ! A1x–1 – Ax–2 + B1x–1 log x – Bx–2 log x + Bx–2 ...(4)
Choose A and B such that A1x–1 + B1x–1 log x ! 0. ...(5)
Then (4) reduces to y1 ! –Ax–2 – Bx–2 log x + Bx–2 ...(6)
Diff. (6), y2 ! –(A1x–2 – 2Ax–3) – (B1x–2 log x – 2Bx–3 log x + Bx –3) + B1x–2 – 2Bx–3 ...(7)
Using (3), (6) and (7), (1) reduces to –A1x–2 –B1x–2 log x + B1x–2 ! x–2 (1 – x)–2

or A1 + B1 (log x – 1) ! – (1 – x)–2 ...(8)

Solving (5) and (8), A1 ! 12 2
log 1,

(1 ) (1 )
dA x dBB
dx dxx x

� % � �
% %

 ...(9)

Integrating these, B ! 2 1
2 2 2(1 ) (1 ) ,x dx c x c c% %% # � % #∃  being an arbitrary constant.

and A ! 2
1 1

(log )(log ).(1 )
(1 ) (1 )

x dxx x dx c c dx
x x x

% ) ∗
% # � % %+ ,% %− .

∃ ∃ , intergrating the parts

! 1 1
log log 1 1
1 (1 ) 1 1

x xdxc c dx
x x x x x x

/ 0% # � % # #1 2% % % %3 4∃ ∃
[On resolving into partial fractions]
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or A ! c1 – (log x) / (1– x) + log x – log (1– x), c1 being an arbitrary constant ...(10)
Using (9) and (10) in (3), the required general solution is

y ! [ c1 – (log x)/(1 – x) + log x {x/(1– x)}] x–1 + [c2 + (1 – x)–1] x–1 log x
or y ! c1x–1 + c2x–1 log x + x–1 log {x/(1– x)} ! x–1[c1+c2 log x + log {x/(1– x)}]

7.6 Working rule for solving a third order differential equation y3 " Py2 " Q y1 " R y ! S, where
P, Q, R and S are functions of x or constants by variation of parameters

The method explained in Art 7.3 for a second order equation can be extended to a third order
equation.

Step 1. Re-write the given equation as y3 " Py2 " Qy1 " Ry !  S ... (1)
in which the coefficient of y3 must be unity.

Step 2. Consider y3 " Py2 " Q y1 " R y ! 0 ...(2)
which is obtained by taking S ! 0 in (1). Solve (2) by methods of chapters 5 or 6 as the case may
be. Let the general solution of (2), i.e., C.F. of (1), be

y ! C1u " C2v " C3w, C1, C2 and C3 being arbitrary constants ... (3)
Step 3. General solution of (1) is y ! C.F. " P.I. ... (4)

where C.F. ! C1u " C2v " C3w, C1, C2 and C3 being arbitrary constants ... (5)
and P.I. ! u f (x) " v g (x) " w h (x), ... (6)
where f (x), g (x) and h (x) are obtained by solving the following differential equations:

1 1 1 1 1 1
, and

v w u w u vdu S dv S dw S
v w u w u vdx W dx W dx W

� � % � ... (7)

and 1 1 1

2 2 2

Wroskian of , and

u v w

W u v w u v w

u v w

� � ... (8)

7.7 Examples based on Art 7.6
Ex. 1. Apply the method of variation of parameters to solve
(i) y3 + y1 = sec x
(ii) y3 + y1 = cosec x
Sol. (i) Given y3 " y1 ! cosec x ... (1)
Comparing (1) with                 y3 + Py2 + Qy1 + Ry ! S, here             S ! sec x
Consider   y3 " y1 ! 0 or (D3 " D) y ! 0, where D ( d/dx ...(2)
Auxiliary equation of (2) is D3 " D ! 0 giving D ! 0, ± i
& C.F. of (1) ! C1 " C2 cos x " C3 sin x, C1, C2 and C3 being arbitrary constants. ... (3)
Let        u ! 1,        v ! cos x,        w ! sin x.          Also, here S ! sec x. ... (4)

Here 2 2
1 1 1

2 2 2

1 cos sin
0 sin cos sin cos 1 0
0 cos sin

u v w x x
W u v w x x x x

u v w x x
� � % � # � !

% %

  ... (5)

Then P.I. of (1) ! u f (x) " v g (x) " w h(x), ... (6)

where
1 1

cos sin( )
sec sec

sin cos
v w x xdf x S

x x
v w x xdx W

� � �
%

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



7.24 Method of Variation of Parameters

5   d f (x) ! sec x dx                      5                        f (x) ! log (sec x " tan x)

1 1

1 sin( ) sec 1 ( )
0 cos

u w xdg x S x g x x
u w xdx W

� % � % � % 5 � %

and
1 1

1 cos( )
sec tan

0 sin
u v xdh x S

x x
u v xdx W

� � � %
%

5 h (x) ! log cos x

& P.I. of (1) ! 18 log (sec x " tan x) " cos x (– x) " sin x log cos x, by (6)
Hence the required general solution is y ! C.F. " P.I.,

i.e., y ! C1 " C2 cos x " C3 sin x " log (sec x " tan x) – x cos x " sin x log cos x.
(ii) Ans. y ! C1 " C2cos x " C3sin x – log (cosec x " cot x) – cos x log sin x – x sin x
Ex. 2. Solve y3 – 6y2 + 11y1 – 6y = e2x by variaton of parameters. [Delhi Maths (G) 2003]
Sol. Given y3 – 6 y2 " 11 y – 6 y ! e2x ... (1)
Comparing (1) with y3 + Py2 + Qy1 + Ry ! S, here S ! e2x

Consider    y3 – 6y2 " 11y – 6y ! 0    or    (D3 – 6D2 " 11D – 6) y ! 0,    D # d/dx ... (2)
Auxiliary equation of (2) is       D3 – 6D2 " 11D – 6 ! 0    giving   D ! 1, 2, 3.
& C.F. of (1) ! c1 ex " c2 e2x " c3 e3x, ...(3)
Let           u ! ex,           v ! e2x,           w ! e3x.           Also, here           S ! e2x ...(4)

Here           

2 3

2 3
1 1 1

2 3
2 2 2

2 3

4 9

x x x

x x x

x x x

e e eu v w
W u v w e e e

u v w e e e

� �

! 6 6
2 2 1 3 3 2

1 1 1 1 0 0
1 2 3 1 1 1 , using and
1 4 9 1 3 5

x xe e C C C C C C� ≅ % ≅ %

Thus, W ! e6x (5 – 3) ! 2 e6x ! 0. ... (5)
Then, P.I. of (1) ! u f (x) " v g (x) " w h (x), ... (6)

where
2 32

6 2 3
1 1

( )
2 2 22 2 3

x xx x x x

x x x

v w e edf S e e e edf dx f x
v wdx W e e e

� � � 5 � 5 �

32

6 3
1 1

1 ( )
2 3

x xx

x x x

u w e edg S e dg dx g x x
u wdx W e e e

� % � % � % 5 � % 5 � %

and
22

6 2
1 1

( )
2 2 22 2

x xx x x x

x x x

u v e edh S e e e edh dx h x
u vdx W e e e

% % %

� � � 5 � 5 � %

Hence, (6)   5   P.I. of (1) ! ex × (1/2) × ex " e2x × (– x) " e3x × (– 1/2) × e–x ! – x e2x

Hence the general solution of (1) is       y ! C.F. " P.I., i.e.,
y ! c1ex " c2e2x " c3e3x – x e2x, c1, c2, c3 being arbitrary constants.

Exercise

1. Apply the method of variation of parameters to solve the equations:
(i) y2 – 2y1 " y ! ex Ans. y ! (C1 " C2x) ex " (x2/2) × ex

(ii) y2 – 6y1 " 9y ! x–2 e2x Ans. y ! (C1 " C2x) e2x – (1 " log x) e2x
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(iii) y2 " a2y ! cos ax Ans. y ! C1 cos ax " C2 sin ax " (x/2a) × sin ax
(iv) y2 – 3y1 " 2y ! 2 Ans. y ! C1ex " C2e2x " 1
(v) y2 " 4y ! ex Ans. y ! C1 cos 2x " C2 sin 2x " (ex/5)

(vi) y2 " 4y ! sin x Ans. y ! C1 cos 2x " C2 sin 2x " (1/3) × sin x
(vii) y2 – 2y1 " y ! (1/x) ex Ans. y ! (c1 " c2x) ex " xex (log x – 1)
(viii) y2 – 2y1 " y ! (1/x3) ex Ans. y ! (c1 " c2x) ex – (1/2x) × ex

(ix) y2 – y ! e2x Ans. y ! c1 ex " c2 e–x " (1/3) × e2x

(x) y2 – 3y1 " 2y " &e2x/(ex " 1)} ! 0 Ans. y ! c1 ex " c2 e2x " ex log (1 " ex) " e2x log (1 " e–x)
2. Find the particular integral of (d2y/dx2) – 2(dy/dx) " y ! 2x by the method of variation of

parameters.                                 [Nagpur 1997, 2005]
Hint: Use Art. 7.3 to find particular integral. Ans. P.I. ! 2x " 4

3. Solve x2y2 " xy1 – y ! x2 ex by the method of variation of parameters when the
complementary function of the equation is given by ax " bx–1.                [Delhi Maths (H) 2004]

Hint: Proceed as in solved Ex. 7(i) of Art. 7.5. Note that here we have C.F. ! ax " bx–1,
which is the same as relation of Ex. 7 (i) with C1 ! a and C2 ! b. Now proceed after relation (5)
exactly as in Ex. 7 (i).

4. Solve the following equations by the method of variation of parameters :
(i) d2y/dx2 " y ! x  [Meerut 2010] Ans. y ! c1 cos + c2 sin x + x

(ii) d2y/dx2 " y ! 2 – x [Delhi Maths (G) 1999] Ans. y ! c1 cos x " c2 sin x " 2 – x
(iii) d2y/dx2 – 3 (dy/dx) " 2y ! – 1 [Delhi Maths (P) 2005] Ans. y ! c1ex " c2 e2x – (1/2)
(iv) d2y/dx2 – dy/dx ! sec2x – tan x, | x | < Α/2. Ans. y ! c1 " c2 ex " log sec x
(v) d2y/dx2 " y ! cosec x cot x [Agra 2005]

Ans. y ! c1 cos x " c2 sin x " cos x log cosec x – cos x – x sin x
(vi) d2y/dx2 – 2 (dy/dx) " y ! ex/x2 [Delhi Maths (H) 2003]

Ans. y ! (c1 " c2x) ex – ex (1 " log x)
(vii) d2y/dx2 " y ! sin2x [Delhi Maths. (G) 2003]

Ans. y ! c1 cos x + c2 sin x + (1/3)∋ sin4x + (1/12)∋ cos x (9 cos x – cos 3x)
(viii) (d2y/dx2) – 2(dy/dx) + 3y ! x + sin x [Delhi Maths (G) 2006]

Ans. 1 2cos ( 2) sin ( 2) (3 2) / 9 (sin cos ) / 4y C x C x x x x� # # # # #

(ix) d2y/dx2 + 3(dy/dx) + 2y ! 2ex   (I.A.S. 2007)
Ans. y ! c1x–1+ c2x–2 + (1/3) × ex

5. Solve the following equations by variation of parameters :
(i) y3 " 4y1 ! 4 cot 2x

Ans.  y ! C1 " C2cos 2x " C3sin 2x " (1/2) ∋ log sin 2x – (1/2) " (1/2) ∋ cos 2x log tan x
(ii) x3y3 " x2y2 – 2xy1 " 2y ! x log x, x > 0

Ans. y ! C1x " C2x–1 " C3x2 – (x/4) ∋ {(log x)2 " log x} – (3x/8)
(iii) (D2 – 9) y ! e2x + x [Delhi Maths (Prog.) 2008]

[Ans. 3 3 2
1 2 (1/5) ( / 9)x x xy c e c e e x%� # % ∋ % ]

(iv) 2( 1) sec3D y x# � , /(D d dx [Delhi B.A.  (Prog.) II 2009]

 [Ans. 2
1 2cos sin (1/ 6) (log | 4 cos 3 |ey c x c x x� # # ∋ %

2log | cos | )cos (1/ 2 3 ) log {(1 3 tan ) / (1 3 tan )} sine ex x x x x% # ∋ # % ∋
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7.26 Method of Variation of Parameters

(v) 24 sin 277 # �y y x [Delhi B.A. (Prog) II 2010]

                          [Ans.  1 2cos 2 sin 2 (3 cos 4 ) / 24]y c x c x x� # # %

(vi) 2 2 3/ sec ,d y dx y x# � [Delhi B.Sc. (Prog) II 2011]

                          [Ans.  1 2cos sin (1/ 2) sin tan ]y c x c x x x� # # ∋

(vii) 32 2 4 secxy y y e x%77 # 7 # � [Mumbai 2011]

                          [Ans.  1 2( cos sin 2sin tan )]xy e c x c x x x%� # #

(viii) 2 59 48x y xy y x77 # 7 % �           [Mumbai 2010]                       [Ans.  3 3 5
1 2 3 ]y c x c x x%� # #

6. Let y1 (x) and y2 (x) be two linearly independent solutions of the differential equation y77
+ P (x) y7 + Q (x) y ! 0 on [a, b] where P(x) and Q (x) are continuous on [a, b]. If R (x) is a
continuous function on [a, b], then show that 1 1 2 2( ) ( ) ( ) ( ) ( )pv x v x y x v x y x� #  is a
particular solution of differential equation   y77 #P (x) y7 + Q (x) y ! R (x), where

2 1
1 2

1 2 1 2

( ) ( ) ( ) ( )
,

( , ( ), ( )) ( ( ), ( )
y x R x y x R x

v dx v dx
W y x y x W y x y x

� % �∃ ∃
Hints : Refer Art. 7.4 A, page 7.3. [Mumbai 2010]
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8
Ordinary Simultaneous
Differential Equations

8.1 Introduction
In this chapter, we shall discuss differential equations is which there is one independent

variable and two or more than two dependent variables. To solve such equations completely, there
must be as many equations as there are dependent variables. Such equations are called its ordinary
simultaneous differential equations.

8.2 Methods for solving ordinary simultaneous differential equations with constant coefficients
Let x and y be the dependent variables and t be the independent variable. Thus, in such

equations there occur differential coefficients of x, y with respect to t. Let D ! d/dt. Then such
equations can be put in the form

f1 (D) x + f2 (D) y ! T1 ... (1)
and g1 (D) x + g2 (D) y ! T2, ... (2)
where T1 and T2 are functions of the independent variable t and f1 (D), f2 (D), g1 (D) and g2 (D)
are all rational integral functions of D with constant coefficients. Such equations can be solved by
the following two methods.

First method. Method of elimination (use of operator D).
In order to eliminate y between (1) and (2), operating on both sides of (1) by g2 (D) and on

both sides of (2) by f2 (D) and subtracting, we have
{f1(D) g2(D) – g1(D) f2(D)}x ! g2(D) T1 – f2(D) T2, ... (3)

which is a linear differential equation with constant coefficients in x and t and can be solved to give
the value of x in terms of t. Substituting this value of x in either (1) or (2), we get the value of y in
terms of t. Equation (3) is solved by using methods of chapter 5.

Note 1. The above equations (1) and (2) can be also solved by first eliminating x between
them and solving the resulting equation to get y in terms of t. Substituting this value of y in either
(1) or (2), we get the value of x in terms of t.

Note 2. Since f2(D) and g2(D) are functions of D with constant coefficients, so
f2(D) g2(D) ! g2(D) f2(D).

Note 3. In the general solutions of (1) and (2) the number of arbitrary constants is equal to

the degree of D in the determinant           1 2

1 2

( ) ( )
, provided 0.

( ) ( )
f D f D
g D g D

� # � ∃

If � ! 0, then the system of equations (1) and (2) is dependent and such cases will not be
considered.

Second method. Method of differentiation.
Sometimes, x or y can be eliminated easily if we differentiate (1) or (2). For example, assume

that the given equations (1) and (2) connect four quantities x, y, dx/dt and dy/dt. Differentiating (1)
8.1
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8.2 Ordinary Simultaneous Differential Equations

and (2) with respect to t, we obtain four equations containing x, dx/dt, d2x/dt2, y, dy/dt and d2y/dt2.
Eliminating three quantities y, dy/dt, d2y/dt2 from these four equations, y is eliminated and we get
an equation of the second order with x as the dependent and t as the independent variable. Solving
this equation we get value of x in terms of t. Substituting this value of x in either (1) or (2), we get
value of y in terms of t.

In what follows we present solution of an ordinary simultaneous differential equations by
above two methods. In future, we shall use first method or second method as per requirement of
the problem.

AN ILLUSTRATIVE SOLVED EXAMPLE
Solve the simultaneous equations (dx/dt) – 7x + y ! 0 and (dy/dt) – 2x – 5y ! 0. [Delhi

Maths (Prog) 2007-09, 11; Lucknow 2001, 2000, Sagar 2000; Vikram 2003; Meerut 2007, 10]
Sol. We shall solve the given system by two methods given in Art. 8.2.
First method. Method of elimination (use of operator D)
Step 1. Writing D for d/dt, the given equations can be rewritten in the symbolic form as follows:

(D – 7) x + y ! 0 ...(1)
and –2x + (D – 5) y ! 0. ...(2)

Step 2. We now eliminate x (say) as follows. Multiplying (1) by 2 and operating (2) by
(D – 7), we get            2(D – 7) x + 2y  ! 0 ...(3)

– 2 (D – 7) x + (D – 7) (D – 5) y ! 0 ...(4)
Adding (3) and (4),         [(D – 7) (D – 5) + 2] y ! 0         or         (D2 – 12D + 37) y! 0,

which is linear equation with constants coefficients.
Its. auxiliary equation is D2 – 12D " 37 ! 0 so that D ! 6 ± i
% y ! e6t (c1 cos t + c2 sin t), c1 and c2 being arbitrary constants. ...(5)
Step 3. We now try to get x by using (5). In this connection remember that we must avoid

integration to get x. Thus if we use (1) to get x, then after putting value of y we have to integrate
for getting x. Hence we must use (2) because this will not involve any subsequent integration to
obtain x. Now from (5), differentiating w.r.t. ‘t’, we get

Dy ! 6e6t [(c1 cos t + c2 sin t) + e6t(– c1 sin t + c2 cos t)
or Dy ! e6t {(6c1 + c2) cost t + (6c2 – c1) sin t] ...(6)

Substituting the values of y and Dy given by (5) and (6) in (2), we have
2x ! Dy – 5y ! e6t [6c1 + c2) cos t + (6c2 – c1) sin t – 5(c1 cos t + c2 sin t)]

or x ! (1/2) × e6t [(c1 " c2) cos t + (c2 – c1) sin t] ...(7)
Thus (5) and (7) together give the required solution.
Remark. We can also eliminate y first (as we did to eliminate x) and then obtain x. This value

of x can be put in (1) to get the desired value of y.
Second method. Method of differentiation. Given that

(dx/dt) – 7x + y ! 0 ...(1)
and (dy/dt) – 2x – 5y ! 0. ...(2)

To eliminate x, we differentiate (2) w.r.t. ‘t’ and obtain
(d2y/dt2) – 2(dx/dt) – 5(dy/dt) ! 0 ...(3)

Now, from (2), we have                  1 5 .
2

& ∋# () ∗
+ ,

dyx y
dt

...(4)
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Ordinary Simultaneous Differential Equations 8.3

Then, from (1), we get                      77 5 ,
2

& ∋# ( # ( () ∗
+ ,

dx dyx y y y
dt dt

 using (4)

% dx/dt ! (7/2) − (dy/dt) – (37y/2)
Substituting this value of dx/dt in (3), we have

(d2y/dt2) – 7 (dy/dt) + 37y – 5 (dy/dt) ! 0 or (D2 – 12D + 37) y ! 0.
Now get y as done in first method. In fact repeat the whole method after this step. Thus we

get the same values of x and y as in first method.
Note 1. Second method will be used when found very necessary. In almost all problems we

shall use the first method.
Note 2. Generally t will be the independent variable and x and y will be dependent variables.

In some problems any other variable, x say, will be given as the independent variable and y and z
as the dependent variables. This point should be noted carefully while doing any problem.

8.3 Solved examples based on Art 8.2
Ex. 1. Solve dx/dt – y = t, dy/dt + x = 1. [Agra 2000, Delhi Maths (G) 1998]
Sol. Writing D for d/dt, the given equations become

Dx – y ! t ... (1)
and x + Dy ! 1 ... (2)

Differentiating (1) w.r.t. ‘t’, D2x – Dy ! 1 ...(3)
To eliminate y between (2) and (3), we add them and get

D2x + x ! 2 or (D2 + 1) x ! 2. ... (4)
Now the auxiliary equation of (4) is D2 + 1 ! 0 so that D ! ± i.
% C.F. ! c1 cos t + c2 sin t, c1 and c2 being arbitrary constants.

and 2 1 2
2

1. . 2 (1 ) 2 (1 ...) 2 2
1

(# # . # ( . #
.

P I D D
D

Hence the general solution of (4) is x ! c1 cos t + c2 sin t + 2 ... (5)
From (5), Dx ! dx/dt ! – c1 sin t + c2 cos t ... (6)
% From (1), y ! Dx – t ! – c1 sin t + c2 cos t – t. ... (7)
The required solution is given by (5) and (7).
Ex. 2. Solve the simultaneous differential equations dx/dt = 3x + 2y,        dy/dt = 5x + 3y.

[Kanpur 2004, Lucknow 2001, 03]
Sol. Writing D for d/dt, the given equations become

(D – 3) x – 2y ! 0 ... (1)
and – 5x + (D – 3) y ! 0 ... (2)

Operating on both sides of (1) by (D – 3) and multiplying both sides of (2) by 2 and then
adding, we have

{(D – 3)2 – 10} x ! 0 or (D2 – 6D – 1) x ! 0. ... (3)

Now, auxiliary equation of (3) is D2 – 6D – 1 ! 0 so that D ! 3 10./

% x ! C.F. ! 3
1 2[ cosh( 10) sinh ( 10)}..te c t c t ... (4)

From (4), Dx ! dx/dt ! 3 e3t {c1 cosh ( 10)t  + c2 sinh ( 10)}t
3

1 2{ 10 sinh ( 10) 10 cosh( 10)}. .te c t c t
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8.4 Ordinary Simultaneous Differential Equations

or 3
1 2 2 1{(3 10) cosh( 10) (3 10)sinh ( 10)}tDx e c c t c c t# . . . ... (5)

Then, from (1), we have y ! (1/2) − (D – 3) x ! (1/2) − (Dx – 3x)
i.e., 3

1 2 2 1(1/ 2) [ {(3 10)cosh ( 10) (3 10)sinh ( 10)}ty e c c t c c t# − . . .
3

1 23 { cosh ( 10) sinh ( 10)}]( .te c t c t , using (4) and (5)

% 3
2 1( 10 / 2) [ cosh ( 10) sinh ( 10)]ty e c t c t# − . ... (6)

The general solution is given by (4) and (6).
Ex. 3. Solve the simultaneous differential equations         (D – 17) y + (2D – 8) z = 0,
(13D – 53) y – 2z = 0, where D ! d/dt.
Sol. Given (D – 17) y + 2 (D – 4) z ! 0 ... (1)
and          (13D – 53) y – 2z ! 0 ... (2)
Operating on both sides of (2) by (D – 4) and then adding to (1), we have

{(D – 17) + (D – 4) (13D – 53)} y ! 0        or   (D2 – 8D – 15) y ! 0 ... (3)
Here auxiliary equation is D2 – 8D – 15 ! 0 so that D ! 3, 5.
% y ! C.F. ! c1 e3x + c2 e5x, c1 and c2 being arbitrary constants ... (4)
From (4), Dy ! dy/dx ! 3c1 e3x + 5c2 e5x ... (5)
From (2), 2z ! 13Dy – 53y

or 2z ! 13 (3c1 e3x + 5c2 e5x) – 53 (c1 e3x + c2 e5x), by (4) and (5)
% z ! 6C2 e5x – 7C1 e3x ... (6)
The required general solution is given by (4) and (6).
Ex. 4(a). Solve (dx/dt) + 5x + y = et, (dy/dt) – x + 3y = e2t. [Kanpur 2005, Garhwal 2005,

Delhi Maths (Hons.) 2000, 02, Delhi Maths (G) 2000]
Sol. Given (D + 5) x + y ! et ... (1)

and – x + (D + 3) y ! e2t ... (2)
Operating on both sides of (2) by (D + 5), we get

– (D + 5) x + (D + 5) (D + 3) y ! (D + 5) e2t ! 2 e2t + 5 e2t, ... (3)
Adding (1) and (3), {1 + (D + 5) (D + 3)} y ! et + 7 e2t

or                  (D + 4)2 y ! et + 7e2t ... (4)
Its auxiliary equation is (D + 4)2 ! 0 so that D ! – 4, – 4.
% C.F. ! (c1 + c2t) e–4t c1 and c2, being arbitrary constants.

2 2
2 2 2

1 1 1. . ( 7 ) 7
( 4) ( 4) ( 4)

# . # .
. . .

t t t tP I e e e e
D D D

! 2 2
2 2

1 1 1 77 .
25 36(1 4) (2 4)

. # .
. .

t t t te e e e

% Solution of (4) is y ! C.F. + P.I. ! (c1 + c2t) e–4t + (1/25) et + (7/36) e2t ... (5)
From (5), Dy ! dy/dt ! – 4(c1 + c2t)e–4t + c2e–4t + (1/25) et + (7/18) e2t ... (6)
% From (2),        x ! Dy + 3y – e2t, Using (5) and (6), this gives
x ! – 4 (c1 + c2t) e–4t + c2 e–4t + (1/25) et + (7/18) e2t + 3 [(c1 + c2t) e–4t + (1/25) et + (7/36) e2t] – e2t

or x ! – (c1 + c2t) e–4t + c2 e–4t + (4/25) et – (1/36) e2t. ... (7)
The required general solution is given by (5) and (7).
Ex. 4(b). Solve   dx/dt + 2y + x = et, dy/dt + 2x + y = 3et. [Delhi Maths (H) 2009]
Sol. Writing D for d/dt, the given equations become

(D + 1) x + 2y ! et ... (1)
and 2x + (D + 1) y ! 3et ... (2)
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Operating on both sides of (1) by (D + 1) and multiplying both sides of (2) by 2 and then
subtracting, we get

[(D + 1)2 – 4] x ! (D + 1) et – 6et or (D2 + 2D – 3)x ! – 4et ... (3)
The auxiliary equation is            D2 + 2D – 3 ! 0  so that     D ! 1, – 3.
%          C.F. ! c1 et + c2 e–3t, c1 and c2,  being arbitrary constants.

and 2
1 1 1P.I . ( 4 ) 4

( 1) ( 3)2 3
# ( # (

( .. (
t te e

D DD D

1 1 1 14 , as
11 3 ( 1) 1! !( )

n
t t t at at

n
t te e e e e

D D nD a
# ( # ( # ( #

( . ( (
% Solution of (3) is x ! c1et + c2 e–3t – t et ... (4)
From (4), Dx ! dx/dt ! c1 et – 3c2 e–3t – (et + t et) ... (5)
Now, 2y ! et – Dx – x, using (1)

or  2y ! et – (c1et – 3c2 e–3t – et – t et) – (c1et + c2 e–3t – t et), using (4) and (5)
or y ! et – c1et + c2e–3t + t et ... (6)

The required general solution is given by (4) and (6).
Ex. 4(c). Solve (dx/dt) + 2 (dy/dt) – x + y = 0 and 2 (dx/dt) + (dy/dt) + 2x + y = 3e–t.

[Delhi Maths (Hons.) 1998]
Sol. Writing D for d/dt, the given equations become

(D – 1) x + (2D + 1) y ! 0 ... (1)
and 2(D + 1) x + (D + 1) y ! 3e–t ... (2)

Operating on both sides of (1) by (D + 1) and (2) by (2D + 1) and then subtracting, we have
[(D + 1) (D – 1) – 2(2D + 1) (D + 1)] x ! 0 – (2D + 1) (3e–t)

or [D2 – 1 – 2 (2D2 + 3D + 1)] x ! – 6D e–t – 3e–t ! 6e–t – 3e–t ! 3e–t

or     (– 3D2 – 6D – 3) x ! 3e–t            or               (D + 1)2 x ! – e–t ... (3)
Its auxiliary equation is             (D + 1)2 ! 0             so that             D ! – 1, – 1.
%                C.F. ! (c1 + c2t) e–t, c1 and c2 being arbitrary constants.

and
2

2
1 1P.I . ( ) , as

2! !( 1) ( )

n
t t at at

n
t te e e e

nD D a
( (# ( # ( #

. (
% Solution of (3) is x ! (c1 + c2t) – (1/2) × t2 e–t. ... (4)
From (4), Dx ! – (c1 + c2t) e–t + c2 e–t – (1/2) × (2t e–t – t2 e–t) ... (5)
Multiplying both sides of (2) by 2, we have

(4D + 4) x + (2D + 2) y ! 6e–t  ... (6)
Subtracting (1) from (6), we have
   (3D + 5) x + y ! 6 e–t                         or                       y ! 6 e–t – 3Dx – 5x

or y ! 6 e–t – 3 [– (c1 + c2 t) e–t + c2 e–t – (1/2) × (2t e–t – t2 e–t)] – 5[(c1 + c2 t) e–t – (1/2) × t2 e–t]
or y ! 6 e–t – 2 (c1 + c2t) e–t – 3c2 e–t + 3t e–t + t2 e–t

or y ! – 2 (c1 + c2 t) e–t – 3c2 e–t + (t2 + 3t + 6) e–t. ... (7)
The required general solution is given by (4) and (7).
Ex. 5. Solve (dx/dt) – y = t2, (dy/dt) + 4x = t, given x (0) = 0 and y (0) = 3/4.
Sol. Writing D for d/dt, the given equations become

Dx – y ! t2  ... (1)
and 4x + Dy ! t  ... (2)
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8.6 Ordinary Simultaneous Differential Equations

Operating on both sides of (1) by D and adding to (2), we get
D2x + 4x ! Dt2 + t or (D2 + 4) x ! 2t + t ! 3t .... (3)

Its auxiliary equation is D2 + 4 ! 0 so that D ! ± 2i
%                   C.F. ! c1 cos 2t + c2 sin 2t, c1 and c2 being arbitrary constants.

and
12

2 2
1 1 3P.I . 3 3 1

4 44 4(1 / 4)

(
& ∋

# # # .) ∗
. . + ,

Dt t
D D

23 31 ...
4 4 4

D tt
& ∋

# ( . #) ∗
+ ,

% Solution of (3) is x ! c1 cos 2t + c2 sin 2t + (3t/4).  ... (4)
From (4), Dx ! dx/dt ! – 2c1 sin 2t + 2c2 cos 2t + (3/4).  ... (5)
From (1) and (5), y ! Dx – t2 ! – 2c1sin 2t + 2c2cos 2t + (3/4) – t2 ... (6)
Putting t ! 0 in (4) and using the fact that x (0) ! 0, we get c1 ! 0. Again, putting t ! 0 in (6)

and using the fact that y (0) ! 3/4, we get 3/4 ! 2c2 + 3/4 so that c2 ! 0.
Hence, from (4) and (6), the required solution is x ! (3t/4), y ! (3/4) – t2.
Ex. 6. Solve dydt = y, dx/dt = 2y + x. [Delhi Maths (G) 2000]
Sol. Given that dy/dt ! y ... (1)

and dx/dt ! 2y + x ... (2)
From (1), (1/y) dy ! dt.
Integrating, log y – log c1 ! t or y ! c1 et ... (3)
Substituting this value of y in (2), we have (dx/dt) ! 2c1et + x   or   (dx/dt) – x ! 2c1et,

which is a linear equation. Its I.F. ! ( 1)( (0 #dt te e  and solution is

1 2 1 2(2 ) 2t t tx e c e e dt c c t c( (1 # 1 . # .0 ,                       or                   1 2(2 ) .tx c t c e# .

where c1 and c2 are arbitrary constants.
Hence the required solution is given by                x ! (2 c1t + c2) et,               y ! c1et.
Ex. 7(a). Solve (dx/dt) + 4x + 3y = t, (dy/dt) + 2x + 5y = et. [Garhwal 2003;

Lucknow 2003; Kerala 2001; Karnataka 2002; Vikram 2000; Osmania 2004,
Meerut 2011; Delhi Maths (G) 1994, Delhi Maths (Hons.) 1999]

Sol. Writing D for d/dt, the given equations become
(D + 4) x + 3y ! t  ... (1)

and 2x + (D + 5) y ! et ... (2)
Operating on both sides of (1) by (D + 5) and multiplying both sides of (2) by 3 and then

subtracting, we get
{(D + 5) (D + 4) – 6} x ! (D + 5) t – 3et           or           (D2 + 9D + 14) x ! 1 + 5t – 3et  ...(3)

Its auxiliary equation is D2 + 9D + 14 ! 0 so that D ! – 2, – 7.
% C.F. ! c1 e–2t + c2 e–7t, c1 and c2 being arbitrary constants.
P.I. corresponding to (1 + 5t)

! 2 2
1 1(1 5 ) (1 5 )

14 9 14[1 (9 /14) (1/14) ]
. # .

. . . .
t t

D D D D

1
21 9 11 (1 5 )

14 14 14
D D t

(
2 3& ∋# . . .) ∗4 5+ ,6 7

21 9 11 ... (1 5 )
14 14 14

D D t2 3& ∋# ( . . .) ∗4 5+ ,6 7
! 1 9 1 9 5 311 5 (1 5 ) 1 5 5 .

14 14 14 14 14 196
tt D t t2 3 2 3. ( . # . ( − # (4 5 4 56 7 6 7
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P.I. corresponding to (– 3et) !
2 2

1 1 3( 3 ) 3 .
24 814 9 14 9 1 1

( # ( # ( # (
. . . 1 .

t
t t t ee e e

D D
% Solution of (3) is    x ! C.F. + P.I. ! c1e–2t + c2e–7t + (5/14) t – (31/196) – (1/8) et    ...(4)
% Dx ! dx/dt ! – 2c1e–2t – 7c2e–7t + (5/14) – (1/8) et. ...(5)
From (1), 3y ! t – Dx – 4x. Using (4) and (5), this gives
3y ! t – [– 2c1e–2t – 7c2e–7t + (5/14) – (1/8) et] – 4 [c1e–2t + c2e–7t + (5/14) t – (31/196) – (1/8) et]

or y ! (1/3) [– 2c1 e–2t + 3c2 e–7t + (5/8) et + (27/98) – (3/7) t] ... (5)
The required general solution is given by (3) and (5).
Ex. 7(b). Solve dx/dt + 2x – 3y = t, dy/dt – 3x + 2y = e2t.

[Ujjain 2003, Delhi Maths 2001; Delhi B.A. (Prog) II 2010]
Sol. Let D ! d/dt. Then the given equations become

(D + 2) x – 3y ! t ... (1)
and – 3x + (D + 2) y ! e2t ... (2)

Eliminating y from (1) and (2), we have (D + 2)2 x – 9x ! (D + 2) t + 3 e2t

or (D2 + 4D – 5) x ! 2t + 1 + 3 e2t ... (3)
Auxiliary equation for (3) is         D2 + 4D – 5 ! 0.         Hence       D ! 1, – 5.
%  C.F. of (3) ! c1 et + c2 e–5t,  c1 and c2 being arbitrary constants
P.I. corresponding to (2t + 1)

!
12

2
1 1 4(2 1) 1 (2 1)

5 5 54 5

(
2 3& ∋

. # ( ( . .4 5) ∗
. ( 4 5+ ,6 7

D Dt t
D D

 ! 1 41 ... (2 1)
5 5

& ∋( . . .) ∗
+ ,

D t

! (1/ 5) (2 1 8 / 5) (10 13) / 25t t( − . . # .

P.I. corresponding to 3 e2t ! 2
3

13
4 5. (

te
D D

! 2 21 33 .
4 8 5 7

#
. (

t te e

Hence the general solution of (3) is
x ! c1et + c2 e–5t + (3/7) e2t – (1/25) (10 t + 13). ... (4)

% Dx ! c1 et – 5c2 e–5t + (6/7) e2t – (2/5). ... (5)
From (1), 3y ! Dx + 2x – t. Using (4) and (5), it gives

3y ! 3c1 et – 3c2 e–5t + (12/7) e2t – (9/5) t – (36/25)
% y ! c1 et – c2 e–5t + (4/7) e2t – (3/5) t – (12/25) ... (6)
The required solution is given by (4) and (6).
Ex. 7(c). Solve  dx/dt + dy/dt – 2y = 2 cos t – 7 sin t, dx/dt – dy/dt + 2x = 4 cos t – 3 sin t.

[Lucknow 2005; Pune 2000; Delhi Maths (G) 2005; Agra 2002; Kanpur 1998]
Sol. Let D ! d/dt. Then the given equations become

Dx + (D – 2) y ! 2 cos t – 7 sin t ... (1)
and (D + 2) x – Dy ! 4 cos t – 3 sin t ... (2)

Eliminating y from (1) and (2), we get
[D2 + (D – 2) (D + 2)]x ! D(2 cos t – sin t) + (D – 2)(4 cos t – 3 sin t)

or (D2 – 2) x ! – 9 cos t, on simplification ... (3)

Auxiliary equation is D2 – 2 ! 0 giving 2D # /
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8.8 Ordinary Simultaneous Differential Equations

%             C.F. ! 2 2
1 2

t tc e c e(. , c1 and c2 being arbitrary constants.

Also, P.I. ! 2 2
9 9cos cos 3 cos .

2 1 2
t t t

D
(

( # #
( ( (

% Solution of (3) is x ! 2 2
1 2 3 cos .. .t tc e c e t ... (4)

From (4), Dx ! 2 2
1 22 2 3sin(( (t tc e c e t ... (5)

Adding (1) and (2), 2Dx + 2x – 2y ! 6 cos t – 10 sin t
% y ! Dx + x – 3 cos t + 5 sin t

or y ! 2 2 2 2
1 2 1 22 2 3sin 3cos 3cos 5sint t t tc e c e t c e c e t t t( (( ( . . . ( . , by (4) and (5)

Thus, 2 2
1 2(1 2) (1 2) 2sin(# . . ( .t ty c e c e t ... (6)

The required solution is given by (4) and (6).
Ex. 7(d). Solve the equations 4(dx/dt) + 9 (dy/dt) + 11x + 31y = et, 3 (dx/dt) + 7 (dy/dt)

+ 8x + 24y = e2t    [Lucknow 1998, Meerut 1996]
Sol. Writing D for d/dt, the given equations become

(4D + 11) x + (9D + 31) y ! et ... (1)
and (3D + 8) x + (7D + 24) y ! e2t ... (2)

Operating on both sides of (1) by (7D + 24) and (2) by (9D + 31) and then subtracting, we
have {(7D + 24) (4D + 11) – (9D + 31) (3D + 8)} x ! (7D + 24) et – (9D + 31) e2t

or (D + 4)2 x ! 31 et – 49 e2t  ... (3)
Its auxiliary equation is (D + 4)2 ! 0           so that           D ! – 4, – 4
%                C.F. ! (c1 + c2 t) e–4t, c1 and c2 being arbitrary constants

and 2 2
4 2 4

1 1 1P.I . (31 49 ) 31 49
( 4) ( 4) ( 4)

# ( # (
. . .

t t t te e e e
D D D

! 2 2
2 2

1 1 31 4931 49 .
25 36(1 4) (2 4)

( # (
. .

t t t te e e e

% Solution of (3) is x !C.F. + P.I. ! (c1 " c2t) e–4t + (31/25) et – (49/36) e2t ... (4)
From (4), Dx ! dx/dt ! c2 e–4t – 4 (c1 " c2t) e–4t + (31/25) et – (49/18)e2t ... (5)
Now, multiplying both sides of (1) by 7 and (2) by 9, we get

(28D + 77) x + (63D + 217) y ! 7 et ... (6)
and (27D + 72) x + (63D + 216) y ! 9 e2t. ... (7)

Subtracting (7) from (6), Dx + 5x + y ! 7 et – 9 e2t or y ! – Dx – 5x + 7et – 9e2t

or y ! – [c2e–4t – 4 (c1 + c2 t) e–4t + (31/25) et – (49/18) e2t]
– 5 [(c1 + c2 t) e–4t + (31/25) et – (49/36) e2t] + 7 et – 9 e2t, by (4) and (5)

or y ! – (c2 + c1 + c2t) e–4t + (19/36) e2t – (11/25) et .... (8)
The required general solution is given by (4) and (8).
Ex. 8. Solve the following simultaneous equations :
(i) dy/dx + y = z + ex, dz/dx + z = y + ex. [Delhi Maths (P) 2005]

(ii) dx/dt + x = y + et, dy/dt + y = x + et. [Delhi Maths Hons. 2005]
Sol. (i) Writing D for d/dx, the given equations become

(D + 1) y – z ! ex ... (1)
and – y + (D + 1) z ! ex ... (2)
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Ordinary Simultaneous Differential Equations 8.9

Operating (1) by (D + 1), we get (D + 1)2 y – (D + 1) z ! (D + 1) ex ... (3)
Adding (2) and (3), we get [(D + 1)2 – 1] y ! ex + (ex + ex)

or                         (D2 + 2D) y ! 3ex or D (D + 2) y ! 3ex ...(4)
Auxiliary equation of (4) is D (D + 2) ! 0 giving D ! 0, – 2.

% C.F. ! c1 + c2 e–2x and P.I. !
1 13 3 .

( 2) 1 (1 2)
x x xe e e

D D
# #

. − .
% Solution of (4) is y ! c1 + c2 e–2x + ex, c1, c2 being arbitrary constants. ... (4)
From (4), Dy ! dy/dx ! – 2c2 e–2x + ex ... (5)
% From (1), z ! Dy + y – ex ! – 2c2 e–2x + ex + c1 + c2 e–2x + ex – ex, by (4) and (5)

or                      z ! c1 – c2 e–2x " ex ... (6)
The required solution is given by (4) and (6).
(ii) This is just the same as (i). Here we have t in place of x and x and y in place of y and z.

You have to denote d/dt by D. Ans. x ! c1 + c2 e–2t + et, y ! c1 – c2 e–2t + et.
Ex. 9(a). Solve dx/dt = ax + by, dy/dt = b x + ay

[Punjab 2005; G.N.D.U. Amritsar 2000; Garhwal 1998, Lucknow 1999]
Sol. Writing D of d/dt, the given equations become

(D – a) x – by ! 0 ... (1)
and – bx + (D – a) y ! 0 ... (2)

Operating both sides of (1) by (D – a) and multiplying (2) by b, we get
(D – a)2 x – b (D – a) y ! 0

and – b2x + b (D – a) y ! 0
Adding these, [(D – a)2 – b2] x ! 0 or (D – a – b) (D – a + b) x ! 0 ... (3)
Its auxiliary equation (D – a – b) (D – a + b) ! 0 yields D ! a + b and D ! a – b.
Hence, solution of (3) is   x ! c1e(a + b) t + c2 e(a – b) t , c1, c2 being arbitrary constants  ... (4)
From (4), dx/dt ! c1 (a + b) e(a + b)t + c2(a – b) e(a – b)t ... (5)
From the first given differential equatioin, we have
y ! (1/b) × {dx/dt – ax}

! (1/b) × {c1(a + b) e(a + b)t + c2 (a – b) e(a – b)t – ac1e(a + b)t – ac2e(a – b)t], using (4) and (5)
or y ! c1 e(a + b)t – c2 e(a – b)t on simplification ... (6)

(4) and (6) together give the required solution.
Ex. 9(b). Solve dx/dt = ax + by, dy/dt = a8 x + b8 y.

[Garhwal 1999, G.N.D.U. Amritsar 2000, Lucknow 1999]
Sol. Writing D for d/dt, the given equations become

(D – a) x – by ! 0 ... (1)
and – a8x + (D – b8) y ! 0 ... (2)
Operating both sides of (1) by (D – b8) and multiplying (2) by b, we get

(D – b8) (D – a) x – b (D – b8) y ! 0  ... (3)
and            – a8bx + b (D – b) y ! 0 ... (4)

Adding (3) and (4),   [(D – b8) (D – a) – a8b] x ! 0
or [D2 – D (a + b8) + (ab8 – a8b)] x ! 0, ... (5)

Its auxiliary equation is D2 – D (a + b8) + (ab8 – a8b) ! 0,

giving
24( )} }

2 2
a b a b ab a b a b a b a b

D
9 8 8. 8 / :; . 8< ( ( . 8 / :; ( 8< . = 8

# #
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8.10 Ordinary Simultaneous Differential Equations

% D ! (1/2) − [a + b8 + {(a – b8)2 + 4a8b}1/2] ! >1, say
and D ! (1/2) − [a + b8 – {(a – b8)2 + 4a8b}1/2] ! >2, say

% Solution of (5) is 1 2
1 2

t tx c e c e> ># . , c1 and c2 being arbitrary constants ... (6)
(1) ? by ! (D – a) x        or                y ! (1/b) − {(dx/dt) – ax}

% y ! (1/b) − 1 2 1 2
1 1 2 2 1 2[ – ( )],t t t tc e c e a c c e> > > >> . > > .  by (6)

or y ! (1/b) − 1 2
1 1 2 2[ ( ) ( ) ].t tc a e c a e> >> ( . > ( ... (8)

(6) and (8) together give the required solution.
Ex. 9(c). Solve dx/dt = – wy and dy/dt = wx. Also show that the point (x, y) lies on a circle.

[I.A.S. 2002, Meerut 2006; Nagpur 2007; Sagar 2001, 04]
Sol. Writing D for d/dt, the given equations become Dx + wy ! 0 ... (1)

and wx – Dy ! 0 ... (2)
Operating (1) by D and multiplying (2) by w, we get

D2x + w Dy ! 0 and w2x – w Dy ! 0.
Adding the above two equations, we get                     (D2 + w2) x ! 0 ....(3)
Auxiliary equation for (3) is D2 + w2 ! 0 giving D ! / iw
Solution of (3) is x ! c1 cos wt + c2 sin wt, c1, c2 being arbitrary constants ... (3)
(3) ? dx/dt ! Dx ! – c1w sin wt + c2w cos wt.  ... (4)
% From (1), y ! – (1/w) − Dx ! – (1/w) − (– c1w sin wt + c2w cos wt), by (4)
Thus, y ! c1 sin wt – c2 cos wt ... (5)
Thus   (3) and (5) together give the required solution.
Squaring and adding (3) and (5), x2 + y2 ! (c1cos wt + c2 sin wt)2 + (c1sin wt – c2 cos wt)2

Thus, x2 + y2 ! c1
2 + c2

2 ! {(c1
2 + c2

2)1/2}2, which is a circle.
Hence the point (x, y) lies on a circle.
Ex. 10(a). Solve for x and y :(dx/dt) + 2 (dy/dt) – 2x + 2y = 3et and 3 (dx/dt) + (dy/dt)

+ 2x + y = 4e2t. [Delhi B.Sc. (Prog) II 2010; Kanpur 2002, 07; Meerut 2007]
Sol. Given (dx/dt) + 2(dy/dt) – 2x + 2y ! 3et ... (1)

and 3 (dx/dt) + (dy/dt) + 2x + y ! 4e2t ... (2)
Multiplying both sides of (2) by 2, we have 6 (dx/dt) + 2 (dy/dt) + 4x + 2y ! 8 e2t ... (3)
Subtracting (1) from (3), we have

2 26 8 35 6 8 3 or ,
5 5 5

t t t tdx dxx e e x e e
dt dt

. # ( . # ( ... (4)

which is a linear differential equation of order one.

I.F. of (4) (6 /5) (6 /5)dt te e0# #  and its solution is

(6 /5) 2 (6 / 5) (16 /5) (11/ 5)
1 1

8 3 8 3
5 5 5 5

t t t t t tx e e e e dt c e e dt c& ∋ 2 3# ( . # ( .) ∗ 4 5+ , 6 70 0

or (6 /5) (16 / 5) (11/ 5)
1(8 / 5) (5 /16) (3 / 5) (5/11)t t tx e e e c# 1 ( 1 .

x ! (1/2) e2t – (3/11) et + c1 e–(6/5) t, c1 being an arbitrary constant ... (5)
Multiplying both sides of (1) by 3, 3 (dx/dt) + 6 (dy/dt) + 6x + 6y ! 9et ... (6)
Subtracting (2) from (6), we have

5 (dy/dt) – 8x + 5y ! 9et – 4e2t or 5 (dy/dt) + 5y ! 8x + 9et – 4e2t
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or 2 (6 / 5) 2
1

1 35 5 8 9 4 , by (5)
2 11

t t t t tdy y e e c e e e
dt

(2 3. # ( . . (4 56 7

or (6 / 5) (6 / 5)1
1

875 155 5 8 or
11 11 5

t t t tcdy dy
y e c e y e e

dt dt
( (. # . . # .

which is again a linear differential equation of order one.

Its integrating factor ! dt te e0 #  and its solution is

( 6 / 5) 2 (1/ 5)1 1
2 2

8 815 15or
11 5 11 5

t t t t t t tc c
y e e e e dt c y e e e dt c( (2 3 2 3# . . # . .4 5 4 5

6 7 6 70 0
or 2 (1 /5)

1 2(15/11) (1/ 2) (8 / 5)t t ty e e c e c(# 1 . 1 ;(≅< 1 .

or ( 6 / 5)
2 18 (15 / 22) .t t ty c e c e e( (# ( . , c2 being an arbitrary constant. ... (7)

(5) and (7) together give the required solution.
Ex. 10(b). Solve dx/dt + 2x + 3y = 0, dy/dt + 3x + 2y = 2e2t. [Delhi Maths 2002, 04]
Sol. Writing D for d/dt, the given equations become

dx/dt + 2x + 3y ! 0 or (D + 2) x + 3y ! 0 ... (1)
and dy/dt + 3x + 2y ! 2e2t or 3x + (D + 2) y ! 2e2t ... (2)

Operating (2) by (D + 2) and multiplying (1) by 3 and then subtracting, we have
[(D + 2)2 – 9] y ! (D + 2) 2e2t       or     (D2 + 4D – 5) y ! 8e2t ... (3)
Auxiliary equation of (3) is D2 + 4D – 5 ! 0 so that D ! 1, – 5
% C.F. of (3) ! C1et + C2 e–5t,   c1 and c2 being arbitrary constants

P.I. of (3) ! 2 2 2
2 2

1 1 88 8
74 5 2 4 2 5

t t te e e
D D

# #
. ( . 1 (

% solution of (3) is y ! C1et + C2e–5t + (8/7) e2t ... (4)
From (4), dy/dt ! C1et – 5C2 e–5t + (16/7) e2t ... (5)
From (2), 3x ! 2e2t – 2y – dy/dt

or 2 5 2 5 2
1 2 1 23 2 2{ (8 / 7) } { 5 (16 / 7) }t t t t t t tx e C e C e e C e C e e( (# ( . . ( ( .

[On putting values of y and dy/dt from (4) and (5)]
or 3x ! –3C1et + 3C2e–5t – (18/7) e2t or x ! – C1et + C2e–5t – (6/7) e2t ... (6)

The required solution is given by (4) and (6).
Ex. 10(c). Solve (dx/dt) – (dy/dt) + 3x = sin t, dx/dt + y = cos t, given that x = 1, y = 0 for t = 0.

[Delhi Maths (H) 2001]
Sol. Writing D for d/dt, the given equations become

(dx/dt) – (dy/dt) + 3x ! sin t or (D + 3) x – Dy ! sin t ... (1)
and dx/dt + y ! cos t    or Dx + y ! cos t ... (2)

Operating (2) by D and adding it to (1), we get
[(D + 3) + D2] x ! sin t + D cos t or (D + D + 3) x ! 0 ... (3)

Auxiliary equation of (3) is D2 + D + 3 ! 0, giving
1/ 2{ 1 (1 12) }/ 2 ( 1/ 2) ( 11 / 2)D i# ( / ( # ( /

So solution of (3) is / 2
1 2{ cos( 11 / 2) sin( 11 / 2)}tx e C t C t(# . ... (4)
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Diff. (4) w.r.t ‘t’, / 2
1 2/ (1/ 2) { cos( 11 / 2) sin( 11 / 2]tdx dt e C t C t(# ( .

/ 2
1 2{ ( 11 / 2)sin( 11 / 2) ( 11 / 2)cos( 11 / 2)}te C t C t(. ( . ... (5)

From (2), y ! cos t – dx/dt

or y ! cos t + (1/2) e–t/2 {C1 cos ( 11 / 2)t  + C2 sin ( 11 / 2)}t
/ 2

1 2{ ( 11 / 2)sin( 11 / 2) ( 11 / 2) cos( 11 / 2)}te C t C t(( ( . , using (5) ... (6)
Given that y ! 0 for t ! 0. So the above equation gives

1 20 1 (1/ 2) ( 11 / 2)C C# . ( ... (7)
Again, given that x ! 1 for t ! 0. So (4) gives C1 ! 1. With this value of C1, (7) gives

C2 ! 3/ 11 . Therefore, (4) and (6) give
/ 2{cos ( 11 / 2) (3 / 11)sin ( 11 / 2)}tx e t t(# . ... (7)

and / 2cos (1/ 2) [cos ( 11 / 2) (3 / 11) sin( 11 / 2)]ty t e t t(# . .

/ 2{ ( 11 / 2)sin( 11 / 2) (3 / 2) cos ( 11 / 2)}te t t(( ( .

or / 2 / 2cos cos( 11 / 2) (3 / 2 11 11 / 2)sin ( 11 / 2)t ty t e t e t( (# ( . . ... (8)
The required solution is given by (7) and (8).
Ex. 10(d). Solve dx/dt – 3x + 4y = e–2t, dy/dt – x + 2y = 3e–2t.[Delhi Maths (H) 2004, 06]
Find also the particular solution, if x = 12, y = 7 when t = 0
Sol. Let D ! d/dt. Then, the given equation reduce to

(D – 3) x + 4y ! e–2t ... (1)
and – x + (D + 2) y ! 3e–2t

Eliminating y from (1) and (2), (D + 2)(D – 3)x + 4x ! (D + 2)e–2t – 12e–2t

or (D2 – D – 2) x ! – 12e–2t ...(3)
Its auxiliary equation is D2 – D – 2 ! 0, giving D ! 2, – 1.
Its           C.F. ! C1e2t + C2e–t, C1 and C2 being arbitrary constants.

Its P.I. ! 2 2 2
2 2

1 1( 12 ) 12 3
2 ( 2) 2 2

t t te e e
D D

( ( (( # ( # (
( ( ( . (

So solution of (3) is x ! C1e2t + C2e–t – 3e–2t ... (4)
From (1), 4y ! e–2t + 3x – (dx/dt)

! e–2t + 3 (C1e2t + C2e–t – 3e–2t) – (2C1e2t – C2e–t + 6e–2t), using (4)
or y ! (1/4) − (C1e2t + 4C2e–t – 14e–2t) ... (5)

(4) and (5) together give the required solution.
Second part Given that x ! 12 and y ! 7 when t ! 0. So (4) and (5) reduce to

C1 + C2 – 3 ! 12 giving C1 + C2 ! 15  ...(6)
and (1/4) × (C1 + 4C2 – 14) ! 7 giving C1 + 4C2 ! 42 ... (7)

Solving (6) and (7), C1 ! 6 and C2 ! 9. Hence, the required solution is given by
x ! 6 e2t + 9 e–t – 3e–2t, y ! (3/2) e2t + 9e–t – (7/2) e–2t

Ex. 10(e). Solve dx/dt + dy/dt + 2x + y = et, dy/dt + 5x + 3y = t. [Delhi Maths (G) 2004]
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Sol. Let D ! d/dt. Then, the given equations reduce to
(D + 2) x + (D + 1) y ! et ... (1)

5x + (D + 3) y ! t ... (2)
Eliminating x from (1) and (2), {5(D + 1) – (D + 2)(D + 3)}y ! 5et – (D + 2)t

or (–D2 – 1) y ! 5et – 1 – 2t or (D2 + 1) y ! 1 + 2t – 5et ... (3)
Its auxiliary equation is D2 + 1 ! 0, giving D ! ± i
% C.F. of (3) ! C1 cos t + C2 sin t, C1 and C2 being arbitrary constants.

P.I. of (3) corresponding to (1 + 2t) 2
1 (1 2 )

1
t

D
# .

.
! (1 + D2)–1 (1 + 2t) ! (1 – D2 + ...) (1 + 2t) ! 1 + 2t

and P.I. of (3) corresponding to 2
1 5( 5 ) ( 5 )

21
t t te e e

D
( # ( # (

.
% Solution of (3) is y ! C1 cos t + C2 sin t + 1 + 2t – (5/2) et ... (4)
From (2), 5x ! t – 3y – (dy/dt) ! t – 3 {C1 cos t + C2 sin t + 1 + 2t – (5/2) et}

 – (– C1 sin t + C2 cos t + 2 – (5/2) et}, by (4)
or x ! {(C1 – 3C2)/5} sin t – {(3C1 + C2)/5} cos t – t – 1 + 2et ... (5)

(4) and (5) together give the required solution.
Ex. 10(f). Solve dx/dt + dy/dt + 2x – y = 3 (t2 – e–t), 2 (dx/dt) – (dy/dt) – x – y

= 3 (2t – e–t) [I.A.S. 2003; Rajasthan 2007]
Sol. Let x1 ! dx/dt, x2 ! d2x/dt2, y1 ! dy/dt and y2 ! d2y/dt2

Then, re-writing the given equation, we have
x1 + y1 + 2x – y ! 3 (t2 – e–t)  ... (1)

and 2x1 – y1 – x – y ! 3 (2t – e–t) ... (2)
Differentiating (1) and (2) w.r.t. ‘t’, we have x2 + y2 + 2x1 – y1 ! 3 (2t + e–t)  ... (3)

and 2x2 – y2 – x1 – y1 ! 3 (2 + e–t) ... (4)
Adding (3) and (4), 3x2 + x1 – 2y1 ! 6 (t + 1 + e–t)  ... (5)
Subtracting (2) from (1), x1 – 2y1 – 3x ! 3 (2t – t2) ... (6)
Subtracting (6) from (5), 3x2 + 3x ! 6 + 3t2 + 6 e–t

or              (D2 + 1) x ! 2 + t2 + 2e–t,    where               D ! d/dt ... (7)
Auxiliary equation of (7) is            D2 + 1 ! 0               so that                 D ! ± i.
% C.F. of (7) ! c1 cos t + c2 sin t,  c1 and c2 being arbitrary constants
P.I. corresponding to (2 + t2)

2 2 1 2 2 2
2
1 (2 ) (1 ) (2 ) (1 – ...) (2 )

1
t D t D t

D
(# . # . . # . .

.
! 2 + t2 – 2 ! t2.

P.I. corresponding to 2
1 1(2 ) 2 2 .

1 11
t t t te e e e

D
( ( ( (# # #

..
% Solution of (7) is                       x ! c1cos t + c2 sin t + e–t + t2 ... (8)
From (8), on differentiating, x1 ! – c1 sin t + c2 cos t – e–t + 2t ... (9)
From (6),         2y1 ! x1 – 3x – 6t + 3t2 ! – c1 sin t + c2 cos t – e–t + 2t

– 3 (c1 cos t + c2 sin t + e–t + t2) – 6t + 3t2, by (8) and (9)
% y1 ! [(c2 – 3c1) cos t – (c1 + 3c2) sin t – 4t – 4e–t]/2 ... (10)
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% From  (2), y ! 2x1 – y1 – x – 6t + 3e–t

or  y ! 2 (– c1 sin t + c2 cost t + 2t – e–t) – (1/2) [(c2 – 3c1) cos t
– (c1 + 3c2) sin t – 4t – 4e–t] – (c1 cos t + c2 sin t + e–t + t2) – 6t + 3e–t, by (8) (9) and (10)

or y ! (1/2) − (3c2 + c1) cos t + (1/2) − (c2 – 3c1) sin t + 2e–t – t2 ... (11)
(8) and (11) together give the desired solution.
Ex. 10(g). Solve 4x1 + 9y1 + 44x + 49y ! t, 3x1 + 7y1 + 34x + 38y = et where

x1 = dx/dt and y1 = dy/dt. [Kanpur 2005; Meerut 1997; Delhi Maths (Prog) 2007]
Sol. Let D ! d/dt. Then the given equations can be re-written as

(4D + 44) x + (9D + 49) y ! t  ... (1)
and (3D + 34) x + (7D + 38) y ! et ... (2)

Eliminating y from the above equations, we have
[(7D + 38) (4D + 44) – (9D + 49) (3D + 34)] x ! (7D + 38) t – (9D + 49) et

or (D2 + 7D + 6) x ! 7 + 38t – 58t2 ... (3)
% C.F.  of #$% ! c1e–t + c2e–6t,  c1 and c2 being arbitrary constants
P.I. corresponding to (7 " 38 t) is

2 2
1 1(7 38 ) (7 38 )
7 6 6[1 ( 7 ) / 6]

t t
D D D D

# . # .
. . . .

12 71 1 (7 38 )
6 6

D D
t

(
2 3.

# . .4 5
4 56 7

21 71 ... (7 38 )
6 6

D D t
& ∋.

# ( . .) ∗
+ ,

1 7 19 567 38 (38) .
6 6 3 9

t t2 3# . ( − # (4 56 7

P.I. corresponding to (– 58 et) ! 2
1 2958 .

77 6
t te e

D D
( # (

. .
Hence, the solution of (3) is x ! c1e–t + c2e–6t + (19/3)t – (29/77) et – (56/9) ... (4)
Now, (4) ? x1 ! dx/dt ! & c1e–t – 6c2 e–6t + (19/3) –  (29/7) et ... (5)
Eliminating y1 from given equations, we have

x1 + 2x + y ! 7t – 9et so that y ! 7t – 9et – x1 – 2x
or y ! 7t – 9et – {–c1e–t – 6 c2e–6t + (19/3) – (29/7) et}

– 2{c1e–t " c2e–6t + (19/3) t – (29/7) et – (56/9)}, using (4) and (5)
or y ! – c1e–t + 4c2 e–6t – (17/3) t + (24/7) et + (55/9) ... (6)

(4) and (6) together give the required solution.
Ex. 10(h). Solve : dx/dt = ax + by + c, dy/dt = a8 x + b8 y + c8. [Rajasthan 2004, 05]
Sol. Given dx/dt – ax – by ! c ... (1)

and dy/dt – a8x – b8y ! c8 ... (2)
Let d/dt ! D. Then (1) and (2) can be written as

(D – a) x – by ! c ... (3)
and – a8x + (D – b8) y ! c8 ... (4)

Eliminating y from (3) and (4), we have
[(D – b8) (D – a) – a8b] x ! (D – b8) c + bc8

or                      [D2 – (a + b8) D + ab8 – a8b] x ! c8b – cb8 ... (5)
Here auxiliary equation of (5) is                  D2 – (a + b8) D + ab8 – a8b ! 0

?
22 ( ) (( ) 4( )

2 2
a b a b a ba b a b ab a b

D
. 8 / ( 8< . = 8. 8 / . 8 ( 8( 8

# # ? D ! m1, m2 (say)
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Ordinary Simultaneous Differential Equations 8.15

% C.F. ! 1 2
1 2

m t m tc e c e. ,   c1 and c2 being arbitrary constants

P.I. ! 0.
2

1( )
( )

tc b cb e
D a b D ab a b

8 ( 8
( . . 8 ( 8

! ,c b cb
ab a b

8 ( 8
8 ( 8

provided (ab8 – a8b) ∃ 0.

Hence, the general solution of (5) is 1 2
1 2 {( ( )}.m t m tx c e c e c b cb ab a b# . . 8 ( 8<Α 8 ( 8 ... (6)

Now, (6) ? 1 2
1 1 2 2/ .m t m tdx dt c m e c m e# . ... (7)

From (1), we have                                by ! (dx/dt) – ax – c

% by ! 1 2 1 2
1 1 2 2 1 2[m t m t m t m tc m e c m e a c e c e. ( . {( ) /( )}] , by (6) and (7)c b cb ab a b c. 8 ( 8 8 ( 8 (

! 1 2
1 1 2 2

( ) ( )( ) ( )m t m t a c b cb c ab a bm a c e m a c e
ab a b

8 ( 8 . 8 ( 8
( . ( (

8 ( 8

! : Β1 2
1 1 2 2( ) ( ) ( ) / ( )m t m tm a c e m a c e b ac ca ab a b8 8 8 8( . ( ( ( (

% y ! 1 21 2
1 2( ) ( ) .m t m tc c ac cam a e m a e

b b ab a b
8 ( 8

( . ( (
8 ( 8

... (8)

(6) and (8) together give the required solution.
Ex. 11(a). Solve d2x/dt2 – 3x – 4y = 0, d2y/dt2 + x + y = 0. [Agra 2001, 04; Kanpur 2003;

[Garhwal 2005, Gorakhpur 1999, Delhi Maths Hons. 1992, Meerut 2009]
Sol. Writing D for d/dt, the given equations become

(D2 – 3) x – 4y ! 0 ... (1)
and x + (D2 + 1) y ! 0 ... (2)

Eliminating y from (1) and (2), [(D2 + 1) (D2 – 3) + 4] x ! 0 or (D2 – 1)2 y ! 0 ... (3)
Auxiliary equation for (3) is,         (D2 – 1)2 ! 0         so that         D ! 1, 1, – 1, –1.
Hence solution of (3) is x ! (c1 + c2t) et + (c3 + c4t) e–t, ... (4)

where c1, c2, c3 and c4 are arbitrary constants.
(4) ? Dx ! c2 et + (c1 + c2 t) et + c4 e–t – (c3 + c4t) e–t ! (c1 + c2 + c2 t) et + (c4 – c3 – c4 t) e–t.

% D2x ! c2 et + (c1 + c2 + c2t) et – c4 e–t – (c4 – c3 – c4t) e–t

or D2x ! (c1 + 2c2 + c2t) et – (2c4 – c3 – c4t) e–t ... (5)
But from (1), 4y ! D2x – 3x ... (6)
Hence using (4) and (5), (6) becomes

4y ! (c1 + c2 + 2c2t) et – (2c4 – c3 – c4t) e–t –3[(c1 + c2t) et + (c3 + c4t) e–t]
or 4y ! 2(c2 – c1 – c2t) et – 2(c4 – c3 + c4t) e–t

or y ! (1/2) − (c2 – c1 – c2t) et – (1/2) − (c4 – c3 + c4t) e–t ... (7)
The required solution is given by (4) and (7).
Ex. 11(b). Solve D2x + m2y = 0, D2y – m2x = 0, where D ' d/dt.

[Gwaliar 2004; Rajasthan 1997; Rohilkhand 1995, Agra 1998, Poona 1994]
Sol. Given D2x + m2y ! 0 ... (1)

and – m2x + D2y ! 0. ... (2)
Eliminating y from (1) and (2), (D4 + m4) x ! 0 whose auxiliary equation is D4 + m4 ' 0.

or (D4 + 2m2D2 + m4) – 2m2D2 ! 0 or (D2 + m2)2 – 2( 2 )m D ! 0

or 2 2 2 2( 2 )( 2 ) 0.D mD m D mD m. . ( . #
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8.16 Ordinary Simultaneous Differential Equations

% 2 2 1/ 2{ 2 (2 4 ) }/ 2,D m m m# ( / ( 2 2 1/2{ 2 (2 4 ) }/ 2m m m/ (

or ( / 2) ( / 2),D m i m# ( / ( / 2) ( / 2)m i m/

% / 2
1 2[ cos( / 2) sin ( / 2)]mtx e c mt c mt(# . / 2

3 4[ cos( / 2) sin ( / 2)].mte c mt c mt. .  ... (3)

/ 2 / 21 2
1 2sin ( / 2) cos ( / 2) [ cos ( / 2) sin ( / 2)]

2 2 2
mt mtc m c m mDx e mt mt e c mt c mt( (2 3# ( . ( .4 56 7

                        / 2
3 4(1/ 2) sin( / 2) (1/ 2) cos( / 2)mte c m mt c m mt2 3. ( .6 7

/ 2
3 4( / 2) cos( / 2) sin( / 2)mtm e c mt c mt2 3. .6 7

/ 2
1 2 1 2( / 2) [( )sin ( / 2) ( )cos( / 2)]mtm e c c mt c c mt(# ( . . (

/ 2
3 4 4 3( / 2) [( )cos( / 2) ( )sin( / 2)]mtm e c c mt c c mt. . . (

% 2 / 2 1 2 1 2( ) ( )cos sin
2 2 2 2 2

mtm m c c mt m c c mt
D x e( 2 3. (& ∋ & ∋# ( (4 5) ∗ ) ∗

+ , + ,6 7

2
/ 2

1 2 1 2( )sin ( )cos
2 2 2

mtm mt mt
e c c c c( 2 3& ∋ & ∋. . . (4 5) ∗ ) ∗

+ , + ,6 7

/ 2 3 4 4 3( ) ( )sin cos
2 2 2 2 2

mt m c c m c cm mt mt
e

2 3. (& ∋ & ∋. ( .4 5) ∗ ) ∗
+ , + ,6 7

2
/ 2

3 4 4 3( ) cos ( ) sin
2 2 2

mtm mt mt
e c c c c

2 3& ∋ & ∋. . . (4 5) ∗ ) ∗
+ , + ,6 7

2 / 2
1 2[ sin ( / 2) cos( / 2)]mtm e c mt c mt(# ( 2 / 2

4 3[ cos( / 2) sin ( / 2)].mtm e c mt c mt. ( ... (4)
Now (1), y ! – (1/m2) × D2x.

or / 2 / 2
2 1 3 4[ cos( / 2) sin( / 2)] [ sin( / 2) cos( / 2)],mt mty e c mt c mt e c mt c mt(# ( . (  by (4) ... (5)

The required solution is given by (3) and (6).
Ex. 11(c). Solve d2x/dt2 – 3x – 4y + 3 = 0, d2y/dt2 + y + x + 5 = 0.

[Delhi Maths (G) 1999]
Sol. Let D ! d/dt. Then the given equations become

d2x/dt2 – 3x – 4y + 3 ! 0 or (D2 – 3) x – 4y ! – 3 ... (1)
and d2y/dt2 + y + x + 5 ! 0 or x + (D2 + 1) y ! – 5 ... (2)

Operate (1) by (D2 + 1) and multiply (2) by 4 and then add. Thus, we get
{(D2 + 1) (D2 – 3) + 4] x ! – (D2 + 1)3 – 20 or (D4 – 2D2 + 1) x ! –23 ... (3)

The auxiliary equation of (3) is (D2 – 1)2 ! 0 gives D ! 1, 1, –1, –1
% C.F. ! (C1 + C2t) et + (C3 + C4t) e–t, C1, C2, C3 and C4 being arbitrary constants.

0. 0.
4 2 2 2

1 1P.I . ( 23) ( 23) 23
2 1 0 (2 0 ) 1

t te e
D D

# ( # ( # (
( . ( − .

% Solution of (3) is x ! (C1 + C2t) et + (C3 + C4t) e–t – 23 ... (4)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/
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From (4), dx/dt ! (C1 + C2t) et + C2et – (C3 + C4t) e–t + C4e–t ... (5)
From (5), d2x/dt2 ! (C1 + C2t) et + 2C2et + (C3 + C4t) e–t – 2C4e–t ... (6)
From (1), 4y ! d2x/dt2 – 3x + 3

or 4y ! (C1 + 2C2 + C2t) et + (C3 – 2C4 + C4t) e–t – 3(C1 + C2t) et

+ (C3 + C4t) e–t – 23} + 3, using (4) and (6)
or                         4y ! (2C2 – 2C1 – 2C2t) et – (2C4 + 2C3 + 2C4t) e–t + 72
or y ! (1/2) − (C2 – C1 – C2t) et – (1/2) − (C4 + C3 + C4t) e–t + 18 ... (7)

The required solution is given by (4) and (7).
Ex. 11(d). Solve the simultaneous equations (d2x/dt2) + 4x + y = t e3t and (d2y/dt2) + y – 2x

= cos2t. [Meerut 1997]
Sol. Writing D for d/dt, the given equations become (D2 + 4) x + y ! t e3t ... (1)

and – 2x + (D2 + 1) y ! cos2 t. ... (2)
Operating both sides of (1) by (D2 + 1), we get

(D2 + 1) (D2 + 4) x + (D2 + 1) y ! (D2 + 1) (t e3t)
or (D4 + 5D2 + 4) x + (D2 + 1) y ! D {D (te3t)} + t e3t

or (D4 + 5D2 + 4) x + (D2 + 1) y ! D (e3t + 3t e3t) + t e3t

or (D4 + 5D2 + 4) x + (D2 + 1) y ! 3 e3t + 3 (e3t + 3t e3t) + t e3t.
or (D4 + 5D2 + 4) x + (D2 + 1) y ! 6 e3t + 10 t e3t. ... (3)

Subtracting (2) from (3),               (D4 + 5D2 + 6) x ! 6e3t + 10t e3t – cos2 t
or (D4 + 5D2 + 6) x ! 6 e3t + 10 t e3t – (1/2) − (1 + cos 2t), ... (4)

whose auxiliary equation is D2 + 5D2 + 6 ! 0 so that D ! 3, 2i i/ /

% C.F. ! 1 2 3 4cos 3 sin 3 cos 2 sin 2c t c t c t c t. . . , c1, c2, c3 and c4 being arbitrary constants.

P.I. corresponding to 6e3t !
3

3 3
4 2 4 2

1 16 6 .
225 6 3 (5 3 ) 6

t
t t ee e

D D
# #

. . . − .

P.I. corresponding to 10 te3t ! 3 3
4 2 4 2

1 110 10
5 6 ( 3) 5( 3) 6

t tt e e t
D D D D

#
. . . . . .

! 3 31 110 10
132 138 ... 132{1 (23/ 22) ...}

t te t e t
D D

#
. . . .

!
13 3 35 23 5 23 5 231 ... 1 ... .

66 22 66 22 66 22

t t te e e
D t D t t

(
& ∋ & ∋ & ∋. . # ( . # () ∗ ) ∗ ) ∗
+ , + , + ,

P.I. corresponding to 1
2

& ∋() ∗
+ ,

! 0.
4 2 4 2

1 1 1 1 1 1 .
2 2 2 125 6 5 6

te
D D D D

Χ& ∋( # ( # ( 1 # () ∗ ∆. . . .+ ,

P.I. corresponding to 1 cos2
2

t& ∋() ∗
+ ,

! 4 2 2 2 2
1 1 1 1cos2 cos 2
2 25 6 ( ) 5 6

t t
D D D D

( # (
. . . .

! 2 2 2
1 1 1cos 2 cos 2 .
2 4( 2 ) 5 ( 2 ) 6

t t( # (
− ( . − ( .

% Solution of ( 4) is x ! 3
1 2 3 4cos 3 sin 3 cos 2 sin 2 (1/ 22) tc t c t c t c t e. . . .

+ (5/66) e3t (t – 23/22) – (1/12) – (1/4) cos 2t. ... (5)
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8.18 Ordinary Simultaneous Differential Equations

Differentiating both sides of (5) w.r.t. ‘t’ twice, we get

1 2 3 4/ 3sin 3 3 cos 3 2 sin 2 2 cos 2dx dt c t c c t c t# ( . ( .
+ (3/22) e3t + (5/22) e3t (t – 23/22) " (5/66) e3t + (1/2) sin 2t

and 2 2
1 2 3 4/ 3 cos 3 3 sin 3 2 cos 2 2 sin 2d x dt c t c t c t c t# ( ( ( (

+ (9/22) e3t + (15/22) e3t (t – 23/22) + (5/22) e3t + (5/22) e3t + cos 2t. ... (6)
Now,                (1)   ? y ! – (d2x/dt2) – 4x + t e3t

% y ! 3
1 2 3 43 cos 3 3 sin 3 2 cos 2 2 sin 2 (9 / 22) tc t c t c t c t e. . . ( – (15/22) e3t (t – 23/22)

+ (5/11) e3t – cos 2t – 4[c1cos 3 t + c2 sin 3 t  + c3 cos 2 t  + c4 sin 2 t  + (1/22) e3t

                    + (5/66) e3t (t – 23/22) – (1/12) – (1/4) cos 2t] + t e3t, using (5) and (6)
% y ! – 1 2 3 4cos 3 sin 3 2 cos 2 2 sin 2c t c t c t c t( ( ( 3 3(1/ 66) (23/ 2452) (1/ 3).t tte e. ( .  ... (7)

(5) and (7) together give the required solution.
Ex. 11(e). Solve (d2x/dt2) – (dy/dt) = 2x + 2t, (dx/dt) + 4(dy/dt) = 3y. [G.N.D.U. 1997]
Sol. Given (d2x/dt2) – (dy/dt) – 2x ! 2t ... (1)

and (dx/dt) + 4 (dy/dt) – 3y ! 0. ... (2)
Writing D for d/dt, the given equations (1) and (2) become     (D2 – 2) x – Dy ! 2t    ... (3)

and Dx + (4D – 3) y ! 0. ... (4)
Operating both sides of (3) and (4) by (4D – 3) and D respectively, we get

(4D – 3) (D2 – 2) x – (4D – 3) Dy ! 2 (4D – 3) t ... (5)
and D2x + (4D – 3) Dy ! 0. ... (6)

Adding (5) and (6), {(4D – 3) (D2 – 2) " D2} x ! 8 Dt – 6t
or (2D3 – D2 – 4D + 3) x ! 4 – 3t. ... (7)

Its auxiliary equation is 2D3 – D2 – 4D + 3 ! 0, giving D ! 1, 1, –3/2.
% C.F. of (7) ! (c1 + c2t) et + c3 e–3t/2, c1 and c2 being arbitrary constants.

P.I. of (7) ! 3 2 2 3
1 1(4 3 ) (4 3 )

2 4 3 3[1 (4 / 3 / 3 2 / 3)]
t t

D D D D D D
( # (

( ( . ( . (
! (1/3) − [1 – (4D/3 + D2/3 – 2D3/3)]–1 (4 – 3t)
! (1/3) − {1 + 4D/3 + ...} (4 – 3t) ! (1/3) {4 – 3t + (4/3) 1 (– 3)} ! – t

% Solution of (7) is, x ! (c1 " c2t) et + c3 e–3t/2 – t. ... (8)
where c1, c2 and c3 are arbitrary constants.

From (8), dx/dt ! (c1 " c2t) et + c2 et – (3/2) c3 e–3t/2 – 1
or dx/dt ! (c1 + c2 + c2t) et – (3/2) c3 e–3t/2 – 1. ... (9)

From (9), d2x/dt2 ! (c1 + c2 + c2t) et + c2 et + (9/4) c3 e–3t/2

or            d2x/dt2 ! (c1 + 2c2 + c2t) et + (9/4) c3 e–3t/2. ... (10)
(1)   ?   dy/dt ! (d2x/dt2) – 2x – 2t
! (c1 + 2c2 + c2t) et + (9/4) c3 e–3t/2 – 2 [(c1 + c2t) et + c3 e–3t/2 – t] – 2t, by (8) and (10)
% dy/dt ! (2c2 – c1 – c2t) + (1/4) c3 e–3t/2 ... (11)
(2) ? 3y ! (dx/dt) + 4 (dy/dt)
! (c1 + c2 + c2t) et – (3/2) c3 e–3t/2 – 1 + 4 [(2c2 – c1 – c2t) et + (1/4) c3 e–3t/2], by (9) and (11)
Thus, 3y ! (9c2 – 3c1 – 3c2 t) et – (1/2) c3 e–3t/2 – 1.
% y ! (3c2 – c1 – c2t) et – (1/6) c3 e–3t/2 – (1/3). ... (12)
(8) and (12) together give the required solution.
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Ex. 11(f). Solve d2x/dt2 – 2(dy/dt) – x = et cos t, d2y/dt2 + 2(dx/dt) – y = et sin t.
Sol. Given d2x/dt2 – x – 2(dy/dt) ! et cos t ... (1)

and 2 (dx/dt) + d2y/dt2 – y ! et sin t. ... (2)
Writing D for d/dt, (1) and (2) become

(D2 – 1) x – 2 Dy ! et cos t ... (3)
and 2Dx + (D2 – 1) y ! et sin t. ... (4)

Operating both sides of (3) and (4) by (D2 – 1) and 2D respectively, we get
(D2 – 1)2 x – 2D (D2 – 1) y ! (D2 – 1) (et cos t) ... (5)

and 4D2x + 2D (D2 – 1) y ! 2D (et sin t). ... (6)
Adding (5) and (6), we have

[(D2 – 1)2 + 4D2] x ! D2 (et cos t) – et cos t + 2D (et sin t)
or (D2 + 1)2 x ! D [et cos t – et sin t] – et cos t + 2 [et sin t + et cos t]
or (D2 + 1)2 x ! et cos t – et sin t – (et sin t + et cos t) – et cos t + 2(et sin t + et cos t)
or (D2 + 1)2 x ! et cos t. ... (7)
whose auxiliary equation is (D2 + 1)2 ! 0 so that D ! ± i, ± i.

% C.F. of (7) ! (c1 + c2t) cos t + (c3 + c4t) sin t, c1, c2, c3, c4 being arbitrary constants.

P.I. ! 2 2 2 2
1 1cos cos

( 1) [( 1) 1]
t te t e t

D D
#

. . .

! 2 2
1 cos

( 2 2)
te t

D D. .
! 4 2 3 2

1 cos
4 4 4 8 4

te t
D D D D D. . . . .

! 2
1 cos

( 1) 4 ( 1) 4 4 ( 1) 8 4 ( 1)
te t

D D( . ( . . ( . . (

!
1 4 3cos cos

4 3 (4 3) (4 3)
t t De t e t

D D D
.

#
( ( .

! 2
1 1(4 3) cos (4 3) cos

16 916 9
t te D t e D t

D
. # .

( ((

! ; < ; <1/ 25 (4 cos 3 cos ) 1/ 25 ( 4 sin 3 cos ).t te D t t e t t( − . # ( − ( .

% Solution of (7) is
x ! (c1 + c2 t) cos t + (c3 + c4t) sin t + (1/25) et (4 sin t – 3 cos t) ... (8)

(8) ? dx/dt ! c2 cos t – (c1 + c2t) sin t + c4 sin t + (c3 + c4 t) cos t
+ (1/25) {et (4 sin t – 3 cos t) + et (4 cos t + 3 sin t)}

or dx/dt ! (c2 + c3 + c4t) cos t + (c4 – c1 – c2t) sin t + (1/25) − et (7 sin t + cos t)        ... (9)
(9) ? d2x/dt2 ! c4 cos t – (c2 + c3 + c4t) sin t – c2 sin t + (c4 – c1 – c2t) cos t

+ (1/25) − {et (7 sin t + cos t) + et (7 cos t – sin t)}
or d2x/dt2 ! (2c4 – c1 – c2t) cos t – (2c2 + c3 + c4t) sin t + (1/25) − et (6 sin t + 8 cos t) ... (10)

From (1), we have 2 (dy/dt) ! (d2x/dt2) – x – et cos t
% 2(dydt) ! (2c4 – c1 – c2t) cos t – (2 c2 + c3 + c4t) sin t + (1/25) et (6 sin t + 8 cos t) – (c1 + c2 t) cos t

– (c3 + c4t) sin t – (1/25) − et (4 sin t – 3 cos t) – et cos t, by (8) and (10)
! (2c4 – 2c1 – 2c2t) cos t – (2c2 + 2c3 + 2c4t) sin t + (1/25) − et (2 sin t – 14 cos t).

or dy/dt ! (c4 – c1 – c2t) cos t – (c2 + c3 + c4t) sin t + (1/25) − et (sin t – 7 cos t). ... (11)
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8.20 Ordinary Simultaneous Differential Equations

(11) ? d2y/dt2 ! – c2 cos t – (c4 – c1 – c2 t) sin t – c4 sin t – (c2 + c3 + c4) cos t
+(1/25) × [et (sin t – 7 cos t) + et (cos t + 7 sin t)]

or d2y/dt2 ! – (2c2 + c3 + c4t) cos t – (2c4 – c1 – c2t) sin t + (1/25) × et (8 sin t – 6 cos t)  ... (12)
Now, from (2), we have                     y ! 2 (dx/dt) + (d2y/dt2) – et sin t

or y ! 2 (c2 + c3 + c4t) cos t + 2 (c4 – c1 – c2t) sin t + (2/25) × et (7 sin t + cos t) – (2c2 + c3 + c4t) cos
t

– (2c4 – c1 – c2t) sin t + (1/25) × et (8 sin t – 6 cos t) – et sin t, using (9) and (12)
or y ! (c3 + c4t) cos t – (c1 + c2t) sin t + (1/25) × et (4 cos 3t – 3 sin t) ... (13)

(8) and (13) give the required solution.
Exercise 8

Solve the following simultaneous differential equations :
1. (a) dx/dt ! x – 2y, dy/dt ! 5x + 3y [Andhra 2003]

Ans. x ! e2t (c1 cos 3t + c2 sin 3t), y ! {(3c1 – c2) sin 3t – (c1 + 3c2) cos 3t}/2
(b) dx/dt = 3x + 2y, dy/dt = –5x – 3y [ Lucknow 2002;  Meerut 2000]

Ans. x = c1 cos t + c2 sin t, y = (1/2) − (c2 – 3c1) cos t – (1/2) − (c1 + 3c2) sin t
2. dz/dx ! x + y, dy/dx ! x + z Ans. y ! {c1 e–x + c2ex – 2(x + 1)}/2, z ! {c2ex – c1e–x – 2(x + 1)}/2
3. dx/dt + 7x – y ! 0, dy/dt + 2x + 5y ! 0 [ Agra 2006; Kanpur 2003; Lucknow 2005]

Ans. x ! e–6t (c1 cos t + c2 sin t), y ! e–6t {(c1 + c2) cos t – (c1 – c2) sin t}
4. (a) dx/dt ! 3x + 2y, dy/dt + 5x + 3y ! 0  Ans. x ! c1 cos t + c2 sin t, y ! {(c2 – 3c1) cos t – (c1 + 3c2) sin t}/2

(b) dx/dt + dy/dt + 2x + y = 0, dy/dt + 5x + 3y = 0
[Gujrat 2005, Indore 2003; Karnatak 2000; Meerut 1998; Vikram 1998)
Ans. x ! c1 cos t + c2 sin t, y ! (1/2) − (c2 – 3c1) cos t – (1/2) − (c1 +3c2) sin t

5. dx/dt + x – y ! et, dy/dt + y – x ! 0 Ans. x ! c1 + c2 e–2t + (2t/3), y ! c1 – c2 e–2t + (1/3) et

6. dx/dt – y ! e–t, dy/dt + x ! et Ans. x ! c1 cos t + c2 sin t + (et – e–t)/2, y ! c2 cos t – c1 sin t + (et – e–t)/2
7. (dx/dt) – y ! t2, (dy/dt) + 4x ! t, given x (0) ! 0, y (0) ! 3/4. Ans. x ! 3t/4, y ! (3/4) – t2
8. (5D + 4) y – (2D + 1) z ! e–x, (D " 8) y – 3 z ! 5 e–x, where D ! d/dx [Pune 2000; Kolkata 2003]

Ans. y ! c1 e–2x + c2 ex + 2 e–x, z ! 2 c1 e–2x + 3c2 ex + 3 e–x

9.
32 3 0, 3 2 2 td dx y x y e

dt dt
& ∋ & ∋. . # . . #) ∗ ) ∗
+ , + ,

Ans. x ! c1 et – c2 e–5t – (3/8) e3t, y ! c2 e–5t – c1 et + (5/8) e3t

10. dx/dt + 2x + 4y ! 1 + 4t, dy/dt + x – y ! 3 t2/2 [I.A.S. 1987]
Ans. x ! c1e2t + c2e–3t + t2 + (t/3) – (5/6), y ! – 4 c1e2t + c2 e–3t – 2 t2 + (4t/3) + (7/3)

11. dx/dt – dy/dt – y ! et, dy/dt + x – y ! e2t [Agra 1994]
Ans. x ! c1 + cos t c2 sin t + (3/5) e2t, y ! (1/2) × (c1 + c2) cos t  – (1/2) (c1 – c2) sin t + (1/2) et + (2/5) e2t

12. 4(dx/dt) – (dy/dt) " 3x ! sin t, (dx/dt) " y ! cos t, given that x ! 1, y ! 1 for t ! 0. Ans. x !
2 e–t – e–3t, y ! 2 e–t – 3 e–3t + cos t

13. (dx/dt) + 2 (dy/dt) + x + 7y ! et – 3, (dy/dt) – 2x ! 3y ! 12 – 3 et

Ans. x ! (1/2) × e–4t {(c2 – c1) cos t – (c1 + c2) sin t} + (31/26) et – (3/17)
y ! e–4t (c1 cost t + c2 sin t) + (6/17) – (2/13) et

14. 3 (dx/dt) + 2 (dy/dt) – 4x + 3y ! 8 e–3t, 4 (dx/dt) + (dy/dt) + 3x + 4y ! 8e–3t, given that x ! 1/5, y ! 0
when t ! 0.
Ans. x ! e–t {cos 2t – (1/18) − sin 2t} – (4/5) e–3t, y ! e–t {(21/10) sin 2t – (4/5) cos 2t}+ (4/5) e–3t

15. Solve 4x1 + 9y1 + 2x + 31y ! et, 3x1 + 7y1 + x + 24y ! 3, where, x1 ! dx/dt and y1 ! dy/dt.
Ans. x ! e–4t (c1 cos t + c2 sin t) + (31/26) et – (93/17).

y ! e–4t [(c2 – c1) sin t – (c1 + c2) cos t] – (2/13) et + (6/17)
16. d2x/dt2 + 16x – 6(dy/dt) ! 0, 6(dx/dt) + d2y/dt2 + 164 ! 0. [Agra 1994]

Ans. x ! c1 cos 2t + c2 sin 2t + c3 cos 8t + c4 sin 8t, y ! c1 sin 2t + c2 cos 2t + c3 sin 8t + c4 cos 8t
17. d2x/dt2 – 4(dx/dt) + 4x ! y, d2y/dt2 + 4(dy/dt) + 4y ! 25 + 16 et.

Ans. x ! c1 e3t + c2e–3t + c3 cos t + c4 sin t – et, y ! c1 e3t  + 25c2 e–3t + 7 c3 cos t – c4 sin t – et

18. d2x/dt2 + 4x + y ! t et, d2y/dt2 + y – 2x ! sin2 t.
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Ordinary Simultaneous Differential Equations 8.21

Ans. x ! c1 cos 2 t  + c2 sin 2 t  + c3 cos 3 t  + c4 sin 3 t + (1/6) et (6t – 1) – (1/12) + (1/4) cos 2t ;

y ! – 2 c1 cos 2 t  – 2 c2 sin 2 t  – c3 cos 3 t  – c4 sin 3 t  + (1/36) et (6t – 7) + (1/3)
19. Solve d2x/dt2 – 2(dy/dt)– x ! et cos t, d2y/dt2 + 2(dx/dt) – y ! et sin t.

Ans. x ! (c1 + c2t) cos t + (c3 + c4t) sin t – (1/25) et (3 cos t – 4 sin t);
y ! – (c1 " c2t) sin t + (c3 " c4t) cos t – (1/25) et (3 sin t + 4 cos t)

8.4 Solution of simultaneous differential equations involving operators x (d/dx) or t (d/dt)
In such problems we begin with use of methods of chapter 6. We transform the given equat

ions into ordinary simultaneous differential equations and then proceed as explained in Art. 8.3.
8.5 Solved Examples based on Art. 8.4

Ex. 1. Solve   t (dx/dt) + y = 0, t (dy/dt) + x = 0.
[G.N.D.U. Amritsar 2004; Rajasthan 2010, Meerut 2001, 08, Lucknow 2001, 06]

Sol. Let t ! ez. Let D1 ' d/dz ' t(d/dt). Then given equations become
D1x + y ! 0 ... (1)

and x + D1y ! 0. ... (2)
Eliminating y from (1) and (2), D1

2 x – x ! 0 or (D1
2 – 1) x ! 0. ... (3)

Its auxiliary equation is D1
2 – 1 ! 0 so that D1 ! 1, – 1.

%   Solution of (3) is x ! c1 ez + c2 e–z and so D1x ! c1 ez – c2 e–z

% From (1), y ! – D1x ! c2e–z – c1ez

Since t ! ez, the required solution is                     x ! c1t + c2 t–1,              y ! c2 t–1 – c1 t.
Ex. 2. Solve : t2 (d2x/dt2) + t (dx/dt) + 2y = 0, t2 (d2y/dt2) + t (dy/dt) – 2x = 0.
Sol. Let t ! ez so that z ! log t. Let D1 ' d/dz ! t (d/dt). Then t2 (d2/dt2) ! D1 (D1 – 1).
Using the above values, given equations become

[D1(D1 – 1) + D1] x + 2y ! 0 and [D1(D1 – 1) + D1] y – 2x ! 0.
i.e., D1

2 x + 2y ! 0 ... (1)
and – 2x + D1

2 y ! 0 ... (2)
Eliminating y from (1) and (2), (D1

4 + 4) x ! 0 ... (3)
Its auxiliary equation is D1

4 + 4 ! 0 or (D1
2 + 2)2 – (2D1)2 ! 0.

(D1
2 – 2D1 + 2) (D1

2 + 2D1 + 2) so that D ! 1 ± i, – 1, ± i.
% Solution of (3) is x ! ez (c1 cos z + c2 sin z) + e–z (c3 cos z + c4 sin z). ... (4)

where c1, c2, c3 and c4 are arbitrary constants.
% D1x ! ez (c1 cos z + c2 sin z) – e–z (c3 cos z + c4 sin z)

+ ez (– c1 sin z + c2 cos z) + e–z (– c3 sin z + c4 cos z)
! ez [(c1 + c2) cos z + (c2 – c1) sin z] + e–z [(c4 – c3) cos z – (c3 + c4) sin z].

% D1
2 x ! ez [(c1 + c2) cos z + (c2 – c1) sin z] + ez [– (c1 + c2) sin z + (c2 – c1) cos z]

– e–z [(c4 – c3) cos z – (c3 + c4) sin z] + e–z [– (c4 – c3) sin z – (c3 + c4) cos z]
or D1

2 x ! 2ez (c2cos z – c1 sin z) + 2e–z (c3 sin z – c4 cos z).
Using this value of D1

2 x in (1), we get
y ! ez (c1 sin z – c2 cos z) + e–z (c4 cos z – c3 sin z). ... (5)

Since t ! ez and log t ! z, from (4) and (5) the required solution is given by
x ! t (c1 cos log t + c2 sin log t) + t–1 (c3 cos log t + c4 sin log t)

and y ! t (c1 sin log t – c2 cos log t) + t–1 (c4 cos log t – c3 sin log t).
Ex. 3. t Dx + 2 (x – y) = t, t Dy + x + 5y = t2, where D ! d/dt. [Lucknow 2002]
Sol. Let t ! ez and D1 ' d/dz ' t (d/dt). Given equations become

(D1 + 2) x – 2y ! ez ... (1)
and x + (D1 + 5) y ! e2z. ... (2)

Eliminating y from (1) and (2), (D1 + 5)(D1 + 2) x + 2x ! (D1 + 5)ez + 2e2z

or (D1
2 + 7D1 + 12) x ! 6 ez + 2 e2z. ... (3)

Its auxiliary equation is D1
2 + 7D1 + 12 ! 0 giving D1 ! –3, – 4,
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C.F. of (3) ! c1e–3z + c2 e–4z, where c1 and c2, are arbitrary constants.

                   P.I. corresponding to 6ez ! 2
1 1

1 36 .
107 12

z ze e
D D

#
. .

                   P.I. corresponding to 2e2z ! 2 2
2
1 1

1 12 .
157 12

z ze e
D D

#
. .

% Solution of (3) is x ! c1e–3z + c2e–4z + (3/10) − ez + (1/15) − e2z ... (4)
% D1x ! – 3c1e–3z – 4c2e–4z + (3/10) ez + (2/15) − e2z ... (5)
From (1) and (5), y ! – (1/2) c1e–3z – c2e–4z – (1/20) ez + (2/15) e2z ... (6)
Putting t ! ez in (4) and (6), the required general solution is

x ! c1t–3 + c2 t–4 + 3t/10 + t2/15, y ! – (1/2) c1t–3 – c2t–4 + 2t2/15 – t/20
8.6 Miscellaneous examples on chapter 8

Ex. 1. Solve t dx = (t – 2x) dt and tdy ! (tx + ty + 2x – t) dt.
Sol. Given t dx ! (t – 2x) dt. ... (1)

and t dy ! (tx + ty + 2x – t) dt. ... (2)

From (1),                   2 21 or 1,dx x dx x
dt t dt t

# ( . #  which is a linear equation.

Its I.F. ! (2 / ) 2 log 2t dt te e t0 # # and so its solution is
2 2 2

1 1 ( / 3)xt c t dt c t# . # .0 or x ! c1t–2 + (t /3) ... (3)
Now from (2), tdy ! t (x " y) dt – (t – 2x) dt or tdy ! t (x + y) dt – t dx, using (1)

or dx + dy ! (x + y) dt or (dx + dy)/(x + y) ! dt.
Integrating, log (x " y) – log c2 ! t or x + y ! c2et or y ! c2et – x.

or                                              y ! c2et – c1t–2 – (1/3) t, using (3) ... (4)
The required solution is given by (3) and (4).
Ex. 2. Solve dx/dt = ny – mz, dy/dt = lz – nx, dz/dt = mx – ly. [Meertut 1996]
Sol. Given dx/dt ! ny – mz. ... (1)

dy/dt ! lz – nx ... (2)
and dz/dt ! mx – ly. ... (3)

Multiplying (1), (2) and (3) by 2x, 2y and 2z respectively and adding,

2 2 2 0dx dy dzx y z
dt dt dt

. . # or 2 2 2( ) 0.d x y z
dt

. . #

Integrating,               x2 + y2 + z2 ! c1, c1 being an arbitrary constant ... (4)
Again multiplying (1), (2), (3) by 2lx, 2my, 2nz respectively and then adding, we have

2 2 22 2 2 0 or ( ) 0.dx dy dz dlx my nz lx my nz
dt dt dt dt

. . # . . #

Integrating, lx2 + my2 + nz2 ! c2, c2 being an arbitrary constant ... (5)
Now multiplying (1), (2) and (3) by l, m and n respectively and adding,

0 or ( ) 0.dydx dz dl m n lx my nz
dt dt dt dt

. . # . . #

Integrating, lx + my + nz ! c3, c3 being an arbitrary constant ... (6)
The required solution is given by (4), (5) and (6).

Ex. 3. Solve : ( ), ( ), ( ).dx dy dzlt mn y z mt nl z x nt lm x y
dt dt dt

# ( # ( # (

Sol. Re-writing the given equations, we have

( ), ( ), ( ).
(1/ ) (1/ ) (1/ )

ldx mdy ndzmn y z nl z x lm x y
t dt t dt t dt

# ( # ( # ( ... (1)

Putting    ldx ! dX,      mdy ! dY, ndz ! dZ       and (1/t) dt ! dT, ... (2)
(1) ? dX/dT ! nY – mZ, dY/dT ! lZ – nX, dZ/dT ! mX – lY.
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Now proceed as in Ex. 3 and finally replace X, Y, Z and T by their values given by (2), namely
X ! lx, Y ! my, Z !! nz and T ! log t.

Ex. 4. dx/dt = 2y, dy/dt = 2z and dz/dt = 2x.
Sol. Let as an exercise. Ans. x ! c1e2t + c2e–t cos 3( 3 )t c. ,

2 2
1 2 3 1 2 3cos( 3 2 / 3), cos ( 3 4 / 3)t t t ty c e c e t c z c e c e t c( (# . . . Ε # . . . Ε

Ex. 5. Solve                         (D + 1) x + (D – 1) y = et. ... (1)
(D2 + D + 1) x + (D2 – D + 1) y = t2 ... (2)

where D ' d/dt. [Kurukshetra 2005; 07; Mysore 2001, 03]
Sol. Here the determinant � formed by operator ‘coefficients’ is given by

2 2
2 2

1 1
( 1) ( 1) ( 1) ( 1)

1 1

D D
D D D D D D

D D D D

. (
� # # . ( . ( ( . .

. . ( .
or � ! (D3 + 1) – (D3 – 1) ! 2.

Since the degree of D in � is zero, the general solution of the given system should not contain
any arbitrary constant (refer note of Art 8.2 for understanding).

Now operating (1) by (D2 – D + 1), (2) by (D – 1) and then subtracting the equations thus
obtained, we get

[(D2 – D + 1) (D + 1) – (D – 1) (D2 + D + 1)] x ! (D2 – D + 1) et – (D – 1) t2

or [(D3 + 1) – (D3 – 1)] x ! et – et + et – 2t + t2

or    2x ! et – 2t + t2            or            x ! (1/2) (et – 2t + t2). ... (3)
Similarly, on eliminating x, (1) and (2) give

[(D2 + D + 1) (D – 1) – (D + 1) (D2 – D + 1)] y ! (D2 + D + 1) et – (D + 1) t2
or [D3 – 1 – (D3 + 1)] y ! et + et + et – 2t – t2

or – 2y ! 3et – 2t – t2 or y ! (2t + t2 – 3et)/2 ... (4)
The required solution is given by (3) and (4).
Ex. 6. Solve dx/dt ! x2 + xy, dy/dt ! y2 + xy, satisfying the initial condition x ! 1,

y ! 2 when t ! 0.
Sol. Given dx/dt = x (x + y) ...(1)

dy/dt = y (x + y) ...(2)
Given initial condition are x !1, y ! 2 when t ! 0 ...(3)
Dividing (2) by (1), we get dy/dx = y/x or (1/y)dy = (1/x) dx
Integrating it, we get log y ! log x + log c or y ! cx, ...(4)

where c in an arbitrary constant.
Putting x ! 1 and y ! 2 in (4), we get c ! 2. Hence (4) reduce to

                    y ! 2x ...(5)
Using (5), (1) gives dx/dt = x (x + 2x) or (1/x2)dx ! 3dt
Integrating it, – (1/x) ! 3t + c1, c1 being an arbitrary constant ...(6)
Putting x !1 and t ! 0 in (6) we get c1! –1
% (6) reduces to –(1/x) ! 3t –1 or x ! 1/(1–3t) ...(7)
From (5) and (7), we get y ! 2/(1–3t) ...(8)
Hence the required solution is given by (7) and (8).

Objective problems on chapter 8
Ex. 1. The general solution of the system of  equations y + (dz/dx) = 0, dy/dx – z = 0 is given by

(a) y = >ex + Φe–x, z = >ex – Φe–x (b) y = > cos x + Φ sin x, z = > sin x – Φ cos x
(c) y = > sin x – Φ cos x, z = > cos x + Φ sin x (d) y = >ex – Φe–x, z = >ex + Φe–x

[GATE 2005]
Sol. Ans. (c). Use Art 8.2 and Art. 8.3.

Ex. 2. The general solution
( )
( )

x t
y t

& ∋
) ∗
+ ,

 of the system x8 = – x + 2y, y8 = 4x + y is given by
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(a)
3 3

1 2
3 3

1 2

–

2

t t

t t

c e c e

c e c e

(

(

& ∋
) ∗) ∗.+ ,

(b) 
3

1
3

2

t

t

c e

c e(

& ∋
) ∗) ∗
+ ,

(c)
3 3

1 2
3 3

1 22

t t

t t

c e c e

c e c e

(

(

& ∋.
) ∗) ∗.+ ,

(d) 
3 3

1 2
3 3

1 22

t t

t t

c e c e

c e c e

(

(

& ∋(
) ∗) ∗( .+ ,

[GATE 2004]
Sol. Ans. (a) Writing D for d/dt, the given equations become

(D + 1) x – 2y ! 0 ... (1)
and – 4x + (D – 1) y ! 0 ... (2)

Operating (1) by (D – 1), multiplying (2) by 2 and then adding the resulting equations, we get
(D – 1) (D + 1) x – 8x ! 0 or (D2 – 9)x ! 0

whose solution is x ! c18e3t + c28e–3t ... (3)
From (1), 2y ! dx/dt + x ! 3c18e3t – 3c28e–3t + c18e3t + c28e–3t, using (3)
Thus, y ! 2c18e3t – c28e–3t ...(4)
Setting c18 ! c1 and c28 ! – c2, (3) and (4) yield, x ! c1e3t – c2e–3t, y ! 2c1e3t + c2e–3t ...(5)

Putting equations of (5) in matrix form, we get
3 3

1 2
3 3

1 2

( )
3( ) 2

t t

t t

c e c ex t
t c e c e

(

(

& ∋(& ∋
# ) ∗) ∗ ) ∗.+ , + ,

Miscellaneous Examples on Chapter 8
Ex. 1. Solve the simultaneous differential equations 2(D –2)x + (D + 1)y = e2t,

(D + 2) x + (D – 3) y = 0, D = d/dt [Guwahati 2007]
Sol.  Given 2(D – 2)x + (D + 1)y ! e2t ... (1)

    ( 2) ( 3) 0D x D y. . ( # ... (2)
Operating (1) by (D – 3)  and (2) by (D + 1) and then subtracting, we have

2{2( 3) ( 2) ( 1) ( 2)} ( 3) tD D D D x D e( ( ( . . # (   or  2 2( 13 10) tD D x e( . # (   ... (3)

Auxiliary equation of (3) is 2 13 10 0D D( . # giving (13 129) / 2D # /

%   C.F. of (3) ! (13 129) / 2 (13 129) / 2
1 2 1 2, ,x xc e c e c c. (.  being arbitrary constants

P.I of (3)  !
2 2 2

2 2
1 1 1( )

4013 10 2 (13 2) 10
t t te e e

D D
( # ( # (

( . . − .
%   General solution of (3) is given by

(13 129) / 2 (13 129) / 2 2
1 2 (1/ 40)x x tx c e c e e. (# . ( − ... (4)

From (2),    3 2Dy y Dx x# ( ( ... (5)

From (1), 2 2 4ty e Dy Dx x# ( ( .

or 2 (3 2 ) 2 4 ,ty e y Dx x Dx x# ( ( ( ( .  using (5)

or  24 6ty e Dx x# ( . ... (6)
From (4), we have

(13 129) / 2 (13 129 / 2 2
1 2( / 2) (13 129) ( / 2) (13 129) (1/ 20) .....x x tDx c e c e e. (# − . . − ( ( −  (7)

Substituting the valvue of x and Dx given by (4) and (7) respectively in (6), we have
2 (13 129) / 2 (12 129) / 2

1 24 ( / 2) (13 129) ( / 2) (13 129)t x xy e c e c e. (# ( − . ( − (

                2 (13 129) / 2 (13 129) / 2 2
1 2(1/ 20) 6 6 (3/ 20)t x x te c e c e e. (. − . . (

or         2 (13 129) / 2
14 (9 /10) ( / 2) (1 129)t xy e c e .# − ( − . (12 129) / 2

2( / 2) (1 129) xc e (( − (

or  2 (13 129) / 2
1(9 / 40) ( / 8) (1 129)t xy e c e .# − ( − .

(12 129) / 2
2( /8) (1 129) xc e (( − ( ... (8)

The required solution is given by (4) and  (8).
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Exact Differential Equations

And Equations of Special Forms
9.1 Exact Differential Equation. Definition.

A differential equation,    1 1( / , / ,......... , / , ) ( ),n n n nf d y dx d y dx dy dx y x! ! � # ... (1)

is said to be exact when it can be derived by differntiation only, and without any further process,
from an equation of the next lower order of the form

1 1 2 2( / , / , ..... , / , ) ( ) .n n n nf d y dx d y dx dy dx y x dx C! ! ! ! � # ∃% ... (2)

Remark 1. Equation (2) is said to be a first integral of (1). If (2) is also exact, then it can be
obtained from an equation of the next lower order of the form

& ∋22 2 3 3( / , / , ..... , / , ) ( ) .n n n nf d y dx d y dx dy dx y x dx C! ! ! ! � # ∃%% ... (3)

as before. Equation (3) is said to be a second integral of (1). In general, there will be n integrals
for a differential equation of the nth order.
9.2 Condition of exactness of a linear differential equation of order n [Garhwal 2005]

Let the linear differential equation of order n be
–1 –1

0 1( / ) ( / ) ... ( ),∃ ∃ ∃ � #n n n n
nP dy dx P dy dx P y x ... (1)

where P0, P1, ..., Pn and # are functions of x alone. Let (1) be exact i.e., it can be obtained from an
equation of next lower order simply by differentition. In what follows the successive derivatives
will be denoted by dashes. Since P0(dny/dxn) can be obtained by simply differentiating once P0(dn–

1y/dxn–1), we assume that (1) can be obtained by differentiating once the equation
1 –2

0 1 –1–1 –2 ... ( ) ,
n n

nn n
d y d y

P Q Q y x dx C
dx dx

!

∃ ∃ ∃ � # �% ... (2)

where Q1, Q2, ..., Qn–1 are some functions of x alone. Differentiating (2) with respect to x, we get
–1 –1 –2

0 0 1 1 –1 –1–1 –1 –2 ... ( )
( ) ( )

∗ ∗ ∗∃ ∃ ∃ ∃ ∃ ∃ � #+ , + ,+ , + ,
− . − .

n n n n

n nn n n n
d y d y d y d y dy

P P Q Q Q Q y x
dxdx dx dx dx

or
–1 –2

0 0 1 1 2 –2 –1 –1–1 –2( ) ( ) ... ( ) ( )∗ ∗ ∗ ∗∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ � #
n n n

n n nn n n
d y d y d y dy

P P Q Q Q Q Q Q y x
dxdx dx dx

... (3)

Now (1) and (3) must be the same equations; so equating coefficients of dn–1y/dxn–1,  dn–2y/dxn–2,
..., dy/dx, y, we have

1 0 1 2 1 2 3 2 3 1 2 1 1, , , andn n n n nP P Q P Q Q P Q Q P Q Q P Q! ! ! !∗ ∗ ∗ ∗ ∗� ∃ � ∃ � ∃ � ∃ � ... (4)
To get the desired condition, we must eliminate all Q’s and get a certain relation between P’s

alone. Furthermore, we shall calculate Q’s in terms of P’s so that their substitution in (2) may give
the first integral of the given equation.

9.1
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9.2 Exact Differential Equations and Equations of Special Forms

Now, the relations (4) give

Q1 = P1 – P0∗, Q2 = P2 – Q1∗ = P2 – d
dx

(P1 – P0∗) = P2 – P1∗ – P0/,

Q3 = P3 – Q2∗ = P3 – d
dx

(P2 – P1∗ ! P0/) = P3 – P2∗ ! P1/ – P0∗/,
... ... ... ... ... ...

                       Qn–1 = Pn–1 – 2nP !∗ ! 3nP !∗∗ – ... ! (–1)n–1 P0
(n–1)

0 ( 1)1
1 1 2 3 0[ ... ( 1) ]nn

n n n n n
d

P Q P P P P
dx

!!
! ! ! !∗ ∗ ∗∗� � ! ∃ ! ∃ !

or 1 ( )
1 2 3 0... ( 1)n n

n n n nP P P P P!
! ! !∗ ∗∗ ∗∗∗� ! ∃ ! ∃ !

or ( )1
1 2 3 ... – ( 1) 0nn

n n n n oP P P P P!
! ! !∗ ∗∗ ∗∗∗! ∃ ! ∃ ! �

or ( )
1 2 3 0... ( 1) 0.n n

n n n nP P P P P! ! !∗ ∗∗ ∗∗∗! ∃ ! ! ∃ ! � ... (6)

Again putting the above values of Q1, Q2, ... , Qn–1 in (2), we get
1 1 2 2 3 3

0 1 0 2 1 0( / ) ( ) ( / ) ( ) ( / ) ...n n n n n nP d y dx P P d y dx P P P d y dx! ! ! ! ! !∗ ∗ ∗∗∃ ! ∃ ! ∃ ∃
( 1)1

1 2 3 0... { ... ( 1) } ( ) .nn
n n nP P P P y x dx C!!

! ! !∗ ∗∗∃ ! ∃ ! ∃ ! � # ∃% ... (7)
Thus (6) is the desired condition of exactness of (1). When this condition is satisfied, the first

integral of (1) is given by (7).
Note. Remember (6) and (7) for direct application in problems.

9.3 Working rule for solving exact equations
First of all write the given equation in full (by writing zero for the missing coefficents, if

necessary). Then write values of P0, P1, ... by comparing the given equation with standard equation
(1) of Art 9.2 Now write Pn, Pn–1, Pn–2, ... starting from the highest and put !ve and –ve sign before
them. Finally put no dash, one dash, two dashes...on them and then find the value of this expression.
If it is zero, the given equation is exact and its first integral is given by (7) of Art. 9.2

After getting the first integral, we test it for exactness in a similar manner. If the first integral
is also exact, then we get its first integral (i.e., second integral of the given equation) by using
formula (7). Proceeding in this way we generally get an equation of the form dy/dy ! Py = Q
which is solved as above (if it exact) or by using the standard methods of Chapter 2.

9.4 Examples (Type 1) based on working rule of Art 9.3
Ex. 1. Solve (1 ! x ! x2) (d3y/dx3) ! (3 ! 6x) (d2y/dx2) ! 6 (dy/dx) = 0. (Garhwal 2005)
Sol. Supplying the missing coefficient of y, the given equation in the standard form is

(1 ! x ! x2) (d3y/dx3) ! (3 ! 6x) (d2y/dx2) ! 6 (dy/dx) + 0 1 y = 0. ... (1)
Comparing (1) with P0 y∗/ ! P1 y/ ! P2 y∗ ! P3 y = #(x), here

P0 = 1 ! x ! x2, P1 = 3 ! 6x, P2 = 6, P3 = 0 and #(x) = 0. ... (2)
The given equation will be exact if P3 – P2∗ ! P1/ – P0/∗ = 0. ... (3)
Now using (2), L.H.S. of (3) = 0 – 0 + 0 – 0 = 0 = R.H.S. of (3).
0 The given equation is exact and its first integral is

P0(d2y / dx2) ! (P1 – P0∗) (dy/dx) ! (P2 – P1∗ ! P0/) y = c1. ... (4)
Using (2), (4) reduces to

or (1 ! x ! x2) (d2y/dx2) + {3 ! 6x – (1 ! 2x)} (dy/dx) ! (6 – 6 ! 2) y = c1.
or (1 + x + x2) (d2y/dx2) + (2 + 4x) (dy/dx) + 2y = c1 ... (5)
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Exact Differential Equations and Equations of Special Forms 9.3

Now let us examine (5) for exactness. We shall repeat the whole process for (5) as we did for
(1). On comparing (5) with P0 y/ + P1 y∗ + P2 y = # (x), we have

P0 = 1 ! x ! x2, P1 = 2 ! 4x, P2 = 2 and #(x) = c1. ... (6)
Here P2 – P1∗ ! P0/ = 2 – 4 ! 2 = 0, which shows that (5) is exact and hence its integral is

            0 1 0 1 2( ) ,dy
P P P y c dx c

dx
∗∃ ! � ∃% c1 and c2 being arbitrary constants.

or (1 ! x ! x2) (dy/dx) ! [2 ! 4x – (1 ! 2x)] = c1x ! c2, using (6) ... (7)
Let us again examine (7) for exactness. For (7), we have on comparing with P0y∗ ! P1y =

#(x),
P0 = 1 ! x ! x2 and P1 = 1 ! 2x, #(x) = c1x ! c2. Hence P1 – P0∗ = 1 ! 2x – (1 ! 2x) = 0.
Hence (7) is exact and its first integral (which will be required solution because it will be free

from derivatives) is 0 1 2 3( )� ∃ ∃%P y c x c dx c

i.e.,               (1 ! x ! x2)y = (c1/2) 2 x2 ! c2x ! c2x ! c3, which is the desired solution,
containg c1, c2 and c3 as arbitrary constants.

Ex. 2. Solve x (d3y/dx3) ! (x2 ! x ! 3) (d2y/dx2) ! (4x ! 2) (dy/dx) ! 2y = 0.
Sol. Comparing the given equation with P0 y/∗ ! P1 y/ ! P2 y∗ ! P3 y = #(x), here
P0 = x,                P1 = x2 ! x ! 3,     P2 = 4x ! 2,      P3 = 2 ... (1)

and P3 – P2∗ ! P1/ – P0/∗ = 2 – 4 ! 2 – 0 = 0,
which shows that the given equation is exact and hence its first integral is

P0 (d2y/dx2) ! (P1 – P0∗) (dy/dx) ! (P2 – P1∗ ! P0/)y = c1

or x (d2y/dx2) ! (x2 ! x ! 2) (dy/dx) ! (2x ! 1)y = c1, by (1) ... (2)
On comparing (2) with P0 y/ +  P1 y∗ + P2 y = #(x), here
P0 = x, P1 = x2 ! x ! 2, P2 = 2x ! 1 and #(x) = c1 ... (3)

and P2 – P1∗ ! P0/ = 2x ! 1 – (2x ! 1) ! 0 = 0,
which shows that (2) is exact and hence its first integral is

0 1 0( )∗∃ !
dy

P P P y
dx

= 1 2∃% c dx c or 2( 1)∃ ∃ ∃
dy

x x x y
dx

= c1x ! c2, ... (4)

which is not exact (verify orally) and can be put in the linear form by dividing by x.
0 (dy/dx) ! (1 ! x ! 1/x)y = c1 ! c2/x ... (5)

2 2 2[(1/ ) 1 ] log / 2 log ( / 2) / 2I.F.of (5) x x dx x x x x x x x xe e e e x e∃ ∃ ∃ ∃ ∃ ∃%� � � �

0 Solution of (5) is                  
2 2/ 2 / 2

1 2 3( / )x x x xy x e c c x x e dx c∃ ∃� ∃ ∃%
or & ∋

2 2/ 2 / 2
1 2 3

x x x xx y e c x c e dx c∃ ∃� ∃ ∃% , c1, c2 and c3 being arbitrary constants.

Remark. Sometimes when the integral cannot be evaluated by known standard methods, the
final answer is given in terms of an integral as shown above.

Ex. 3. Show that cos x y/ ! 2 sin x y∗ ! 3 cos x y = tan2 x is exact. [Bangalore 1997]
Sol. Comparing the given equation with P0 y/ ! P1 y∗ ! P2 y = #(x), here

   P0 = cos x,                P1 = 2 sin x,               P2 = 3 cox x ... (1)
The given equation will exact if P2 – P1∗ ! P0/ = 0.
Now, here            P2 – P1∗ ! P0/ = 3 cos x – 2 cos x  – cos x = 0, using (1)
Hence the given equation is exact.
Ex. 4. (a) Show that the equation (1 ! x2)y/ ! 3xy∗ ! y = 1 ! 3x2 is exact and hence solve

the equation. [Bangalore 1995]
(b) Test for the exacteness of (1 ! x2) y/ ! 3xy∗ ! y = 0 and write its first integral.

(G.N.D.U. Amritsar 1997)
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9.4 Exact Differential Equations and Equations of Special Forms

Sol. (a) Given (1 ! x2)y/ ! 3xy∗ ! y = 1 ! 3x2. ... (1)
Comparing (1) with P0 y/ ! P1 y∗ ! P2 y = #(x), here P0 = 1 ! x2, P1 = 3x, P2 = 1 and

#(x) = 1 ! 3x2 Now, we have P2 – P1∗ ! P0/ = 1 – 3 ! 2 = 0,
showing that (1) is exact and its first integral is

2
0 1 0 1( ) (1 3 )dy

P P P y x dx c
dx

∗∃ ! � ∃ ∃% or (1 ! x2) (dy/dx) ! (3x – 2x)y = x ! x3 ! c1

or 1
2 2 ,

1 1
∃ � ∃

∃ ∃
cdy x

y x
dx x x

 which is a linear equation ... (2)

I.F. of (2) =
2 2 2 1/ 2 2 1/ 2[ /(1 )] (1/ 2) log(1 ) log(1 ) (1 )x x dx x x xe e e∃ 2 ∃ ∃ � ∃% � �

and solution of (2) is y(1 ! x2)1/2 = 3 42 1/ 2 2
1 2(1 ) / (1 )x x c x dx c∃ ∃ ∃ ∃%

or y(1 ! x2)1/2 = 2 1/ 2
1 22 1/ 2(1 )

(1 )
dx

x x dx c c
x

∃ ∃ ∃
∃% %

or                   y(1 ! x2)1/2 = (1/3) 2 (1 ! x2)3/2 ! c1 log [x ! (1 ! x2)1/2] ! c2,
where c1 and c2 are arbitrary constants.

(b) Try yourself Ans. (1 ! x2) y∗ ! xy = x ! x3 ! c
Ex. 5. Test for exactness and solve (1 ! x2)y/ ! 4xy∗ ! 2y = sec2x given that y = 0, y∗ = 1

when x = 0. [Bangalore 1992]
Sol. Given (1 ! x2)y/ ! 4xy∗ ! 2y = sec2 x ... (1)

Comparing (1) with P0 y/ ! P1 y∗ ! P2 y = #(x), here P0 = 2 ! x2, P1 = 4x, P2 = 2, #(x) = sec2x
Also, P2 – P1∗ ! P0/ = 2 – 4 ! 2 = 0, so (1) is exact. Then, the first integral of (1) is

2 2
0 1 0 1 1( ) sec or (1 ) (4 2 ) tan

dy dy
P P P y x dx c x x x y x c

dx dx
∗∃ ! � ∃ ∃ ∃ ! � ∃%

or 1
2 2 2

2 tan
1 1 1

∃ � ∃
∃ ∃ ∃

cdy x x
y

dx x x x
, which is a linear equation

Its I.F. =
2 2{2 /(1 )} log(1 ) 21x x dx xe e x∃ ∃% � � ∃  and solution is

2 2 2 2
1 2(1 ) (1 ){(tan ) /(1 ) /(1 )}y x x x x c x dx c∃ � ∃ ∃ ∃ ∃ ∃%

or 2 1
1 2(1 ) logsec tan .!∃ � ∃ ∃y x x c x c , c1, c2 being arbitrary constants. ... (2)

Putting x = 0 and y = 0 in (2), we get C2 = 0 Now, differentiating (2) w.r.t. ‘x’, we get

2 1
2

1
(1 ) 2 (sec tan ) .

sec 1
∗ ∃ ∃ � ∃

∃
c

y x xy x x
x x

... (3)

Putting x = 0, y = 0 and y∗ = 1 in (2), we get 1 = c1. Putting c1 = 1 and c2 = 0 in (2), we
get

y(1!x2) = log sec x ! tan–1x, which is the required solution.
Ex. 6. (a) (d3y/dx3) ! cos x (d2y/dx2) – 2 sin x (dy/dx) – y cox x = sin 2x.

[Rajasthan 2010]
(b) Prove that y∗/ ! cos x y/ – 2 sin x y∗ – y cos x = 0 is exact and write its first integral.

[G.N.D.U. Amritsar 1996]
Sol. (a) Comparing the given equation with P0 y∗/ ! P1 y/ ! P2 y∗ ! P3 y = #(x), we have

P0 = 1, P1 = cos x,       P2 = –2 sin x,         P3 = – cos x        and         #(x) = sin 2x ... (1)
We have, P3 – P2∗ ! P1/ – P0/∗ = – cos x + 2 cos x – cos x ! 0 = 0.
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0 The given equation is exact and its first integral is
2

0 1 0 2 1 0 12 ( ) ( ) sin 2d y dyP P P P P P y x dx c
dxdx

∗ ∗ ∗∗∃ ! ∃ ! ∃ � ∃%
or 2 2

1/ cos ( / ) sin (1/ 2) cos 2d y dx x dy dx x y x c∃ ! 1 � ! 2 ∃  using (1) ... (2)
    For (2), on comparing with P0y/ ! P1 y∗ ! P2 y = #(x), P0 = 1, P1 = cos x, P2 = – sin x ... (3)

0 P2 – P1∗ ! P0/ = – sin x + sin x ! 0 = 0, using (3)
Hence (2) is exact and its first integral is

0 1 0( )
dy

P P P y
dx

∗∃ ! = 1 2
1 cos2
2

x c dx c( )! ∃ ∃+ ,
− .%     or    cos .

dy
x y

dx
∃ = 1 2

1
sin 2

4
x c x c! ∃ ∃ , by (3)

which is linear. Its I.F. = cos xdxe% = sin xe  and so solution is
sin sin sin

1 2 2(1/ 4) sin 2 ( )x x xye x e dx c x c e dx c� ! 2 ∃ ∃ ∃% % . ... (4)

But sinsin 2 xx e dx% = sin2 sin cos 2x txe x dx te dt�% % , putting sin x = t and cos x dx = dt

= sin2 (1 ) 2( ) 2( 1) 2(sin 1)t t t t t xte e dt te e t e x e5 6! 2 � ! � ! � !7 8%
0 solution of (4) is sin sin sin

1 2 3(1/ 2) (sin 1) ( )x x xye x e c x c e dx c� ! 2 ! ∃ ∃ ∃% .

(b) Try yourself. Ans. y/ ! cos x y∗ – sin x = c1 – (1/2) 2 cos 2x.
Ex. 7. Solve sin x (d2y/dx2) – cos x (dy/dx) ! 2y sin x = 0. (Mysore 2005)
Sol. Comparing (1) with P0 y/ ! P1 y∗ ! P2 y = #(x), P0 = sin x, P0 = –cos x, P2 = 2 sin x.

and hence                   P2 – P1∗ ! P0/ = 2 sin x – sin x – sin x = 0.
Hence the given equation is exact and its first integral is

P0(dy/dx) ! (P1 – P0∗)y = c1. or sin x (dy/dx) – 2 cos x 1 y = c1,
which is not exact. Dividing by sin x, we get

(dy/dx) – 2 cot x 1 y = c1 cosec x, ... (1)
which is linear and its integrating factor (I.F.) is given by

I.F. = ( 2 cot ) 2 log sin 2 2(sin ) cosecx dx xe e x x
! ! !% � � �

0 The solution of (1) is 2 2
1 2cosec cosec cosecy x c x xdx c� 1 ∃% ... (2)

Now 2cosec cosecx x dx1% = cosec cot ( cosec cot )( cot )x x x x x dx! 1 ! ! !%
[on integrating by parts]

= 2cosec cot cosec (cosec 1)x x x x dx! 1 ! ! !%
= 2cosec cot cosec cosec cosecx x x x x dx! 1 ! ! ∃% %

or 22 cosec cosec cosec log tan( / 2)x x dx x x� ! ∃%
or 2cosec cosec (1/ 2) cosec cot (1/ 2) log tan( / 2).x x dx x x x1 � ! 2 ∃ 2%

Using this value in (2), the required solution is
y cosec2x = (1/2) 2 c1[log tan (x/2) – cosec x cot x] ! c2, c1, c2 being arbitrary constants
Ex. 8. Solve sin2x(d2y/dx2) = 2y or d2y/dx2 = 2y cosec2x. (Kanpur 2008)
Sol. Re-writing the given equation, we get (d2y/dx2) – cosec2x 1 y = 0.
Multiplying by cot x,         cot x (d2y/dx2) ! 0 1 (dy/dx) – 2 cot x cosec2x 1 y = 0. ... (1)
Comparing (1) with P0 y/ ! P1 y∗ ! P2 y = # (x), we get

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



9.6 Exact Differential Equations and Equations of Special Forms

P0 = cot x,           P1 = 0,           P2 = –2 cot x cosec2x           and            ( )x# = 0... (2)

and                             P2 – P1∗ ! P0/ = – 2 cot x cosec2x – 0 ! 2 cot x cosec2x = 0.
Hence (1) is exact and its first intergrat is given by

& ∋ 2
1 1 1( / ) ( ) or cot / cosec . , by (2)o oP dy dx P P y c x dy dx x y c∗∃ ! � ∃ � ...(3)

which is not exact. Dividing by cot x, we get
2cosec

cot
dy x

y
dx x

∃ = c1 tan x .

                      Its I.F. =
2(cosec / cot ) logcot 1(cot ) tan .x x dx xe e x x! !% � � �

0 The required solution of (3) is

y 1 tan x = 2 2
1 2 1 2tan (sec 1)c x dx c c x dx c∃ � ! ∃% %           or          y tan x = c1 tan x – c1x ! c2.

Ex. 9. Prove that the equation x3 (d3y/dx3) ! 9x2(d2y/dx2) ! 18x (dy/dx) ! 6y = cos x is exact
and find its first integral.

Sol. Comparing the given equation with            P0 y/∗ ! P1 y/ ! P2 y∗ ! P3 y = #(x),
P0 = x3, P1 = 9x2, P2 = 18x, P3 = 6. and #(x) = cos x ... (1)

and                                P3 – P2∗ ! P1/ – P0/∗ = 6 – 18 ! 18 – 6 = 0, using (1)
Hence the given equation is exact and its first integral is

2 2
0 1 0 2 1 0 1( / ) ( )( / ) ( ) cosP d y dx P P dy dx P P P y x dx c∗ ∗ ∗∗∃ ! ∃ ! ! � ∃% .

or                         x3 (d2y/dx2) ! 6x2 (dy/dx) ! 6xy = sin x ! c1. using (1)
Ex. 10. Find the integral of the exact equation x2 (1 ! x) y/ ! 2x (2 ! 3x)y∗ ! 2 (1 ! 3x) y = 0.

[Gullbarga 2005]
Sol. Comparing the given equation with P0 y/ ! P1 y∗ ! P2 y = 0, here
P0 = x2 ! x3,                     P1 = 4x ! 6x2,                         and                    P2 = 2 !

6x
0 P2 – P1∗ ! P0/ = 2 ! 6x – (4 ! 12x) ! (2 ! 6x) = 0,

showing that the given equation is exact and its first integral is given by

0 1 0 1( )
dy

P P P y C
dx

∗∃ ! �                    or 2 2 2
1(1 ) {4 6 (2 3 )}

dy
x x x x x x y C

dx
∃ ∃ ∃ ! ∃ �

or
& ∋

2
1

2 2
2 3

1 (1 )
Cdy x x

y
dx x x x x

∃
∃ �

∃ ∃
... (1)

which is a linear differential equation whose

                  I.F. =

2

2
2 3 2 1

2log log( 1) 2( 1) 1 ( 1)
x x

dx dx
x xx x x xe e e x x

∃ ( )∃+ , ∃ ∃∃ ∃− .
%

� � � ∃ and solution is
2 ( 1)yx x ∃ = 21

22 ( 1)
(1 )
C

x x dx C
x x

2 ∃ ∃
∃%                    or                   yx2 (x ! 1) = C1x ! C2,

where C1 and C2 are arbitrary constants.

EXERCISE 9 (A)

Solve the following differential equations:
1. (x3 – 4x) y/∗ ! (9x2 – 12) y/ ! 18xy∗ ! 6y = 0. Ans. (x3 – 4x) y = (1/2) 2  c1 x2 ! c2 x ! c3

2. xy/∗ ! (x2 – 3) y/ ! 4xy∗ ! 2y = 0. Ans.
2 2 2/ 2 / 2 / 2

1 2 25 5 6

x x xye e e
c dx c dx c

x x x
� ∃ ∃% %

3. xy/ ! (1 – x) y∗ – y = ex. Ans. 1 2
1

log xx x xy e x c e e dx c e
x

!� ∃ ∃%
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4. (ax – bx2) y/ ! 2ay∗ ! 2by = x Ans. xy = x3 / 6a ! c1 / 3b ! c1 (a – bx)3.
5. x2y/ ! 3xy∗ ! y = 1 / (1 – x)2. [Mysore 2004] Ans. xy = log [x / (1– x)] ! c1 log x ! c2

6. (x3 – x) y/∗ ! (8x2 – 3)y/ ! 14xy∗ ! 4y = 2 / x3.

Ans. 2 1/ 2 1 2 1/ 2 2 1/ 2
1 2 3( 1) sec ( 1) log [ ( 1) ] .xy x x c x c x x c!! � ∃ ! ∃ ∃ ! ∃

7. Find a first integral of x3 y/ ! 4x2 y/ ! x (x2 ! 2) y∗ ! 3x2y = 2x. Ans. x3 y/ ! x2y∗ ! x3y = x2 ! c.
8. y/ ! 2 tan x 1 y∗ ! 3y = tan2x sec x

Hint. The given equation is not exact. Multiplying both sides by cos x the resulting equation becomes
exact. Later on do as usual. Ans. y sec3x = (2/3) × tan2x ! (1/4) ×tan4x – x tan x

! (2/3) × log sec x – (x/3) × tan3x ! c1 tan x ! (c1/3) × tan3x ! c2.
9. Show that {(x3 – 2x) D3 ! 3 (3x2 – 2) D2 ! 18x D ! 6} y = 24 x is exact. Hence solve it completely.

10. (2x2 ! 3x) y/ ! (6x ! 3) y∗ ! 2y = (x ! 1) ex. [Bangalore 1996] Ans. y (3 ! 2x) = ex ! c1 log x ! c2.

9.5 Integrating Factor
Suppose that the equation considered in Art. 9.2 is not exact, and let the coefficients P0, P1,

... etc. be of the type (a xq ! b xq ! ...) etc. Then in such cases xm can be taken as an integrating
factor. Multiply the given equation by xm and apply the condition of exactness which will give a
particular value of m. Thus the exact value of the desired integrating factor will be known to us.
The rest of the method is same as discussed in working Rule 9.3.

9.6 Examples (Type 2) based on Art 9.5

Ex. 1. Solve x1/2 2 2( / ) 2 ( / ) 3 .d y dx x dy dx y x∃ ∃ � (G.N.D.U. Amritsar 1998)
Sol. We see that the given equation is not exact (verity yourself as usual). Let its integrating

factor be xm. Multiplying the given equation by xm, we get
1/ 2 2 2 1 1( / ) 2 ( / ) 3 .m m m mx d y dx x dy dx x y x∃ ∃ ∃∃ ∃ � ... (1)

which must be exact. Comparing (1) with P0 y/ ! P1 y∗ ! P2 y = #(x), here
P0 = xm!1/2, P1 = 2 xm!1, P2 = 3xm, #(x) = xm!1. ... (2)
Now, (1) is exact if         P2 – P1∗ ! P0/ = 0

or                           3xm – 2 (m ! 1) xm ! (m ! 1/2) (m – 1/2) xm – 3/2 = 0,
or                                        (1 – 2m) xm ! (1/4) × (2m ! 1) (2m – 1) × xm – 3/2 = 0
or   (1 – 2m) [xm – (1/4) × (2m !1) xm – 3/2] = 0      or       1 – 2m = 0 for all x. Hence m = 1/2.

Putting this value of m in (1) we get x (d2y / dx2) ! 2x3/2 (dy / dx) ! 3x1/2 y = x3/2 ... (3)

which must be exact. For this equation, on comparing with 1 2 ( ), we getoP y P y P y x∗∗ ∗∃ ∃ � #

P0 = x,            P1 = 2x3/2,            P2 = 3x1/2,             # (x) = x3/2 and hence first integral of (3) is

0 1 0 1( ) ( )
dy

P P P y x dx c
dx

∗∃ ! � # ∃%   or 3/ 2 5/ 2
1

2
(2 1)

5
dy

x x y x c
dx

∃ ! � ∃ ,

which is not exact. Dividing both sides of it by x, we get

1/ 2 5/ 2 11 2
2

5
cdy

x x
dx x x

( )∃ ! � ∃+ ,
− .

, which is a linear equation

its I.F. =
1/ 2 3/2 3/2(2 1/ ) (4 /3) log (4/ 3)(1/ )x x x x xe e x e! !% � �  and solution is

3/2 3/ 2(4 /3) (4 /3) 5/ 2 1
2

1 1 2
5

x x c
y e e x dx c

x x x
9 :1 � ∃ ∃; <
= >%

or
3/2 3/2 3/ 2(4 /3) (4 /3) 1/ 2 (4/ 3)

1 22
2 1
5

x x xy
e e x dx c e dx c

x x
� 1 ∃ ∃% % . ... (4)
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9.8 Exact Differential Equations and Equations of Special Forms

Now,
3 / 2 3 / 2(4 / 3) 1/ 2 4 / 3 4 / 3 (4 /3)2 2 3 1

3 3 4 2
x t t xe x dx e dt e e1 � � 2 �% % ,

[putting x3/2 = t so that x1/2 dx = (2/3) 2 dt]
Putting this in (3), the required solution is

3/2 3 /2 3 /2(4 /3) (4 / 3) 2 (4 /3)
1 2( / ) (1/ 5) (1/ ) .x x xy x e e c x e dx c� 2 ∃ ∃%

Ex. 2. Solve x5 (d2y / dx2) ! 3x3 (dy / dx) ! (3 – 6x) x2 y = x4 ! 2x – 5.
Sol. Verify that the given equation is not exact. Let the integrating factor be xm. Multiplying

the given equation by xm, we get
2

5 3 2 4 3
2 3 (3 6 ) 2 5m m m m m md y dy

x x x x y x x x
dxdx

∃ ∃ ∃ ∃ ∃∃ ∃ ! � ∃ ! , ... (1)

which must be exact. Comparing (1) with P0/ ! P1 y∗ ! P2 y = #(x), here
P0 = xm ! 5,              P1 = 3xm ! 3, P2 = (3 – 6x) xm ! 2, #(x) = xm ! 4 ! 2xm ! 3 – 5xm.

Since (1) is exact, we must have P2 – P1∗ ! P0/ = 0
i.e., (3 – 6x) xm ! 2 – 3(m !3) xm ! 2   (m ! 5) (m ! 4) xm ! 3 = 0
or [3 – 3 (m ! 3)] xm ! 2 ! [(m ! 5) (m ! 4) – 6] xm ! 3 = 0
or – 3 (m ! 2) xm ! 2 ! (m2 ! 9m ! 14) xm ! 3 = 0
or – 3 (m ! 2) xm ! 2 ! (m ! 2) (m ! 7) xm ! 3 = 0
or   (m ! 2) [–3xm ! 2 ! (m ! 7) xm ! 3] = 0      giving m ! 2 = 0      i.e.,      m = –2 for all x.

Putting this value of m in (1),       
2

3 2
2 2

2 53 (3 6 )d y dy
x x x y x

dx xdx x
∃ ∃ ! � ∃ ! , ... (2)

which is exact and for which      P0 = x3, P1 = 3x, P2 = 3 – 6x, #(x) = x2 ! 2/x – 5/x2.

Hence its first integral is 2
0 1 0 12

2 5( ) ( )dy
P P P y x dx c

dx x x
∗∃ ! � ∃ ! ∃%

or & ∋3 3
1/ 3 (1 ) / 3 2log 5 /x dy dx x x y x x x c∃ ! � ∃ ∃ ∃ ,

which is not exact. Dividing both sides by x3, we get

1
2 3 4 3

3(1 ) 1 2 5log
3

cdy x y x
dx x x x x

!
∃ � ∃ ∃ ∃ , which is linear..

Its 
2 23 {(1 ) / } 3 (1 / 1/ ) 3( 1/ log ) 3 / 3 logI.F. x x dx x x dx x x x xe e e e e! ! ! ! ! !% %� � � �

Thus,
3log 3/ 3 3/I.F. x x xe e x e

! ! ! !� �

0 The required solution is 3/ 3/1
23 3 4 3 3

1 2 5 1
log

3
x xcy

e x e dx c
x x x x x

! !( )� ∃ ∃ ∃ ∃+ ,
− .% .

EXERCISE 9 (B)

Solve the following differential equations:
1. 2x2(x ! 1) (d2y / dx2) ! x(7x ! 3) (dy/dx) – 3y = x2. Ans. 5(x ! 1) = 5x2/7 ! c1x – c2x–3/2

2. x4 (d2y / dx2) ! x2 (x – 1) (dy/dx) ! xy = x3 – 4  Ans. 1/ 1/ 1/
1 2(1 / ) 2 (1/ 1)x x xye c x e dx e x c� ∃ ! ! ∃% .

3. Show that {x2D3 ! 4xD2 ! (x2 ! 2)D ! 3x}y = 2 becomes integrable on being multiplied by some
power of x. Obtain its first integral. Here D ? d/dx

Ans. (x3D2 + x2D + x3)y = x2 + c, c being an arbitrary constant
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Exact Differential Equations and Equations of Special Forms 9.9

9.7 Exactness of Non-Linear Equations-Solution by trial
There is no simple test for exactness of non-linear equations. So we solve these by trial. The

methods of solving such equations can also be used to solve linear exact equations.

9.8 Examples (Type 3) based on Art. 9.7

Ex. 1. Solve 
22

2 2
2 3 0.d y dy

x y x y y
dxdx

( )∃ ! ! �+ ,
− .

Sol. If possible, let us write
22

2 2 2
2 2 2 0.du d y dy dy

x y x xy y
dx dx dxdx

( )� ∃ ! ! �+ ,
− .

... (1)

We note that x2y (d2y/dx2) can be obtained by differentiating x2y (dy/dx) [Remember that we
shall first consider the term conatining the highest order derivative].

Let   u1 = x2y (dy/dx) ... (2)
Differentiating both sides w.r.t, ‘x’, (2) gives

22
2 21

2 2du d y dy dy
x y x xy

dx dx dxdx
( )� ∃ ∃+ ,
− .

... (3)

Substracting (3) from (1), we get 21 4 2
dudu dy

xy y
dx dx dx

! � ! ! ... (4)

As before, – 4xy (dy/dx) can be obtained by differentiating – 2xy2

0 Let  u2 = – 2xy2. ... (5)

Differentiating, (5) w.r.t, ‘x’, we get                   22 4 2du dy
xy y

dx dx
� ! !

Putting this in (4), we get   1 2du dudu
dx dx dx

! �         or           1 2( )du d
u u

dx dx
� ∃ ... (6)

By virtue of (6), we see that (1) is exact. Thus (1) becomes 1 2( ) 0d
u u

dx
∃ � .

Integrating,    u1 ! u2 = c.              so that               x2y (dy/dx) – 2xy2 = c, using (2) and (5).
Dividing by x2, y (dy/dx) – (2/x) y2 = c / x2. ... (7)
Take y2 = v so that 2y (dy/dx) = (dv/dx) and so (7) gives

                1
2

1 2
2

cdv
v

dx x x
! �                            or                           1

2
24 cdv

v
dx x x

! �

Its I.F. =
4( 4 / ) 4 log log 4 41/ .x dx x xe e e x x

!! ! !% � � � �  So the required solution is
4 6

1 2/ 2 (1/ )v x c x dx c� ∃% or 4 5
1 2/ (2 / 5 )v x c x c� ! ∃

or              y2 / x4 = – 2c1 2 (1/5x5) ! c2                        or y2x = c2x
5 – 2c1/5.

Ex. 2. Show that the following equation is exact and find its first integral
3 2

2 2
23 2 2 0dy dy dy d y

y x y x y
dx dx dx dx

( ) ( )∃ ∃ ∃ ∃ �+ , + ,
− . − .
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9.10 Exact Differential Equations and Equations of Special Forms

Sol. If possible, let us write
32 2

2 2
2 22 2 3 0.du d y dy d y dy dy

x y y x y
dx dx dx dxdx dx

( )� ∃ ∃ ∃ ∃ �+ ,
− .

... (1)

Take u1 = x2(dy/dx)  ... (2)

0
2

21
2 2 .

du d y dy
x x

dx dxdx
� ∃ ... (3)

Substracting (3) from (1), we get

1dudu
dx dx

! =
32

2
22 2 .dy d y dy dy

y y x y
dx dx dxdx

( )∃ ∃ ∃+ ,
− .

... (4)

Now, take u2 = y2 (dy/dx)2. ... (5)

0
32

22
22 2du dy d y dy

y y
dx dx dxdx

( )� ∃ + ,
− .

... (6)

Substracting (6) from (4), we get 1 2du dudu
dx dx dx

! ! = .
dy

x y
dx

∃ ... (7)

Next, take         u3 = xy. ... (8)

0              3du dy
x y

dx dx
� ∃

Putting this in (7), we get 1 2du dudu
dx dx dx

! ! = 3du
dx

    or     1 2 3( ).du d
u u u

dx dx
� ∃ ∃

Hence (1) is exact and it can be written as               1 2 3( )
d

u u u
dx

∃ ∃ = 0.

Integrating, u1 ! u2 ! u3 = c or & ∋ & ∋22 2/ / ,x dy dx y dy dx xy c∃ ∃ �  using (2), (5), (8)
which is the required first integral.

Second Method [Sometimes we group the terms of the given equation in such a manner
so that they become perfect differentials and their integrals may be found directly.]

We rewrite the equation by grouping the terms as follows:
32 2

2 2
2 22 2 2 0d y dy dy d y dy dy

x x y y x y
dx dx dx dxdx dx

5 6( ) ( ) ( )∃ ∃ ∃ ∃ ∃ �≅ Α+ , + , + ,+ , − . − .≅ Α− . 7 8

or
2

2 2 d(xy)
0.

dx
d dy d dy

x y
dx dx dx dx

5 6( ) ( )∃ ∃ �≅ Α+ , + ,
− . − .≅ Α7 8

Integrating, & ∋ & ∋22 2/ / ,x dy dx y dy dx xy c∃ ∃ � c being an arbitrary constant.

Ex. 3. Show that the equation 
22

2 2
22 2( ) 0dy d y dy dy

y x y x x y
dx dx dxdx

( ) ( )∃ ∃ ∃ ∃ ∃ �+ , + ,
− . − .

is exact

and find its first intergal.
Sol. Rewriting the given equation by grouping the terms, we get

2 22 2
2 2

2 22 2 2 0d y dy dy d y dy dy
y y x x x y

dx dx dx dxdx dx

5 6 5 6( ) ( ) ( )∃ ∃ ∃ ∃ ∃ �≅ Α ≅ Α+ , + , + ,
− . − . − .≅ Α ≅ Α7 8 7 8

or
2

2 2 ( ) 0.d dy d dy d
y x xy

dx dx dx dx dx

5 6( ) ( )∃ ∃ �≅ Α+ , + ,
− . − .≅ Α7 8
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Exact Differential Equations and Equations of Special Forms 9.11

Integrating, 2 2 2( / ) ( / ) ( ) ,y dy dx x dy dx xy c∃ ∃ � c being an arbitrary constant.
Ex. 4. Solve 2 2 2 2( / ) { ( / ) } 0x y d y dx x dy dx y∃ ! �
Sol. The given equation can be re-written as

22
2 2

2 2 0d y dy dy
x y xy y

dx dxdx

5 6( ) 5 6∃ ! ! �≅ Α+ , ≅ Α− . 7 8≅ Α7 8
or

22 2

2 2
2 ( / ) 0d y dy xy dy dx y

y
dxdx x

5 6 !( )∃ ! �≅ Α+ ,
− .≅ Α7 8

or
2

0d dy d y
y

dx dx dx x

( )( ) ! �+ ,+ , + ,− . − .
Integrating,                         y(dy/dx) – (1/x)y2 = c1. c1 being an arbitray constant
Putting y2 = v and 2y (dy/dx) = (dv/dx), the above equation reduces to

1
1
2

dv v
c

dx x
! � or 1,

2
2

dv
v c

dx x
! �

which is linear. Its I.F. = (2 / ) 2 log 21/ .x dx xe e x! !% � �  and solution is 2
y

x
= 1 22

12c dx c
x

∃%
or y2/x2 = – 2c1/x ! c2 or y2 = x (c2x – 2c1).

Ex. 5. Find a first integral of
2

2 2
2 .dy d y dyx y xy

dx dxdx
! �

Sol. Rewriting the given equation, we have
2

2 2
22 2 2 0dy d y dy

x y xy
dx dxdx

5 6! ∃ �≅ Α7 8
                     or

2
2 2( ) 0d dy d x y

dx dx dx
( )
+ ,
− .

! �

Integrating,                 (dy / dx)2 – x2 y2 = c                 or                (dy / dx) = 2 2 1/ 2( )c x y∃

EXERCISE 9 (C)

Solve the following differential equations:
1. y/ ! y∗ = ex Ans.  y = (1/2) ex ! c1 ! c2e–x.

2. 2x2 cos y 1 y/ – 2x2 sin y 1 (y∗)2 + x cos y 1 y' – sin y � log xAns. sin y = 1 – log x ! c1 (x/3) ! c2 / x .

3. 2 y y∗/ ! 2(y ! 3y∗)y/∗ ! 2(y∗)2 = 2 Ans. y2 = x2 ! c1 ! c2x ! c3e–x.
4. cos y 1 y/ – sin y 1 (y∗)2 ! cos y 1 y∗ = x ! 1 Ans. 2 sin y = x2 ! c1 ! c2e–x

5. 2 sin x 1 y/ ! 2 cos x 1 y∗ ! 2 sin x y∗ ! 2y cos x = cos x Ans. yex = c2 ! 1( cosec 1/ 2) xc x e dx∃%
9.9 Equations of form (dny /dxn) = f(x)

This is an exact differential equation. Integrating directly, it gives
1 1/n nd y dx! !

1( ) ,f x dx c� ∃%
which is also exact. Again integrating it, we get

2 2/n nd y dx! ! 2
1 2( )( ) ,f x dx c x c� ∃ ∃% %

which is again exact. We integrate again and again till we get the complete solution.

9.10 Examples (Type 4) based on Art 9.9
Ex. 1. Solve d3 y / dx3 = xex.
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9.12 Exact Differential Equations and Equations of Special Forms

Sol. Integrating, the given equation gives

d2 y / dx2 = 1 1.x x xxe dx c xe e c∃ � ! ∃% ... (1)

Again integrating (1),                          dy/dx = 1 2
x xxe dx e dx c dx c! ∃ ∃% % %

i.e., dy/dx = xex – ex – ex ! c1x ! c2. ... (2)

Again integrating (2), y = 1 2 32 ( )x xxe dx e dx c x c dx c! ∃ ∃ ∃% % %
or y = xex – ex – 2ex ∃ (1/2) × c1x

2 – c2x ! c3.      or    y = xex – 3ex ! (1/2) 2 c1x
2 – c2x ! c3.

EXERCISE 9 (D)

Solve the following differential equations.
1. d2 y / dx2 = x2 sin2x. Ans. y = –x2 sin x – 4x cos x ! cos x ! 6 sin x ! c1x ! c2.
2. x2 (d4 y / dx4) ! 1 = 0 Ans. y = (1/2) 2 x2 log x ! c1x3 ! c2x2 ! c3x ! c4.
3. d2 y / d x2 = log x. Ans. 36y = 6x3 log x – 11x3 ! c1x2 ! c2x ! c3.

9.11 Equations of the form (d2y / dx2) = f (y)
To solve it, multiply both sides by 2(dy / dx). Then we get

2

22 dy d y
dx dx

= 2 ( ) dyf y
dx or

2
2 ( ) .d dy dyf y

dx dx dx
( )
+ ,
− .

�

Integrating,
2

2 ( ) 1
dy f y dy c
dx

( )
+ ,
− .

� ∃% or 3 41/ 2
12 ( )dy f y dy c

dx
� ∃%

Separating variables, dx= 
3 41/ 2

12 ( )

dy

f y dy c∃%

Integrating, x ! c2 =
3 41/ 2

12 ( )

dy

f y dy c∃
%

%
, c1 and c2 being arbitrary constants.

9.12 Examples (Type 5) based on art. 9.11
Ex. 1. Solve d2y / dx2 = sec2y tan y.
Sol. Multiplying both sides by 2(dy/dx), we get

2
2

22 2 sec tandy d y dy
y y

dx dxdx
� or

2
22sec tan .d dy dy

y y
dx dx dx

( ) �+ ,
− .

Integrating, & ∋2/dy dx = 2
12 tan sec ,y y dy c∃% c1 being an arbitrary constant

or           & ∋2/dy dx = 2
1tan y c∃ or                 & ∋ 2 1/ 2

1/ (tan ) .dy dx y c� ∃ ... (1)
Separating variables,                       dx = dy / (tan2y ! c1)1/2

or dx =
& ∋1/ 22 2

1sin / cos

dy

y y c∃
=

2 2
1

cos

sin cos

y dy

y c y∃
or

2 2
1

cos

[sin (1 sin ]

y dy
dx

y c y
�

∃ !

Put      sin y = v               so that                             cos y dy = dv. ... (2)
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0     dx =
2

1 1[ ( 1) ]

dv

c c v! !
                  or

2
1 1 1

1
( 1) [{ / ( 1)} ]

dy
dx

c c c v
�

! ! !

Integrating, x ! c2 = 1
1 1

1

1 sin {( 1) / }
( 1)

v c c
c

! 5 6!7 8!
, c2 being an arbitrary constant.

Using (2), we have x ! c2 = 1
1 1

1

1 sin sin {( 1) / }
( 1)

y c c
c

! 5 6!7 8!
... (3)

Ex. 2. Solve y/ = sec2y tan y and modify the solution under the condition that when x = 0,
then y = 0 and dy/dx = 1.

Sol. For solution see Ex. 1. Putting y = 0, dy/dx = 1 in (1) of Ex.1, we get c1 = 1. Again
putting x = 0, y = 0 in (3) of Ex.1, we cannot get c2, So we put c1 = 1 in (1) and get

2/ (tan 1)dy dx y� ∃ = sec y          or           dx = cos y dy            so that            x ! c2 = sin y
Now put given data x = 0, y = 0. Then we get c2 = 0. Hence we get x = sin y or y = sin–1 x.

EXERCISE 9 (E)
Solve the following differential equations:

1. y/ = 1/ ( )ay . Ans. 3x ! c2 = & ∋ & ∋1/ 4
1 12 2a y c y c! ∃ .

2. y3 y/ = a Ans. (c1x ! c2)2 = c1y2 – a.

3. y/ ! a2 / y2 = 0. Ans. 2
1 1 2 1 1 12 (1/ ) log ( 1) ( )c y y ac c c c y c y5 6∃ ! ∃ � ∃ ∃7 8

9.13 Reduction of order. Equations that do not contains y directly i.e., equations of the form
1 1( / , / .......... / , )n n n n m mf d y dx d y dx d y dx x o! ! � ... (1)

which involves lowest derivative m. In such cases we put dm y/dxm = q. Differentiate this and solve
the modified form of (1). Remember that if m = 1, we put dy/dx = p, where p is standard symbol
for dy/dx. In case x and y both are absent, the same procedure may be used.

9.14 Examples (Type 6) based on Art. 9.13
Ex. 1. Solve (1 – x2) (d2y / dx2) – x(dy / dx) = 2.
Sol. The given equation does not contain y directly and dy/dx is the lowest derivative.

Here we put /dy dx p�  so that 2 2/ /d y dx dp dx�  Then given equation gives

2(1 ) 2
dp

x xp
dx

! ! � or 2
2 ,

1 1
dp x

p
dx x x

! �
! !

... (1)

which is linear in p and x. Its I.F. =
2 2 2 1/ 2[ /(1 )] (1/ 2) log(1 ) log(1 ) 21x x dx x xe e e x! ! 2 ! !% � � � ! .

0 The solution of (1) is

21p x2 ! = 2
12

2 1
1

x dx c
x

! ∃
!%         or 2 1

1 12
1 2 2 sin .

1

dy dx
x c x c

dx x
!! � ∃ � ∃

!
%

Separating variables,
1

1
2 2

2sin

1 1

cx
dy dx

x x

!5 6
� ∃≅ Α

≅ Α! !7 8
Integrating,             y = (sin–1 x)2 ! c1 sin–1 x ! c2, c1 and c2 being arbitrary constants.
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9.14 Exact Differential Equations and Equations of Special Forms

Ex. 2. Solve (d2y / dx2) ! (dy/dx) ! (dy/dx)3 = 0
Sol. The given equation does not contain y directly and dy/dx is the lowest derivative. Hence

put dy/dx = p so that d2y / dx2 = dp/dx. Then the given equation reduces to

3 0
dp

p p
dx

∃ ∃ �            or 2(1 )
dp

dx
p p

� !
∃

or                            2
1

1
p

dp
p p

5 6
!≅ Α

∃7 8
= – dx, on resolving into partial fractions.

Integrating,                      2
1log log 1 log .p p c x! ∃ ! � !

or      
2

1

log
1

p

c p∃
= – x        or       

2
1 1

xp
e

c p
!�

∃
       or

2
2 2
121

xp
c e

p
!�

∃

or
2 2

2 1
2 2
11

x

x
c e

p
c e

!

!�
!

or 1
2 2
1(1 )

x

x

c edy
p

dx c e

!

!
� �

!
or 1

2 2
1(1 )

x

x

c e dx
dy

c e

!

!
�

!
.

Integrating, y = – sin–1(c1e
–x) ! c2, c1 and c2 being arbitrary constants.

Ex. 3. Solve x (d2 y / dx2) ! (dy/dx) = 4x, by reducing its order. (Nagpur 2007)
Sol. Putting dy/dx = p and d2y / dx2 = dp / dx, given equation becomes
x(dp/dx) ! p = 4x or (dp/dx) ! (1/x)p = 4, ... (1)

which is linear in variables p and x. Its I.F. = (1/ ) logx dx xe e x% � �

0 Solution of (1) is px =
1

4x dx c∃% or x (dy/dx) = 2x2 ! c1

or          dy = (2x ! c1/x) dx                          so that y = x2 ! c1 log x ! c2,
where c1 and c2 are arbitrary constants.

Ex. 4. Solve
2 2 2

2 2 2 2 2( ) ( )
d y a dy x

dxdx x a x a a x
! �

! !
Sol.  Putting dy/dx = p and d2y/dx2 = dp/dx, the given equation reduces to

              
2 2

2 2 2 2( ) ( )
dp a x

p
dx x a x a a x

! �
! !

,  which is linear in p and x. ... (1)

Its I.F. =
2 2 2– { / ( )} {(1/ 1/ 2( ) 1/ 2( )}a x a x dx x a x a x dxe e! ! ∃ ! ! ∃% %� , by partial fractions

= 2 2log (1/ 2) log ( ) (1/ 2) log ( ) log (1/ 2) log ( ) 2 2 1/ 2( ) /x a x a x x a xe e a x x! ∃ 2 ! ∃ 2 ∃ ! ∃ 2 !� � !

0 The solution of (1) is
2 2( )a x

p
x
! =

2 22

12 2
( )

( )
a xx

dx c
xa a x

!
∃

!%

or
2 2( )a xdy

dx x
!

= 12 2

1

( )

xdx
c

a a x
∃

!
% or

2 2( )a xdy
dx x

! =
2 2

1
( )a x

c
a
!

! ∃ .

Separating variables, dy = 1
2 2

.
( )

c xx
dx

a a x

5 6
≅ Α! ∃
≅ Α!7 8

Integrating, y = 2 2 2
1 2( / 2 ) ( )x a c a x c! ! ! ∃ , c1 and c2 being arbitrary constants.
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Exact Differential Equations and Equations of Special Forms 9.15

EXERCISE 9 (F)

Solve the following differential equations:

1. (1 ! x2) (d2y / dx2) ! 1 ! (dy/dx)2 = 0. Ans. 2 2
1 1 1 1 2{(1 ) / }log (1 ) ( / )y c c c x x c c� ∃ ∃ ! ∃ .

2. dy/dx – x (d2y / dx2) = f (d2y / dx2). Ans. y = (1/2) 2 cx2 ! xf (c) ! c'.
3. 2x (d3y / dx3) (d2y / dx2) = (d2y / dx2)2 – a2. Ans. y = 4(a2 ! c1x)5/2/15c1

2 ! c2x ! c3

4. d4y / dx4 – a2(d2y / dx2) = 0. Ans. y = (c1/a2)eax ! (c2/a2)e–ax ! c3x ! c4

5. d4y / dx4 – cot x (d3y / dx3) = 0. Ans. y = c1 cos x ! (c2/2) 2 x2 ! c3x ! c4

6. x2(d3y / dx3) – 4x(d2y / dx2) ! 6(dy/dx) = 4. Ans. y = c1x4 ! c2x3 ! (2x/3) ! c3

7. d2y / dx2 = 2 1/ 2{1 ( / ) }dy dx∃ Ans. y = c2 ! cosh (x ! c1).
8. (d2y / dx2) = a2 ! k2(d2y / dx2)2. Ans. y = (1/k2) log sec{ak (x ! c1)} ! c2.
9. x(d2y / dx2) ! x(dy/dx)2 – dy/dx = 0. Ans. y = log (x2 ! 2c1) ! c2

10. (d3y / dx3)2 ! x(d2y / dx2) – d2y / dx2 = 0. Ans. y = (1/6) 2  c1x3 ! (1/2) 2  c1
2 x2 ! c2x ! c3

9.15 Equations that do not contain x directly i.e., equations of the form

& ∋1 1/ , / ,.............. / . 0n n n nd y dx d y dx dy dx y! ! ∗ �% ... (1)

In such equations we put /dy dx p� ... (2)

and
2

2
d y d dy

dx dxdx
( )� + ,
− .

= .
dp dp dy dp

p
dx dy dx dy

� 1 � ... (3)

3 2

3 2
d y d d y

dxdx dx

( )
� + ,+ ,

− .
= d dp

p
dx dy

( )
+ ,
− .

=
22

2
d dp dy d p dp

p p p
dy dy dx dydy

5 6( ) ( )
≅ Α� ∃+ , + ,
≅ Α− . − .7 8

or
3

3
d y
dx

=
22

2
2

d p dp
p p

dydy
( )

∃ + ,
− .

... (4)

and so on. We put these in the given equation and get an equation in two variables p and y.
Important note : We shall use formulae (3) and (4) directly in the solutions. The students are

advised to prove these before using in examination. When x and y are both absent, you can apply
both Art. 9.13 and 9.15.

9.16 Examples (Type 7) based on Art 9.15

Ex. 1. Solve & ∋22 2 2( / ) / logy d y dx dy dx y y! �

Sol. The given equation does not contain x directly.

Let /dy dx p�    so that             2 2/ ( / )d y dx p dp dy�

Then the given equation becomes

Putting           2 2 logdp
yp p y y

dy
! �          or 21

log .
dp

p p y y
dy y

! � ... (1)

Putting p2 = v so that & ∋2 / /p dp dy dv dy� , (1) gives

1 1 log
2

dv
v y y

dy y
! � or

2 2 log ,dv
v y y

dy y
! � ... (2)
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9.16 Exact Differential Equations and Equations of Special Forms

which is linear in v and y. Its integration factor (I.F) is given by

I.F. =
2(2/ ) 2 log log 2(1/ )y dy y ye e e y

!! !% � � � and so solution of (2) is

12 2
1 12 logv y y dy c
y y

1 � 1 ∃% or
2

12 2 logp dy
y c

yy
� 1 ∃%

or
2 2

12
1 (log )2

2
dy y

c
dx y

( ) � ∃+ ,
− .

or
2

1[(log ) ]

dy
dx

y y c
�

∃
.... (3)

To integrate, put log y = t so that (1/y)dy = dt. Then, (3) gives 2
1 1/ ( ) .dt t c dx∃ �

Integrating,           1
1 2sinh ( / )t c x c! � ∃                   or   t = 1 2sinh ( )c x c∃

or      log y = 1 2sinh ( )c x c∃ , as t = log y, c1 and c2 being arbitrary constants.

Ex. 2. Solve y (1 – log y) 2 2 2( / ) (1 log )( / ) 0.d y dx y dy dx∃ ∃ �
Sol. The given equation does not contain x directly.
Hence put (dy/dx) = p so that (d2y / dx2) = p (dp/dy). Then the given equation gives

2(1 log ) (1 log ) 0.
dp

y y p y p
dy

! ∃ ∃ � or
1 log

0.
(1 log )

dp y
dy

dy y y
∃

∃ �
! ... (1)

Put log y = t so that (1/y)dy = dt. ... (2)

0 From (1),             1
0

1
dp t

dt
p t

∃
! �

!
            or

2
1 0

1
dp

dt
p t

5 6! ∃ �≅ Α!7 8
Integrating, log p – 2 log (t – 1) – log c1 = t or log {p/c1(t – 1)2} = t

or p/c1 (t – 1)2 = et or p = c1(t– 1)2 et

2 log
1(log 1) ,ydy

c y e
dx

� !  as t = log y or 1 2 .
(log 1)

dy
c dx

y y
�

!

Using (2) again,               c1dx = 2( 1)
dt

t !
             so that                c1x ! c2 =

1
1t

!
!

or                    c1x ! c2 = –1/(log y –1), c1 and c2 being arbitrary constants.

Ex. 3. Solve 2 2 2 2 2 2 2 1/ 2( / ) ( / ) {( / ) ( / )}dy dx y d y dx n dy dx a d y dx! � ∃

Sol. Put (dy/dx) = p so that (d2y / dx2) = p(dp/dy). Then, the given equation gives

0 & ∋ & ∋3 41/ 222 2 2 2/ /p yp dp dy n p a p dp dy! � ∃

or                                      p = yP ! n(1 ! a2P2)1/2,                    (taking dp/dy = P)
which is of Clairaut’s form. So its solution is

p = yc ! n(1 ! a2c2)1/2 or dy/dx = yc ! 2 2 1/ 2(1 )n a c∃

or 2 2 1/ 2 ,
(1 )
c dy

c dx
yc n a c

�
∃ ∃

 on separating the variables.
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Exact Differential Equations and Equations of Special Forms 9.17

Integrating, 2 2 1/ 2log{ (1 ) } log , ,yc n a c c cx c c∗ ∗∃ ∃ ! � , being arbitrary constants.

or 2 2[ (1 )] / cxyc n a c c e∗∃ ∃ �              or                2 2(1 ) .cxyc n a c c e∗∃ ∃ �

Ex. 4. Solve: y (d2y / dx2) – 2(dy / dx)2 = y2.
Sol. Putting dy/dx = p and d2y / dx2 = p (dp/dy), the given equation reduces to

0 2 22
dp

yp p y
dy

! � or 24
2 2 .

dp
p p y

dy y
! � ... (1)

Putting p2 = v and 2p(dp/dy) = dv/dy, (1) gives                    (dv/dy) – (4/y)v = 2y

whose I.F. = 4 (1/ ) 4 log 4y dy ye e y! ! !% � �  and so its solution is

vy–4 = 3
12 y dy c! ∃%                      or p2 y–4 = –y–2 ! c1

or               
2

4 2
1

dy
c y y

dx
( ) � !+ ,
− .

                or                     2
1

.
1

dy
dx

y c y
�

!

Putting y = t–1 so that dy = –t2 dt, we get
2

1 2
1( / ) 1

t dt
dx

t c t

!

!
� !

!
                    or

2
1

.
( )

dt
dx

c t
� !

!

Integrating, x ! c2 =
1

1cos ( / )t c!                     or 2 2cos ( ) 1/( )x c y c∃ � .

or 1 2cos ( ) 1,y c x c∃ �  where c1 and c2 are arbitrary constants.

EXERCISE 9 (G)
Solve the following differential equations:

1. y(d2y / dx2) ! (dy / dx)2 = 1. Ans. y2 = x2 ! 2c2x ! c1

2. y2(d2y / dx2) = a. Ans. (xc1 ! c2)2 = c1 y2 – a

3. y(d2y / dx2) ! (dy / dx)2 = y2. Ans. y2 = c1 sinh 2( 2 )x c∃

4. y(d2y / dx2) ! (dy / dx)2 = dy / dx. Ans. y ! (1/c1) log (c1y – 1) = x ! c2)
5. (1 – y2) (d2y / dx2) = 2(dy / dx) {1 ! y (dy/dx)}. Ans. 8x ! c2 = –2y2 + 2c1y + (4 – c1

2) log (2y ! c1)
6. yy/ ! 1 = (y∗)2. Ans. c1y = sinh (c1x ! c2)
7. yy/ ! (y∗)2 = yy∗.    [Delhi B.Sc. (Hons.) II 2011] Ans. y = Β (c1 ! c2 ex)1/2

OBJECTIVE PROBLEMS ON CHAPTER 9
Select (a), (b), (c) or (d) whichever is correct.
Ex. 1 The differential equation P0(d3y / dx3) ! P1(d2y / dx2) ! P2(dy/dx) ! P3 y = 0 is exact if
(a) P3 – P2 ! P1 – P0 = 0 (b) P3 ! P2 ! P1 ! P0 = 0
(c) P3 ! P∗2 ! P∗1 ! P/0 = 0 (d) P3 – P∗2 ! P/1 – P∗/0 = 0
Sol. Ans. (d). Refer Art. 9.2 [Garhwal 2005]
Ex. 2. The solution of the differential equation x{y(d2y / dx2) ! (dy / dx)2} = y(dy/dx) is
(a) ax ! by = x (b) ax2 ! by = 0
(c) ax2 ! by2 = 1 (d) ax2 ! by2 = 0 [I.A.S. (Prel) 1998]
Sol. Ans. (c) Given        2 2 2{ ( / ) ( / ) ( / )} 2 ( / ) 0xy d y dx x dy dx y dy dx y dy dx∃ ∃ ! �

or 2{ ( / )} ( ) 0d xy dy dx d y! �                    so that 2( / ) .xy dy dx y c! �

or                 22 ( / ) (2 / ) 2 / ,y dy dx x y c x c! �  being an arbitrary constant. ... (1)
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9.18 Exact Differential Equations and Equations of Special Forms

Put 2y v�  and 2 ( / ) / .y dy dx dv dx�  Then (1) ( / ) (2 / ) 2 / .dv dx x v c xΧ ! � ... (2)

I.F. of (2) =
2( 2 / ) 2 log log 2x dx x xe e e x

!! ! !% � � �  and solution of (2) is
2 2(2 / ) ( ) ,vx c x x dx c c! ! ∗ ∗� ∃%  being another arbitrary constant.

or          2 2 2/ (2 ){ /( 2)}y x c x c! ∗� ! ∃            or      2 2y c c x∗� ! ∃ or 2 2c x y c∗ ! �

or   2 2( / ) (1/ ) 1c c x c y∗ ! �   or    2 2 1,ax by∃ �  taking /a c c∗�   and b = – (1/c)

Ex. 3. What is the solution of the differential equation 2 2 2( / ) ( / )xy d y dx x dy dx∃
( / ) 0?y dy dx∃ �

(a) y2 = A ln x ! B (b) y2 = A 2ln x

(c) y = A ln x ! B (d) y = A 2ln x ! B [I.A.S. (Prel) 2006]
Sol. Ans. (a) We shall proceed as explained in Art. 9.8. If possible, Let us write

2 2 2/ ( / ) ( / ) ( / ) 0du dx xy d y dx x dy dx y dy dx� ∃ ∃ � ... (1)

Take 1 ( / )u xy dy dx� ... (2)

Then 2 2 2
1 / ( / ) ( / ) ( / )du dx xy d dx y dy dx x dy dx� ∃ ∃ ... (3)

From (1) and (3), 1 ,du du d dy
xy

dx dx dx dx
( )� � + ,
− .

   by (2)

Then,               (1)  Χ  0
d dy

xy
dx dx

( ) �+ ,
− .

          so that                1
dy

xy c
dx

�

or 12 2 (1/ )ydy c x dx� ... (4)

Integrating, 2y Aln x B� ∃
where A (= 2c1) and B are aribitrary constants and ln x = logex.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



10.1

10
Linear Equations of Second Order

10.1 The general (standard) form of the linear equations of the second order

Such equations are of the form                      2 2/ ( / ) ,d y dx P dy dx Qy R! ! � ... (1)
where P, Q, and R are functions of x or constants. We have already read some methods of solving
(1), for example, see chapters on linear equations with constant coefficients (Chapter 5),
homogeneous equations (Chapter 6) and exact equations (Chapter 9). When (1) cannot be solved
by these mehtods, we shall try the methods of this chapter.

10.2 Complete solution of y# ! Py∃ ! Qy " R in terms of one known integral belonging to
the complementary function. Solution of y# ! Py∃ ! Qy " R by reduction of its order

(Agra 1995, Gujrat 2001, 05; Himanchal 2001, Delhi 2001, 03, 07, Vikram 2002)

Given 2 2( / ) ( / ) .d y dx P dy dx Qy R! ! � ... (1)
Let y " u be a known integral of the complementary function. So u is a solution of (1) when

its right hand side is taken to be zero. Thus y " u is a solution of
2 2( / ) ( / ) 0d y dx P dy dx Qy! ! �

so that 2 / ( / ) 0.d u dx P du dx Qu! ! � ... (2)
Now let the complete solution of (1) be y " uv ... (3)

where v is a function of x. v will now be determined.

From (3),
dy
dx

"
du dvv u
dx dx

!

and
2

2
d y
dx

"
2 2

2 22
d u du dv d vv u

dx dxdx dx
! !

... (4)

Using (3) and (4), (1) becomes
2 2

2 2d u du dv d v du dvv u P v u Quv R
dx dx dx dx dxdx

% & % &! ! ! ! ! �∋ ( ∋ (∋ ( ) ∗) ∗

or
2 2

2 2 2d u du d v dv du dvv P Qu u P R
dx dx dx dxdx dx

% & % &
! ! ! ! ! �∋ ( ∋ (∋ ( ∋ (

) ∗ ) ∗

or
2

2 2 ,d v dv du dvu P R
dx dx dxdx

% &
! ! �∋ (∋ (

) ∗
 using (2)

or
2

2
2 ,d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

 dividing by u. ... (5)

Now put dv/dx " q so that d2v / dx2 " dq/dx. Hence (5) gives
2

,
dq du R

P q
dx u dx u

% &! ! �∋ (
) ∗

... (6)

+
,,
−
,
,.
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10.2 Linear Equations of Second Order

which is linear in q and x. The original equation has therefore had its oredr depressed by unity.

I.F. of (6) "
2[ (2 / )( / )] 2 log log 2P u du dx dx Pdx u Pdx Pdxue e e e u e! !/ / / /� � 0 �

and solution of (6) is                  2 Pdxqu e/ " 2
1

PdxR u e dx c
u

/ !/

or
dvq
dx

� " 1
2 2 .

P dxP dx
P dx c ee Ru e dx

u u

11 //
/ !/

Integrating,                v " 1 22 2
1 1 .Pdx P dx Pdxe Ru e dx dx c e dx c

u u
1 12 +/ / /! !3 −

4 ./ / /
Putting this value of v in (3), we get

2 1 2 2
1 1Pdx Pdx P dxy c u c u e dx u e Ru e dx dx

u u
1 12 +/ / /� ! ! 3 −

4 ./ / / ... (7)

which includes the given solution y " u ; and since it contains two arbitrary constants c1and c2,
hence it is the required complete solution.

10.3 Rules for getting an integral belonging to complementary function (C.F.) i.e. solution of
y# ! Py∃ ! Qy " 0. ... (1)

Rules 1. y " eax is a solution of (1) if a2 ! Pa ! Q " 0
Proof. If y " eax, then dy/dx " aeax and d2y/dx2 " a2eax. Putting these in (1), we get

2( ) 0axa Pa Q e! ! �                           or 2 0.a Pa Q! ! �
Particular case (i). Take a " 1. Then y " ex is a solution of (1) if              1 ! P ! Q " 0.
Particular case (ii). Take a " –1. Then y " e–x is a solution of (1) if          1 – P ! Q " 0.
Rule II. y " xm is a solution of (1) if m (m – 1) + Pmx + Qx2 " 0.
Proof. If y " xm, then dy/dx " mxm – 1 and d2y/dx2 " m(m – 1)xm – 2.
Putting these in (1), we get
[m(m – 1) ! Pmx ! Qx2] xm – 2 " 0        so that m(m – 1) ! Pmx ! Qx2 " 0.
Particular case (i). Take m " 1, then y " x is solution of (1) if P ! Qx " 0.
Particular case (ii). Take m " 2, then y " x2 is a solution of (1) if 2 ! 2Px ! Qx2 " 0.

[Garhwal 2010]

10.4 Working rule for finding complete primitive solution when an integral of C.F. is known
        or can be obtained by rules of Art. 10.3

Step 1. Put the given equation in standard form y# ! Py∃ ! Qy " R, in which the coeffiecient
of d2y / dx2 is unity.

Step 2. Find an integral u of C.F. by using the following table :
                  Condition satisfied                                      An integral of C.F. is

(i) 1 ! P ! Q " 0 u " ex

(ii) 1 – P ! Q " 0 u " e–x

(iii) a2 ! aP ! Q " 0 u " eax

(iv) P ! Qx " 0 u " x
(v) 2 ! 2Px ! Ox2 " 0 u " x2

(vi) m(m – 1) ! Pmx ! Qx2 " 0 u " xm

If a solution (or integral) u is given in a problem, then this step is omitted.
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Linear Equations of Second Order 10.3

Step 3. Assume that the complete solution of given equation is y " uv, where u has been
obtained in step 2. Then as explained in Art. 10.2, given equaiton reduces to

2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

... (1)

Step 4. Take dv/dx " q so that d2v/dx2 " dq/dx. Put in (1). Then (1) will come out to be a
linear equation in x and q if R 5 0. Solve it as usual. If R " 0, then variables q and x will be
separable.

Step 5. Now replace q by dv/dx and separate the variables v and x. Integrate and determine
v. Put this value of v in the assumed solution y " uv. This will lead us to the desired complete
solution of the given equaiton.

10.4.A. Theorem. If y = f (x) is a solution of the equation p (x) y'' + q (x) y' + r (x) y = 0, then
y = c1 f(x) + c2v f(x) is the general solution of the given equaiton, where

6 72

exp { ( ) / ( )}

( )

q x p x
v

f x

8 91: ;< =�
/

/ , dx, c1, c2 being arbitrary constants

Here exp (a) stands for exponential of a, i.e., ea.
[Himachal 2003, 04, 06, Kolkata 2002, 04, 06, Kurukshetra 2003, 06]

Proof Given p(x) y# + q (x) y∃ + r (x) y " 0 ...(1)
Given that f(x) is a solution of (1), hence

p(x) f # (x) + q (x) f # (x) + r (x) f (x) " 0 ...(2)
Let                                 g (x) " v (x) f (x) ...(3)

be the second solution of (1). Hence, we have
p (x) g# (x) + q (x) g∃ (x)+ r (x) g(x) " 0 ...(4)

From (3), g∃(x) " v∃ (x) f(x) + v(x) f ∃(x),          g#(x) " v# (x) f(x) + 2v∃ (x) f ∃ (x) + v (x) f #(x)

> (4) reduces to 6 7( ) ( ) ( ) 2 ( ) ( ) ( ) ( )p x x f x x f x v x f x∃∃ ∃ ∃ ∃∃? ! ? !

6 7( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0q x x f x x f x r x v x f x∃ ∃! ? ! ? ! �

or 6 7( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )p x x f x x p x f x q x f x∃∃ ∃ ∃? ! ? !

6 7( ) ( ) ( ) ( ) ( ) ( ) ( ) 0x p x f x q x f x r x f x∃∃ ∃!? ! ! �

or 6 7( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 0, using (2)p x x f x x p x f x q x f x∃∃ ∃ ∃? ! ? ! �

Let          ( ) ( )x w x∃? �         so that         ( ) ( )x w x∃∃ ∃? �  Then, the above equation becomes

≅ Α 6 7( ) ( ) / 2 ( ) ( ) ( ) ( ) 0p x f x dw dx w p x f x q x f x∃! ! �

or
≅ Α
( ) ( )

2 ,
( )

f x q xdw dx
w f x p x

2 +∃, ,� 1 !3 −
, ,4 .

 by separating the variables

Integrating it, log w " 6 72log ( ) ( ) / ( )f x q x f x dx1 1 / , ...(5)
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10.4 Linear Equations of Second Order

where we have omitted the usual constant of integration because we wish to find second particular
solution of (1).

≅ Α 6 7 6 7
6 7

2
2

15 log ( ) ( ) / ( ) exp[ { ( ) / ( )} ]
( )

w f x q x f x dx w q x p x dx
f x

8 9Β � 1 Β � 1< = / /

Thus,
6 7

6 72 2

exp ( ) / ( ) exp { ( ) / ( )}

{ ( )}( )

q x p x dx q x p x dxd dx
dx f xf x

8 9 8 91 1? : ; : ;< = < =� Β ? �
/ /

/ ...(6)

which is the required form of the function ? (x).
We shall now show that f (x) and g(x) are linearly independent solutions of (1). We have,

W (f, g) " Wronskian of f (x) and g (x)

"
( ) ( ) ( ) ( )

,
( ) ( ) ( ) ( ) ( )

f x g x f x f x
f x g x f x f x f x

?
�

∃ ∃ ∃ ∃ ∃? ! ?
 using (3)

2 2 1
( ) 0

, on applying the operation
( ) ( )

� Χ 1 ?
∃ ∃?

f x
C C C

f x f x

6 72{ ( )} exp ( ) / ( )8 9∃� ? � 1: ;< =/f x q x p x dx , using (6)

which is non-zero, being an exponential function. Since ( , ) 0,W f g 5  it follows that f(x) and g(x)
are linearly independent solutions of (1).

Then, the general solution of (1) is y " c1 f(x) + c2 g(x), i.e., y " 1 2( ) ( )c f x c f x! ?

10.4B. Solved examples based on Art. 10.4A
Ex. 1. Find the second linearly independent solution of xy'' – (x + 1)y' + y = 0 (x > 0) while

one solution is ex. [Madurai 2001, 03, 05, 07]
Sol.  Comparing the given equation with p(x)y'' + q(x) y' + r (x) y " 0, we have p(x) " x and

q (x) " – (x + 1). Also here f (x) " ex. Hence the second solution "  ?ex, where

2

exp { ( ) / ( )} ]

{ ( )

q x p x dx

f x

8 91: ;< =? �
/

/  dx, using formula (6) of Art. 10.4.A. ...(i)

Now, ( ) 1
(1 1/ ) ( log )

( )
q x xdx dx x dx x x
p x x

!
� 1 � ! � 1 !/ / /

> exp[ { ( ) / ( )} ]1/ q x p x dx " exp (x + log x) " ex + logx " exelog x " xex

> from (i), 2 ( ) {1 ( )}
( )

x
x x x x x

x
xe dx xe dx x e e dx xe e
e

1 1 1 1 1? � � � 1 1 ∆ 1 � 1 1/ / /

> Required second solution " ( ) ( 1)x x x xe e xe e x1 1? � 1 1 � 1 !
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Linear Equations of Second Order 10.5

Ex. 2. Verify that Ε1 (x) " x2 in a solution of the differential equation (d2y/dx2) – (2/x2)y " 0,
0 < x < Φ and find a second independent solution. Also obtain the solution of the given equation.

[Himachal 2000, 2001, I.A.S. 1995, 97]

Sol. Given 2 0 2 0∃∃ ∃! ∆ 1 �x y y y ...(1)

and Ε1 (x) " x2 ...(2)
(2) Β Ε1∃ (x) " 2x and  Ε1# (x) " 2 ...(3)

Now, 2
1 1( ) 2 ( )x x x∃∃Ε 1 Ε " 2x2 – 2x2 " 0, using (2) and (3),

showing that Ε1 (x) solution of (1).
Companing (1) with p(x) y# + q(x) y∃ + r (x) y " 0, we have p (x) " x2 and q (x) " 0,  Also,

here usual f(x) " Ε1(x) " x2. Hence the second solution " ?x2, where

2

exp[ { ( ) / ( )}

{ ( )}

q x p x dx
dx

f x

1
? � // , using formula (6) of Art. 10.4A ...(i)

Now, 2
( ) 0

0
( )

q x dx dx
p x x

� �/ /  and hence exp[ { ( ) / ( )} ]q x p x dx1/ " exp 0 " e0 " 1

> From (i), we have 4 4 3(1/ ) (1/ 3 )1? � � � 1/ /x dx x dx x

Hence, required second solution 2 2 3(1/ 3 ) (1/ 3 )x x x x� ? � 1 ∆ � 1 .

Also, the general solution is 2
1 2 ( 1/ 3) (1/ )� ! ∆ 1 ∆y c x c x .

i.e., 2
1 2 /y c x c x∃� ! where 2 2( / 3)c c∃ � 1

Hence the second linearly independent solution can be taken as 1/x.
Ex. 3. Given that the equation x (1 – x) y'' + (3/2 – 2x) y' – y/4 " 0 has  a particular integral

of the form xn, prove that n " – (1/2) and that the primitive of the equation is y " x12 (A + B sin–1 x1/2)
where A and B are arbitrary constants. [Gwaliar 2004, Pune 2001]

Sol. Given                          (1 ) (3/ 2 2 ) / 4 0∃∃ ∃1 ! 1 1 �x x y x y y ...(1)

Let f (x) " xn ...(2)
From (2),                f ∃ (x) " nxn–1               and                 f # (x) " n(n–1)xn–2 ...(3)
Since f (x) is a particular integral of (1), we must have

(1 ) ( ) (3/ 2 2 ) ( ) (1/ 4) ( ) 0x x f x x f x f x∃∃ ∃1 ! 1 1 ∆ �

or ≅ Α2 1(1 ) ( 1) 3/ 2 2 (1/ 4 ) 0n n nx x n n x x nx x1 11 1 ! 1 1 ∆ �  using (2) and (3)

or ≅ Α6 7 ≅ Α ≅ Α6 711 2 1/ 4 1 3 / 2 0n nx n n n x n n n11 1 1 1 ! 1 1 ∆ � ,

which must be an identity in x. Hence, we must have

– ≅ Α6 71 2 1/ 4 0n n n1 ! ! � , i.e., ≅ Α22 1 0n ! � ,             giving n "## $ (1/2)

and ≅ Α1 (3 / 2) 0,n n n1 1 ∆ �  which is also satisfied by (1/ 2)n � 1
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10.6 Linear Equations of Second Order

Hence, we have 1/ 2( ) nf x x x1� � ...(4)

Comparing  (1) with ( ) ( ) ( ) 0,p x y q x y r x y∃∃ ∃! ! �  here p (x) " x (1 – x) and q (x) " 3/2 – 2x

Also, here 1/ 2( )f x x1�  and hence the second solution of (1) is ( )f x? , i.e., 1/ 2x1? , where

6 7
6 72

exp ( ) / ( )
,

( )

q x p x dx
dx

f x

8 91< =? �
/

/  using formula (6) of Art.10.4.A ...(i)

Now,
≅ Α

( ) 3/ 2 2 3 1
( ) 1 2 2(1 )

q x x
dx dx dx

p x x x x x
2 + 2 +1

1 � 1 � 1 13 − 3 −
1 14 . 4 .

/ / / , on resolving into partial fractions.

≅ Α ≅ Α ≅ Α ≅ Α 6 73 3 1/ 23 / 2 log 1/ 2 log 1 1/ 2 log (1 ) log{ (1 )}x x x x x x 1� 1 ∆ ! ∆ 1 � 1 ∆ 1 � 1

> exp 6 7 6 7
3 1/ 2 1/ 2log[ (1 )] 3 1/ 2 1( ) / ( ) { (1 )} (1 )x xq x p x dx e x x x x x

1 11 1 18 91 � � 1 � 1< =/

> From (i), 
1 1/ 2

1 1/ 2
1/ 2 2 1/ 2 1/ 2

{ (1 )} 12 2sin
( ) 2(1 )

x x x dx dx x
x x x

1 1
1

1
1

? � � �
1/ /

Hence, the second solution of (1) 1/ 2 1/ 2 1 1/ 22 sinx x x1 1 1� ? �

> General solution of (1) is 1/ 2 1/ 2 1 1/ 2
1 2 1 2( ) ( ) 2 siny c f x c f x c x c x x1 1 1� ! ? � !

or               1 /2 1 1/ 2( sin ),1 1� !y x A B x               by taking              1 2and B� �c A c .

10.5 Solved examples based on Art. 10.4
Ex. 1. Prove that y " sin x is a part of C.F. of the equation  (sin x – x cos x)y# – x sin x y∃

! y sin x " 0. [I.A.S. 2005; Bangalore 1994]
Sol. Given (sin x – x cos x)y# – x sin x y∃ ! y sin x " 0. ... (1)
Given that y " sin x so that y∃ " cos x and y# " – sin x.
With these values of y, y∃ and y#Γ we have

L.H.S. of (1) " 2(sin cos ) ( sin ) sin cos sinx x x x x x x x1 1 1 !

" 2 2sin sin cos sin cos sin 0,x x x x x x x x1 ! 1 ! �
showing that y " sin x is a part of C.F. of (1).

Ex. 2(a). Solve xy# – (2x – 1)y∃ ! (x – 1)y " 0. [Patna 2003; Delhi Maths (G) 2006;
Bangalore 2002, 05. Osmania 2001, 04, 07 Kanpur 1994; Meerut 2010]

or
Solve by reducing the order. x y(2) – (2x–1) y(1) + (x – 11y = 0, given that ex is one integral part.

where y(1) " dy/dx and y(2) " d2y/dx2. [Delhi B.Sc/ B.A. Maths (Prog) 2007]
Sol. Putting the given equation in standard form, we get

                                    
2

2
1 12 1 0.d y dy
x dx xdx

% & % &1 1 ! 1 �∋ ( ∋ (
) ∗ ) ∗

  ... (1)

Comparing (1) with y# ! Py∃ ! Qy = R, we have
P " –(2 – 1/x),                              Q " 1 – (1/x), R " 0.              ... (2)
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Linear Equations of Second Order 10.7

Here, 1 ! P ! Q " 1 – 2 ! (1/x) ! 1 – (1/x) " 0,
showing that                      u " ex ... (3)
is a part of C.F. of the solution of (1).

Let the complete solution (1) be y = uv ... (4)

Then v is given by                                 
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
1 22 0

x

x
d v de dv

x dx dxdx e
% &

! 1 ! ! �∋ (∋ (
) ∗

, using (2) and (3)

or          
2

2
12 2 0d v dv
x dxdx

% &! 1 ! ! �∋ (
) ∗

                  or
2

2
1 0.d v dv
x dxdx

! � ...(5)

Let               dv/dx " q                           so that d2v/dx2 " dq/dx... (6)

Then (5) becomes          0
dq q
dx x

! � or .dq dx
q x

� 1

Integrating,        log q " log c1 – log x                        or                      q " c1/x

or              1cdv
dx x

�                      or                         1c dxdv
x

�
dv

q
dx

8 9�: ;< =
�

Integrating, v " c1 log x ! c2, c1, c2 being arbitrary constants ... (7)
From (3), (4) and (7), the required complete solution is
y " exv                                        or                        y " c1 ex log x ! c2 ex.
Ex. 2(b). Solve (3 – x)y# – (9 – 4x)y∃ ! (6 – 3x)y " 0. [Delhi Maths (G) 1998; Allahabad

2003; Garhwal 1997; Kurukshetra 2000, 05]]
Sol. Re-writing the given equation in standard form, we get

2

2
9 4 6 3 0.
3 3

d y x dy x
x dx xdx

1 1
1 ! �

1 1
... (1)

Comparing (1) with y# ! Py∃ ! Qy " R, we have
P " –(9 – 4x) / (3 – x),                             Q " (6 – 3x) / (3 – x), R " 0.... (2)

Here 1 ! P ! Q " 3 (9 4 ) 6 39 4 6 31 0,
3 3 3

x x xx x
x x x

1 1 1 ! 11 1
1 ! � �

1 1 1
showing that                                         u " ex ... (3)
is a part of C.F. of the solution of (1).

Let the complete solution of (1) be y " uv ... (4)

Then v is given by
2

2
2d v du dv RP
u dx dx udx

% &! �∋ (
) ∗

or
2

2
9 4 2 0
3

x

x
d v x de dv

x dx dxdx e
% &1

! 1 ! �∋ (∋ (1) ∗
, using (2) and (3)

or
2

2
2(3 ) (9 4 ) 0

3
d v x x dv

x dxdx
1 1 1

! �
1

                         or
2

2
2 3 0
3

d v x dv
x dxdx

1
! �

1
... (5)

Let            dv/dx " q so that d2v / dx2 " dq/dx.   ... (6)
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10.8 Linear Equations of Second Order

Then (5) becomes                 2 3
0

3
dq x q
dx x

1
! �

1
                 or                 2 3

3
dq x q
dx x

1
� 1

1

or 2 3
3

dq x dx
q x

1
�

1
or

3
2 .

3
dq

dx
q x

% &� !∋ (1) ∗
Integrating,             log q " 2x ! 3 log (x – 3) ! log c1

or           log q – log(x – 3)3 – log c1 " 2x or q/[c1(x – 3)3] " e2x

or              q " c1e2x (x–3)3                         or dv/dx " c1e2x (x – 3)3, by (6)
or dv " c1e2x (x – 3)3 dx.

Integrating, 3 2
1 2( 3) xv c x e dx c� 1 !/ , c1, c2 being arbitrary constants.

or
2 2

3 2
2 1 ( 3) 3( 3)

2 2

x xe ev c c x x dx
8 9

� ! 1 1 1 0: ;
< =

/ , integrating by parts

2 2
3 2 21

2 1
3( 3) ( 3) 2( 3)

2 2 2 2

x x
xc e ec x e c x x dx

8 9
� ! 1 1 1 0 1 1 0: ;

< =
/ , integrating by parts again

2 2
3 3 2 21

2 1 1
3 3( 3) ( 3) ( 3) 1

2 4 2 2 2

x x
x xc e ec x e c x e c x dx

8 9
� ! 1 1 1 ! 1 0 1 0: ;

< =
/

(Integrating by parts again)

" 3 2 2 2 2 2
2 1 1 1 1(1/ 2) ( 3) (3 / 4) ( 3) (3 / 4) ( 3) (3 / 8)x x x xc c x e c x e c x e c e! ∆ 1 1 ∆ 1 ! ∆ 1 1 ∆

" 2 3 2
2 1(1/ 8) [4( 3) 6( 3) 6( 3) 3]xc c e x x x! ∆ 1 1 1 ! 1 1

or 2 3 2
2 1(1/8) (4 42 150 183).xv c c e x x x� ! ∆ 1 ! 1 ... (7)

From (3), (4) and (7), the required complete solution is
y " ex v                     or y " c2ex ! (1/8) × c1e3x (4x3 – 42x2 ! 150x – 183).
Ex. 3. Solve (x ! 2)y# – (4x ! 9)y∃ ! (3x ! 7)y " 0. [Delhi Maths (G) 1994]
Hint. Do as in Ex. 2(b). Ans. y " c1(2x ! 3)e3x ! c2ex

Ex.4(a) Find general solution of (1 – x2)y# – 2xy∃ ! 2y " 0, if y " x is a solution of it.
(b) If y " x is a solution of x2y# ! xy∃ – y " 0, find the solution. [Mumbai 2010]

Sol. (a) Re-writing the given equation in standard form, we get
2

2 2 2
2 2 0.

1 1
d y x dy y

dxdx x x
1 ! �

1 1
... (1)

Comparing (1) with y# ! Py∃ ! Qy " R, we get
P " – (2x)/(1 – x2),                      Q " 2/(1 – x2), R " 0.               ... (2)
Here u " x ... (3)

is given to be part a of C.F. of the solution of (1).
Let the complete solution of (1) be y " uv. ... (4)

Then v is given by                                
2

2
2d y du dv RP
u dx dx udx

% &! ! �∋ (
) ∗
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Linear Equations of Second Order 10.9

or
2

2 2
2 2 0

1
d y x dx dv

x dx dxdx x
% &! 1 ! �∋ (

1) ∗
, using (2) and (3)

or
2

2 2
2 2 0.

1
d v x dv

x dxdx x
% &! 1 �∋ (

1) ∗
... (5)

Let              dv/dx " q                   so that d2v/dx2 " dq/dx.... (6)

Then (5) becomes 2
2 2

0
1

dq x
q

dx x x
% &! 1 �∋ (

1) ∗
            or 2

2 2
0

1
dq x

dx
q x x

% &! 1 �∋ (
1) ∗

Integrating,                       log q ! 2 log x ! log (1 – x2) " log c1

or 2 2
1(1 )qx x c1 or 2 2

1/ / (1 )dv dx c x x� 1 by (6)

or 1 12 2 2 2
1 1 1

(1 ) 1
% &� � !∋ (1 1) ∗

dv c dx c dx
x x x x

, on resolving into partial fractions

Integrating,
1

1 2
1 1log ,

1 2 1

18 9!
� ! !: ;1 1< =

x xv c c
x

c1, c2 beng arbitrary constant ... (7)

From (3), (4) and (7), the required general solution is

y uv xv� � or 2 1
11 log .

2 1
x xy c x c

x
!% &� ! 1 !∋ (1) ∗

(b) Hint : Proceed as in part (a). Ans. y " x ! x–1.
Ex. 5. Solve x2 y# ! xy∃ – y " 0, given that x ! (1/x) is one integral by using the method of

reduction of order. [Delhi Maths (G) 2001]
Sol. Re-writing the given equation in standard form, we get

y# ! (1/x)y∃ – (1/x2)y " 0; ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, we get P " 1/x, Q " – (1/x2). R " 0 ... (2)
Here given that u " x ! 1/x ... (3)

is part of C.F. of the solution of (1).
Let the complete solution of (1) be y " uv. ... (4)

Then v is given by                  
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
1 2 1 0

(1/ )
d v d dvx

x x x dx x dxdx
8 9% &! ! ! �∋ (: ;! ) ∗< =

or
2

2 2 2
1 2 11 0

1
d v x dv

x dxdx x x
8 9% &! ! 1 �: ;∋ (

! ) ∗< =
           or

2 2

2 2
3 1 0
( 1)

d v x dv
dxdx x x

1
! �

!
 ... (5)

Let                      dv/dx " q                     so that d2v / dx2 " dq / dx. ... (6)

Then (5) becomes     
2

2
3 1 0
( 1)

dq x q
dx x x

1
! �

!
            or

2

2
3 1 0
( 1)
xdq dx

q x x
1

! �
!

or 2
4 1 0

1
dq x dx
q xx

% &
! 1 �∋ (∋ (!) ∗

, on resolving into partial fractions.
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Integrating,                log q ! 2 log (x2 ! 1) – log x " log C1, C1 being an arbitrary constant

or               
2 2

1
( 1)q x C

x
!

�                     or 1
2 2 ,

( 1)
C xdv

dx x
�

!
as

dvq
dx

�

or 1 1
2 2 2( 1) 2
C x Cdv dx dt

x t
� �

!
, putting x2 ! 1 " t so that 2x dx " dt

Integrating, 1 1
2 2 22 2( 1)

� 1 � 1
!

C Cv C C
t x

, C2 being an arbitrary constant. ... (7)

From (3), (4) and (7), the required general solution is

y "
2

1
2 2

1 1
2( 1)

Cxuv x v C
x x x

8 9!% &� ! � 1: ;∋ (
!) ∗ < =

               or
2

1
2

1 1
2

Cxy C
x x
!

� 1 0

or y " C2 (x ! 1/x) ! C1∃(1/x), where C1∃ " – C1/2.
Ex. 6. Solve xy# – (x ! 2)y∃ ! 2y " 0. [Delhi Maths (G) 2000, 2002]
Hint. Do as in Ex.1. Ans. y " C1ex ! C2(x2 ! 2x ! 2)
Ex. 7. Solve x2y# ! xy∃ – 9y " 0, given that y " x3 is a solution.
Hint. Here u " x3. Ans. y " C1x–3 ! C2x3.
Ex. 8. Solve the following differential equations :
(i) (x sin x ! cos x) y'' – x cos x 0 y∃ ! y cos x " 0.

[Nagpur 2005; Delhi Maths (Hons.) 1992; Rohilkhand 1997]
(ii) x(x cos x – 2 sin x)y# ! (x2 ! 2) sin x 0 y∃ – 2 (x sin x ! cos x)y " 0.
(iii) (sin x – x cos x)y# – x sin x y∃ ! y sin x " 0, given that y " sin x is a solution.
(iv) sin2x (d2y / dx2) " 2y, given that y " cot x is a solution. [Bangalore 2005; Meerut

2000; Kanpur 2001, 07, 08; Kurukshetra 2001; Nagpur 2003; Rajsthan 2010)
(v) (1 ! x2)y# – xy∃ – a2y " 0, given that y " ea sin–1 x is an integral.
Sol. (i) Re-writing the given equation in standard form, we get

2

2
cos cos 0.

sin cos sin cos
d y x x dy x y

x x x dx x x xdx
1 ! �

! !
... (1)

Comparing (1) with y# ! Py∃ + Qy " R, we have

( cos ) /( sin cos ), cos /( sin cos ), 0P x x x x x Q x x x x R� 1 ! � ! � ... (2)

Here          P ! Qx " 0,                 showing that          u " x, ... (3)
is a part of the C.F. of the solution of (1).

Let the complete solution of (1) be y " uv. ... (4)

Then v is given by
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
cos 2 0.

sin cos
d v x x dx dv

x x x x dx dxdx
8 9! 1 ! �: ;!< =

... (5)

Let                        dv / dx " q                  so that d2v / dx2 " dq/dx.  ... (6)

> (5) Β cos 2
0

sin cos
dq x x

q
dx x x x x

% &! 1 ! �∋ (!) ∗
     or       cos 2 .

sin cos
dq x x dx
q x x x x

% &
� 1∋ (!) ∗

Integrating, log q " log (x sin x ! cos x) – 2 log x ! log C1
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or   q " 1 2
sin cosx x xC

x
!               or               1 2

sin cosdv x xC
dx x x

% &� !∋ (
) ∗

, by (6)

> 1 1 2
1 1sin cosdv C x dx C x dx
x x

� !/ / /

or v " 1 1 22 2
1 1 1

( cos ) ( cos ) cosC x x dx C x dx C
x x x

8 9% &1 1 1 1 ! !∋ (: ;) ∗< =/ /
[Integrating by parts only the first integral]

or v " 1 1
1 1 2 22 2

1 1
cos cos cos cos

C Cx C x dx C x dx C x C
x xx x

1 1 ! ! � 1 !/ / ... (7)

From (3), (4) and (7), the required general solution is
y " uv " xv                            or                            y " C2x – C1 cos x.

(ii) Do as in part (i). Ans. y " C1 sin x ! C2 x2

(iii) Re-writing the given equation,
2

2
sin sin 0.

sin cos sin cos
d y x x dy x y

x x x dx x x xdx
1 ! �

1 1
... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " – (x sin x) / (sin x – x cos x),           Q " (sin x) / (sin x – x cos x), R " 0... (2)
Here given that u " sin x, ... (3)

is a part of C.F. of (1).
Let the general solution of (1) be y " uv. ... (4)

Then v is given by                                 
2

2
2d v du dv RP
u dx dx udx

% &! ! 0 �∋ (
) ∗

or
2

2
sin 2 sin 0.

sin cos sin
d v x x d x dv

x x x x dx dxdx
8 9! 1 ! �: ;1< =

... (5)

Let 2 2/ / /dv dx q so that d v dx dq dx� � ...(6)

Then (5) becomes
sin

2cot 0
sin cos

dq x x
x q

dx x x x
% &! 1 ! �∋ (1) ∗

 or sin
2cot

sin cos
dq x x

x dx
q x x x

% &� 1∋ (1) ∗
.

Integrating,                      log q " log (sin x – x cos x) – 2 log sin x ! log C1

or                q " 1
2

(sin cos )
sin

C x x x
x

1
                   or 1 2

sin cos
sin

dv x x xC
dx x

1
�

or              1 2
sin cos

sin
x x xdv C dx

x
1

�                   or 1 sin
x

dv C d
x

% &� ∋ (
) ∗

Integrating, v " C1(x / sin x) ! C2. ... (7)
> The required solution is y " uv " (sin x) [C1(x / sin x) ! C2].

or y " C1x ! C2 sin x, where C1 and C2 are arbitrary constants.
(iv) Rewriting the given equation in standard form, we have

y# ! 0 0 y∃ – 2 cosec2x 0 y " 0. ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, P " 0, Q " – 2 cosec2 x, R " 0.... (2)
Given that u " cot x,                                      ... (3)

is a part of C.F. of (1).
Let the general solution of (1) be y " uv. ... (4)
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10.12 Linear Equations of Second Order

Then v is given by                               
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2 cot0 0

cot
d v d x dv

x dx dxdx
% &! ! �∋ (
) ∗

                or
2 2

2
2cosec 0.

cot
d v x dv

x dxdx
1 � ... (5)

Let                    dv/dx " q                       so that d2v / dx2 " dq/dx. ... (6)

Then (5) becomes 4 0
2sin cos

dq q
dx x x

1 �                 or 4 cosec 2 .dq x dx
dx

�

Integrating,          log q " 4 ∆  (1/2) ∆ log tan x ! log C1         or q " C1 tan2 x
or                    dv/dx " C1 tan2 x                   or dv " C1 (sec2 x – 1) dx.

Integrating, v " C1 (tan x – x) ! C2, C1, C2 being arbitrary constants. ... (7)
From (3), (4) and (7), the required general solution is given by
y " uv                  or              y " cot x [C1(tan x – x) ! C2] " C1 (1 – x cot x) ! C2 cot x.
(v) Rewriting the given equation in standard form, we have

2 2

2 2 2 0.
1 1

d y x dy a y
dxdx x x

1 1 �
1 1

... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " – x / (1 – x2),                         Q " – a2 / (1 – x2), R " 0.... (2)

Since 
1sina xe

1

 is a solution of (1), therefore
1sina xu e

1

�                         ... (3)
is a part of C.F. of (1)

Let the general solution of (1) be y " uv ... (4)

Then v is given by                 
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
1

1

2 sin

2 2 sin

2 0.
1

a x

a x

d v x de dv
dx dxdx x e

1

1

% &
∋ (! 1 ! �
∋ (1) ∗

... (5)

Let                          dv/dx " q                     so that d2v / dx2 " dq/dx. ... (6)

Then (5) becomes                 
1

1
sin

2 sin 2

2 0
1 (1 )

a x
a x

dq x ae q
dx x e x

1

1

% &
∋ (! 1 ! 0 �
∋ (1 1) ∗

or 2 2

2
1 (1 )

dq x a q
dx x x

8 9
: ;� 1

1: ;1< =
or 2 2

1 2 2 .
2 1 (1 )

dq x a dx
q x x

8 91: ;� 1 0 1
1: ;1< =

Integrating, log q " – (1/2) ∆  log (1 – x2) – 2a sin–1x ! log C1

or 2 1
1log[( / ) (1 )] 2 sinq C x a x11 � 1                 or

12 2 sin
1( / (1 )) a xq C x e

11� 1

or
12 sin1

2(1 )
a xCdv e

dx x

11�
1

                  or ≅ Α1 2
sin1

2
.

(1 )
a xC

dv e dx
x

11�
1

... (7)

Putting 1sina x t11 � and 2[ / (1 )] ,a x dx dt1 1 �  (7) gives
2

1( / )( )tdv C a e dt� 1 or 2
1( / ) .tdv C a e dt� 1
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Linear Equations of Second Order 10.13

Integrating,
12 2 sin

1 2 1 2( / 2 ) ( / 2 ) .t a xv C a e C C a e C
11� 1 ! � 1 ! ... (8)

From (3), (4) and (8), the required general solution is given by
1 1 1 1sin 2 sin sin sin

1 2 1 2[ ( / 2 ) ] ( / 2 )a x a x a x a xy uv e C a e C C a e C e
1 1 1 11 1� � 1 ! � 1 !

or
1 1sin sin

1 2
a x a xy C e C e

1 11∃� ! , talking 1 1( / 2 ).C C a∃ � 1

Ex. 9. Solve x2 y2 – 2x(1 ! x)y1 ! 2(1 ! x)y " x3.
(Delhi Maths (G) 2001, 02; Bangalogre 2003, 05; Garhwal 1994; Merrut 2004)

(Agra 1999; Rohilkhond 2001; Mumbai 2000; Indore 2000, 02)
Sol. Dividing by x2, the given equaiton in standard form is

2

2 2
2(1 ) 2(1 ) .d y x dy x y x

x dxdx x
! !

1 ! � ... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " –2(1 ! x)/x,                  Q " 2(1! x)/x2          and           R " x. ... (2)
Here P ! Qx " 0, showing that                 u " x ... (3)

is a part of C.F. of (1)
Let the general solution of (1) be y " uv                                        ... (4)

Then v is given by                       
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2(1 ) 2d v x dx dv x

x x dx dx xdx
!8 9! 1 ! �: ;< =

                   or
2

2 2 1.d v dv
dxdx

1 � ... (5)

Let                      dv/dx " q                      so that d2v / dx2 " dq/dx. ... (6)
Then (5) becomes                (dq/dx) – 2q " 1, which is linear in q and x.

Its integrating factor " I.F. " ( 2) 2dx xe e1 1/ �  and solution is
2 2 2

1 11 (1 / 2)x x xq e e dx C e C1 1 1� 0 ! � 1 ∆ !/
2

1(1/ 2) xq C e> � 1 ! or 2
1/ (1/ 2) xdv dx C e� 1 !

or dv " [– (1/2) ! C1e2x] dx.
Integrating, v " – (x/2) ! (C1/2) e2x ! C2. ... (7)
From (3), (4) and (7), the required general solution is y " uv " x [–(x/2) ! (C1/2) e2x ! C2]

or y " C1∃ xe2x ! C2x – (x2/2), where C1∃ " C1/2; C1' and C2 being arbitrary constants.
Ex. 10. Solve x2 y# – (x2 ! 2x)y∃ ! (x ! 2)y " x3 ex.

[Himanchal 2008; Delhi Maths (G) 1997; Meerut 2005, 09]
Sol. Dividing by x2, the given equation in standard form is

2

2 2
2 1 21 .xd y dy y x e
x dx xdx x

% &% &1 ! ! ! �∋ ( ∋ (
) ∗ ) ∗

... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " – (1 ! 2/x),                    Q " 1/x ! 2/x2, R " x ex.                  ... (2)
Here              P ! Qx " 0, showing that u " x                         ... (3)

is a part of C.F. of (1).
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10.14 Linear Equations of Second Order

Let the general solution of (1) be y " uv. ... (4)

Then v is given by                      
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2 21

xd v dx dv xe
x x dx dx xdx

% &! 1 1 ! �∋ (
) ∗

                    or
2

2 .xd v dv e
dxdx

1 � ... (5)

Let                            dv/dx " q                     so that d2v / dx2 " dq/dx.... (6)
Then (5) becomes                 (dq/dx) –q " ex,       which is linear in q and x.

Its integraging factor I.F. " ( 1)dx xe e1 1/ �  and so solution is

1 1( )x x xqe e e dx C x C1 1� 0 ! � !/                          or 1( ) xq x C e� !
or dv/dx " (x + C1)ex                                     or dv " (x + C1)exdx

Integrating, ? " (x + C1)ex  – 2(1 )xe dx C0 !/ , C1, C2 being arbitrary constants.

or v " (x ! C1) ex – ex ! C2 " (x ! C1 – 1) ex ! C2. ... (7)
From (3), (4) and (7), the required general solution is
y " uv " x [(x ! C1 – 1) ex ! C2]                    or y " C1xex ! C2ex ! (x – 1) xex.
Ex. 11.(a) Solve (x ! 1) (d2y / dx2) – 2(x ! 3) (dy/dx) ! (x ! 5)y " ex. [Garhwal 1993]
Sol. Dividing by (x ! 1), the given equation in standard form is

2

2
2( 3) 5 .

1 1 1

xx xd y dy ey
x dx x xdx

! !
1 ! �

! ! !
... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we get
P " – 2(x ! 3)/(x ! 1),                      Q " (x ! 5)/(x ! 1), R " ex/(x ! 1).... (2)

Here 1 ! P ! Q " 2 6 5 1 (2 6) 5
1 0,

1 1 1
x x x x x
x x x

! ! ! 1 ! ! !
1 ! � �

! ! !
showing that u " ex ... (3)
is a part of C.F. of (1).

Let the general solution of (1) be y " uv. ... (4)

Then v is given by                               
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2 6 2

1 ( 1)

x x

x x
d v x de dv e

x dx dxdx e e x
% &!

! 1 ! �∋ (∋ (! !) ∗

or
2

2
2 6 12

1 1
d v x dv

x dx xdx
!% &! 1 �∋ (! !) ∗

               or
2

2
4 1 .

1 1
d v dv

x dx xdx
1 �

! !
... (5)

Let                       dv/dx " q                   so that                   d2v / dx2 " dq/dx. ... (6)

Then (5) becomes                  
4 1

,
1 1

dq q
dx x x

1 �
! !

 which is linear in q and x.

Its integrating factor I.F. " [4/( 1)] 4log ( 1) 4( 1) .x dx xe e x1 ! 1 ! 1/ � � !  and solution is

4 4 5
1 1

1( 1) ( 1) ( 1)
1

q x x dx C x dx C
x

1 1 1! � 0 ! ! � ! !
!/ /
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or dv/dx " –(1/4) ! C1 (x ! 1)4 or dv " [–(1/4) ! C1(x ! 1)4]dx.
Integrating, v " –(1/4)x ! (C1/5) (x ! 1)5 ! C2. ... (7)
From (3), (4) and (7), the required general solution is

y " uv " ex[–(1/4)x ! (C1/5) (x ! 1)5 ! C2]
or y " C1∃ ex (x ! 1)5 ! C2 ex – (1/4)x ex, where C1∃ " C1/5.

Ex. 11(b) Solve xy# – 2(x ! 1)y∃ ! (x ! 2)y " (x – 2)ex. [Bangalore 2001, 04]
Sol. Do as in Ex. 11(a). Ans. y " (1/3) ∆ C1x3ex ! C2ex ! (x – x2/2)ex.
Ex. 11(c) Solve d2y / dx2 – cot x (dy/dx) – (1 – cot x)y " ex sin x.

[Delhi Maths (G) 2005; Meerut 1996; S.V. University (A.P.) 1997, Kanpur 2006]
Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, we get
P " –cot x,                        Q " –1 ! cot x, R " ex sin x.            ... (1)
Here 1 ! P ! Q " 0, showing that u " ex                                 ... (2)

is a part of C.F. of the given equation.
Let the required general solution be y " uv                                  ... (3)

Then v is given by                        
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2 sincot

x x

x x
d v de dv e xx

dx dxdx e e
% &

! 1 ! �∋ (∋ (
) ∗

        or             
2

2 (2 cot ) sind v dvx x
dxdx

! 1 �

Let                 dv/dx = q                      so that                     d2v/dx2 " dq/dx ... (4)
Hence we get                     dq/dx + (2 – cot x)q " sin x, which linear in q and x

Its I.F. "
1(2 cot ) 2 log sin 2 log (sin ) 2 1(sin )x dx x x x x xe e e e e x

11 1 1/ � � 0 � and solution is
2

sin

xeq
x

"
2

2
1 1

1sin
sin 2

x
xex dx c e c

x
% &

0 ! � !∋ (∋ (
) ∗

/ , c1 being an arbitrary  constant

or q " (1/2) ∆ sin x ! c1e–2x sin x               or dv/dx " (1/2) ∆  sin x ! c1e–2x sin x.
or                                         dv " [(1/2)∆  sin x ! c1e–2x sin x] dx.

Integrating,                v " 2
1 2( 1/ 2) cos sinxx c e x dx c11 ∆ ! !/ , c2 being an arbitrary constant

or ? " 1
22 2

cos ( 2 sin cos )
2 1 ( 2)

cx x x c1 ! 1 1 !
! 1

or ? " 1
2

cos (2 sin cos ) .
2 5

cx x x c1 1 ! ! ...(5)

2 2sin ( sin cos )
ax

ax ee bx dx a bx b bx
a b

8 9
� 1: ;

!< =
/�

Hence form (2), (3) and (5), the required general solution is
y " uv " ex [–(1/2)∆ cos x – (c1/5) ∆ e–2x (2 sin x ! cos x) ! c2]

or y " c1∃ e–2x (2 sin x ! cos x) ! c2ex – (1/2) ∆ ex cos x, where c1∃ "## – (c1/5).
Ex. 11(d) Solve y# ! (1 – cot x)y∃ – y cot x " sin2x.

[Meerut 1999,Delhi Maths (G) 2000; Rohilkhand 1997]
Hint. Do as in Ex.11(c). General solution is given by

y " c1 (sin x – cos x) ! c2e–x – (1/10) ∆ (sin 2x – 2 cos 2x).
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10.16 Linear Equations of Second Order

Ex. 11(e) For the equation y2 ! (1 – cot x)y1 – y cot x " sin2x, find an integral of C.F.
[Bangalore 1995]

Sol. Given y2 ! (1 – cot x)y1 – y cot x " sin2 x. ... (1)
Comparing (1) with y2 + Py1 ! Q y " R, here      P " 1 – cot x, Q " – cot x.
Hence 1 – P ! Q " 1 – (1 – cot x) – cot x " 0 and so e–x is an integral of C.F.
Ex. 12. Solve x(d2y / dx2) – (dy/dx) ! (1 – x)y " x2e–x. [Delhi Maths (G) 1996]
Sol. Re-writing, (d2y/dx2) – (1/x)(dy/dx) ! (1/x – 1)y " xe–x. ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, here P " –1/x, Q " (1/x) –1, R " xe–x ... (2)
Hence 1 ! P ! Q " 0, showing that                           u " ex ... (3)

is a part of C.F. of the given equation.
Let the required general solution be     y " uv. ... (4)

Then v is given by
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
1 2 x x

x x
d v de dv xe

x dx dxdx e e

1% &
! 1 ! �∋ (∋ (

) ∗
or

2
2

2
12 .xd v dv xe
x dxdx

1% &! 1 �∋ (
) ∗

... (5)

Let                      dv/dx " q                          so that d2v/dx2 " dq/dx.... (6)

Then (5) becomes                21
2 xdq

q xe
dx x

1% &! 1 �∋ (
) ∗

, which is linear in q and x.

Its I.F. " (2 1/ ) 2 log 2 log 2 1x dx x x x x xe e e e e x1 1 1 1/ � � 0 � 0  and solution is

> 2 1 2 2 1
1 1( ) ( )x x xq e x xe e x dx c x c1 1 10 � 0 ! � !/

or         q " xe–2x (x ! c1) or dv/dx " (x2 ! c1x)e–2x, by (6)

> 2 2
1 2( ) xdv x c x e dx c1� ! !/ /

> 2 2 2
2 1 1( ) ( 1/ 2) {(2 ) ( 1/ 2) }x xv c x c x e x c e dx1 1� ! ! ∆ 1 ∆ 1 ! ∆ 1 ∆/ , integrating by parts

" 2 2 2
2 1 1(1/ 2) ( ) (1/ 2) (2 )x xc x c x e x c e dx1 11 ∆ ! ! ∆ !/

"
2 2

2 2
2 1 1

1 1( ) (2 ) (2)
2 2 2 2

x x
x e ec x c x e x c dx

1 1
1 8 9% & % &

1 ! ! ! 1: ;∋ ( ∋ (∋ ( ∋ (1 1: ;) ∗ ) ∗< =
/

" 2 2 2 2
2 1 1(1/ 2) ( ) (1/ 4) (2 ) (1/ 4) .x x xc x c x e x c e e1 1 11 ∆ ! 1 ∆ ! 1 ∆

" 2 2
2 1 1(1/ 4) (2 2 2 1).xc e x c x x c11 ∆ ! ! ! !

or v " 2 2 2
2 1(1/ 4) (2 2 1) (1/ 4) (2 1).x xc e x x e c x1 11 ∆ ! ! 1 ∆ ! ... (7)

From (3), (4) and (7), the required general solution is
y " uv " ex[c2–(1/4)∆ e–2x (2x2 ! 2x ! 1) – (1/4)∆ e–2x c1(2x ! 1)]

or y " c1∃ (2x ! 1) e–x ! c2ex –(1/4)∆ (2x2 ! 2x ! 1) e–x, where c1∃ " –(1/4)∆ c1.
Ex. 13. Solve the following differential equations :
(a) (d2y / dx2) – (1 ! x) (dy/dx) ! xy " x.

[Delhi Maths (G) 1993, 94, Gujrat 2003, 05; Kurukshetra 2004]
(b) x(d2y / dx2) – (dy/dx) ! (1 – x)y " xe–x. [Delhi Maths (G) 1995]
(c) (d2y / dx2) – x2 (dy/dx) ! xy " x. [Delhi Maths (G) 1994, 99]
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(d) x(d2y / dx2) ! (1 – x) (dy/dx) – y " ex. [Lucknow 2006; Srivenkateshwara 2003]
(e) x(d2y / dx2) – (x – 2) (dy/dx) –2y " x3.

[Luknow 2002, Delhi Maths (G) 1996;Kanpur 2006]
(f) (2x – 1) (d2y / dx2) – 2(dy/dx) ! (3 – 2x)y " 2ex.
(g) (d2y / dx2) ! [1 ! (2/x) cot x – (2/x2)]y " x cos x, given that (sin x)/x is an integral

included in C.F. [Bhopal 2002, 05, Indore 2001, 02, Purvanchal 2000, 04, 07]
(h) x2y2 ! xy1 – y " x2ex. [Rohilkhand 1994]
Sol. (a) Given y# – (1 ! x)y∃ ! xy  " x. ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, here P " – 1 – x, Q " x, R " x. ... (2)
Here 1 ! P ! Q " 0, showing that                         u " ex, ... (3)

is a part of C.F. of (1).
Let the required general solution of (1) be y " uv. ... (4)

Then v is given by
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
21

x

x x
d v de dv xx

dx dxdx e e
% &

! 1 1 ! �∋ (∋ (
) ∗

or ≅ Α
2

2 1 .xd v dvx xe
dxdx

1! 1 � ... (5)

Let                  dv/dx " q                  so that d2v / dx2 " dq/dx. ... (6)
Then (5) becomes                         (dq/dx) ! (1 – x)q " xe–x.

Its  I.F. "
2(1 ) / 2x dx x xe e1 1/ �  and so its solution is

2 / 2x xqe 1 "
2 2/ 2 ( / 2)

1 1( ) .x x x xxe e dx c xe dx c1 1 10 ! � !/ /
Putting –x2/2 " t so that –xdx " dt, we have

>
2 / 2x xqe 1 "

2( / 2)
1 1 1( ) .t t xe dt c e c e c11 ! � 1 ! � 1 !/

> q "
2 2 2( / 2) / 2 / 2

1 1
x x x x x xe c e c e e1 1 1 1 ! 18 91 � 1

< =

or                   dv/dx "
2 / 2

1
x x xc e e1 ! 11                or                  

2 / 2
1[ ] .x x xdv c e e dx1 ! 1� 1

Integrating,               v "
2 / 2

1 2
x x xc e dx e c1 ! 1! !/ , c1, c2 being arbitrary constants ... (7)

From (3), (4) and (7), the required general solution is given by

y " uv "
2 2/ 2 / 2

1 2 1 2 1.x x x x x x x xe c e dx e c c e e dx c e1 ! 1 1 18 9! ! � ! !
< =/ /

Remark: Some solutions are left without evaluating the integral which are not integrable by
well known standard methods.

(b) Do as in part (a).         Ans. y " c1 (2x ! 1) e–x ! c2ex ! 2log .x xe x x e dx1/
(c) Given y# – x2 y∃ ! xy " x                                          ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R,      P " –x2,         Q " x,         R " x. ... (2)
Here P + Qx " 0, showing that a part of C.F. of (1) is given by u " x. ... (3)
Let the required general solution of (1) be y " uv. ... (4)
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Then v is given by                                     
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or           
2

2
2

2d v dx dv xx
x dx dx xdx

% &! 1 ! �∋ (
) ∗

          or
2

2
2

2 1.d v dvx
x dxdx

% &! 1 �∋ (
) ∗

... (5)

Let      dv/dx " q           so that d2v / dx2 " dq/dx. ... (6)

Then (5) becomes 22
1

dq
x q

dx x
% &! 1 �∋ (
) ∗

, which is linear in q and x.

Its I.F. "
2[(2 / ) ]x x dxe 1/ "

3 2 3 32 log ( / 3) log / 3 2 / 3x x x x xe e e x e1 1 1� 0 � and solution is

>
32 / 3xqx e1 "

3 32 / 3 / 3
1 1 1 1(1 )x t t xx e dx c c e dt c e c e1 10 ! � 1 � 1 � 1/ /

[Putting –x3/3 " t so that –x2 dx " dt]

or q " 
3 32 / 3 / 3

1(1/ ) ( )x xx e c e11 or
32 / 3 2

1/ ( / ) xdv dx c x e x1� 1

or dv " 
32 / 3 2

1[( / ) ] .xc x e x dx11

Integrating, v "
32 / 3 1

1 2(1/ ) xc x e dx x c1! !/ , c1, c2 being arbitrary constants ... (7)

From (3), (4) and (7), the required general solution is

y " uv " 
3 32 / 3 1 2 / 3

1 2 1 2(1/ ) (1/ ) 1x xx c x e dx x c c x x e dx c x18 9! ! � ! !
< =/ /

(d) Try yourself. Ans. y " 1
1 2 log .x x x xc e x e dx c e e x1 ! !/

(e) Dividing by x, the given equation in standard form is
y# – (1 – 2/x)y∃ – (2/x)y " x2. ... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, here    P " –1 ! 2/x,    Q " –2/x,      R " x2.. (2)
Here 1 ! P ! Q " 0, showing that a part of C.F. of (1) is given by u " ex. ... (3)
Let the reqired general solution of (1) be y " uv. ... (4)

Then v is given by                              
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2 2

2
2 21

x

x x
d v de dv x

x dx dxdx e e
% &

! 1 ! ! �∋ (∋ (
) ∗

or
2

2
2

21 .xd v dv x e
x dxdx

1% &! ! �∋ (
) ∗

... (5)

Let               dv/dx " q so that d2v / dx2 " dq/dx. ... (6)
Then (5) becomes        (dq/dx) ! (1 ! 2/x)q " x2e–x, which is a linear equation.

Its I.F. "
2(1 2 / ) 2 log log 2x dx x x x x xe e e e x e! !/ � � 0 �  and solution is

2( )xq x e " 2 2 2
1 1[( ) ( )] / 5x xx e x e dx c x c1 0 ! � !/

or q " dv/dx " 2 2 3 2
1 1[ / 5 ] ( / 5)x x xx e x c x e c x e1 1 1 1 1! � ∆ ! or dv " {(x3/5) × e–x + c1x–2e–x}dx

Integrating, v " 3 2
1 2(1/ 5) x xx e dx c x e dx c1 1 1∆ ! !/ / , c1, c2 being arbitrary constants

or v " 3 2 2
1 2(1/ 5) ( ) (3 )( )x x xx e x e dx c x e dx c1 1 1 18 9∆ 1 1 1 ! !< =/ /

[Integrating by parts only the first integral]
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" 3 2 2
1 2(1/ 5) (3 / 5)x x xx e x e dx c x e dx c1 1 1 11 ∆ ! ∆ ! !/ /

" 3 2 2
1 2(1/ 5) (3 /5) ( ) (2 )( )x x x xx e x e x e dx c x e dx c1 1 1 1 18 91 ∆ ! ∆ 1 1 1 ! !< =/ /

" 3 2 2
1 2(1/ 5) (3 / 5) (6 / 5)x x x xx e x e xe dx c x e dx c1 1 1 1 11 ∆ 1 ∆ ! ∆ ! !/ /

" 3 2 2
1 2(1/ 5) (3 /5) (6 /5) ( ) {1 ( )}x x x x xx e x e x e e dx c x e dx c1 1 1 1 1 18 91 ∆ 1 ∆ ! ∆ 1 1 0 1 ! !< =/ /

" 3 2 2
1 2(1/ 5) (3 /5) (6 / 5) (6 / 5)x x x x xx e x e xe e c x e dx c1 1 1 1 1 11 ∆ 1 ∆ 1 ∆ 1 ∆ ! !/

or                     ? " 3 2 2
1 2(1/ 5) ( 3 6 6) .x xe x x x c x e dx c1 1 11 ∆ ! ! ! ! !/ ... (7)

Hence from (3), (4) and (7), the required solution is

        y " uv " ≅ Α 3 2 2
1 21/ 5 ( 3 6 6)x x xe e x x x c x e dx c1 1 18 91 ∆ ! ! ! ! !< =/

or y " ≅ Α2 3 2
1 2 1/ 5 ( 3 6 6).x x xc e x e dx c e x x x1 1 ! 1 ∆ ! ! !/

(f) Try yourself. Ans. y " – c1 x e–x ! c2 ex – x ex

+ 2 2(2 1) log(2 1) 2 (2 1) log (2 1) .x x x xe x x dx e e x e x dx dx18 91 1 1 1 1< =/ / /
(g) Comparing the given equation with y# ! Py∃ ! Q y " R, we have

P " 0,                       Q " 1 ! (2/x) cot x – (2/x2), R " x cos x.... (1)
Here a part of C.F. of given equation is given by u " (sin x)/x. ... (2)
Let the required general solution be y " uv. ... (3)

Then v is given by                            
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or            
2

2
2 sin cos0

sin (sin ) /
d v x d x dv x x

x dx x dx x xdx
8 9% &! ! �∋ (: ;) ∗< =

, using (2)

or
2

2
2 2

2 cos sin cot .
sin

d v x x x x dv x x
x dxdx x

1% &% &! �∋ (∋ (
) ∗) ∗

... (4)

Let                        dv/dx " q                       so that d2v / dx2 " dq/dx.

Then (4) becomes          212 cot cotdq x q x x
dx x

% &! 1 �∋ (
) ∗

, which is a linear equation

Its I.F. " 2 [cot (1/ )] 2(logsin log ) 2(sin / )x x dx x xe e x x1 1/ � � and its solution is

>
2sin xq

x
% &
∋ (
) ∗

"
2

2
1 1

sincot sin cosxx x dx c x x dx c
x

8 9% &0 ! � !: ;∋ (
) ∗: ;< =

/ / " 2
1

1 sin
2

x c!

or q "
2

2 2 2 2
1 1

1 1sin cosec
sin 2 2

dv x x c x c x x
dx x

% & 8 9� ! � !∋ ( : ;) ∗ < =

or dv/ " 2 2 2
1 2 1 2[ / 2 cosec ] , , being arbitrary constantsx c x x dx c c c! !/

or v " 3 2
1 2/ 6 ( cot ) 2 ( cot )x c x x x x dx c8 9! 1 1 1 !< =/ , integrating by parts
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10.20 Linear Equations of Second Order

or v " 3 2
1 1 2/ 6 cot 2 log sin log sinx c x x c x x x dx c8 91 ! 1 !< =/ ... (5)

[Integrating by parts again]
From (2), (3) and (5), the required general solution is

v " uv "
3

2
1 1 1 2

sin cot 2 logsin 2 logsin
6

x x c x x c x x c x dx c
x

8 9
1 ! 1 !: ;

< =
/

or y " 2
1 2

sin sin 1cos 2sin log sin 2 log sin sin .
6

x xc x x x x x dx c x x
x x

8 91 ! 1 ! !: ;< =/

(h) Try yourself. Ans. y " 3 2
1 2 / ( 2 2)xc x c x x e x x x dx1! ! 1 !/

Ex. 14(a). Solve xy1 – y " (x – 1) (y2 – x ! 1). [Agra 2002; Delhi Maths (G) 2004]
Sol. Dividing by (x–1), the given equation in standard form is

1 2
1

( 1)
1 1

x
y y y x

x x
% & 1 � 1 1∋ (1 1) ∗

           or         
2

2
1 1

1 1
d v x dy y x

x dx xdx
1 ! � 1

1 1
... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " –x/(x – 1),                     Q " 1/(x–1),                and R " x – 1.... (2)
Here P ! Qx " 0, showing that a part of C.F. of (1) is             u " x. ... (3)
Let the required general solution be y " uv. ... (4)

Then v is given by                              
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2 1.

1
d v x dx dv x

x x dx dx xdx
18 91 ! �: ;1< =

... (5)

Let                  dv/dx " q                    so that d2v / dx2 " dq/dx.... (6)

Then (5) becomes 
2 1

.
1

dq x x
q

dx x x x
1% &! 1 �∋ (1) ∗

... (7)

Now, E " 2 2 1 1 2 1
1

1 1 1
x x

dx dx dx
x x x x x x

1 !% & % & % &1 � 1 � 1 1∋ ( ∋ ( ∋ (1 1 1) ∗ ) ∗ ) ∗/ / /
" 2 log x – x – log(x – 1) " log x2 – log(x – 1) – x

> I.F. of (7) " eE " 2 2log log( 1) log[ /( 1)] 2[ /( 1)]x x x x x x xe e e x x e1 1 1 1 1 1� 0 � 1

and its solution is
2 2

1
1

1 1
x xx x xq e e dx c

x x x
1 1% &1

0 � ∆ !∋ (∋ (1 1) ∗
/

or
2

1

xqx e
x

1

1
" 1 1( ) {1 ( )}x x xxe dx c x e e dx c1 1 1! � 1 1 0 1 !/ / " 1 1 ( 1)x x xxe e c c e x1 1 11 1 ! � 1 !

> q "
2

1 12 2 2
1 1 1[ ( 1)]x x xdv x x xe c e x c e

dx x x x
11 1 1

� 1 ! � 1

or dv/ " 2
1 1 22

1 1 (1 )x xc e dx c e dx x dx c
x x

11 1 1 !/ / /

or v " 1
1 1 22 2

1 1 ( )
x

x x ec e e dx c dx x x c
x x x

18 9% &1 1 1 1 ! !∋ (: ;) ∗< =
/ /
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or                v " 1 2( / ) (1/ )xc x e x x c1 1 ! , c1 and c2 being arbitrary constants ... (8)
From (3), (4) and (8), the required general solution is

y " uv " x[(c1/x)ex – x – (1/x) ! c2] " c1ex ! c2x – (x2 !1).
Ex. 14(b). Solve xy2 – (2x ! 1)y1 ! (x ! 1)y " (x2 ! x – 1)e2x. [Meerut 1994,95]
Hint: Try yourself as in Ex.14(a). Ans. y " c1x2ex ! c2ex ! xe2x.
Ex. 14(c). Solve xy# ! 2(x ! 1)y∃ ! (x ! 2)y " (x – 2)e2x.
Hint: Do as in Ex.14(a). Ans. y " (1/3) × x3ex ! c2ex ! e2x

Ex. 15. Solve (x ! 2)y# – (2x ! 5)y∃ ! 2y " (x ! 1)ex. [Rajasthan 2004, 06, I.A.S. 2004]
[Kanpur 2000, 07; Meerut 1994; Rohilkhand 1998; Vikram 2000]

Sol. Dividing by (x ! 2), the given equation in standard form is
2

.
2

2 5 2 1
2 2 2

xd y x dy xy e
x dx x xdx

! !
1 ! �

! ! !
... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " –(2x ! 5)/(x ! 2), Q " 2/(x ! 2), R " [(x ! 1)/(x ! 2)]ex.... (2)

Here 22 ! 2P ! Q " 2 5 2 4( 2) 2(2 5) 24 2 0,
2 2 2

x x x
x x x

! ! 1 ! !8 9! 1 ! � �: ;! ! !< =
showing that a part of C.F. of (1) is u " e2x ... (3)

Let the general solution be y " uv. ... (4)

Then v is given by
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2 2

2 2 2
2 5 2 1

2 2

x x

x x
d v x de dv x e

x dx dx xdx e e
% &! !

! 1 ! �∋ (∋ (! !) ∗

or
2

2
2 5 14

2 2
xd v x dv x e

x dx xdx
1! !% &! 1 �∋ (! !) ∗

             or
2

2
2 3 1 .

2 2
xd v x dv x e

x dx xdx
1! !

! �
! !

... (5)

Let                  dv/dx " q                        so that d2v / dx2 " dq/dx. ... (6)

Then (5) becomes                         
2 3 1

.
2 2

xdq x xq e
dx x x

1! !
! �

! !
 ... (7)

Now, E " 2 3
2

x dx
x

!
!/ " 12 2 log( 2).

2
dx x x

x
% &1 � 1 !∋ (

!) ∗/

> I.F. of (7) " eE "
12 log( 2) 2 log( 2) 2 log( 2) 2 1( 2) andsolution isx x x x x x xe e e e e e x

11 ! 1 ! ! 1� � � !

> 2 1( 2)xq e x 10 ! " 2 1
1 12

1 1( 2)
2 ( 2)

x x xx xc e e x dx e dx c
x x

1 1! !
! 0 ! � !

! !/ /

" 1 12 2
( 2) 1 1 1

2( 2) ( 2)
x x xx e dx c e dx e dx c

xx x
! 1

! � 1 !
!! !/ / /

" 12 2
1 1 1

2 ( 2) ( 2)
x x xe e dx e dx c

x x x
2 +1 1 1 !3 −! ! !4 .

/ /
[Integrating by parts only the first integral]
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or   (qe2x)/(x ! 2) " 1( 2) xx e1! ! c1          or         q " dv/dx " e–x ! c1e–2x (x ! 2), by (6)

> dv " [e–x ! c1e–2x (x ! 2)]dx.

Integrating, v " 2
1 2( 2)x xe c e x dx c1 11 ! ! !/ , c1, c2 being arbitrary constants.

or v " 2 2
1 2

1 1
( 2) 1

2 2
x x xe c x e e dx c1 1 18 9% & % &1 ! ! 1 1 0 1 !∋ ( ∋ (: ;) ∗ ) ∗< =/

or v " 2 2
1 2[( 2) ( 1/ 2) (1/ 4) ]x x xe c x e e c1 1 11 ! ! ∆ 1 1 ∆ ! " 1 2( / 4) (2 5) .xe c x c11 ! ∆ ! ! ... (8)

From (3), (4) and (8), the required general solution is
y " uv " e2x [–e–x ! (c1/4) × (2x ! 5) ! c2] " c'1 e2x (2x ! 5) ! c2e2x – ex, where c'1 " c1/4
Ex. 16. Solve (1 – x2)y2 ! xy1 – y " x(1 – x2)3/2. [Allahabad 2001, Kurukshetra 2002]
Sol. Dividing by (1 – x2), the given equation is standard form is

2
2 1/ 2

2 2 2
1 (1 ) .

1 1
d y x dy y x x

dxdx x x
! 1 � 1

1 1
... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " x/(1 – x2),                        Q " –1/(1 – x2),                        R " x (1– x2)1/2 ... (2)
Here P ! Qx " 0, showing that a part of C.F. of (1) is                    u " x. ... (3)
Let the required general solution be y " uv. ... (4)

Then v is given by                              
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2 2 1/ 2

2 2
2 (1 ) .

1
d v x dx dv x x

x dx dx xdx x
1% &! ! �∋ (1) ∗

... (5)

Let                 dv/dx " q                    so that d2v / dx2 " dq/dx. ... (6)

Then (5) reduces to 2 1/ 2
2

2
(1 ) .

1
dq x

q x
dx x x

% &! ! � 1∋ (
1) ∗

... (7)

Here   E " 2
2

1
x dx

x x
% &!∋ (

1) ∗/ " 2
2

( 2 )2 1 12 log log(1 )
2 21

x dxdx x x
x x

1
1 � 1 1

1/ /

" 2 2 1/ 2 2 2 1/ 2log log (1 ) log{ /(1 ) }x x x x1 1 � 1

> I.F. of (7) " eE " 
2 2 1/2log /(1 ) 2 2 1/2/(1 )

x x
e x x

8 91< = � 1  and solution is
2 2

2 1/ 2 3
1 12 1/ 2 2 1/ 2

1(1 )
3(1 ) (1 )

x xq x dx c x c
x x

0 � 1 ∆ ! � !
1 1/

or q " 2 1/ 2 2 2 1/ 2
1/ ( / 3)(1 ) ( / )(1 )dv dx x x c x x� 1 ! 1

Integrating, dv/ " 2 1/ 2 2 2 1/ 2
1 2(1/ 3)( 1/ 2)(1 ) ( 2 ) (1 )x x dx c x x dx c11 1 1 ! 1 !/ /

or v " 
2 3/ 2

2 1/ 2 1 2 1/ 2 1
1 2

1 (1 ) 1(1 ) ( ) (1 ) ( 2 )( )
6 (3 / 2) 2

x c x x x x x dx c1 1 11% & 8 91 ! 1 1 1 1 1 1 !∋ ( : ;) ∗ < =/
[Integrating by parts second integral]
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or v " 2 3/ 2 2 1/ 21
1 22 1/ 2

1 (1 ) (1 )
9 (1 )

c dxx x c c
x x

1 1 1 1 1 !
1/

or v " 2 3/ 2 2 1/ 2 1
1 1 2(1/ 9)(1 ) ( / )(1 ) sin .x c x x c x c11 1 1 1 1 ! ... (8)

From (3), (4) and (8), the required general solution is

y " uv " 2 3/ 2 2 1/ 2 1
1 1 2[ (1/ 9)(1 ) ( / )(1 ) sin ]x x c x x c x c11 1 1 1 1 !

or y " 2 1/ 2 1 2 3/ 2
1 2[(1 ) sin ] ( / 9)(1 ) .c x x x c x x x11 1 ! ! 1 1

Ex. 17 Find the complementary function of the equation xy# – 2(x ! 1)y∃ ! (x ! 2)y
" (x – 2)e2x, x > 0. [Gulbarga 2005]

Sol. Rewriting given equation,
2

22( 1) 2 2 xd y x dy x xy e
dx x dx x x

! ! 1
1 ! �

Comparing it with y# ! Py∃ ! Q y " R, here

P " 2 2 2andx xQ
x x
! !

1 �      so that     1 ! P ! Q " 2 2 21 0x x
x x
! !

1 ! � ,

showing that ex is a part of C.F. (see step 2 of Art 10.4)
Ex. 18.(a) Solve (D2 ! 1)y " cosec3 x by reduction of order. [Kuvempa 2005]
(b) Use the method of reduction of order to solve (D2 ! 1)y " sec3 x.

[G.N.D.U. Amritsar 2010]
Sol.  (a.) Given                                     y# ! y " cosec3 x ... (1)
Comparing (1) with y# ! Py∃ ! Qy " R, we have P " 0, Q " 1, R " cosec3 x ... (2)
By inspection y " sin x is a part of C.F., i.e., y " sin x is a solution of y# ! y " 0.
Thus, we take                                    u " sin x                                                 ... (3)
Let the complete solution of (1) be y " uv ... (4)

Then v is given by                            
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2 3

2
2 cosec0 cos ,

sin sin
d v dv xx

x dx xdx
% &! ! ∆ �∋ (
) ∗

 by (2) and (3)

or d2v / dx2 ! (2 cot x) × (dv / dx) " cosec4 x ... (5)
Let                     dv/dx " q                     so that                     d2v / dx2 " dq/dx
Then (5) yields                         (dq/dx) ! (2 cot x)q " cosec4 x                            ... (6)

which is linear equation in variables q and x.

Its integrating factor " (2cot ) 2logsin 2sinx dx xe e x/ � �  and solution is
2sinq x " 4 2

1 1{(cosec ) sin } cotC x x dx C x! ∆ � 1/
or (dv/dx) sin2x " C1 – cot x          or            dv " (C1 cosec2 x – cot x cosec2 x) dx

Integrating, v " – C1 cot x ! (cot2 x)/2 ! C2 ... (7)
From (3), (4) and (7), the required general solution is  y " uv
or y " (sin x) {C2 – C1 cot x – (cot2 x)/2}

or y " C2 sin x – C1 cos x – (1/2) × cos2 x cosec x, C1, C2 being arbitrary constants.
     Part (b). Do as in Ex. 12(a).                       Ans. y " c1 sin x + c2 cos x + (1/2) × tan2x sec x

Ex. 21. Solve y2 + xy1 – y " f (x).
Sol. Given                                y2 + xy1 – y " f(x) ... (1)
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Comparing (1) with 2 1 , here , 1, ( )y Py Qy R P x Q R f x! ! � � � 1 � ...(2)

Here P + Qx " x – x " 0, showing that                             u " x ...(3)
is a par tof C.F. Let the complete solution of (1) be                              y " uv ...(4)

Then ? is given by
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
( )2 f xd v dx dvx

x dx dx xdx
% &! ! �∋ (
) ∗

                 or             
2

2
2 ( )d v dv f xx
x dx xdx

% &! ! �∋ (
) ∗

...(5)

Let                      dv/dx " q                      so that                 d2v/dx2 " dq/dx

Hence (5) reduces to 2 ( ) ,dq f xx q
dx x x

% &! ! �∋ (
) ∗

 which is a linear equation.

Its I.F. " ≅ Α 2 2 2 22 / / 2 2 log / 2 log 2 / 2x x dx x x x x xe e e e x e! !/ � � �  and solution is

22 2 2
2/2 / 2 2 / 2 2 / 2

1 1
( ) or ( )xx x xf x dvqx e x e dx c x e x f x e dx c
x dx

� ! � !/ /

or
2 2 22 / 2 / 2 2 / 2

1( )x x xdv x e x f x e dx c x e
dx

1 1 1 1� !/

Integrating, 6 72 2 22 / 2 / 2 2 / 2
1 2( )x x xx e x f x e dx dx c x e dx c1 1 1 1?� ! !/ / ...(6)

where c1 and c2 are arbitrary constants.
From (3) (4) and (6), the required general solution is

2 2 22 / 2 / 2 2 2 / 2
1 2or ( ) ( )x x xy u y x x e x f x e dx c x x e dx c x1 1 1 1� ? � ! !/ / /

10.5 A. Some typical solved examples. Important note.
Sometimes the method discussed in articles 10.2, 10.3 and 10.4 can be used to solve a third

order differential equation 3 2 1( ) ( ) ( ) ( )y p x y q x y r x y s x! ! ! � , provided a part of C.F. is  either
given or can be obtained by inspection (similar to rules discussed in Art. 10.3) We now explain
the whole procedure with help of the following two examples Ex.1 and Ex. 2.

Ex. 1. Solve 2 2 2
3 2 1( ) ( 3 1) ( 4 2 / ) (1 4 / 2 / )x x y x x y x x y x x y! 1 ! ! ! ! ! 1 ! ! 2 23 ( 1)x x� !

of which y " x is a particular interal.
[Agra 1997; Delhi Maths (H) 1994; Gwaliar 2005; Gujrat 2007; Nagpur 1994]

Sol. 2 2 2
3 2 1( ) ( 3 1) ( 4 2 / ) (1 4 / 2 / )x x y x x y x x y x x y! 1 ! ! ! ! ! 1 ! ! ≅ Α223 1x x� ! ... (1)

Since x is a particular integral of (1), let complete solution of (1) be         y xv� ...(2)

≅ Α 1 1 2 1 2 3 2 32 , 2 , 3y v xv y v xv y v xvΒ � ! � ! � ! ...(3)

Using (2) and (3), (1) reduces to
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2 2
2 3 1 2 1( )(3 ) ( 3 1)(2 ) ( 4 2 / ))( )x x v xv x x v xv x x v xv! ! 1 ! ! ! ! ! ! !

2 2 2(1 4 / 2 / ) 3 ( 1)x x xv x x1 ! ! � !

or 6 72 2 2 2
3 2( ) 3( ) ( 3 1) {2( 3 1)x x x v x x x x x v x x! 1 ! 1 ! ! 1 ! ! ≅ Α 14 2 / }x x x v1 ! !

6 724 2 / (1 4 / 2 / )x x x x x v! ! ! 1 ! ! ≅ Α223 1x x� !

or 2 2 2 2
3 2 1( ) ( 2) ( 2) 3 ( 1)x x x v x x v x x v x x! 1 1 1 ! � !

or 2 2 2
3 2 1( ) ( 2) ( 2) 3 ( 1)x x v x v x v x x! 1 1 1 ! � ! ...(4)

Let v 1 " q so that  v2 " q1 and v3 " q2. Then, (4) reduces to
2 2 2

2 1( ) ( 2) ( 2) 3 ( 1)x x q x q x q x x! 1 1 1 ! � ! ...(5)

or                                   ≅ Α
2

2 12 2
2 2 3 1x xq q q x

x x x x
1 !

1 1 � !
! !

...(5)

which is standard equation of linear equation of second order q2 + Pq1 + Qq " R. Here we have q
in place of y of Art. 10.4 On comparing (5) with q2 + Pq1 + Qq " R, we have

2 2{( 2) /( )},P x x x� 1 1 ! 2{( 2) /( )} and 3( 1)Q x x x R x� 1 ! ! � ! ...(6)

Here                               
2

2 2
2 21 1 0x xP Q

x x x x
1 !

! ! � 1 1 �
! !

,

showing that a part of C.F. of the solution (5) is                          xu e� ...(7)
Let the complete solution of (5) be                       q " u V " exV ...(8)

Then V is given by (See Art 10.4)                    
2

2
2d V du dV RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2 2

2 2
2 2 3 ( 1)

x
x

x
d V x de dV e x

dx dxdx x x e
1% &1

! 1 ! � !∋ (∋ (1) ∗
or ≅ Α

2 2

2 2
22 3 1xd V x dV e x

dxdx x x
1% &1

! 1 � !∋ (∋ (!) ∗

or                                       
2 2

2 2
2 2 3 ( 1)xd V x x dV e x

dxdx x x
1! !

! � !
!

...(9)

Let                       dV/dx " P                so that 2 2/ /d V dx dp dx�  ...(10)

Then   (9) becomes                         
2

2
2 2 3 ( 1)xdp x x p e x

dx x x
1! !

! � !
!

...(11)

I.F. of (11) " eE, say, where

2 2 2 2 11
( 1) 1

x xE dx dx
x x x x
! ! % &� � ! 1∋ (! !) ∗/ /  , on resolving into partial fractions.

" 2x !  log x – log (1 + x) " x + log {x2 / (1 + x)}
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10.26 Linear Equations of Second Order

I.F. of (11) "
2 2log{ /(1 )} log{ /(1 )} 2{ /(1 )}x x x x x x xe e e e x x! ! !� � ∆ !  and solution is

2 2
3

1 1. 3 ( 1)
1 1

x x
xe x e xp e x dx c x c

x x
1∆ � ! ! � !

! !/    or    1 2
1( 1) x xdV xp x x e c e

dx x
1 1!

� � ! !

Integrating, V " 2 2
1 2( ) (1/ 1/ )x xx x e dx c x x e dx c1 1! ! ! !/ /

or V " ≅ Α2
1 1 22

1 1( )( ) 2 1 ( )x x x xx x e x e dx c e dx c e dx c
x x

1 1 1 1! 1 1 ! 1 ! ! !/ / /
or 2

1( ) (2 1) {(1/ )( )}x x xV e x x x e dx c x e1 1� 1 ! ! ! ! 1/

1 22 2
1 1( ) } ,x xe dx c e dx c
x x

1 1% &1 1 1 ! !∋ (
) ∗/ / c1 and c2 being arbitrary constants.

or V " 6 72
1 2( ) (2 1)( ) 2( ) ( / )x x x xe x x x e e dx c x e c1 1 1 11 ! ! ! 1 1 1 ! ∆ !/

or 2
1 2( ) (2 1) 2 ( / )x x x xV e x x e x e c x e c1 1 1 1� 1 ! 1 ! 1 ! ∆ !

or V " 2
1 2 1 2( 3 3) ( / ) , ,x xe x x c x e c c c1 11 ! ! ! ∆ !  being arbitrary constants ...(12)

From (7), (8)  and (12) the solution of (5) in given by

6 72
1 2( 3 3) ( / )x x xq uV e e x x c x e c1 1� � 1 ! ! ! !

or      6 72
1 2/ ( 3 3) ( / ) ,x x xdv dx e e x x c x e c1 1� 1 ! ! ! ! as 1 /q v dv dx� �

Integrating 6 72
1 2 3( 3 3) / xv x x c x c e dx c� 1 ! ! ! ! !/

or 3 2
1 2 3( / 3) (3 / 2) 3 log xv x x x c x c e c� 1 1 1 ! ! !

Using (2), the required general solution of (1) given by
4 3 2

1 2 3( / 3) (3 / 2) 3 log xy xv x x x c x x c xe c x� � 1 1 1 ! ! !

Ex. 2. Solve y3 – xy2 – y1 + xy " 0. Though it is a third order linear differential equation show
that even then it can be solved by the usual method of of this chapter.

Sol. Given y3 – xy2 – y1 + xy " 0 ...(1)
Since  the sum of the  coeffcients of (1) is zero, by inspection ex is a part of C.F of (1).

Let the complete solution of (1) be                           y " ex v. ...(2)

(2) 1 1 2 1 2 3 1 2 3, 2 , 3 3x x x x x x x x xy e v e v y e v e v e v y e v e v e v e vΒ � ! � ! ! � ! ! !

Substituting the above values in (1), we have

1 2 3 1 2 13 3 ( 2 ) ( ) 0x x x x x x x x x xe v e v e v e v x e v e v e v e v e v xe v! ! ! 1 ! ! 1 ! ! �

3 2 1(3 ) (2 2 ) 0v x v x v! 1 ! 1 � ...(3)
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Linear Equations of Second Order 10.27

Let v 1" q so that v 2 " q1 and v 3 " q2. Then (3) becomes
                                     q2 + (3 – x) q1 + (2 – 2x) q " 0 ...(4)

Comparing (4) with q2 + Pq1 + Qq " R, here P " 3 – x, Q " 2 – 2x and R " 0 Also, we have
(– 2)2 + (–2) ∆ P + Q " 4 – 2 ( 3 – x) + 2 – 2x " 0, [Refer rule 1 of Art. 10.3]

showing that e–2x is a part of  C.F. of (1)
Thus, we take                    u " e–2x ...(5)
Let the complete solution of (4) be                      q " uV " e–2x V ...(6)

Then V is given by (refer Art 10.4)              
2

2
2d V du dV RP
u dx dx udx

% &! ! �∋ (
) ∗

or ≅ Α
2 2 2

2 2 2
23 0 or 1 0

x

x
d V de dV d Vx x V

dx dxdx e dx

1

1

% &
! 1 ! 1 1 ! �∋ (∋ (

) ∗
...(7)

Let             dV/dx " p so that d2V/dx2 " dp/dx ...(8)

Then (7) becomes ≅ Α1 0dp x p
dx

1 ! 1 or ≅ Α1dp x dx
p

� !

Intergrating, log p – log c1 " 2 / 2x x! Β p " c1 e x+x2/2

or dV/dx " c1 e x+e2/2 or
2 / 2

1
x xdV c e dx!�

Integrating,
2 / 2

1 2 ,x xV c e dx c!� !/ c1, c2 being arbitrary constants. ....(9)

From (6) and (9), 6 722 2
2 1

x x xq e c c e dx1 !� ! / or
22 2 / 2

2 1
x x x xq c e c e e dx1 1 !� ! /

or                  
22 2 / 2

2 1/ ,x x x xdv dx c e c e e dx1 1 !� ! / as q " v1 " dv/dx

Integrating,                  6 722 2 / 2
2 1 3( 1/ 2) x x x xv c e c e e dx dx c1 1 !� 1 ∆ ! !/ /

Using (2), the required general solution is given by

  
22 2 / 2 2

2 1 3[( 1/ 2) ( ) ]x x x x x xy v e e c e c e e dx c1 1 !� � 1 ∆ ! !/ /
or y "

22 / 2 2
2 1 3( ) ,x x x x x xc e c e e e dx c e1 1 !∃ ! !/ /

where 1 2 2 2, ( / )c c c∃ � 1  and c3 arbitrary constants.

EXERCISE 10 (A)

1. Solve xy# – (2x ! 1)y∃ ! (x ! 1)y " x3ex. Ans. y " (c1/2)x2ex ! c2ex ! (1/3)x3ex.
2. Solve xy# ! (x – 1)y∃ – y " x2. Ans. y " c1(x – 1) ! c2e–x ! x2 – 2x ! 2.
3. Solve xy# – (x ! 2)y∃ ! 2y " x3. Ans. y " c1(x2 ! 2x ! 2) ! c2ex – x3.
4. Solve xy# ! (x – 2)y∃ – 2y " x3. Ans. y " c1(x2 – 2x ! 2) ! c2e–x ! x3.
5. Solve (x – x2)y2 – (1 – 2x)y1 ! (1 – 3x ! x2)y " (1 – x)3. Ans. y " (1/2)c1x2e–x ! c2ex – x
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10.28 Linear Equations of Second Order

6. Solve (x sin x ! cos x)y2 – x cos x y1 ! y cos x " sin x (x sin x ! cos x)2. [Mumbai 2001,05]
Ans. y " – c1 cos x ! c2x ! (1/4)x cos 2x – (1/2) sin 2x.

7. (a) Solve xy2 – y1 – 4x3y " –4x5, given that 
2xy e�  is a solution if the left hand side is equated to zero.

Ans. y "
2 2 2

1 2
x xc e c e x1 ! !

(b) Solve y# ! y " sec x given that cos x is a part of C.F.
Ans. y " c1 sin x ! c2 cos x ! x sin x – cos x log sec x

8. Solve (sin x – x cos x)y2 – (x sin x)y1 ! (sin x)y " 0, given that y " sin x is a solution.
Ans. y " c1x ! c2 sin x

9. Verify that the left hand side of the equation (sin x – x cos x)y# – x sin x y∃ ! y sin x " x vanishes when
y " sin x and hence obtain the general solution of the whole equation.Ans. y " c1x ! c2 sin x ! cos x

10. Solve (x ! 1)y# ! (x – 1)y∃ – 2y " 0, given that y " e–x is a solution. Ans. y " c1(1 ! x2) ! c2e–x.
11. Find a particular solution of (x2 ! x)y# ! (2 – x2)y∃ – (2 ! x)y " x(x ! 1)2 if y " ex is a solution of the

corresponding hemogeneous equation. [Lucknow 1995, Nagpur 1997]
12. If y1(x) is a known (non-zero)solution of y# ! P(x)y∃ ! Q(x) " 0 then determine the other solution of

the differential equation. [Allahabad 2003, 07, Lucknow 2004]
Hint: Proceed as in Art.10.2 with R " 0 and u " y1 (x). Then the complete solution will be

y = 2 1 1 1 2
1

1 Pdxc y c y e
y

/! /  and hence the other solution " 1 2
1

1 Pdxy e dx
y

//
13. (x + 1) y2 – (2x + 3) y1 + (x + 2) y " x2 + 2x – 1 [Pune 2003, 05]

Ans. 2 3
1 2(1/ 9) (3 3) (1/16) (4 3)x xy x x c e x c e1� 1 ∆ ! ! ! ∆ ! !

14. 2 2 2
2 1( ) (1 2 ) (1 3 ) (1 )x x y x y x x y x1 1 1 ! 1 ! � 1 Ans. 2

1 2(1/ 2) x xy x c x e c e1� 1 ! ∆ !

15. 2(1 ) '' ' 2x y xy1 1 � Ans. 1 1 2
1 2sin (sin )y c x c x1 1� ! !

16. 2
2 1(3/ ) (3/ ) 2 1y x y x y x1 ! � 1 Ans. 2 2

1 2( log )y x c x c x x x� ! ! !

10.6. Removal of the first derivative. Reduction to Normal Form.
Transformation of the equation y# ! Py∃ ! Q y " R by changing the dependent variable
Statement. Obtain a suitable substitution for the dependent variable which transforms the

equation, y# ! Py∃ ! Q y " R into normal form i.e. form where the first derivative is absent.
or

Reduce the differential equation y# ! Py∃ ! Q y " R, where P, Q and R are functions of x, to
the form d2v / dx2 ! Iv " S which is known as the normal form of the given equation.

[I.A.S. 2000; Guwahati 1996]
Sol. The given equation is d2y / dx2 ! P(dy/dx) ! Qy " R ... (1)
Let the complete solution of (1) be y " uv, where u and v are functions of x.
Differentiating twice, y " uv gives

2 2 2

2 2 2, and 2 .dy du dv d y d u du dv d vv u v u
dx dx dx dx dxdx dx dx

� ! � ! !

> by (1),
2 2

2 22d u du dv d v du dvv u P v u Quv R
dx dx dx dxdx dx

% &! ! ! ! ! �∋ (
) ∗

or
2 2

2 22d v du dv d u duu Pu v P Qu R
dx dx dxdx dx

% &% &! ! ! ! ! �∋ (∋ ( ∋ () ∗ ) ∗
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or
2 2

2 2
2 1 .d v du dv d u du RP P Qu v
u dx dx u dx udx dx

% &% &! ! ! ! ! �∋ (∋ ( ∋ () ∗ ) ∗
... (2)

In order to remove the first derivative dv/dx from (2), we take
2 0duP
u dx

! �                          or                      
1

.
2

du Pdx
u

� 1 ... (3)

Integrating, log u " ≅ Α1/ 2 Pdx1 ∆ / or u "
1
2

Pdx
e

1 / ... (4)
Thus, the required suitable subsitiution for the dependent variable is y " uv where u is given

by (4)., Now, from (3), we have

du
dx " 1

2
Pu1 so that

2

2
1 1
2 2

d u du dPP u
dx dxdx

� 1 1

... (5)
or

2

2
d u
dx

"
1 1 1

,
2 2 2

dP
P Pu u

dx
% &1 1 1∋ (
) ∗

putting value of 
du
dx

>
2

2
1 d u duP Qu
u dxdx

% &
! !∋ (∋ (

) ∗
" 2 21 1 1 1 ,

4 2 2
dPP u u P u Qu

u dx
% &1 1 !∋ (
) ∗

 by (5)

Thus,               
2

2
1 d u duP Qu
u dxdx

% &
! ! �∋ (∋ (

) ∗

21 1
,

4 2
dPQ P I
dx

1 1 �  say ... (6)

Also take S " R/u ... (7)
Using (3), (6) and (7), (2) becomes d2v / dx2 ! Iv " S,

where I and S are given by (6) and (7). (7) is known as normal form of (1).

10.7 Working rule for solving problems by using normal form
Step 1. Put the equation in the standard form y# ! Py∃ ! Qy " R,

in which the coefficient of d2y / dx2 must be unity.

Step 2. To remove the first derivative, we choose
1
2

P dx
u e

1 /�
Step 3. We now asume that the complete solution of given equation is y " uv.
Then the given equation reduces to normal form

2

2 ,d v Iv S
dx

! �          where 21 1
4 2

dPI Q P
dx

� 1 1    and   .RS
u

�

Important Note. The success in solving the given equation depends on the success in solving
d2v / dx2 ! Iv " S. Now this latter equation can be solved easily if I takes two special forms
(i) when I " constant, then resulting equation being with constant coefficients can be solved by
usual methods of chapter 5
(ii) when I " (constant) / x2, then the resulting equation reduces to homogeneous form and hence
it can be solved by using usual methods of chapter 6.

Step 4. After getting v, the complete solution is given by y " uv.

10.8 Solved examples based on working rule 10.7
Ex. 1. Solve the following differential equations :
(i) y# – 2 tan x 0 y∃ ! 5y " 0. [Agra 2006, 07; Delhi Maths (G) 1993]
(ii) y# – 2 tan x 0 y∃ ! y " 0. [Delhi Maths (G) 1996, 98]
(iii) y# – 2 tan x 0 y∃ – 5y " 0. [Delhi Maths (G) 1995]
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10.30 Linear Equations of Second Order

Sol. (i) Given                                 y# – 2 tan x 0 y∃ ! 5y " 0.                             ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, P " –2 tan x, Q " 5, R " 0. ... (2)
To remove the first derivative from (1), we choose

u "
1 1 ( 2 tan ) logsec2 2 sec .

P dx x dx xe e e x
1 1 1/ /� � � ... (3)

Let the required general solution be y " uv. ... (4)
Then v is given by normal form (d2v / dx2) ! Iv " S, ... (5)

where, I " Q – 2( / 4)P  – (1/2)∆ (dP/dx) " 5 – (1/4)∆ (4 tan2 x) – (1/2)∆ (–2 sec2 x), by (2)

" 5 – tan2 x ! sec2 x " 5 – tan2 x ! (tan2 x ! 1) " 6
and S " R/u " 0, since R " 0 by (2).

Then (5) becomes   (d2v / dx2) ! 6v " 0      or      (D2 ! 6)v " 0,where D Η d/dx. ...(6)

Here the auxiliary equation of (6) is         D2 + 6 " 0         so that         D " Ιi 6 .

So solution of (6) is v " C.F. " 1 2cos ( 6) sin ( 6).c x c x! ... (7)
From (3), (4) and (7), the required general solution is

y " uv                 or  y " 1 2sec [ cos ( 6) sin ( 6)]x c x c x!

(ii) Proceed as in part (i). Ans. y " 1 2sec [ cos ( 2) sin ( 2)]x c x c x!

(iii) Proceed as in part (i). Ans. y " 2 2
1 2sec [ ]x xx c e c e1!

Ex. 2. Make use of the transformation y(x) " v(x) sec x to obtain the solution of
y# – 2y∃ tan x ! 5y " 0, y(0) " 0, y∃(0) " 6 . [I.A.S. 1997]

Sol. Given,                                 y# – 2y∃ tan x ! 5y " 0.                                   ... (1)
Also given                  y " v(x) sec x. ... (2)
From (2),                          y∃ " v∃ sec x ! v sec x tan x. ... (3)
From (3),                    y# " v# sec x ! 2v∃ sec x tan x ! v[sec x tan2 x ! sec3 x].
Substituting the above values of y, y∃ and y# in (1), we get
v# sec x ! 2v∃ sec x tan x ! v(sec x tan2 x ! sec3 x)

– 2 tan x (v∃ sec x ! v sec x tan x) ! 5v sec x " 0
or v# sec x ! v(sec3 x – sec x tan2 x ! 5 sec x) " 0
or v# ! v(sec2 x – tan2 x ! 5) " 0 or (D2 ! 6)v " 0, D Η d/dx.

Its auxiliary equation is              D2 ! 6 " 0                  so that D " ± i 6 .

> v " C.F. " 1 2cos ( 6) sin ( 6),c x c x!  c1 and c2 being arbitrary constants.
Hence from (2), the general solution of (1) is

                                   y(x) " 1 2sec [ cos ( 6) sin ( 6)]x c x c x! .. (4)
Putting x " 0 in (4) and using the given fact y(0) " 0, we get 0 " c1. Hence (4) reduces to

y(x) " 2 sec sin ( 6)c x x . ... (5)

From (5), y∃(x) " 2 2sin tan sin ( 6) 6 sec cos ( 6).c x x x c x x!

Putting x " 0 and using the given fact y∃(0) " 6 , we get 6 " 2 6c  so that 2 1c � . Then,

from (5), the required solution is                              sec sin ( 6).y x x�
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Ex. 3(a). Solve y# – 2 tan x 0 y∃ ! 5y " sec x 0 ex. [Agra 2006; Garhwal 2010;
Kanpur 2009; Meerut 1998; Rhilkhand 2001; S.V.University (A.P.) 1997;

(b) Solve v# – 2 tan x 0 y∃ – (a2 ! 1)y " ex 0 sec x. Gulbarga 2005]
Sol. (a). Given                           y# – 2 tan x 0 y∃ ! 5y " sec x 0 ex.                       ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, P " –2 tan x, Q " 5, R " sec x 0 ex. ... (2)
To remove the first derivative from (1), we choose

1 1 ( 2 tan ) logsec2 2 sec
Pdx x dx xu e e e x

1 1 1/ /� � � � ... (3)
Let the required general solution be y " uv. ... (4)
Then v is given by normal form (d2v / dx2) ! Iv " S, ... (5)

where, I " Q – 2 / 4P  – (1/2) ∆ (dP/dx) " 5 – (1/4) ∆  (4 tan2 x) – (1/2)∆ (–2 sec2 x), by (2)
" 5 – tan2 x ! sec2 x " 5 – tan2 x ! (tan2 x ! 1) " 6

and                 S " R/u " (sec x 0 ex) / sec x " ex, using (2)
Then (5) becomes (d2v / dx2) ! 6v " ex or (D2 ! 6)v " ex, ... (6)

Its auxiliary equation is                   D2 ! 6 " 0           so that D " Ι i 6 .

> C.F. of (6)  " 1 2cos ( 6) sin ( 6)c x c x! , c1and c2 being arbitrary constants

and P.I. " 2 2
1 1 1 .

76 1 6
x x xe e e

D
� �

! !

Hence solution of (6) is               v "  1 2cos ( 6) sin ( 6)c x c x! ! (1/7) ∆ ex ... (7)
From (3), (4) and (7), the required general solution is

y " uv                or y " 1 2sec [ cos ( 6) sin ( 6)]x c x c x! ! (1/7) ∆ ex].

(b) Do as in part (a). Ans. y " sec x 2
1 2[ / (1 )ax ax xc e c e e a1! ! 1

Ex. 4(a). Solve (d2y / dx2) – (2/x)∆ dy/dx) ! (n2 ! 2/x2)y " 0. [Delhi Maths (G) 1997]

(b) Solve 22 2 0.
d dy dy

x x y x y x y
dx dx dx

% &1 1 ! ! �∋ (
) ∗

[Agra 2000, 03; Rohilkhand 2002, 04]

Sol. (a) Comparing the given equation with y# ! Py∃ ! Q y " R, we get
P " –(2/x), Q " (n2 ! 2/x2), and R " 0. ... (1)

To reduce the given equation into normal form, we choose

                                  u "
1 1 ( 2 / ) log2 2 .

P dx x dx xe e e x
1 1 1/ /� � � ... (2)

Let the required general solution be y " uv. ... (3)
Then v is given by normal form (d2v / dx2) ! Iv " S, ... (4)

where I " 2 2 2
2 2 2

1 1 2 1 4 1 2
,

4 2 4 2
dP

Q P n n
dx x x x

% & % &1 1 � ! 1 1 �∋ ( ∋ (
) ∗ ) ∗

 by (1).

and S " R/u " 0, as R " 0.
Then (4) becomes          (d2v / dx2) ! n2v " 0          or (D2 ! n2) v " 0. ... (5)
Its auxiliary equation is                D2 ! n2 " 0                 so that D " Ι in.
> Solution of (5) is                       v " C.F. " c1 cos nx ! c2 sin nx. ... (6)
From (2), (3) and (6), the required solution is y " uv or y " x(c1 cos nx ! c2 sin nx).
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(b) Re-writing the given equation,    
2

2
2 2 2d y dy dy dyx x x y x y

dx dx dxdx
% &

! 1 1 ! !∋ (∋ (
) ∗

"0

or (d2y / dx2) – (2/x) (dy/dx) ! (1 ! 2/x2)y " 0,
which is just the same as part (a) taking n " 1. Ans. y " x(c1 cos x ! c2 sin x)

Ex. 5. Solve 2 2cos cos 0.
d dy

x y x
dx dx

% & ! �∋ (
) ∗

[Agra 2004, Rajasthan 2003, 06]

Sol. Re-writing the given equation, we have
2

2 2
2cos 2cos sin cos 0d y dyx x x y x

dxdx
1 ! �                or                

2

2 2 tan 0.d y dyx y
dxdx

1 ! �

Now proceed as in Ex. 1(a). Ans. y " sec x 1 2[ cos ( 2) sin ( 2)]c x c x!
Ex. 6(a). Solve (y# ! y) cot x ! 2(y∃ ! y tan x) " sec x.
(b) Solve (y# ! y) cot x ! 2(y∃ ! y tan x) " 0. [Delhi Maths (H) 1999]
Sol. (a) Given                     cot x 0 y# ! 2y∃ ! (cot x ! 2 tan x)y " sec x.

or y# ! 2 tan x ! (1 ! 2 tan2 x)y " sec x tan x. ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " 2 tan x,                Q " 1 ! 2 tan2 x            and R " sec x tan x, ... (2)
In order to remove the first derivative from (1), we choose

u "
1 1 (2 tan ) logcos2 2 cos .

P dx x dx xe e e x
1 1/ /� � � ... (3)

Let the required general solution be y " uv. ... (4)
Then v is given by normal form (d2v / dx2) ! Iv " S, ... (5)

where I " 2 2 2 21 1 1 1
1 2 tan (4 tan ) (2sec )

4 2 4 2
dPQ P x x x
dx

1 1 � ! 1 1

" 1 ! tan2 x – sec2 x " sec2 x – sec2 x " 0
and                                          S " R/u " (sec x tan x)/cos x " sec2 x tan x.

Then (5) becomes                       (d2v / dx2) " sec2 x tan x " (sec x) (sec x tan x)
Integrating it, dv/dx " (1/2) × sec2 x ! c1. ... (6)
Integrating (6), v " (1/2) × tan x ! c1x ! c2, c1, c2 being arbitrary constants. ... (7)
From (3), (4) and (7), the required general solution is
y " uv                or                     y " cos x [(1/2) ∆ tan x ! c1x ! c2].
(b) Hint : Proceed as in part (a). Note that R " 0 in this case and so S " R/u " 0.

Hence (5) reduces to                                             d2v / dx2 " 0.
Integrating,               dv/dx " c1               so that                      v " c1x ! c2.
Hence the required solution is                   y " uv " cos x (c1x ! c2).
Ex. 7. Solve y# – (2/x)y∃ ! (1 ! 2/x2)y " xex by changing the dependent variable.

[Kanpur 2009; Patna 2003; Bangalore 2005]
Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, we get
P " –2/x,            Q " 1 ! (2/x2)                      and R " xex.  ... (1)

We choose                        u " 
1 1

( 2 / ) (1/ ) log2 2 .
P dx x dx x dx xe e e e x

1 1 1/ / /� � � � ... (2)
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Let the required general solution be y " uv. ... (3)
Then v is given by the normal form (d2v / dx2) ! Iv " S, ... (4)

where I " 2
2 2 2

1 1 2 1 4 1 2
1 1

4 2 4 2
dP

Q P
dx x x x

% & % &1 1 � ! 1 1 �∋ ( ∋ (
) ∗ ) ∗

and S " R/u " (xex)/x " ex.
Then (4) becomes      (d2v / dx2) ! v " ex           or (D2 ! 1)v " ex.  ... (5)
Its auxiliary equation is             D2 ! 1 " 0                  so that D " Ι i
> C.F. of (5) " c1 cos x + c2 sin x, c1 and c2 being arbitrary constants.

and P.I. " 2 2
1 1 1

21 1 1
x x xe e e

D
� �

! !

Hence the solution of (5) is v " C.F. ! P.I. " c1 cos x ! c2 sin x ! (1/2) × ex

and so the required solution is             y " uv " x[c1 cos x ! c2 sin x ! (1/2) × ex].

Ex. 8(a). Solve y# – 4xy∃ ! (4x2 – 1)y " 
2

3 sin 2 .xe x1
[Guwahati 2007; Meerut 2004; Delhi Maths (G) 2004, 05; I.A.S. 2000]

Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, we get

P " –4x, Q " 4x2 –1 and
2

3 sin 2 .xR e x� 1 ... (1)

We choose u "
2

1 1
( 4 )

2 2
P dx x dx xe e e

1 1 1/ /� � . ... (2)
Let the required general solution be y " uv.                           ... (3)
Then v is given by the normal form (d2v / dx2) ! Iv " S,                          ... (4)

where I " 2 2 21 1 1 14 1 (16 ) ( 4) 1
4 2 4 2

dPQ P x x
dx

1 1 � 1 1 1 1 �

and S " R/u "
2 2

( 3 sin 2 ) / 3sin 2 .x xe x e x1 � 1

Then (4) becomes    (d2v / dx2) ! v " –3 sin 2x          or (D2 ! 1)v " –3 sin 2x.
Its auxiliary equation is                D2 ! 1 " 0            so that D " Ι i
> Its C.F. " c1 cos x ! c2 sin x, c1 and c2 being arbitrary constants

and P.I. " 2 2
1 1( 3sin 2 ) 3 sin 2 sin 2 .

1 2 1
x x x

D
1 � 1 �

! 1 !
> v " C.F. ! P.I. " c1 cos x ! c2 sin x ! sin 2x. ... (5)
From (2), (3) and (5), the required general solution is

y " uv or y "
2

1 2( cos sin sin 2 ).xe c x c x x! !

Ex. 8(b). Solve y# – 4xy∃ ! (4x2 – 3)y "
2xe [Delhi Maths (G) 2006, Bangalore 2005]

Hint : Do as in part (a) Ans.
2

1 2( 1)x x xy e c e c e1� ! 1

Ex. 8(c). Solve y# – 4xy∃ ! (4x2 – 1)y "
2 23 (sin 2 5 6).x xe x e11 ! !

Hint : As in part (a), here       P " –4x,       Q " 4x2 –1,       R "
2 23 (sin 2 5 6).x xe x e11 ! !

As before,   
2xu e�    and    I " 1.      Also        S " R/u " –3 sin 2x – 15e–2x –18.
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Hence normal form is (d2v / dx2) ! v " –3 sin 2x – 15e–2x – 18
or (D2 ! 1)v " –3 sin 2x – 15e–2x – 18.

As before, we get C.F. " c1 cos x ! c2 sin x.

P.I. " 2
2
1 ( 3sin 2 15 18)

1
xx e

D
11 1 1

!
" 2 0.

2 2 2
1 1 13 sin 2 15 18

1 1 1
x xx e e

D D D
11 1 1

! ! !

 " 2 0.
2 2 2
1 1 13 sin 2 15 18

2 1 ( 2) 1 0 1
x xx e e11 1 1

1 ! 1 ! !
" sin 2x – 3e–2x – 18.

> v " C.F. ! P.I " c1 cos x ! c2 sin x ! sin 2x – 3e–2x – 18.

and required solution is y " uv "
2 2

1 2( cos sin sin 2 3 18).x xe c x c x x e1! ! 1 1

Ex. 9(a). Solve y# – 2bxy∃ ! b2x2y " x. [Sagar 2002]
(b) Solve y# – 2bxy∃ ! b2x2y " 0.
Sol. (a) Comparing the given equation with y# ! Py∃ ! Q y " R, we get
P " –2bx,                         Q " b2x2                          and R " x. ... (1)

We choose u " 
2

1 1 ( 2 ) ( / 2)2 2
P dx bx dx bxe e e

1 1 1/ /� � ... (2)
Let the required general solution be y " uv.                              ... (3)
Then v is given by the normal form (d2v / dx2) ! Iv " S,                      ... (4)

where I "
2

2 2 2 21 1 ( 2 )
4 2 2

P dPQ b x b x b b
dx

1 1 � 1 1 1 �

and S " R/u
2( / 2)bxxe1� , using (1) and (2)

Then (4) becomes (d2v / dx2) ! bv
2( / 2)bxxe1� or (D2 ! b)v

2( / 2)bxxe1� ... (5)

Now the auxiliary equation of (5) is D2 ! b " 0        so that D " Ι i b .

> C.F. of (5) " 1 2cos( ) sin( )c x b c x b! , c1, c2 being arbitrary constants

and P.I. "
2( / 2)

2
1 bxxe

D b
1

!
, which cannot be evaluated by well known methods.

> v " C.F. ! P.I. "
2( / 2)

1 2 2
1cos ( ) sin ( ) bxc x b c x b xe

D b
1! !

!
... (6)

From (2), (3) and (6), the required general solution is

y " uv               or            y "
2 2( / 2) ( / 2)

1 2 2
1cos ( ) sin ( )bx bxe c x b c x b xe

D b
18 9! !: ;!< =

(b) Do as in part (a). Then (5) takes the form                    (D2 ! b)v " 0.

Hence v " 1 2cos ( ) sin ( )c x b c x b and u "
2( / 2)bxe  as before

and the required solution is y " uv "
2( / 2)

1 2[ cos ( ) sin ( )]bxe c x b c x b! .
Ex. 10(a). Solve y# ! 2xy∃ ! (x2 ! 1)y " x3 ! 3x. [Merrut 1997]
Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, we get
P " 2x,               Q " x2 !1                             and R " x3 ! 3x. ... (1)

we choose u "
2

1 1 (2 ) / 22 2 .
P dx x dx xe e e

1 1 1/ /� � ... (2)
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Let the required general solution be y " uv.                         ... (3)
Then v is given by the normal term (d2v / dx2) ! Iv " S,                        ... (4)

where         I "
2

2 21 11 2 0
4 2 2

P dPQ x x
dx

1 1 � ! 1 1 ∆ �      and        S "
23 / 2( 3 ) xR x x e

u
� !

Then (4) reduces to                          d2 v / dx2 "
23 / 2( 3 ) xx x e! ... (5)

Integrating (5),
dv
dx

"
2 23 / 2 / 2

13 .x xx e dx x e dx c! !/ / ... (6)

Putting x2/2 " t so that xdx " dt, (6) becomes

/dv dx " 1(2 ) 3t tt e dt e dt c! !/ /         or       dv/dx" 12( ) 3 ,t t tt e e dt e c1 ! !/  integrating by parts.

or dv/dx " 1 12 2 3 2t t t t tt e e e c t e e c1 ! ! � ! !

or dv/dx " 
2 22 / 2 / 2 2

1 , as / 2.x xx e e c t x! ! �        ... (7)

Integrating (7),        v "
2 22 / 2 / 2

1 2.x xx e dx e dx c x c! ! !/ / ... (8)

Now,                     
2 / 2xx e dx/ " 2, putting / 2 andte dt x t x dx dt� �/

Thus, we have
2 / 2xx e dx/ "

2 / 2 .t xe e� ... (9)

Then
22 / 2xx e dx/ "

2 2 2/ 2 / 2 / 2( ) (1 ) ,x x xx xe dx xe e dx� 1 0/ /  integrating by parts by

taking x as first function and 
2 / 2xxe  as the second function and using result (9) directly

> (8) reduces to v "
2 2 2 2/ 2 / 2 / 2 / 2

1 2 1 2
x x x xxe e dx e dx c x c xe c x c1 ! ! ! � ! !/ /

and so the required general solution is given by

y " uv "
2 2 2/ 2 / 2 / 2

1 2 1 2[ ] ( )x x xe xe c x c x e c x c1 1! ! � ! !
Ex. 10(b). Solve the equation xy# – 2(x ! 1)y∃ ! (x ! 2)y " (x – 2)ex, (x > 0) by changing into

normal form. [Bangalore 1995]
Sol. Try yourself. Ans. y " –(1/2) ∆ x2ex ! xex ! (1/3)∆ c1x3ex ! c2ex

Ex. 11. Solve the following differential equations :

(a)
2

2 1/ 3 2 / 3 4 / 3 2
1 1 1 6 0.

4 6
d y dy

dxdx x x x x
% &! ! 1 1 �∋ (
) ∗

[Punjab 2003; Vikram 2001, 03]

(b)
2

1/ 2
2 1/ 2 2

1 1 ( 8) 0.
4

d y dy x x y
dxdx x x

1 ! ! 1 � [Agra 2005; Pune 2006, Vikram 2001, 03\

(c) 4x2(d2y / dx2) ! 4x5(dy/dx) ! (x8 ! 6x4 ! 4)y " 0. [Vikram 2001,03]
(d) (x3 – 2x2) (d2y / dx2) ! 2x2(dy/dx) ! 12(x– 2)y " 0.
(e) x2 (log x)2 (d2y / dx2) – 2x log x (dy/dx) ! [2 ! log x – 2 (log x)2]y " x2(log x)3

[Vikram 2001]
(f) x2 (d2y / dx2) – 2x(3x – 2)(dy/dx) ! 3x(3x – 4)y " e2x. [Agra 1997]
Sol. (a) Comparing the given equation with y# ! Py∃ ! Q y " R, we get

/ 3 2 / 3 4 / 3 2, (1/ 4 ) (1/ 6 ) (6 / ) and 0xP x Q x x x R1� � 1 1 � ... (1)

We choose u "
1/3

2 /3
1 1

(3/ 4)2 2 .
P dx x dx xe e e

11 1 1/ /� � ... (2)
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Let the required general solution be y " uv.                              ... (3)
Then v is given by the normal form (d2v / dx2) ! Iv " S,                    ... (4)

where       I " 2
2 /3 4 /3 2 2/ 3 4 / 3 2

1 1 1 1 6 1 1 1 6
4 2 24 6 4 3

dP
Q P

dx x x x x x x
% &1 1 � 1 1 1 1 1 � 1∋ (
) ∗

and S " R/u " 0, as R " 0.
Then (4) becomes       (d2v / dx2) – (6/x2)v " 0          or (x2D2 – 6)v " 0... (5)

which is a homogeneous linear equation. Here D Η d/dx.
To solve it, let x " ex       (or z " log x)  and D1 Η d/dz.... (6)
We have x2D2 " D1(D1 – 1). Then (6) reduces to
[D1(D1 – 1) – 6]v " 0 or (D2

1 – D1 – 6)v " 0.... (7)
Here the auxiliary equation of (7), is D1

2 – D1 – 6 " 0.            so that D1 " 3, –2.

> C.F. " 3 2 3 2 3 2
1 2 1 2 1 2( ) ( )z z z zc e c e c e c e c x c x1 1 1! � ! � !

Hence the solution of (7) is v " C.F. " c1x3 ! c1x–2.                             ... (8)

 From (2), (3) and (8), the required solution is y " uv or y "
2 /3(3/4) 3 2

1 2( )xe c x c x1 1!

(b) Try as in part (a). Ans. y "
1/ 2 2 1

1 2( )xe c x c x1!
(c) Dividing by 4x2, the given equation in standard form is

y# ! x3y∃ ! [(x8 ! 6x4 ! 4)/4x2]y " 0. ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " x3, Q " x6/4 + 3x2/2 + 1/x2 and R " 0.          ... (2)

We choose u "
3

4
1 1

/82 2 .
P dx x dx xe e e

1 1 1/ /� � ... (3)
Let the required general solution be y " uv.                           ... (4)
Then v is given by the normal form (d2v / dx2) ! Iv " S,                     ... (5)

where I " 21 1
4 2

dPQ P
dx

1 1 "
6 2 6

2
2 2

3 1 1 1(3 ) , 0.
4 2 4 2
x x x Rx S

ux x
! ! 1 1 ∆ � � �

Then (5) becomes  (d2v / dx2) ! (1/x2)v " 0           or (x2D2 ! 1)v " 0.... (6)
Let               x " ez (or z " log x),            D Η d/dx               and D1 Η d/dz

so that x2D2 " D1(D1 – 1). Then (6) reduces to
{D1(D1–1) ! 1}v " 0 or (D2

1 – D1 ! 1)v " 0. ... (7)

Its auxiliary equation is D1
2 – D1 ! 1 " 0 so that D1 " (1Ι 1 41 )/2 " (1/2) Ι i ( 3 / 2 )

>      C.F. of (7) " / 2
1 2[ cos {( 3 / 2) } sin {( 3 / 2) }]ze c z c z!

" (1/ 2)
1 2( ) [ cos{( 3 / 2) } sin {( 3 / 2) }]ze c z c z!

" 1/ 2
1 2[ cos {( 3 / 2) log } sin {( 3 / 2) log }]x c x c x! , as x = ez

Hence the solution of (7) is given by                    v " C.F.

or v " 1/ 2
1 2[ cos {( 3 / 2) log } sin {( 3 / 2) log }]x c x c x! ...(8)

From (3), (4) and (8), the required general solution is
4 / 8 1/ 2or xy u v y e x1� � cos {( 3 / 2) log } sin {( 3 / 2) log }1 2c x c x8 9!: ;< =
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(d) Try yourself. Ans. y " 1 4 3
1 2( 2) ( )x c x c x1 11 !

(e) Dividing by x2 (log x)2, the given equation in standard form is
2 2

2 2 2
2 2 log 2(log ) log .

log (log )
d y dy x x y x

x x dxdx x x
! 1

1 ! � ... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have

P " 2 2 2 2
2 2 1 2, and log .

log (log ) log
Q R x

x x x x x x x
1 � ! 1 � ... (2)

We choose u "
(1/ )1

log(log )log2 log .
x dxP dx xxe e e x

1 // � � � ... (3)
Let the required general solution be y " uv.                            ... (4)
Then v is given by the normal form (d2v / dx2) ! Iv " S,                    ... (5)

where I " 2(1/ 4) (1/ 2) ( / )Q P dP dx1 ∆ 1 ∆

" 2 2 2 2 2 2 2 2 2
2 1 2 1 1 1

(cos ) cos (cos ) cos (cos )x x x x x x x x x x x
8 9

! 1 1 ! 1 1: ;
< =

or     I " –2/x2                      and                 S " R/u " (log x)/(log x) " 1.
Then (5) reduce to       (d2v / dx2) – (2/x2)v " 1  or              (x2D2 – 2)v " x2. ... (6)
Let x " ex (or z " log x), D Η d/dx and D1 " d/dz so that x2D2 " D1(D1 – 1).
Then (6) reduces to [D1(D1 – 1) – 2]v " e2z or (D2

1 – D1 – 2)v " e2z. ... (7)
Its auxiliary equation is                  D1

2 – D1 – 2 " 0           so that D1 " 2, –1

> C.F. " 2 2 1 2 1
1 2 1 2 1 2( ) ( )z z z zc e c e c e c e c x c x1 1 1! � ! � !

and P.I. " 2 2 2
2

1 1 11 1

1 1 1 1 1
( 2) ( 1) 2 2 12

z z ze e e
D D DD D

� �
1 ! 1 !1 1

" 2 2
1

1

1 1 1
3 3 1!( 2)

z zze e
D

�
1 1

1
!( )

n
az az

n
ze e
nD a

8 9
�: ;

1< =
�

" (1/3)∆ z (ez)2 " (1/3)∆ x2 log x, as z " log x, and ez " x.
> Solution of (7) is             v " C.F. ! P.I. " c1x2 ! c2x–1 ! (1/3)∆ x2 log x ... (8)
From (3), (4) and (8), the required general solution is
y " uv                           or                        y " log x [c1x2 ! c2x–1 ! (1/3)x2 log x]

(f) Try yourself. Ans. y " 2 3 2 1 2
1 2[ (1/ 3) logxx e c x c x x x1 1! ! ∆

Ex. 12(a). Reduce the equation x2y# – 2x(1 ! x)y∃ ! 2(1 ! x)y " x3, (x > 0) into the normal form

and hence solve it. [Bangalore 1995] Ans. y " 2 2
1 2 ( / 2).xc xe c x x! 1

Ex. 12(b). Solve y# ! (4 cosec 2x)y∃ ! (2 tan2x)y " ex cot x by changing the dependent
variable. [Bangalore 2005]

Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, here
     P " 4 cosec 2x,                  Q " 2 tan2x            and R " ex cot x... (1)

Hence I " 21 1
4 2

dPQ P
dx

1 1 " 2 21 12 tan (16 cosec 2 ) ( 8 cosec 2 cot 2 )
4 2

x x x x1 ∆ 1 ∆ 1
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" 2 1 cos2
2 tan 4 cosec 2

sin 2 sin 2
x

x x
x x

% &1 1∋ (
) ∗

"
2

2 2 8cosec 2 sin1 cos 22 tan 4 cosec 2 2 tan
sin 2 sin 2

x xxx x x
x x

1% &1 � 1∋ (
) ∗

Then,                          I "
2 2 2

2 2 2
2sin 8sin 2(1 sin ) 2
cos (2sin cos ) cos

x x x
x x x x

1 1
1 � � 1 ... (2)

which is a constant. Hence to solve the given equation, we choose

u " ( / 2) ( 2cosec 2 ) log tan cotP dx x dx xe e e x1 1 1/ /� � � ... (3)
Let the required complete solution be y " uv ... (4)
Then v is given by the normal form d2v / dx2 ! Iv " S ... (5)

where S " R/4 " (ex cot x)/cot x " ex ... (6)
Then (2), (6) and (5) yield         d2v / dx2 – 2v " ex        or (D2 – 2)v " ex ... (7)

Here auxiliary equation is            D2 – 2 " 0        giving         2D � Ι

>  C.F. of (7) " 2 2
1 2

x xC e C e1! , C1, C2 being arbitrary constants

and P.I. of (7) " 2
1 1

(1 2)2
x x xe e e

D
� � 1

11

> v " C.F. ! P.I or v " 2 2
1 2

x x xC e C e e1! 1 ... (8)
From (3), (4) and (8), the required solution is

y " uv                  or y " cot x 2 2
1 2( )x x xC e C e e1! 1

EXERCISE 10(B)

Solve the following differential equations by reducing to normal form:
1. x2 y2 – 2(x2 ! x)y1 ! (x2 ! 2x ! 2)y " 0. [Rohilkhand 2001; Mumbai 1997, Pune 1998; Nagpur 2000;

Delhi Maths (G) 2001;  Madurai Kamraj 2008; Kanpur 2008] Ans. y " xex (c1x ! c2)

2. y2 ! 4xy1 ! 4x2y " 0 [Karnataka 2001, Vikram 1999] Ans. y "
2 2 2

1 2( )x x xe c e c e1 1!

3. (a) y2 ! (2/x)y1 – n2y " 0. Ans. y "
1

1 2( )nx nxx c e c e1 1!

(b) y2 ! (2/x)y1 ! n2y " 0. [Delhi Maths (G) 2000] Ans. y " 1
1( cos sin )x c nx nx1 !

4.
22 / 2

2 12 ( 5) xy xy x y xe1! ! ! �        Ans. y "
2 / 2

1 2( cos sin / 4)xe c x c x x1 ! !
5. (1 – x2)y2 – 4xy1 – (1 ! x2)y " x. [I.A.S. 2004] Ans. y " (1 – x2)–1 (c1 sin x ! c2 cos x ! x)

6. y2 – 4xy1 ! (4x2 – 1)y "
2
(5 3cos 2 ).xe x1 Ans. y "

2

1 2( cos sin 5 cos 2 )xe c x c x x! ! !

7. y# – 2 cot x 0 y∃ ! (1 ! 2 cot2x)y " 0. Ans. y " sin x. (c1 ! c2x)

8. y# – 4xy∃ ! 4x2y "
2xe . Ans. y "

2

1 2[ cos( 2) sin( 2 )]xe c x c x!

9. y# ! 2xy∃ ! (x2 – 8)y "
2 / 2.xxe1 Ans. y "

2 / 2 3 2 2
1 2( / 9 2 / 81)x x xe c e c e x1 1! 1 1

10. y# ! (2/x)y∃ ! y " (sin 2x)/x. Ans. y " 1x1 [c1 cos x ! c2 sin x – (1/3) ∆ sin 2x]
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11. y# – 2xy∃ ! (x2 ! 2)y "
2( ) / 2.x xe ! Ans. y "

2 2/ 2 ( 2 ) / 2
1 2[ cos 3 sin 3 (1/ 4)x x xe c x c x e !! ! ∆ ]

12. x2 y# – 2xy∃ ! (x2 ! 2)y " x3ex. Ans. y " x(c1 cos x ! c2 sin x ! ex / 2
13. y# ! (2/x)y∃ – y " 0. [Nagpur 1996] Ans. y " x – 1 (c1ex ! c2e–x)

10.9. Transformation of the equation by changing the independent variable.
Consider d2y / dx2 ! P(dy/dx) ! Q y " R, ... (1)

where P, Q and R are functions of x and let the independent variable be changed from x to z, where
z " f(x), say

Using the formula,             df df dz
dx dz dx

� 0 ,               we have dy dy dz
dx dz dx

� 0

and
2

2
d y
dx

"
d dy
dx dx

% &
∋ (
) ∗

"
2

2
d dy dz d dy dz dy d z
dx dz dx dx dz dx dz dx

% & % &� !∋ ( ∋ (
) ∗ ) ∗

or      
22 2 2 2

2 2 2 2
d y d dy dz dz dy d z d y dz dy d z

dz dz dx dx dz dx dzdx dx dz dx
% & % &� ∆ ∆ ! � !∋ ( ∋ (
) ∗ ) ∗

Putting the above values of dy/dx and d2y / dx2 in (1), we obtain
22 2

2 2
d y dz dy d z dy dzP Qy R

dx dz dz dxdz dx
% & ! ! ! �∋ (
) ∗

        or         
22 2

2 2
d y dz d z dz dyP Qy R

dx dx dzdz dx
% &% & ! ! ! �∋ (∋ ( ∋ () ∗ ) ∗

Dividing by  
2dz

dx
% &
∋ (
) ∗

, we have                   
2

1 1 12 ,
d y dyP Q y R

dzdz
! � ... (2)

where P1 "
2 2

1 12 2 2
( / ) ( / ) , and

( / ) ( / ) ( / )
d z dx P dz dx Q RQ R

dz dx dz dx dz dx
!

� �   (3)

Here P1, Q1 and R1 are functions of x but these can be converted to functions of z by using
the relation z " f(x). If by equating Q1 to a constant quantity we see that P1 also becomes constant
then (2) can be solved (since it will be linear equation with constant co-efficient) to obtain the
required solution.

10.10. Working Rule for solving equation by changing the independent variable:
Step 1. Put the given equation in standard form by keeping the coefficient of d2y/dx2 as unity,

i.e.                          y# ! Py∃ ! Q y " R. ... (1)
Step 2. Suppose Q " Ι k f(x), then we assume a relation between the new independent

variable z and the old independent variable x given by (dz/dx)2 " k f(x). Note carefully that we
omit –ve sign of Q while writing this step. This is extremely important to find real values.
Sometimes we assume that (dz/dx)2 " f(x) whenever we anticipate complicated relation between z
and x.

Step 3. We now solve (dz/dx)2 " k f(x). Rejecting negative sign, we get

dz/dx " [ ( ) ].k f x ... (2)

Now separating variables, (2) gives dz " [ ( )]k f x dx so that z " [ ( )] ,kf x dx/ ... (3)

where we have omitted constant of integration since we are interested in finding just a relation
between z and x.
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10.40 Linear Equations of Second Order

Step 4. With the relationship (3) between z and x, we transform (1) to get an equation of the
form                                    (d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (4)

where  P1 "
2 2

1 12 2 2
( / ) ( / ) , , and ,

( / ) ( / ) ( / )
d z dx P dz dx Q RQ R

dz dx dz dx dz dx
!

� � ... (5)

Now by virtue of (2), Q1 "
( ) ,
( )

k f x k
d f x
Ι

� Ι  a constant. Then we calculate P1. If P1 is also

constant, then (4) can be solved because it will be a linear equation with constant coefficients.
If, however, P1 does not become constant, then this rule will not be useful. The students must,
therefore, be sure that P1 comes out to be constant before proceeding further. The value of
P1, Q1 and R1 must be remembered for direct use in problems. R1 can be converted to a
function of z by using (3).

Step 5. After solving equation (4) by usual methods the variable z is replaced by x by using (3).

10.11. Solved examples based on Art. 10.10.
Ex. 1. Solve sin2x y# ! sin x cos x 0 y∃ ! 4y " 0. or y# ! cot x 0 y∃ ! 4 cosec2 x 0 y " 0.

[Agra 2006; Kanput 2006; Delhi Maths (G) 1997; Meerut 2001; Rohilknand 2001]
Sol. Dividing by sin2x, the given equation becomes

y# ! cot x 0 y ! 4 cosec2x 0 y " 0. ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " cot x,                  Q " 4 cosec2 x            and                       R " 0. ... (2)
We choose z such that                           (dz/dx)2 " 4 cosec2x ... (3)

*so that                dz/dx " 2 cosec x                       giving z " 2 log tan (x/2) ... (4)
Now changing the independent variable from x to z by using relation (4), (1) becomes

(d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (5)

where P1 "
2 2

2 2
2cosec cot cot (2 cosec )( / ) ( / )

( / ) 4 cosec
x x x xd z dx P dz dx

dz dx x
1 ! 0!

� " 0,

[Using relations (2), (3) and (4)]

Q1 "
2

2 2
4cosec

( / ) 4cosec
Q x

dz dx x
� " 1 and 1 2 0

( / )
RR

dz dx
� � , by (2) and (3).

> From (5),           (d2y / dz2) ! y " 0         or (D1
2 ! 1)y " 0, where D1 Η d/dz

Its auxiliary equation is D1
2 ! 1 " 0 so that D1 " Ι i.

Hence the required solution is                    y " C.F. " c1 cos z ! c2 sin z
or y " c1 cos {2 log tan (x/2)} ! c2 sin {2 log tan (x/2)}.

Ex. 2. Solve (a) y# ! (2/x)y∃ ! (a2/x4) y " 0. [Agra 2000;Kanpur 2005; Sagar 2004;]
(b) x4y# ! 2x3y ! n2y " 0. [Kurukshetra 2000]
Sol. (a) Comparing the given equation with y# ! Py∃ ! Q y " R, we get

P " 2/x, Q " a2/x4 and R " 0. ... (1)
We choose z such that (dz/dx)2 " a2/x4                                                 ... (2)

*so that                   dz/dx " a/x2                             giving z " –a/x. ... (3)

* In practice, while extracting square root on both sides of (3), we shall take positive sign.
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Now changing the independent variable from x to z by using relation (3), the given equation
is transformed into                     (d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (4)

where P1 "
2 2 3 2

2 2 4
( / ) ( / ) 2 / (2 / ) ( / ) 0,

( / ) ( / )
d z dx P dz dx a x x a x

dz dx a x
! 1 ! ∆

� �  using (1), (2) and (3)

Q1 "
2 4

2 2 4
/ 1

( / ) /
Q a x

dz dx a x
� � and R1 " 2 0,

( / )
R

dz dx
� by (1) and (2)

> From (4),          (d2y / dz2) ! y " 0           or  (D1
2 ! 1)y " 0, where D1 Η d/dz

Its auxiliary equation is              D1
2 ! 1 " 0             so that D1 " Ι i.

Hence the required solution is                              y " c1 cos z ! c2 sin z
or y " c1 cos (–a/x) ! c2 sin (–a/x) " c1 cos (a/x) – c2 sin (a/x), by (3)

(b) Hint. Divide by x4, we have y# ! (2/x)y∃ ! (n2/x4)y " 0, which is the same as in part
(a) with a " n. Ans. y " c1 cos (n/x) – c2 sin (n/x).

Ex. 3. Solve (1 ! x2)2y# ! 2x(1 ! x2)y∃ ! 4y " 0. [Meerut 2004; Vikram 2005]
Sol. Dividing by (1 ! x2)2 the given equation in standard form is

2

2 2 2 2
2 4 0.

1 (1 )
d y x dy y

dxdx x x
! ! �

! !
... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " (2x)/(1 ! x2),                   Q " 4/(1 ! x2)2                   and                   R " 0  ... (2)
Choose z such that         (dz/dx)2 " 4/(1 ! x2)2      so that        dz/dx " 2/(1 ! x2). ... (3)

Integrating,             z " 22
1

dx
x!/                      or z " 2 tan–1x... (4)

Now changing  the independent variable from x to z by using relation (4), (1) becomes
(d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (5)

where P1 "

2

2 2 2 22

2 2 2

4 2 2
(1 ) 1 1 0,

( / ) 4 /(1 )

x xd z dzP
x x xdxdx

dz dx x

1 ! ∆!
! ! !

� �
!

 by (2) and (3)

≅ Α ≅ Α

2 2

1 12 2 2 2
4 /(1 ) 1 and 0, by (2) and (3)
4 /(1 )/ /

Q x RQ R
xdz dx dz dx

!
� � � � �

!

> From (5),        (d2y/dz2) ! y " 0        or        (D1
2 ! 1)y " 0,        where        D1 Η d/dz.

Its auxiliary equation is                      D1
2 ! 1 " 0             so that D1 " Ι i.

Hence the required solution is y " c1 cos z ! c2 sin z, c1, c2 being arbitrary constants.
or y " c1 cos (2 tan–1x) ! c2 sin (2 tan–1x). ... (6)

Let   tan–1x " ϑ         so that           x " tan ϑ. Then, we have

cos (2 tan–1x) " cos 2ϑ "
2 2

2 2
1 tan 1
1 tan 1

x
x

1 ϑ 1
�

! ϑ !
, sin (2 tan–1x) " sin 2ϑ " 2 2

2 tan 2 .
1 tan 1

x
x

ϑ
�

! ϑ !
> (6) becomes y " c1[(1 – x2)/(1 ! x2)] ! c2[(2x)/(1 ! x2)] or (1 ! x2)y " c1(1 – x2) ! 2c2x.
Ex. 4. Solve x6y# ! 3x5y∃ ! a2y " 1/x2. [Delhi Maths (G) 2006; Rajasthan 2010]

Sol. Dividing by x6, given equation becomes          
2 2

2 6 8
3 1d y dy a y
x dxdx x x

! ! � ... (1)
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Comparing (1) with y# ! Py∃ ! Q y " R,       P " 3/x,     Q " a2/x6,    R " 1/x8... (2)

Choose z such that   
2 2

6
dz a
dx x

% & �∋ (
) ∗

or 3
dz a
dx x

�        so that z " 2 .
2

a
x

1 ... (3)

With this change, (1) becomes (d2y / dz2) ! P1(dy/dz) ! Q1y " R1.            ... (4)

where               P1 "

2

2 4 3

2 2

3 3

0
( / ) ( / )

d z dz a aP
dx xdx x x

dz dx dz dx

! 1 ! ∆
� � ,          1 2 1

( / )
QQ

dz dx
� �

and R1 "
8

2 2 6 2 2 3
1/ 1 2

( / ) /
R x z

dz dx a x a x a
� � � 1 , by (2) and (3).

> (4) gives (D2
1 ! 1)y " –2z/a3. Its auxiliary equation is D2

1 ! 1 " 0,  where    D1 Η d/dz
> D1 " Ι i                        and hence                           C.F. " c1 cos z ! c2 sin z.

Now, P.I. " 2 1
12 3 3 3 3

1

1 2 2 2 2(1 ) (1 ...)
1

z zD z z
D a a a a

1% &1 � 1 ! � 1 1 0 � 1∋ (
! ) ∗

> Required solution is y " CF. ! P.I. " c1 cos z ! c2 sin z – 2z/a3

or y "  1 22 2 2 2
1cos sin

2 2
a ac c
x x a x

% & % &1 ! 1 !∋ ( ∋ (
) ∗ ) ∗

" 1 22 2 2 2
1cos sin .

2 2
a ac c
x x a x

% & % &1 1 !∋ ( ∋ (
) ∗ ) ∗

Ex. 5. Solve xy# – y∃ ! 4x3y " x5 or y# – (1/x) 0 y∃ ! 4x2y " x4.
[Pune 2001, 05; Andhra 2003; Osmania 2003; Nagpur 1996; Garhwal 2005]

Sol. Given y# – (1/x) 0 y∃ ! 4x2y " x4 ... (1)
Comparing (1) with       y# ! Py∃ ! Q y " R,       P " –1/x,       Q " 4x2, R " x4. ... (2)

Choose z such that        
2dz

dx
% &
∋ (
) ∗

" 4x2        or          2dz x
dx

�        so that       z " x2 ... (3)

Then, (1) reduces to                      ≅ Α2 2
1 1 1/ / ,d y dz P dy dz Q y R! ! � ... (4)

where P1 " ≅ Α
≅ Α

≅ Α2 2

2 2

/ / 2 1/ 2
0,

4/

d z dx P dz dx x x
xdz dx

! ! 1 ∆
� �

2

1 2 2
4 1

( / ) 4
Q xQ

dz dx x
� � �

and R1 "
4 2

2 2 ,
4 4( / ) 4

R x x z
dz dx x

� � �  by (2) and (3).

> (4) gives (D2
1 ! 1)y " z/4, where D1 Η d/dz ... (5)

Auxiliary equation is D1
2 + 1 " 0 giving D1 " ± i

> C.F. of (5) " c1 cos z + c2 sin z, c1 and c2 being arbitrary constants.)

and P.I. " 2 1 2
1 12

1

1 1 1
(1 ) (1 ....) .

4 4 4 44
z zD z D z

D
10 � ! � 1 ! �

!

> So the required solution is 2 2 2
1 2 1 2cos sin / 4 cos sin / 4y c z c z z c x c x x� ! ! � ! !

Ex. 6(a) Solve cos x y# ! y∃ sin x – 2y cos3x " 2 cos5x.
[Guwahati 2007; Bangalore 1995; Meerut 1997; Purvanchal 2007]

Sol. Dividing by cos x, given equation in standard form is
y# ! tan x 0 y' – (2 cos2x)y " 2 cos4x. ... (1)
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Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " tan x,                     Q " –2 cos2x          and R " 2 cos4x. ... (2)

Choose z such that   (dz/dx)2 " 2 cos2x              or (dz/dx) " 2 cos x

>            dz " 2 cos x dx                  so that              z " 2 sin .x ... (3)
With this z, (1) transforms to (d2y / dz2) ! P1 (dy/dz) ! Q1y " R1, ... (4)

where P1 "
2 2

2 2
( / ) ( / ) 2 sin tan 2 cos 0,

( / ) 2cos
d z dx P dz dx x x x

dz dx x
! 1 ! 0

� �

Q1 " 2 1
( / )

Q
dz dx

� 1 and R1 "
4

2 2
2cos

( / ) 2cos
R x

dz dx x
�   " cos2x " 1 – sin2x " 1 – z2/2,by (2) and (3).

> (4) gives (D2
1 – 1)y " 1 – z2/2, where D1 " d/dz

Auxiliary equation of (5) is D1
2 – 1 " 0 giving D1 " ± 1.

> C.F. of (5) " c1ez + c2e–z, where c1 and c2 are arbitrary constants

and P.I. " 2 0. 2
2 2 2
1 1 1

1 1 1 1 11
2 21 1 (1 )

zz e z
D D D

8 91 � !: ;< =1 1 1
2 1 2
12

1 1 (1 )
20 1

ze D zΚ0 1� ! 1
1

" 2 2
11 (1/ 2) (1 ....)D z1 ! ∆ ! ! " – 1 ! (1/2) ∆ (z2 ! 2) " z2/2.

Hence the required solution is y " C.F. ! P.I., i.e., y " 2
1 2 / 2z zc e c e z1! !

or 2 sin 2 sin 2sin ,1 2
x xy c e c e x1� ! ! as z " 2 sin .x

Remarks. Sometimes a relation between new independent variable z and given independent
variable is given in some problems and we are required to transform the given differential equation
and hence solve it. We adopt the method explained in the following examples 6(b) and 6(d).

Ex. 6(b). Transform the differential equation cos x 0 y# ! sin x 0 y∃ – 2y cos3x " 2 cos5x into
the one having z as indpendent variable, where z = sin x and solve it. [Himachal 2003]

Sol. Given that               z " sin x               so that               dz/dx " cos x. ... (1)

Now dy
dx

" cos ,
dy dz dyx
dx dx dz

0 �  by (1) ... (2)

and
2

2 cosd y d dy d dyx
dx dz dx dzdx

% & % &� �∋ ( ∋ (
) ∗ ) ∗

" sin cosdy d dyx x
dz dx dz

% &1 ! ∋ (
) ∗

       " sin cos .dy d dy dzx x
dz dz dz dx

% &1 ! ∋ (
) ∗

2
2

2sin cos ,dy d yx x
dz dz

� 1 !  by (1) ... (3)

Using (2) and (3), the given equation becomes
2

2 3 5
2cos sin cos sin cos 2cos 2cosdy d y dyx x x x x x y x

dz dzd z
% &

1 ! ! 1 0 �∋ (∋ (
) ∗

or d2y / dz2 – 2y " 2 cos2x or d2y / dz2 – 2y " 2(1– sin2x)
or (D2

1 – 2)y " 2(1 – z2), where D1 Η d/dz ... (4)

The auxiliary equation of (4) is        D2
1 – 2 " 0            so that D1 " Ι 2 .

Here,               C.F. of (4) " 2 2
1 2

z zc e c e1! , c1 and c2 being arbitrary constants
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Also P.I. " 2 2
2 2
1 1

1 12 (1 ) 2 (1 )
2 2(1 / 2)

z z
D D

1 � 1
1 1 1

             " –(1 – D1
2/2)–1(1 – z2) " –(1 ! D1

2/2 ! ...) (1 – z2) " –(1 – z2 – 1) " z2.

Hence complete solution of (4) is                  y " 2 2 2
1 2 .z zc e c e z1! !

or y " 2 sin 2 sin 2
1 2 sinx xc e c e x1! ! , as z " sin x

Ex. 6(c). Solve xy# ! (2x2 – 1)y∃ – 24x3y " 4x3 sin x2 using the transformation z " x2, x > 0.
Sol. Try yourself as in Ex. 6(b). [Bangalore 1996]

Ex. 6(d). Solve 2 2 2(1 ) 2 (1 ) 0x y x x y y∃∃ ∃! ! ! ! � using the transformation z " tan–1x.
[Bangalore 2005]

Sol. Given z " tan–1x                                             ...(1)
From (1)                                        dz/dx " 1/(1 ! x2)            ... (2)

Now, 2
1

1
dy dy dz dy
dx dz dx dzx

� 0 �
!

... (3)

and
2

2 2 2 2 2
1 2 1

1 (1 ) 1
d y dy dy dy dyd d x d

dx dx dx dz dz dx dzdx x x x
% &% & % &� � � 1 !∋ ( ∋ (∋ (

) ∗ ! ! ! ) ∗) ∗
2

2 2 2 2
2 1

(1 ) 1
d y dy dyx d dz

dz dz dz dxdx x x
% &� 1 ! ∋ (

! ! ) ∗
"

2

2 2 2 2 2
2 1

(1 ) (1 )
dy d yx
dzx x dz

1 !
! !

, by (2)

Substituting values of dy/dx and d2y/dx2 as given by (3) and (4) in the given equation, we get
2

2 2 2
2 2 2 2 2 2

1 2 1(1 ) 2 (1 ) 0
(1 ) (1 ) 1

d y dy dyxx x x y
dz dzx dz x x

2 +, ,! 1 ! ! ∆ ! �3 −
! ! !, ,4 .

or                    d2y/dz2 ! y " 0                    or                    (D1
2 ! 1)y " 0, where D1 Η d/dz

whose general solution is y " C1 cos z ! C2 sin z,C1,C2 being arbitrary constants.

or y " C1 cos ( 1tan x1 ) ! C2 sin ( 1tan x1 ), by (1) ... (5)

From Trigonomery, 1tan x1 " 6 7 6 71 2 1/ 2 1 2 1 / 2cos 1/(1 ) sin /(1 )x x x1 1! � !

Hence, from (5), the required solution takes the form

y " 6 7 6 71 2 1 / 2 1 2 1 / 2
1 2cos cos 1/(1 ) sin sin /(1 )C x C x x1 1! ! !

or        y " C1/ (1 + x2)1/2 + (C2x) / (1 + x2)1/2    or    2 1/ 2
1 2(1 )y x C C x! � !

Ex. 7(a) Solve the equation d2y / dx2 ! (2 cos x ! tan x) × (dy/dx) ! y cos2x " cos4x by
changing the independent variable. [Gulbarga 2005]

Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, we have
P " 2 cos x ! tan x,                            Q " cos2x        and R " cos4x ... (1)
Choose z such that          (dz/dx)2 " cos2x            or dz/dx " cos x ... (2)
From (2), dz " cos x dx so that z " sin x ... (3)
With this value of z, the given equation transforms to

d2y / dz2 ! P1(dy/dz) ! Q1y " R1 ... (4)

where P1 "
2 2

2 2
/ ( / ) sin (2cos tan ) cos 2

( / ) cos
d z dx P dz dx x x x x

dz dx x
! 1 ! ! ∆

� �
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Q1 " 2( / )
Q

dz dx
" 1          and          R1 "

4
2 2 2

2 2
cos cos 1 sin 1

( / ) cos
R x x x z

dz dx x
� � � 1 � 1

Hence (4) yields        d2y/dz2 ! 2(dy/dz) ! y " 1– z2        or        (D2
1 ! 2D1 ! 1)y " 1 – z2

or (D1 ! 1)2 y " 1 – z2,              where D1 Η d/dz.              ... (5)
The auxiliary equation of (5) is (D1 ! 1)2 " 0 giving D1 " –1, –1
> C.F. " (C1 ! C2 z)e–z, C1 and C2 being arbitrary constants

and P.I. " 2 2 2
12

1

1 (1 ) (1 ) (1 )
( 1)

z D z
D

11 � ! 1
!

" 2 2
1 1(1 2 3 ...)(1 )D D z1 ! ! 1

" 1 – z2 – 2D1(1– z2) ! 3D1
2(1 – z2) ! ... " 1 – z2 – 2 × (– 2z) ! 3 × (–2) " – z2 ! 4z – 5

Hence the required solution is y " C.F. ! P.I        or        y " (C1 ! C2z)e–z – z2 ! 4z – 5
or y " (C1 ! C2 sin x)e–sin x – sin2x ! 4sin x – 5, as z " sin x

Ex. 7(b) Solve x(d2y / dx2) – (dy/dx) – 4x2y " 8x3 sin x2.
[Kanpur 2002, Rohilkhand 2001; Bangalore 2005; Garhwal 1994; Vikram 2001, 05]

[Gurukul Kangri U. 2004; Agra 2005]
Sol. Dividing by x, (d2y / dx2) – (1/x) (dy/dx) – 4x2y " 8x2 sin x2.                ... (1)
Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " –1/x,                          Q " –4x2,                  and R " 8x2 sin x2. ... (2)
Choose z such that       (dz/dx)2 " 4x2   or         (dz/dx) " 2x   so that z " x2. ... (3)
As usual, P1 " 0, Q1 " –1, R1 " 2 2 2 2(8 sin ) / 4 2sin 2sin .x x x x z� �
> You will get            (D1

2 – 1)y " 2 sin z.       whose           C.F. " c1ez ! c2e–z

and P.I. " 2 2
1

1 12sin 2 sin sin .
1 1 1

z z z
D

� � 1
1 1 1

> The required solution is                y "
2 2 2

1 2 1 2sin sin .zz x xc e c z c e c e x1 1! 1 � ! 1

Ex. 8(a). Solve y# – y∃ cot x – y sin2 x " cos x – cos3 x.
(b) Solve y# – y∃ cot x – y sin2 x " 0. [Rohilkhand 1996]
Sol. (a) Comparing the given equation with y# ! Py∃ ! Q y " R, we have
P " –cot x, Q " –sin2x and R " cos x – cos3 x " cos x sin2 x. ... (1)
Choose z such that               (dz/dx)2 " sin2 x            and dz/dx " sin x... (2)
Integrating,                   z " sin x dx/                      or z " –cos x.... (3)
Now changing the independent variable form x to z by using relation (3), the given equaiton

is transformed into                            (d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (4)

where P1 "
2 2

2 2
cos ( cot ) (sin )/ ( / ) 0,

( / ) sin
x x xd z dx P dz dx

dz dx x
! 1!

� � by (1) and (2)

Q1 "
2 2

12 2 2 2
( sin ) cos sin1, cos .

( / ) sin ( / ) sin
Q x R x xR x z

dz dx x dz dx x
1 0

� � 1 � � � � 1

> From (5),       (d2y / dz2) – y " –z    or     (D2
1 – 1)y " –z, where D1 Η d/dz, ... (5)

Its auxiliary equation is                   D1
2 – 1 " 0              so that D1 " Ι 1

> C.F. of (5) is " cos cos
1 2 1 2

z z x xc e c e c e c e1 1! � ! , by (3)

P.I. " 2 1 2
1 12 2

1 1

1 1( ) (1 ) (1 ...) cos .
1 1

z z D z D z z x
D D

11 � � 1 � ! ! � � 1
1 1

Hence the required solution is                  y " cos cos
1 2 cos .x xc e c e x1 ! 1

(b) Try yourself as in part (a). Ans. y " cos cos
1 2

x xc e c e1 !
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Ex. 9. Solve (a) (1 ! x)2 (d2y / dx2) ! (1 ! x)(dy/dx) ! y " 4  cos log (1 ! x).
[Delhi Maths (Hons.) 1993]

2 2 2( )(1 ) ( / ) (1 )( / ) 4sin log(1 )b x d y dx x dy dx y x! ! ! ! � ! .
Sol. (a) Dividing by (1 ! x)2, the given equation in standard form is

2

2 2 2
4 cos log(1 )1 1 .

1 (1 ) (1 )
xd y dy y

x dxdx x x
!

! ! �
! ! !

... (1)

Comparing (1) with y# ! Py∃ ! Q y " R, we have
P " (1 ! x)–1,                 Q " (1 ! x)–2 and R " 4(1 ! x)–2 cos log(1 ! x). ... (2)
Choose z such that   (dz/dx)2 " 1/(1 ! x)2            so that dz/dx " 1/(1 ! x) ... (3)

Integrating it             z " 1
1

dx
x!/                or z " log (1 ! x). ... (4)

With this z, (1) reduces to (d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (5)

where P1 "
2 2 2 1 1

2 2
( / ) ( / ) (1 ) (1 ) (1 ) 0,

( / ) (1 )
d z dx P dz dx x x x

dz dx x

1 1 1

1
! 1 ! ! ! !

� �
!

Q1 "
2

2 2
(1 ) 1,

( / ) (1 )
Q x

dz dx x

1

1
!

� �
!

R1 "
2

2 2
4(1 ) cos log(1 ) 4cos

( / ) (1 )
R x x z

dz dx x

1

1
! !

� �
!

> From (5), (d2y / dz2) ! y " 4 cos z or (D1
2 ! 1)y " 4 cos z, where D1 Η d/dz. ... (6)

Its auxiliary equation is D1
2 ! 1 " 0 so that D1 " Ι i

> C.F. of (6) " c1 cos z ! c2 sin z " c1 cos log (1 ! x) ! c2 sin log (1 ! x), by (4)

P.I. " 2 2 2
1 1

1 14cos 4 cos 4 sin ,
(2 1)1 1

zz z z
D D

� �
∆! !

as 2 2
1

1 cos sin
2
zaz az
aD a

�
!

" 2 log (1 ! x) sin log (1 ! x), using (4)
Hence the required general solution is y " C.F. ! P.I., i.e.

y " c1 cos log (1 ! x) ! c2 sin log (1 ! x) ! 2 log (1 ! x) sin log (1 ! x).

(b) Try yourself as in part (a) 2 2
1

1Use the result sin cos
2
zaz az
aD a

� 1
!

, D1 Η
d
dz

Ans. y " c1 cos log (1 ! x) ! c2 sin log (1 ! x) – 2 log (1 ! x) cos log (1 ! x)
Ex. 10. Solve (d2y / dx2) ! (tan x – 1)2 (dy/dx) – n(n – 1)y sec4x " 0.
Sol. Comparing the given equation with y# ! Py∃ ! Q y " R, we get
P " (tan x – 1)2, Q " –n(n – 1) sec4 x and R " 0. ... (1)
Choose z such that                                  (dz/dx)2 " sec4 x ... (2)

or                    dz/dx " sec2x so that z " tan x             ... (3)
With this z, the given equation becomes (d2y / dz2) ! P1(dy/dz) ! Q1y " R1, ... (4)

where P1 "
2 2 2 2 2

2 4
( / ) ( / ) 2sec tan (tan 1) sec 1,

( / ) sec
d z dx P dz dx x x x x

dz dx x
! ! 1

� �

Q1 "
4

12 4 2
( 1)sec ( 1) and 0.

( / ) sec ( / )
Q n n x Rn n R

dz dx x dz dx
1 1

� � 1 1 � �

> From (4), (d2y / dz2) ! (dy/dz) – n(n – 1)y " 0 or [D1
2 ! D1 – n(n ! 1)]y " 0, D1 Η d/dz
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Its auxiliary eqaution is D1
2 ! D1 – n(n – 1) " 0      or    (D1

2 – n2) ! (D1 ! n) " 0
or (D1 ! n) (D1 – n) ! (D1 ! n) " 0 or (D1 ! n) (D1 – n ! 1) " 0 so that D1 " –n, n –1

> The required solution is y " ( 1)
1 2

nz n zc e c e1 1! tan ( 1) tan
1 2

n x n xc e c e1 1� ! , as z " tan x.

EXERCISE 10(C)

Solve the following differential equations :
1. y# ! y∃ tan x ! y cos2x " 0. [Delhi Maths (G) 2004; Meerut 1996; Mysore 2004]

Ans. y " c1 cos(sin x) ! c2 sin (sin x)

2. xy# ! (4x2 – 1)y∃ ! 4x3y " 2x3. Ans. y "
2 2

1 2( ) (1/ 2)xe c c x1 ! !

3. (x3 – x)y# ! y∃ ! n2x3y " 0. Ans. y " 2 1/ 2 2 1/ 2
1 2cos{ ( 1) } sin { ( 1) }.c n x c n x1 ! 1

4. y# ! (tan x – 3 cos x)y∃ ! 2y cos2x " cos4x.

Ans. y " sin sin 2
1 2 (5 / 4) (3/ 2) sin (1/ 2) sin .x xc e c e x x1! 1 1 ∆ 1 ∆

5. (a) (a2 – x2)y# – (a2/x)y∃ ! (x2/a)y " 0. [BundelKhand 2001]
Ans. y " c1 cos {(a2 – x2)/a}1/2 ! c2sin{(a2 – x2)/a}1/2

(b) (81 – x2)y# – (81/x)y∃ ! (x2/9)y " 0. Ans. y " c1 cos{(81 – x2)1/2/9} ! c2 sin{(81 – x2)1/2/9}

6. y# ! (3 sin x – cot x)y∃ ! 2y sin2x " e–cos x sin2x. Ans. y " cos 2cos cos
1 2 (1/ 6)x x xc e c e e1! ! ∆

7. y# – (1 ! 4ex)y∃ ! 3e2xy " 2( )xx ee ! . [Agra 2006;Kanpur 1997] Ans. y " 3 2
1 2

x x xe e ec e c e e! 1
8. y# ! (1 – 1/x)y∃ ! 4x2e–2xy " 4(x2 ! x3)e–3x.

Ans. y " c1 cos {2e–x(1 ! x)} ! c2sin{2e–x (1 ! x)} ! ex(1 ! x).

9. y# – (8e2x ! 2)y∃ ! 4e4xy " e6x. Ans. y "  2 2
1 2[ cos( 3) sin( 3)] (1/ 4) 1x xe c x c x e! ! ∆ !

10. 12 An important theorem.

If y = y1(x) and y = y2(x) are two solutions of the equation 2 2( / )d y dx + P(x) (dy/dx)
+ Q(x)y = 0, where P(x), Q(x) are continuous function of x, prove that

         2 1
1 2

P dxdy dyy y c e
dx dx

1/1 � , c being an arbitrary constant.

[Himachal 2000; Kalkata 2001, 03 05, 07; Kurukshetra 200, 03; Allahabad 2002, 04, 07;
Lucknow 2001, 04]

Proof. Since y1 and y3 are solutions of the given equation, we have
2

1 1
12 ( ) ( ) 0.

d y dy
P x Q x y

dxdx
! ! � ... (1)

and
2

2 2
22 ( ) ( ) 0.

d y dyP x Q x y
dxdx

! ! � ... (2)

Multiplying (1) by y2 and (2) by y1 and then substracting, we get
2 2

2 1 2 1
1 2 1 22 2 0.

d y d y dy dy
y y P y y

dx dxdx dx
% &1 ! 1 �∋ (
) ∗

... (3)

Let   2 1
1 2 .

dy dyy y v
dx dx

1 � ... (4)
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Differentiating both sides of (4) w.r.t. x, we get
2 2

2 1 2 1 2 1
1 22

d y dy dy d y dy dy dvy y
dx dx dx dx dx dxdx

% & % &
! 1 ! �∋ ( ∋ (∋ ( ∋ (

) ∗ ) ∗
         or

2 2
2 1

1 22 2 .
d y d y dvy y

dxdx dx
1 �

> (3) becomes               0
dv Pv
dx

! �                or                   .
dv Pdx
v

� 1

Integrating,                 log v – log c " P dx1/               or v " P dxce1/

or 2 1
1 2

P dxdy dyy y ce
dx dx

1/1 � ,  using (4)

10.13 Method of variation of parameters
We have already explained the method of variation of parameters for solving dy2/dx2

! P(dy/dx) ! Qy " R, where P,Q and R are functions of x in Art 7.3, Art. 7.4A and Art. 7.4B in
chapter 7. So far we have used the method of variation of parameters to solve linear differential
equations with constant coefficients or Cauchy-Euler equations (refer chapter 7). In this article, we
purpose to solve differential equations whose complementary  function can be obtained by
methods of  the present chapter However, it should be carefully noted that the method of variation
of parameters is used when

(i) The solution of y2 ! Py1 ! Qy " R coannot be obtained by mehtods explained in Art.
10.3, Art. 10.7 and Art. 10.10.

(ii) You are asked in solve a given equation by using variation of parameters.

10.14 Solved examples based on Art. 10.13
Ex. 1. Verify that ex and x are solutions of the homogeneous equation corresponding to

(1 – x)y2 ! xy1 – y " 2(x – 1)2e–x, 0 < x < 1. Thus find its general solution.
Sol. The given equation in standard form is

y2 ! [x/(1 – x)]y1 – y/(1 – x) " 2(1 – x)e–x. ... (1)
Consider y2 ! [x/(1 – x)]y1 – y/(1 – x) " 0 ... (2)

which is said to be the homogeneous equaiton corresponding to (1). Take y " ex so that y1 " ex,
y2 " ex. With these values,

the L.H.S. of (2) "
1 1 0.

1 1 1

x
x x xx e x xe e e

x x x
1 ! 1

! 1 � �
1 1 1

So ex is a solution of (2). Next, take y " x so that y1 " 1, y2 " 0. with these values,

the L.H.S. of (2) " 1
0 0.

1 1
xx

x x
! 1 �

! 1

So x is also a solution of (2). Now, the Wronskian W(ex, x) of ex and x is given by

W(ex, x) " 0
1

x
x x

x

e x
e xe

e
� 1 5

Hence ex and x are linearly independent solutions of (2) [refer chapter 1]. Hence the general
solution of (2) is y " aex ! bx. So the C.F. of (1) is aex ! bx, a and b being arbitrary constants. We
shall now use the method discussed in Art. 7.4B of chapter 7

Let y " Aex ! Bx ... (3)
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be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3), we get

y1 " A1ex ! Aex ! B1x ! B. ... (4)
Choose A and B such that A1ex ! B1x " 0. ... (5)
Then (4) reduces to y1 " Aex ! B. ... (6)
Differentiating (6),               y2 " A1ex ! Aex ! B1, where A1 " dA/dx, B1 " dB/dx ... (7)
Using (3), (6) and (7), (1) reduces to A1ex ! B1 " 2(1 – x)e–x. ... (8)
Subtracting (5) from (8), we have
(1 – x)B1 " 2(1 – x)e–x   or      B1 " dB/dx " 2e–x      so that B " c1 – 2e–x.
Then (5) gives A1 " dA/dx " %##$ 2xe–x)/ex " –2xe–2x.
Integrating and using the chain rule of integration by parts, we have

A " 2 2 2 2
2 2 2

1 1 1
2 2 ( ) (1)

2 4 2
x x x xxe dx c c x e e c e x1 1 1 18 9% & % & % &1 ! � 1 1 1 � ! !∋ ( ∋ ( ∋ (: ;) ∗ ) ∗ ) ∗< =/

Putting the value of A and B in (3), the required solution is
y " [c2 ! e–2x(x ! 1/2)]ex ! (c1 – 2e–x)x " c1x ! c2ex ! e–x[(1/2) – x]

Ex. 2. (i) Using the method variation of parameters, solve the differential equation
(x – 1)D2y – xDy + y = (x – 1)2, where D Η d/dx. [Guwahati 2007]

(ii) Apply the method of variation of parameters to solve (x – 1)y2 – xy1 + y = (x – 1)2, given
that the integrals in the complementary function are x and ex

Sol. (i) The given equation in the standard form  y2 + Py1 + Q y = R  is

2 1
1

1.
1 1

xy y y x
x x

1 ! � 1
1 1

... (1)

Consider 2 1
1

0.
1 1

xy y y
x x

1 ! �
1 1

... (2)

Comparing (2) with y2 ! Py1 ! Q y " R, we have
P " x/(x – 1), Q " 1/(x – 1). We easily verify that

P ! Qx " 0
1 1

x x
x x

1 ! �
1 1

               and 1 ! P ! Q " 1
1 0.

1 1
x

x x
1 ! 1

1 1
So x and ex are integrals of C.F. (1) or solutions of (2). [See Art. 10.3].Again, we have

Wronskian of ex and x " W(ex, x) " 0.
1

x
x x

x

e x
e xe

e
� 1 5

Hence, ex and x are linearly independent solutions of (2) [See chapter 1].
Hence, the general solution of (2) is y " aex ! bx. So the C.F. of (1) is aex ! bx, a and b being

arbitrary constants. We now use Art. 7.4B of chapter 7.
Let y " Aex ! Bx ... (3)

be the complete solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiatin (3), we get

y1 " A1ex ! Aex ! B1x ! B. ... (4)
Choose A and B such that A1ex ! B1x " 0. ... (5)
Then (4) reduces to y1 " Aex ! B. ... (6)
Differentiating (6), y2 " A1ex ! Aex ! B1,  where A1 " dA/dx, B1 " dB/dx ... (7)
Using (3), (6) and (7), (1) reduces to A1ex ! B1 " x – 1. ... (8)
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Subtracting (5) from (8), we have (1 – x)B1 " x – 1
Hence B1 " dB/dx " –1          so that          B " c1 – x.
Then (5) gives                A1 " dA/dx " x/ex " xe–x.

Integrating, A " c2 ! 2 2( )( ) {1 ( )} ( 1)x x x xxe dx c x e e dx c e x1 1 1 1� ! 1 1 0 1 � 1 !/ /
Putting the above values of A and B in (3), the required solution is

y " [c2 – e–x(x ! 1)]ex !  (c1 – x)x " c1x ! c2ex – (x2 ! x ! 1).
Part (ii). Since x and ex are integrals in C.F. So aex ! bx is C.F. of (1). So now start from

equation (3) onwards as in part (i).
Ex. 3. Apply the method of variation of parameters to solve the equation

(x ! 2)y2 – (2x ! 5)y1 ! 2y " (x ! 1)ex. [Kanpur 2009]
Or Solve (x ! 2)y2 – (2x ! 5)y1 ! 2y " (x ! 1)ex by method of variation of parameters when C.F.
is a (2x ! 5) ! be2x. [Kakitya 1997]

Sol. Putting the given equation in standard form y2 ! Py1 ! Q y " R, we get

2 1
2 5 2 1 .

2 2 2
xx xy y y e

x x x
! !

1 ! �
! ! !

... (1)

Consider 2 1
2 5 2 0.

2 2
xy y y

x x
!

1 ! �
! !

... (2)

Comparing (2) with y2 ! Py1 ! Q y " R, we have
P " –(2x ! 5)/(x ! 2),                 Q " 2/(x ! 2)               and              R " 0.

Here 22 ! 2P ! Q " 2(2 5) 24 0.
2 2

x
x x

!
1 ! �

! !
Hence u " e2x [See Art. 10.3] is an integral of (2). We now use method of Art. 10.4 to find

solution of (2). Let the complete solution of (2) be y " uv. Then (2) reduces to
2

2
2d v du dv RP
u dx dx udx

8 9! ! �: ;< =
or

2
2

2 2
2 5 1 2 0

2
x

x
d v x dve

x dxdx e
!8 9! 1 ! ∆ �: ;!< =

or
2

2
2 3 0.
2 2

d v x dv
x dxdx

!
! �

!
... (2)∃

Putting dv/dx " q so that d2v / dx2 " dq/dx, (2)∃ becomes

1
2 0

2
dq

q
dx x

8 9! 1 �: ;!< =
or

1
2 0

2
dq

dx
q x

8 9! 1 �: ;!< =
Integrating,                     log q – log a∃ – log (x ! 2) " a' being an arbitrary constant

or           q " a∃ (x ! 2)e–2x                       or dv/dx " a∃ (x ! 2)e–2x

Integrating by chain rule of integration by parts, we have

or  v " 2 21 1
( 2) (1)

2 4
x xa x e e b1 18 9% & % &∃ ! 1 1 !∋ ( ∋ (: ;) ∗ ) ∗< =

or ≅ Α ≅ Α2( / 4) 2 4 1 2 5 , ( / 4)xv a e x b a x b where a a1∃ ∃� 1 ∆ ! ! ! � ! ! � 1

Hence solution of (2) is             ≅ Α6 7 ≅ Α2 2 22 5 2 5x x xy u e a x e b a x be1� ? � ! ! � ! !

Thus, a(2x ! 5) ! be2x is C.F. of (1), a and b being arbitrary constants.
Let y " A(2x ! 5) ! Be2x. ... (3)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Linear Equations of Second Order 10.51

be the completet solution of (1). Then A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (3), we get

y1 " A1(2x ! 5) ! 2A ! B1e2x ! 2Be2x. ... (4)
Choose A and B such that A1(2x ! 5) ! B1e2x " 0. ... (5)
Then (4) reduces to y1 " 2A ! 2Be2x ... (6)
Differentiating (6), y2 " 2A1 ! 2B1e2x ! 4Be2x. ... (7)
Using (3), (6) and (7), (1) reduces to  2A1 ! 2B1e2x " [(x ! 1)/(x ! 2)]ex. ... (8)
Multiplying (5) by 2 and subtracting it from (8), we get

A1(–4x – 8) " 1
2

xx e
x

!
!

or A1 " 2
( 1) .

4( 2)
xdA x e

dx x
!

� 1
!

... (9)

Integrating,                   A " 12
1 1
4 ( 2)

xx e dx c
x

!
1 !

!/ , c1 being an arbitrary constant

or A " 1 2
1 12

1 ( 2) 1 1 [( 2) ( 2) ]
4 4( 2)

x xxc e dx c e x x dx
x

1 1! 1
1 � 1 ! 1 !

!/ /

or A " 1
1 (1/ 4) ( 2) , as [ ( ) ( )] ( )x x xc e x e f x f x dx e f x1 ∃1 ∆ ! ! �/ ... (10)

From (5) and (9), B1 "
≅ Α ≅ Α 2 2

2 2 2

2 5 1 (2 7 5) 2( 2) ( 3)
4( 2) 4( 2) 4( 2)

x x
xx x e x x e x xdB e

dx x x x

1 1
1! ! ! ! ! 1 !

� � �
! ! !

or 1 2
2

1 ( 2) 1 1 1 [ ( 2) ( 2) ]
2 2 44( 2)

x x x xdB xe e e e x x
dx x

1 1 1 1 1 1! !
� 1 � ! 1 ! 1 !

!

Integrating, B " 1
2 (1/ 2) (1/ 4) ( 2)x xc e e x1 1 11 ∆ ! ∆ ! , c2 being an arbitrary constant ... (11)

[Using formula [ ( ) ( )] ( )ax axe af x f x dx e f x∃! �/ for a " –1]

Using (10) and (11) in (3), the required solution is

y " 1 1 2
1 2(1/ 4) ( 2) (2 5) (1/ 2) (1/ 4) ( 2)x x x xc e x x c e e x e1 1 1 18 9 8 91 ∆ ! ! ! 1 ∆ ! ∆ !< = < =

or y " 2
1 2

1 1 2 5(2 5) 2
4 2 2

x x xc x c e e
x x

!8 9! ! ! 1 1: ;! !< =
" c1 (2x + 5) + c2e2x – ex

Ex. 4. Apply the method of variation of parameters to solve (1 – x)y2 ! xy1 – y " (1 – x)2

[Delhi Maths (G) 2006; Kanpur 2005]
Sol. Dividing by (1 – x) and re-writing, the given equation becomes

y2 – {x/(x – 1)}y1 ! {1/(x – 1)} y " – (x – 1) ... (1)
Consider y2 – {x/(x – 1)}y1 ! {1/(x – 1)}y " 0 ... (2)
Comparing (2) with y2 ! Py1 ! Q y " 0,        P " (–x)/(x – 1)     and       Q " 1/(x – 1).
> P ! Qx " (–x)/(x –1) ! x/(x –1) " 0 and 1 ! P ! Q " 1 ! ( –x)/(x – 1) ! 1/(x – 1) " 0.
Hence by working rule 10.4, we see that x and ex are integrals of C.F. of (1) or solutions of

(2). Again the Wronkian W of x and ex is given by

W " ( 1) 0,
/ ( ) / 1

x x
x

x x

x e x e
e x

dx dx d e dx e
� � 1 5 ... (3)

showing that x and ex are linearly independent solutions of (2). Hence the general solution of (2)
is y " ax ! bex and therefore C.F. of (1) is ax ! bex, a and b being arbitrary constants.
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We now use working rule 7.4 A of chapter 7.
Comparing (1) with y2 ! Py1 ! Q y " R, here R " –(x – 1) ... (4)
Let              u " x and v " ex             ... (5)
Then, P.I. of (1) " u f(x) ! vg(x), ... (6)

where               f(x) "
vR dx
W

1/ "
( 1)
( 1)

x

x
e x dx
e x

1
1/ " dx x�/  by (3), (4) and (5)

and g(x) "
( 1)
( 1)

x
x

uR x xdx dx xe dx
W e x

11
� 1 � 1

1/ / /

6 7( ) ( ) ( ) ( 1)x x x x xx e e dx xe e e x1 1 1 1 1� 1 1 1 1 � 1 1 1 � !/
Substituting the above values of u,v, f(x) and g(x) in (6), we have

P.I. of (7) " 2( 1) 1x xx x e e x x x10 ! 0 ! � ! ! . Hence the general solution of (1) is

y " C.F + P.I., i.e. y " ax ! bex ! x2 ! x ! 1, a and b being arbitrary constants.
Ex. 5. Solve by the method of variation of parameters x(dy/dx) – y " (x – 1) (d2y/dx2 – x ! 1)

[I.A.S. 2000]
Sol. Re-writing the given equation, we have
xy1 – y " (x – 1)y2 – (x – 1)2 or  y2 – {x/(x – 1)}y1 ! {1/(x – 1)}y " x – 1 ... (1)
Consider y2 – {x/(x – 1)}y1 ! {1/(x – 1)}y " 0 ... (2)
Comparing (2) with y2 ! Py1 ! Q y " 0,  here       P " (–x)/(x – 1)  and Q " 1/(x – 1).
Then, P ! Qx " (–x)/(x – 1) ! x/(x – 1) " 0, 1 ! P ! Q " 1 ! (–x)/(1 – x) ! 1/(x – 1) " 0.
Hence by working rule 10.4, we see that x and ex are integrals of C.F. of (1) or solutions of

(2). Again the Wronikian W of x and ex is given by

W " ( 1) 0,
/ ( ) / 1

x x
x

x x

x e x e
e x

dx dx d e dx e
� � 1 5 ... (3)

showing that x and ex are linearly independent solutions of (2).
Hence, the general solution of (2) is y " ax ! b ex and therefore C.F. of (1) is ax ! b ex, a and

b being arbitrary constants. We now use working rule 7.4B of chapter 7.
Comparing (1) with        y2 ! Py1 ! Q y " R,        here         R " x – 1. ... (4)
Let                                  u " x                     and                  v " ex. ... (5)
Then,                                P. I. of (1) " u f(x) ! v g(x), ... (6)

where f(x) " ( 1)
( 1)

x

x
vR e xdx dx dx x
W e x

1
1 � 1 � 1 � 1

1/ / / , using (2), (4) and (5)

and g (x) " ( 1)
( 1)

x
x

uR x xdx dx xe dx
W e x

11
� �

1/ / / , by (2), (4) and (5)

" ( ) 1 ( ) ( 1)x x x x xx e e dx xe e e x1 1 1 1 11 1 0 1 � 1 1 � 1 !/
Substituting the above values of u, v, f(x) and g(x) in (6), we have

                P.I. of (1) " x × (–x) ! ex{–e–x(x ! 1)} " –(x2 ! x ! 1)
Hence the general solution of (1) is y " C.F. ! P.I., y " ax ! b ex – (x2 ! x ! 1).
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Ex. 6 Solve by the method of variation of parameters d2y/dx2 + (1 – cot x)(dy/dx) – y cot
x " sin2 x
[Agra 1995, 99; Garhwal 1997; Meerut 1999; Rohilkhanad 1997]

Sol. Given                          2(1 cot ) cot siny x y y x x∃∃ ∃! 1 1 � ... (1)

First we shall find C.F. of (1), i.e., solution of (1 cot ) cot 0y x y y x∃∃ ∃! 1 1 � ... (2)

Comparing (2) with 0,y Py Qy∃∃ ∃! ! � here 1 cot , cot ,P x Q x R o� 1 � 1 � ...(3)

> 1 1 (1 cot ) cot 0,P Q x x1 ! � 1 1 1 � showing that u " e–x ... (4)
is a part of C.F. of (2)

Let the complete solution of (2) be                                y " uv ... (5)

Then v is given by                          
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or
2

2
2{1 cot ( )} 0,x

x
d v dvx e

dxdx x
1

1
! 1 ! ∆ 1 �  using (3) and (4)

or 2 2( / ) (1 cot )( / ) 0d v dx x dv dx1 ! � ... (6)

Let                  /dv dx q� so that 2 2/ /d v dx dq dx� ... (7)

Then (6) becomes           / (1 cot ) 0dq dx x q1 ! �          or           (1/ ) (1 cot )q dq x dx� !

Intergrating it,         1log log log sinq c x x1 � !            or              q / (c1sin x) " ex

or               1 sinxq c e x�                          or                     1/ sinxdv dx c e x�

or 1 sinxdv c e x dx�                           so that 1 2sinxv c e x dx c� !/

or         1 2
1 (sin cos )
2

xv c e x x c� 1 ! ,           as 2 2sin ( sin cos )
ax

ax ee bx dx a bx b bx
a b

� 1
!/

or 1 2(sin cos ) ,xv c e x x c∃� 1 !                         where                1 1 / 2c c∃ � ... (8)
From (4) (5) (8), the complete solution of (2), i.e., C.F. of (1) is given by

1 2 1 2{ (sin cos ) } (sin cos )x x xv e c e x x c c x x c e1 1∃ ∃� 1 ! � 1 !

Let (sin cos ) xy A x x Be1� 1 ! ... (9)
be the complete solution of (1). Then, A and B are functions of x which are so chosen that (1) will
be satisfied. Differentiating (9) w.r.t ‘x’, we have

,
1 1(cos sin ) (sin cos ) x xy A x x A x x Be B e1 1∃ � ! ! 1 1 !                    ... (10)

where 1 /A dA dx� 1 /B dB dx� . Choose A and B such that

1 1(sin cos ) 0xA x x B e11 ! � ... (11)

Then (10) reduces to                  (cos sin ) xy A x x Be1∃ � ! 1 ... (12)

Differentiating (12),       1 1(cos sin ) ( sin cos ) x xy A x x A x x B e Be1 1∃∃ � ! ! 1 ! 1 ! ... (13)

Substituting the values of y, y', and y# given by (9), (12) and (13) in (1), we get
2

1 1(cos sin ) sinxA x x B e x1! 1 � ... (14)
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Solving (11) and (14) for Al and B1, we have

1 / (1/ 2) sinA dA dx x� � ∆                 and 2
1 / (1/ 2) (sin cos sin )xB dB dx e x x x� � ∆ 1

Β (1/ 2) sindA x� ∆ dx so that 1(1/ 2) cosA x c� 1 ∆ !

2(1/ 4) (2sin cos 2sin ) (1/ 4) (sin 2 cos 2 1)x xdB e x x x dx e x x dx� ∆ 1 � ∆ ! 1

so that 2(1/ 4) sin 2 (1/ 4) cos 2 (1/ 4)x x xB e x dx e x dx e c� ∆ ! ∆ 1 ∆ !/ /
or 2(1/ 4) (1/ 5) (sin 2 2cos 2 ) (1/ 4) (1/5) (cos 2 2sin 2 ) (1/ 4)x x xB e x x e x x e c� ∆ ∆ 1 ! ∆ ∆ ! 1 ∆ !

2 2 2 2
( sin cos ) ( cos sin )sin and cos

ax ax
ax axe a bx b bx e a bx b bxe bx dx e bx dx

a b a b

8 91 !
� �: ;

! !< =
/ /�

Thus, 2(1/ 20) (3sin 2 cos2 ) (1/ 4)x xB e x x e c� ∆ 1 1 ∆ !
Substituting the above values of A and B is  (9), the required solution of (1) is

1 2{ (1/ 2) cos } (sin cos ) [(1/ 20) (3sin 2 cos 2 ) (1/ 4) ]x x xy x c x x e e x x e c1� 1 ∆ ! ∆ 1 ! ∆ 1 1 ∆ !

or 2
1 2(sin cos ) (1/ 4) (2sin cos 2 cos )xy c x x c e x x x1� 1 ! 1 ∆ 1 (1/ 20) (3sin 2 cos2 ) (1/ 4)x x! ∆ 1 1

or 1 2(sin cos ) (1/ 4) (sin 2 1 cos2 )xy c x x c e x x1� 1 ! 1 ∆ 1 1 (1/ 20) (3sin 2 cos 2 ) (1/ 4)x x! ∆ 1 1

or 1 2(sin cos ) (1/10) (sin 2 2cos2 )xy c x x c e x x1� 1 ! 1 ∆ 1

Ex. 7. Solve by the method of variation of  parameters 2 32 (1 ) 2( 1) .x y x x y x y x∃∃ ∃1 ! ! ! �
[Rajasthan 1994; Rohilkhanad 1994]

Sol. Re-writing the given equation in sandard form, we get
2

2 2
2(1 ) 2( 1)d y x dy x y x

x dxdx x
! !

1 ! � ...(1)

Fisrst we shall find the C.F. of (1), that is, solution of
2

2 2
2(1 ) 2( 1) 0d y x dy x y

x dxdx x
! !

1 ! � ...(2)

Comparing (2) with ,y Py Qy R∃∃ ∃! ! � 2
2(1 ) 2( 1), and 0x xP Q R

x x
! !

� 1 � � ...(3)

Here, 0,P xQ! � showing that u " x ...(4)
is a part of C.F. of (2).

Let the complete solution of (1) be y " uv ...(5)

Then v is given by
2

2
2d v du dv RP
u dx dx udx

% &! ! �∋ (
) ∗

or       
2 2(1 ) 2 0d v x dx dv

dx x x dx dx
!8 9! 1 ! �: ;< =

           or            
2

2 2 0,d v dv
dxdx

1 �  using (3) and (4)

or            2( 2 ) 0,D D v1 �                       where                           D Η d / dx ...(6)
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Auxiliary equation of (6) is                2 2 0D D1 �               giving                     D " 0, 2

> Solution of (6) is . 2 2
1 2 1 2

o x x xy c e c e c c e� ! � ! , c1 and c2 being arbitrary constants ...(7)
From (4), (5) and (7), the complete solution of (1), i.e., C.F. of (1) is given by

                    2
1 2( )xy x c c e� !                      or                      2

1 2
xy c x c x e� ! ...(8)

Let 2xy Ax Bx e� ! ...(9)
be the complete solution of (1). Then, A and B are functions of x which are so choosen that (1) will
be satisfied. Differentiating (9), w.r.t. ‘x’, we get

2 2 2
1 1( 2 ) ,x x xy A A x B e x e B x e∃ � ! ! ! ! ...(10)

where 1 /A dA dx�    and   1 /B dB dx� . Choose A and B such that
2

1 1 0xA x B x e! � ...(11)

Then, (10) reduces to                       2 (1 2 )xy A B e x∃ � ! ! ...(12)
Differentiating (12),              2 2 2

1 1 (1 2 ) {2 (1 2 ) 2 }x x xy A B e x B x x e∃∃ � ! ! ! ! ! ...(13)
Substituting the values of y, y' and y'' given by (9), (12) and (13) is (1), we have

2 2 2 2
1 1{ (1 2 ) 4 (1 )} 2 (1 ){ (1 2 )}x x xx A B e x Be x x x A Be x! ! ! ! 1 ! ! ! 2 32( 1)( )xx Ax Bx e x! ! ! �

or        2 2 2 3
1 1 (1 2 )xA x x B e x x! ! �              or              2

1 1(1 2 ) xA B x e x! ! � ...(14)
Solving (11) and (14) for A1 and B1, we have
    1 / (1/ 2)A dA dx� � 1 and 2

1 / (1/ 2) xB dB dx e1� � ∆

Integrating these, 1( / 2)A x c� 1 ! , and 2
2(1/ 4) xB e c1� 1 ∆ !

Substituting the above values of A and B is (9), the required solution is
2 2

1 2{ ( / 2) } { (1/ 4) }x xy x c x e c x e1� 1 ! ! 1 ∆ ! or       2 2
1 2 ( / 2) ( / 4)xy c x c x e x x� ! 1 1

EXERCISE 11(D)

Apply the method of variation of parameters to solve the following equations
1. (x2 ! 1)y2 – 2xy1 ! 2y " 6(x2 ! 1)2 [Bangalore 1992]
2. (x2 –1)y2 – 2xy1 ! 2y " (x2 – 1)2, given that x and (x2!1) are solutions of the reduced

equation [Kanpur 1996]
3. Solve (1 – x2)y2 – 4xy1 – (1 ! x2)y " x when y1 " (cos x)/(1 – x2), y2 " (sin x)/(1 – x2) are

its two complementary solutions. [Ravishankar 1995]

4. 2 2 3/2(1 ) (1 )x y xy y x x∃∃ ∃1 ! 1 � 1

Ans. 2 1/ 2 1 2 3/ 2
1 2{(1 ) sin } (1/9) (1 )y c x x x c x x x1� 1 ! ! 1 ∆ 1

10.15 Solutions by Operators
Let the given equation be                 2 2( / ) ( / ) ,S d y dx P dy dx Qy R! ! � ...(1)

where P, Q, R and S are functions of x.
Writing D for d/dx, (1) gives [SD2 ! PD ! Q]y " R. ... (2)
Sometimes it will be possible to factorise the left-hand side into two linear operators acting

on y. In such a case the equation is integrated in two stages. We illustrate the method by the
following solved examples.

Important Remarks. Remember that the factors are not commutative since these will involve
functions of x directly. Hence care should be taken while using the factorised operators in the
correct order. So test the correctness of the order before using the operators.
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10.16 Solved Examples based on Art. 10.15
Ex. 1. Solve y# ! (1 – x)y∃ – y " ex. [Kurukshetra 2000, Rohilkhand 1995]
Sol.  Writing D for d/dx, the given equation becomes     [xD2 ! (1 – x)D – 1]y " ex. ... (1)
Now, xD2 ! (1 – x)D – 1 " xD2 – xD ! D – 1 " xD(D – 1) ! D – 1
> xD2 ! (1 – x)D – 1 " (xD ! 1)(D – 1). ... (2)
If we take the other order i.e. (D – 1)(xD ! 1), then we get
         (D – 1)(xD ! 1) " D(xD ! 1) – (xD ! 1) " 10 D ! x 0 D2 ! D – xD –1,

which is different from L.H.S. of (2). So the order in (2) is correct.
Using (2), (1) gives (xD ! 1)(D – 1)y " ex. ... (3)
Let                                                 (D – 1)y " v. ... (4)
Then (3) gives               (Dx ! 1)v " ex. ... (5)

We first slove (5), i.e.      xdvx v e
dx

! �               or 1 1 ,xdv v e
dx x x

! �

which is linear. Its I.F. " (1/ ) logx dx xe e x0/ � � and solution is

             vx " 1 1(1/ ) ;x xx x e dx c e c0 ! � !/ c1 being on arbitary constant.

> v " (1/x)ex ! (1/x)c1. Putting this  value of ? in (4), we get
(D – 1)y " (1/x)ex ! (1/x)c1 or(dy/dx) – y " (1/x)ex ! (1/x)c1,

which is again a linear equation of the first order.

Its I.F. " .dx xe e1 1/ �  Hence its solution is given by

ye–x " 2 1 2 1
1 1 log .

x
x x ec e c e dx c x c dx

x x x

1
1% &! ! � ! !∋ (

) ∗/ /

> The solution of the given equation is y " 1 2( / ) log .x x x xc e e x dx c e e x1 ! !/
Ex. 2. Factorise the operator on the L.H.S of [(x ! 2)D2 – (2x ! 5)D ! 2]y " (x ! 1)ex and hence

solve it. [Guwahat 1997, Kanpur 1998]
Sol. L.H.S. of the given equation

" (x ! 2)D2 – [2(x ! 2)+1] ! 2 " (x ! 2)D2 – 2(x ! 2)D – (D – 2)
" (x ! 2)D (D – 2) – (D – 2) " [(x ! 2)D – 1](D – 2). ... (1)

We cannot reverse the order, for then
(D – 2)[(x ! 2)D – 1] " D ! (x ! 2)D2 – D – 2(x ! 2)D ! 2 " (x ! 2)D2 – (2x ! 4)D ! 2.

which is clearly different from L.H.S. of the given equation.
Thus the order (1) is correct. Hence the given equation gives

[(x ! 2)D – 1](D – 2)y " (x ! 1)ex. ... (2)
Put                                               (D – 2)y " v.                                            ... (3)
Then, (2) gives                     [(x ! 2)D – 1]v " (x ! 1)ex. ... (4)

We first solve (4), i.e., ( 2) ( 1) xdvx v x e
dx

! 1 � !           or
1 1

1 2
xdv xv e

dx x x
!

1 �
! !

,

Its I.F. " /( 2) log ( 2) 1/( 2)dx x xe e x1 ! 1 !/ � � !  and its solution is given by
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1
2

v
x

0
!

" 1 12 2
1 ( 2) 1

( 2) ( 2)
x xx xe dx c e dx c

x x
! ! 1

! � !
! !/ / " 122 ( 2)

x xe dx e dx c
x x

1 !
! !/ /

"
1 1

1
( 2) ( 2)

2 ( 1) ( 1)

x
x xe dx x xe e c

x

1 18 9! !
1 1 !: ;! 1 1< =

/ / , integrating by parts only the second integral

or ≅ Α ≅ Α/ 2 / 21
xx c e x? ! � ! !                      so that v " c1(x ! 2) ! ex.

Putting this in (3), (D – 2)y " c1(x ! 2) ! ex                  or dy/dx – 2y " c1(x ! 2) ! ex

Its I.F. " 2 2dx xe e1 1/ �  and its solution is

ye–2x " 2
2 1[ ( 2) ]x xc c x e e dx1! ! !/ " 2

2 1 ( 2) x xc c x e dx e dx1 1! ! !/ /
" 2 2

2 1
1 1

( 2)
2 4

x x xc c x e e dx e1 1 18 9% & % &! ! 1 ! 1∋ ( ∋ (: ;) ∗ ) ∗< =/ " 2 2
2 1 1

1 1( 2)
2 4

x x xc c x e c e e1 1 11 ! 1 1

or      y " 2
2 1( / 4) (2 5)x xc e c x e1 ∆ ! 1 , c1 and c2 being arbitrary constants

Ex. 3. Solve xy# ! (x – 2)y∃ – 2y " x3.
Sol. Writing D Η d/dx, the given equation may be written as

[xD2 ! (x – 2)D – 2]y " x2. ... (1)
But xD2 ! (x – 2)D – 2 " xD2 ! xD – 2D – 2 " xD(D ! 1) – 2(D ! 1) " (xD – 2)(D ! 1)
Hence (1) may be re-written as (xD – 2)(D ! 1)y"x3.                        ... (2)
Let (D ! 1)y " v.                                          ... (3)
Then, (2) gives (xD – 2)v" x3.

or           2dvx v
dx

1 " x3              or 22 .dv v x
dx x

1 � ... (4)

which is linear. Its. I.F. " (2/ ) 2 log 2x dx xe e x1 1 1/ � �  and so solution of (4) is

vx–2 " 2 2
1x x dx c10 !/ or vx–2 " x ! c1 or v " x3 ! c1x2 ... (5)

Using (5), (3) reduces to                           dy/dx + y " x3 + c1x2 ... (6)

which is linear. Its I.F. " .dx xe e/ �  So solution of (6) is

                xy e0 " 3 2
1 2( )xe x c x dx c! !/ , c1 and c2 being a arbitrary constants

or yex " (x3 ! c1x2)(ex) – (3x2 ! 2c1x)(ex) ! (6x ! 2c1)ex – 6ex ! c2

[By chain rule of integration by parts]
or y " x3 ! c1x2 – 3x2 – 2c1x ! 6x ! 2c1 – 6 ! c2e–x " x3 ! (c1 – 3)x2 ! (6 – 2c1)x ! 2(c1 – 3) ! c2e–x.

EXERCISE 10(E)
Solve the following differential equaitons:

1. 3x2y# ! (2 – 6x2)y – 4y " 0. Ans. y " 2 2 (2 /3) 2
2 1

x x x xc e e dx c e1 ! !/
2. 3x2y# ! (2 ! 6x – 6x2)y∃ – 4y " 0. [Rajasthan 2010] Ans. y " 2/3 2/3 2 2 (2/3 )

2 1 (1 / )x x x xc e c e x e dx1! /
3. (x ! 1)y# ! (x – 1)y∃ – 2y " 0. Ans. y " 2

1 2( 1) xc x c e1! !

4. xy# ! (x – 1)y∃ y " 0. Ans. y " c1(x – 1) ! c2e–x

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



10.58 Linear Equations of Second Order

5. xy# ! (x2 ! 1)y∃ ! 2xy " x2 given that y " 2, y∃ " 0, when x " 0. Ans. y "
2 / 21 xe1!

6. xy# ! (x – 1)y∃ – y " x2. Hint. (xD – 1)(D ! 1)y " x2. Ans. y " 2
1 2( 1) xc x c e x11 ! !

7. xy# ! (x – 1)y∃ – y " x4.

Hint. (xD – 1)(D ! 1)y " x4. Ans. y " 4 3 2
1 2( 1) (1/ 3) (4/ 3) 4xc e c x x x x1 ! 1 ! 1 !

8. [(x ! 3)D2 – (2x ! 7)D ! 2]y " (x ! 3)2 ex.

Hint. 2{( 3) 1}( 2) ( 3) .xx D D y x e! 1 1 � ! Ans. y " 2
2 1(2 7) ( 4)x xc e c x e x! ! 1 !

9. xy# – (x ! 2)y∃ ! 2y " x3. Hint. (xD – 2)(D – 1)y " x3 Ans. y " 3 2
1 2( 3)( 2 2) xx c x x c e1 1 ! ! ! !

10. x2y# ! y∃ – (1 ! x2)y " e–x. Ans. y " 2 (1/ )
1 2 (1/ 2) .x x x x xc e e dx c e e1 ! 1! 1 ∆/

11. xy2 ! (1 ! x)y1 ! y " ex. [Rohilkhand 1995] Ans. y " 1 2 1
1 2

x x x x xc e e x dx c e e e x dx1 1 1 1 1! !/ /

Miscellaneous problem in Chapter 10

Ex. 1. If �y x is a solution of the differential equation 2(2 / 1/ ) ( ) 0, 0 ,∃∃ ∃1 ! 1 � Λ ΛΦy x x xy y x

then its general solution is   (a) 2( )1Μ !Ν xe x  (b) 2( )Μ ! Ν xe x

                                  (c) Μ ! Ν xx e                        (d)  ( )Μ ! Νxe x [GATE 2009]

Sol. Ans. (d). Proceed as in Ex. 4(a), page 10.8

Ex. 2. Show that the change of independent variable from x to z by z " ( )q x dx/  transforms the

differential equations ( ) ( ) 0y p x y q x y∃∃ ! ∃ ! �  into a differential with constant coefficients if

3/2{ ( ) 2 ( ) ( )} /{ ( )q x p x q x q x∃ !  is constant [Mumbai 2010]

Hints. Proceed as in Art. 10.9
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11.1

11
Applications of Differential

Equations
PART I: APPLICATIONS OF FIRST ORDER

DIFFERENTIAL EQUATIONS

11.1 Introduction
Differential equations originate from the mathematical formulation of a number of problems

in science and engineering. We have already discussed many applications in chapter 2 (refer
Art.2.29 to Art. 2.31). In this part, we propose to discuss some variety of problems. For various
methods of solving first order differential equations refer chapter 2.

11.2 Mixture problems
Let us suppose that a large mixing tank initialy holds so gallons of a solution in which x0

pounds of a substance S is dissolved. Let another solution, containing x1 lb/gal of S, flows into the
tank at a given rate r1 gal/min. When the solution in the tank is well stirred, it in pumped out at a
given rate r2 gal/min.

Let x(t) denote the amount of substance S (measured in
pounds) in the tank at time t. Then the rate at which x changes
with time t is given by
dx/dt ! (input rate of S) – (output rate of S) ! R1 – R2, say    ...(1)

Now, the input rate R1 at which S enters the tank is the
product of the inflow concentration x1 lb/sec of S and the inflow
rate r1 gal/min of the fluid. Note that R1 is measured in lb/min.
Thus, we have

R1 ! (x1 lb/gal) ! (r1 gal/min) ! x1r1 lb/min ...(2)
Let s(t) denote the number of gallons of solution in the tank

at time t. Then the concentration of S in the tank, as well as in the outflow, is (x/s) lb/gal at any
time t. Hence the output rate R2 of S in given by

                             R2 ! (
x
s

lb/gal) ! (r2 gal/min) ! 2xr
s

lb/min ...(3)

From (1), (2) and (3), dx/dt ! x1 r1 – (xr2) / s ...(4)
which is a first order differential equation. On solving (4), we obtain the amount of substance S in
the tank at any time t.

Remarks: 1. If r1 ! r2, then clearly s(t) ! s0 ! constant value.
2. When r1 > r2 or r1 < r2, then the number of gallons of soluion in he tank is either increasing

(r1 > r2) or decreasing (r1 < r2) at the net rate r1 – r2.

input rate of
solution  /minr gal1

s t

t

( ) gallons
of solution at
time 

output rate of 
solution  /minr gal2
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3. In some problems, x0 or x1 may be zero.
4. In some problems r1 or r2 may be zero.

11.3. Solved examples based on Art 11.2
Ex. 1.  A tank initially contains 50 gallons of pure water. Starting at t = 0 a brine containing

2 lb of dissolved salt per gallon flows into the tank at the rate of 3 gal/min. The mixture is kept
uniform by stirring and the well-stirred mixture simultaneously flows out of the tank at the same
rate. Then (i) How much salt is in the tank at any time t > 0? (ii) How much salt is pressent at the
end of 25 minutes? (ii) How much salt is present after a long time?

Sol. (i) Let x denote the amount of salt (measured in pounds) in the tank at any time t. Then
the rate at which x changes with time t is given by

dx/dt ! (input rate of salt) – (output rate of salt) ! R1 – R1 say ...(1)
Now, the input rate R1 at which salt enters the tank is the product of the inflow concentration

2 lb/sec of salt and the inflow rate 3 gal/min of brine.
� R1 ! (2 lb/gal) ! (3 gal/min) ! 6 lb/min ...(2)
Since the rate of outflow equals the rate of inflow, the tank conains 50 gallons of brine at any

time t. This 50 gallons contains x lb of salt at time t. Hence the concentration of salt in the tank, as
well as in the outflow, is (x/50) lb/gal at any time t. Hence, as before, the output rate R2 of salt is

given by R2 ! (
50
x

lb/gal) ! (3 gal/min) !
3
50

x
 lb/min ...(3)

Using (2) and (3), (1) takes the form dx/dt ! 6 – (3x/50)
or (dx)/(100 – x) ! (3/50) dt

Integrating, – log (100 – x) + log C ! 3t/50 or log (100 – x) – log C ! – 3t/50
or                  (100 – x)/C ! e–3t/50                      or                                x ! 100 – C e–3t/50...(4)

Since initially there was no salt in the tank, so initial condition is
x ! 0                when                t ! 0 ...(5)

Applying the initial condition (5), (4) gives 0 ! 100 – C or C ! 100.
Hence (4) reduces to x ! 100 (1 – e–3t/50) ...(6)

which gives the amount of salt in the tank at any time t.
(ii) Let x1 be the amount of the salt present  in the tank at the end of 25 minutes.
Thus, x ! x1 when t ! 25. Then (6) yields.

x1 ! 100 (1 – e–3/2) ! 100 (1 – e–1.5) ! 78 lb (approximitey)
(iii) Here we require to find out the amount of salt present in the tank as t # ∃ To find this

value, we let t # ∃ in (6) and note that x # 100.
Ex. 2. Initially 50 pounds of salt is dissolved in a large tank having 300 gallons of water. A

brine solution is pumped into the tank at a rate of 3 gal/min and well-stirred solution is then
pumped out at the same rate. If the concentration of the solution entering is 2lb/gal, find the
amount of salt in the tank at any time. How much salt is present after 50 min and after a long time.

Sol. Let x denote the amount of salt (measured in pounds) in the tank at any time t. Then the
rate at which x changes with time t is given by

dx/dt ! (input rate of salt) – (output rate of salt) ! R1 – R2 say ...(1)
Now, the input rate R1 at which salt enters the tank is the product of the inflow concentration

2 lb/gal of salt and the inflow rate 3 gal/min of solution.
� R1 ! (2 lb/gal) ! (3 gal/.min) ! 6 lb/min ...(2)
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Since the rate of outflow equals the rate of inflow, the tank contain 300 gallons of brine at
any time t. This 300 gallons contain x lb of salt at time t. Hence the concentration of salt in the
tank, as well as in the outflow, is (x/300) lb/gal at any time t. Hence as before, the output rate R2

of salt is given by                   R2 ! /
300

% &
∋ (
) ∗

x lb gal ! (3 gal/.min) ! / min
100

x lb ...(3)

Using (2) and (3), (1) takes the form dx/dt ! 6 – x/100
or (dx)/(600 – x) ! (1/100) dt

Integrating, – log (600 – x) + log C ! t/100 or log (600 – x) – log C ! –t/100
or (600 – x)/C ! e–t/100 or x ! 600 – Ce–t/100 ...(4)

Since initially 50 lb salt was present in the tank, hence the initial condition is : x ! 50 when
t ! 0. Using this condition, (4) reduces to 50 ! 600 – C so that C ! 550. Hence, (4) reduces to

x ! 600 – 550 e–t/100 ...(5)
which gives the desired amount of salt at any time t.

Second part : Let x ! x1, when t ! 50. Then (5) reduces to
        x1 !  600 – 550 e–1/2 ! 600–550 e–0.5 ! 266.41 lb (approx)

Third part : From (5), we see that as t # ∃, x # 600 (see figure)
which is what we would expect; over a long period of time the number
of pounds of salt in the solution must be (300 gal) ! (2lb/gal) ! 600 lb.

Ex. 3. A large tank initially contains 50 gallons of brine in which there is dissolved 10 lb of
salt. Brine containing 2lb of dissolved salt per gallon flows into the tank at the rate of 5 gal/min.
The mixture is kept uniform by stirring, and stirred mixture simultaneously flows out at the slower
rate 3 gal/min. How much salt is in the tank at time t > 0?

Sol. Let x denote the amount of salt (measured in pounds) in the tank at any time t. Then the
rate at which x changes with time t is given by

dx/dt ! (input rate of salt) – (output rate of salt) ! R1 – R2, say ...(1)
Now, the input rate R1 at which salt enters the tank is the product of the inflow concentration

2 lb/gal of salt and the inflow rate 5 gal/min of brine.
� R1 ! (2 lb/gal) ! (5 gal/min) ! 10 lb/min ...(2)
At t ! 0, the tank contains 50 gallons of brine. Since brine flows in at the rate of 5 gal/min

whereas flows out at the slower rate 3 gal/min, there is a net gain of 5 – 3 ! 2 gal/min of brine in
the tank.

Therefore, s(t) ! the amount of brine in the tank at the end of time t ! (50 + 2t) gallons.
Hence the concentration of salt in the tank, as well as in the outflow, is x (t)/s (t), i.e., x/(50 + 2t)
lb/gal at any time t. Hence, as before, the output rate R2 of salt is given by

R2 ! /
50 2

x lb gal
t

% &
∋ (+) ∗

! (3 gal/min) ! 3 / min
50 2

x lb
t+

...(3)

Using (2) and (3), (1) takes the form / 10 (3 ) /(50 2 )dx dt x t, − +

or
dx
dt

 + 3
50 2

x
t+

! 10, which is a linear differential equation.  ...(4)

Its integrating factor !
{3/(50 2 )}t dt

e
+. ! e(3/2) × log(50 + 2t) ! (50 + 2t)3/2

and hence solution of (4) is given by 3/2 3/ 2(50 2 ) 10 (50 2 )x t t dt C+ , + +.

x x = 600

50

500
t
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11.4 Applications of differential equations

or x(50 + 2t)3/2 ! 2(50 + 2t)5/2 + C or x ! 4 (t + 25) + C/(2t / 50)3/2 ...(5)
Since there was initially 10 lb of salt in the tank, we have the initial condition: x ! 10 when

t ! 0. Using this condition, (5) reduces to 10 ! 100 + C/(50)3/2 so that C ! – (90) × (50)3/2

! –22.500 2 . Substituting this value of C in (5), the amount of salt at any time t is given by

x ! 4t + 100 – (22.500 2 )/(50 + 2t)3/2

Ex. 4. A tank contains 100 gallons brine in which 10 lb of salt are dissolved. Brine
containing 2 lb sat per gallon flows into the tank at 5 gal/min. If the well-stirred mixture is drawn
off at 4 gal/min, find (a) the amount of salt in the tank at time t, and (b) the amount of the salt at
t = 10 minutes.

Sol. Proceed as in Ex 3.
Ans (a) x(t) ! 2(100 + t) – 190 (100)4 (100 + t)–4                (b) x(10) ! 90.2 lb (approx).

EXERCISE 11(A)
1. A tank initially contains 100 gallons of brine in which there is dissolved 20 lb of salt.

Starting at t ! 0, brine containing 3 lb of dissolved salt per gallon flows into the tank at the rate of
4 gal/min. The mixture is kept uniform by stirring and the well-stirred mixture simultaneously
flows out of the tank at the same rate. Find (a) How much salt is in the tank at the end of 10
minutes and (b) When is there 160 lb of salt in the tank. Ans. (a) 112.31 lb (b) 17.33 minutes.

2. A tank initially contains 100 gallons of pure water. Starting at t ! 0, a brine containing 4
lb of salt per gallon flows into the tank at the rate of 5 gal/min. The mixure is kept uniform by
stirring and the well stirred mixture flows out at the slower rate of 3 gal/min. Find (a) How much
salt is in the tank at the end of 20 mintes? (b) When is there 50 lb of salt in the tank?

Ans. (a) 318.53 lb (b) 2.74 minutes.
3. A large tank initially contains 100 gallons of brine in which 10 lb of salt is dissolved.

Starting at t ! 0, pure water flows into the tank at the rate of 5 gal/min. The mixture is kept uniform
by stirring and the well stirred mixtune simultaneously flow out at the slower rate of 2 gal/min.
Find (a) How much salt is in tank at the end of 15 minutes and what is the concentration at that
time? (b) If the capacity of the tank is 250 gallons, what is the concentration at the instant the tank
overflows.

4. A large tank initially contains 200 gallons of brine in which 15 lb of salt is dissolved.
Starting at t ! 0, brine containing 4 lb of salt per gallons flows into the tank at the rate of 3.5
gal/min. The mixture is kept uniform by stirring and the well-stirred mixture leaves the tank at the
rate of 4 gal/min. Find (a) How much salt is in the tank at the end of one hour? (b) How much salt
in the tank when the tank contains only 50 gallons of brine?

PART II: APPLICATIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

11.4 Introduction
Second order linear differential equations with constant coefficients have a number of

applications in physics, electrical and mechanical engineering, medical science, economics and
other linear systems. In this part, we propose to study the applications of second order linear
differential equations to some of these disciplines. For various methods of solving second order
linear equations with constant coefficient, refer chapter 5.
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11.5 Newton’s second law and Hooke’s law
Newton’s second law. Suppose m be the mass of a body, F the resultant force acting upon it

and a be the acceleration produced in the body. Then, by Newton’s second low, we have F ! ma.
Note that this is a vector equation.

Hooke’s law. According to Hooke’s law, the magnitude of the force needed to produce a
certain elongation of a spring is directly proportional to the amount of this elongation. The positive
constant of proporionality k is called the spring constant. Thus, 1F1 ! ks, were F is the magnitude
of the force and s is the amount of elongation.
11.6 The differential equation of the vibrations of a mass on a spring

   (a) l Natural length 

l

(b)

l e

 Mass in equilibrium
position; spring has
stretched length  + 

O

x

l  e+

(c)

l e x

 Mass distance x
below equilibrium
position; spring
stretched to length
 +  + 

m
P

As shown in figure (a), let the coil spring have natural (unstretched) length l. The mass m is
attached to its lower end and comes to rest in its equilibrium position O, threreby stretching the
spring by an amount e so that its stretched length is l + e. In the position of equilibrium O, the mass
m in acted upon by two forces: (i) weight mg acting vertically downwards (ii) The spring force ke
acting vertically upwards (see figure b).

Thus, we have mg ! ke ...(1)
We choose the axis along the line of the spring, with the origin at equilibrium position O and

the positive direction downward. Let P be the position of the mass at any time t such that OP ! x.
Then x is positive, zero, or negative according to whether the mass is below, at, or above its
equilibrium position (see figure c).

When the mass is situated at P, it is acted upon by the following forces. The forces tending
to pull the mass downward are positive, while those pulling it vertically upward are negative.

(i) F1 ! mg, acting in the vertically downward direction
(ii) Let F2 be he restoring force of the spring. When the mass is at P, F2 is acting is the

upward direction and so it is negative. By Hooke’s law, we have
F2 ! –k(x + e) ! – kx – ke or F2 ! – kx – mg, using (1)

(iii) Let F3 be the resisting force of the medium, called the damping force. It is known that
for small velocities F3 is approximately proportional to the magnitude of the velocity. When the
mass is moving downward (at P, say), F3 acts in the upward direction (opposite to that of the
motion) and so F3 is negative and is given by

F3 ! – a (dx/dt), where a (> 0) is called the damping constant.
(iv) External impressed force F (t) acting in downward direction.
By Newton’s second law F ! ma     where     F ! F1 + F2 + F3 + F4     and     a ! d2x/dt2

Thus, we obtain m (d2x/dt2) ! mg – kx – mg – a (dx/dt) + F(t)
or m (d2x/dt2) + a (dx/dt) + kx ! F(t) ...(2)
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11.6 Applications of differential equations

which is the differentical equation for the motion of the mass on the spring. If a ! 0 the motion is
called undamped otherwise it is called damped. If there are no external impressed forces,
F(t) ! 0 for all t and the motion is called free; otherwise it is called forced. In the following articles
we propose to discuss the solution of (2) in each of these cases.

11.7 Free, undamped moion
Refer Art 11.6 Setting a ! 0 and F(t) ! 0 in equation (2) of Art 11.6, the differential equation

for free, undamped motion is given by
       m (d2x/dt2) + kx ! 0                or               d2x/dt2 + µ2x ! 0 ...(1)

where µ2 ! k/m and D /  d/dt ...(2)
Auxiliary equation of (1) is                  D2 + µ2 ! 0                  so that                  D ! 0 iµ

� Solution of (1) is      x ! C1 sin µt + C2 cos µt, C1, C2 being arbitrary contants ...(3)
Suppose that the mass was initially displaced a distance x0 from its equilibrium position O

and released from that point with initial velocity 0v . Then, we have the initial conditions:

            0(0)x x,                                  and                               0(0)x v1 , ...(4)

Differentiating (3) w.r.t. ‘t’ gives dx/dt ! C1 µ cos µt – C2 µ sin µt ...(5)
Applying conditions (4) to equation (3) and (5), we have

2 1 2 0 1 0and and /o ox C v C C x C v, , 2 , , 3

� (3) yields  x ! ( 0v /µ) sin µt + x0 cos µt ...(6)
Equation (6) describes the free vibrations or free motion of the mechanical system, since it is

free of external influencing forces other than those imposed by gravity and the spring itself.
We would like to re-write (6) in the form x ! C cos (µt + 4) so that we can graph (and

understand) the superposition of the sine and cosine functions in (6). Re-writing (6), we have

x ! 0 0( / )
sin µ cos µ

v x
C t t

C C
35 6

+7 8
9 :

...(7)

where C ! ; <1/ 22 2
0 0( / µ) 0v x+ = ...(8)

Assume that 0( / µ)v
C

! – sin 4 and 0x
C

! cos 4 ...(9)

Then, (7) yields  x ! C (cos µt cos 4 – sin µt sin 4)         or        cos ( )x C t, 3 + 4 ...(10)

where C is given by (8) and 4 is determined by (9). We have to be careful to determine which
quadrant 4 is in. Since µ ! /k m , (10) may be re-written as

x ! C cos (t /k m  + 4), ...(11)
giving the displacement x of the mass from the equilibrium position O as a function of t
(t > 0). Clearly free, undamped motion of the mass is a simple harmonic motion. The constant C
is called the amplitude of the motion and gives the maximum (positive) displacement of the mass
from the O. The motion is a periodic motion, and the mass oscillates back and forth between
x ! C and x ! – C. We have x ! C if and only if

cos (t /k m  + 4) ! 0               or               t /k m  + 4 ! ± 2n >, where n ! 0, 1, 2, 3,
Thus, the maximum (positive) displacement occurs if and only if

t ! (m/k)1/2 (± 2x> – 4) > 0, where n ! 0, 1, 2, 3, ...... ...(12)
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The time interval between two successive maxima is called the period of the motion. Using
(12), periodic time T is given by T ! (2>)/ /k m ! (2>)/ 3 ...(13)

The reciprocal of the period, which gives the number of oscillations per second is called the
natural frequency (or simply frequency) of the motion. The number 4 is called the phase constant
(or phase angle). The graph of the motion is shown in the following figure.

Illustrative example: An 8-lb weight is placed upon the lower end of a coil spring
suspended from the ceilling. The weight comes to rest in its equilibrium position, thereby
stretching the spring 6 in. The weight is then pulled down 3 in below its equilibrium position and
released at t = 0 with an initial velocity of 1ft/sec directed downwards. Neglecting the resistance
of the medium and assuming that no external forces are present, determine the amplitude, period
and frequency of the resulting motion.

Sol. Refer figure of Art. 11.6 As shown in figure, the natural length of spring ! l in. The mass
m (! w/g ! 8/32 ! ¼(slugs) is attached to its lower end and comes to rest in its equilibrium position
O, thereby stretching the spring by an amount e (! 6 in ! ½ft). In the position of equilibrium, the
mass m is acted upon by two forces: (i) weight 8 - lb acting in the vertically downward direction
(ii) the spring force ke i.e., (1/2) ! k acting in the vertically upwords. Thus,

8 ! (1/2) × k so that k ! 16 lb/ft.
We choose the axis along the line of the spring, with the origin at equilibrium position O and

the positive direction downwad. Let P be the position of the mass at any  time t.such that OP ! x.
Then x is positive, zero or negative according to whether the mass is below, at, or above O.

When the mass is situated at P, it is acted upon by the following forces: (i) F1 ! mg, acting in
the vertically downward direction (ii) Restoring force F2 of the spring acting in the vertically
upward divectium.

Then, F2 ! – k (x + e) ! – kx – ke or F2 ! –kx – mg, as ke ! mg
By Newton’s second law F ! ma, we have
F1 – F2  = m (d2x/dt2)                or            mg – kx + mg!m (d2x/dt2)

or d2x/dt + (k/m) x ! 0 or d2x/dt2 + 64 x ! 0 ...(1)
[� k ! 16 lb/ft and m ! (1/2) slugs]

Since the weight was released with a downward initial velocity of 1 ft/sec from a point 3 in
(! 1/4 ft) below its equilibrium position O, we have the initial conditions:

x (0) ! 1/4                     and                     x1(0) ! 1 ...(2)
Re-writting (1),                 (D2 + 64) x ! 0             where               D /  d/dt ...(3)

whose auxiliary equation is D2 + 64 ! 0 so that D ! 0 8i
� Solution of (3) is x ! C1 sin 8t + C2 cos 8t,C1, C2 being arbitrary constants. ...(4)
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Applying the condition (2) to equations (4) and (6), we get C2 ! 1/4 and C1 ! 1/8.
Substituting these in (5), we get

x ! (1/8) × sin 8t + (1/4) × cos 8t ...(6)

We have,               ; <1/ 22 2(1/8) (1/ 4)+ ! 5 / 8 .

Rewriting (6), we have x ! 5 (1/ 8) (1/ 4)sin8 cos8
8 ( 5 / 8) ( 5 / 8)

t t
5 6? ?+7 8
? ?9 :

...(7)

Let          cos 4 ! (1/ 4)
( 5 / 8)

! 2 5
5

             and              sin 4 ! – (1/ 8)
( 5 / 8)

! 5–
5

...(8)

Then (7) yields, x ! ( 5 /8)  cos (8t + 4) ...(9)
where 4 is determined by equations (8). Since cos 4 is positive and sin 4 is negative, it follows that
the phase angle 4 is located in fourth quadrant. To compute 4, we have tan 4 ! – (1/2) ! – 0.5, using
(9). So 4 ! tan–1 (–0.5) ! –0.46 radians (approximately). Taking 5 ! 2.236 (apparox.), (9) reduces to

x ! 0.280 cos (8t – 0.46) ...(10)

The amplitude of the motion is 0.280 ft. The period ! T ! 2>/ 64  (! >/4) sec, and the
frequency is t/T i.e., 4/> oscillations/sec.

11.8 Free, damped motion
We now wish to examine the effect of the resistance of the medium upon the mass on the

spring. We assume that no external force acts on the mass. Thus, we have the so called free-
damped motion. Hence setting F(t) ! 0, the basic differential equation of the vibrations of a mass
on the spring for free damped motion is (refer equation (2) of Art 11.6)

m (d2x/dt2) + a (dx/dt) + kx ! 0   a > 0, k > 0
or (D2 + 2b D " µ2) x ! 0 ...(1)
where D / d/dt, 2b ! a/m and µ2 ! k/m ...(2)

Observe that since a is positive, b is also positive Auxillary equation of (1) is
D2 + 2bD + µ2 ! 0, giving D ! {– 2b ± (4b2 – 4µ2)1/2}/2 ! – b ± (b2 – µ2)1/2 ...(3)

Three different cases arise, depending upon the nature of these roots, which in turn depends
upon the sign of b2– µ2.

Since each solution of (1) contains the damping factor e–bt, b > o, the displacements of the
mass become negligible over a long period of time.

Case I: Motion of an over damped system: Here we consider the
case in which b2 – µ2 > 0. In this situation the system is said to be over
damped because the damping coefficent a is large when compared to the
spring constant k. The corresponding solution of (1) is

2 2 1/ 2 2 2 1/ 2( ) ( )
1 2( ) { }t t b t bx t e C e C e−≅ −3 − −3, + , ...(4)

which represents a smooth and nonoscillatory motion. Figure (i) shows
two graphs of x(t). Here C1 and C2 are arbitrary constants.

Case II: Motion of a critically damped system: Here we consider the case in which
b2 – µ2 ! 0. In this situation the system is said to be critically damped system because slight

t
O

x

Fig (i). Motion of an
over damped system
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decrease in the damping force would result in oscillatory motion. When
b2 – µ2 ! 0, (3) 2 D ! – b, – b. The corresponding solution of (1) is

x (t) ! e–bt (C1 + C2 t), C1, C2 being arbitrary constants ...(5)
Some graphs of typical motion are given in figure (ii). Observe

that the motion is quite similar to that of an overdamped system. It is
also apparent from (5) that the mass can pass through the equilibrium
position at most one time.

Case III. Motion of an underdamped system: Here we
consider the case in which b2 – µ2 < 0 so that µ2 – b2 > 0. Re-writting
(3) we have                         D ! –b ± {–(µ2 – b2)}1/2

or D ! – b ± i (µ2 – b2)½,          where          i ! –1 .
In this situation the system is said to be underdamped

because the damping coefficient a is small compared to the
spring constant k. The corresponding solution of (1) is

x (t) !e –bt {C1 cos t (µ2 – b2)½ + C2 sin t (µ2 – b2)½} ...(6)
As shown in figure (iii), the motion described by (6) is

oscillatory, but because of the coefficient e–bt, the amplitudes of
vibration # 0 as t # ∃.

11.9 Solved examples based on Art. 11.8
Example 1. An 8-pound weight stretches a spring 2 feet. Assuming that a damping force

numerically equal to 2 times the instantaneous velocity acts on the system, determine the equation
of motion if the weight is released from the equilibrium position with an upward velocity of 3 ft/sec.

Sol. Using Hooke’s law we have 8 ! k × 2 so that k ! 4 lb/ft. Again W ! mg 2 8 ! m ×32 so
that m ! 1/4 slug. Also, here damping factor ! 2. Using the above facts, the basic differential
equation of the vibrations of the given mass on the spring for free damped motion (refer Art 11.8)
namely m (d2x/dt2) + a (dx/dt) + kx ! 0 reduces to       (1/4) × (d2x/dt2) + 2x(dx/dt) + 4x ! 0
or (D2 + 8D + 16)x ! 0 where D / d/dt ...(1)

The initial condition are             x(0) ! 0                and                x' (0) ! –3 ...(2)
Its auxiliary equation is D2 + 8D + 16 ! 0 or (D + 4)2 ! 0 so that D ! – 4, – 4 (equal roots).

Hence the system is critically damped (refer case II of Art. 11.8) and hence, we have
x(t) ! (C1 + C2 t) e– 4t, C1, C2 being arbitrary constants....(3)
Differentiating (3) w.r.. ‘t’, we have

x' (t) ! C2 e– 4t – 4 (C1 + C2t) e–4t ...(4)
Applying the initial conditions (2) in (3) and (4), we find, in

turn, that C1 ! 0 and C2 ! – 3. Hence from (3), we get
x (t) ! – 3t e– 4t ...(5)

From (5), x' (t) ! – 3e – 4t (1 – 4t), showing that x' (t) ! 0 when
t ! 1/4. The corresponding extreme displacement is given by

x (1/4) ! – 3 × (1/4) × e – 1 ! – 0.276. As shown in the adjoining figure, we interpret this value
to mean that the weight reaches the maximum height of 0.276 foot above the equilibrium position.

Example 2. A 32–lb weight is attached to the lower end of a coil spring suspended from the
ceiling. The weight comes to rest in its equilibrium position, there by stretching the spring 2ft. The
weight in then pulled down 6 inches below its equilibrium position and released at t = 0. No
external forces are present; but the resistance of the medium in pounds is numerically equal to

x
undamped underdamped

t

Fig. (iii). Motion of an
under damped system

O

t

x

O

Fig. (ii). Motion of a
critically damped system

x

t
t=1/4

–0.276

maximum
height above

equilibrium position

Critically damped system
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8 (dx/dt), where dx/dt is the instantaneous velocity in feet per second. Determine the resulting
motion of the weight on the spring.

Sol. Here e ! the elongation of the spring after the weight is attached ! 2 feet. Using Hooke’s
law, we have 32 ! k × 2 so that k ! 16 lb/ft. Again, W ! mg 2 32 ! m × 32 2 m ! 1 slug. Here
damping factor ! a ! 8.

Using these facts, the basic differential equation of the vibrations of the given mass on the
spring for free damped motion (refer Art 11.8) namely m (d2x/dt2) + a (dx/dt) + k x ! 0 reduces to

d2x/dt + 8 (dx/dt) + 16x ! 0     or   (D2 + 8D + 16)x ! 0,        D / d/dt    ...(1)
The initial conditions are :        x(0) ! 6/12 ! 1/2            and               x' (0) ! 0 ...(2)
The auxiliary equation for (1) is D2 + 8D + 16 ! 0 or (D + 4)2 ! 0 giving D ! – 4, – 4: Hence

the system is critically damped (refer case II or Art 11.8) and
x(t) ! (C1 + C2t)e– 4t, C1 and C2 being arbitrary constants ...(3)

From (3), x' (t) ! C2 e– 4t – 4(C1 + C2 t) e– 4t ! (C2 – 4C1 – 4C2 t)e – 4t ...(4)
Applying the initial conditions (2) in (3) and (4), we find, in turn, C1 ! 1/2 and C2 –4 C1 ! 0

so that C1 ! 1/4 and C2 ! 2. Hence, from (3), we get x(t)!(1/2) × (1 + 4t)e– 4t ...(5)
Interpretation: The motion is critically damped. Using (5), we have x ! 0 Α t ! – (1/4). It

follows that x Β 0 for t > 0 and the weight does not pass through its equilibrium position. Also,
from (5), x'(t) ! (2–2–8t) e–4t ! –8te–4t < 0 for all t > 0. Thus, the displacement of the weight from
its equilibrum position is decreasing function of t for all t > 0. In other words the weight starts to
move back towards its equilibrium position at once and x # 0 monotonically as t # ∃. The graph
of the solution (5) is shown in the following figure.

1.51.00.5
O

0.5

x

t

Example 3. A 16-pound weight is attached to a 5-foot long spring. At equilibrium the spring
measures 8.2 feet. If the weight is pushed up and released from rest at a point 2 feet above the
equilibrium position, find the displacement x(t) if it is further known that surrounding medium
offers a resistance numerically equal to the instantaneous velocity.

Sol. Here e ! the elongation of the spring after the weight is attached  ! 8.2 – 5 ! 3.2 ft. Using
Hooke’s law, we have 16 ! k × 3.2 so that k ! 5 lb/ft. Again, W ! mg 2 16 ! m × 32 so that
m ! 1/2 slug. Also here damping factor ! a ! 2. Using the above  facts the basic differential equation
of the vibrations of the given mass on the spring for free damped motion (refer Art 11.8), namely
m (d2x/dt) + a (dx/dt) + kx ! 0 reduces to                          (1/2) × (d2x/dt) + dx/dt + 5x ! 0
or (D2 + 2D + 10)x ! 0 ...(1)

The initial conditions are:       x(0) ! – 2               and                  x' (0) ! 0 ...(2)
The auxiliary equation for (1) is D2 + 2D + 10 ! 0 so that D ! – 1 ± 3i, which then implies

that the system is underdamped and
x (t) ! e–t (C1 cos 3t + C2 sin 3t), C1 and C2 being arbitrary constants ...(3)
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From (3), x' (t) ! – e– t (C1 cos 3t + C2 sin 3t) + 3e– t (–C1 sin 3t + C2 cos 3t) ...(4)
Applying the initial conditions x(0) ! – 2 and x' (0) ! 0 in (3) and (4), yield, in turn,

C1 ! – 2 and C2 ! – (2/3). Hence from (3), we obtain x (t) ! – (2/3) × e– t (3 cos 3t + sin 3t)
Example 4. A 32–lb weight is attached to the lower end of a coil spring suspended from the

ceiling. The weight comes to rest in its equilibrium position, thereby stretching the spring 2 ft. The
weight is then pulled down 6 inches below its equilibrium position and released at t = 0. No
external forces are present; but the resistance of the medium is numerically equal to 4(dx/dt),
where dx/dt is the instantaneous velocity in feet per second. Determine the resulting motion of the
weight on the spring.

Sol. Here e ! the elongation of the spring after the weight is attached ! 2 feet. Using Hooke’s
law,we have 32 ! k × 2 so that k ! 16 lb/ft. Again, W ! mg 2 32 ! m × 32 so that m ! 1 slug.
Here damping factor ! a ! 4.

Using these facts, the basic differential equation of the vibrations of the given mass on the
spring for free damped motion (refer Art 11.8), namely, m(d2x/dt2) + a (dx/dt) + kx ! 0 reduces to

d2x/dt + 4 (dx/dt) + 16 ! 0 or (D2 + 4D + 16) x ! 0,         D / d/dt ...(1)
The initial conditions are: x(0) ! 6/12 ! 1/2, and x1 (0) ! 0 ...(2)
The auxiliary equation for (1) is    D + 4D + 6 ! 0         giving            D ! – 2 ± 2 3

which then implies that the system is underdamped and
x(t) ! e– 2t (C1 sin 2 3 t + C2 cos 2 3 t), C1 and C2 being arbitrary constants ...(3)

From (3), x'(t) ! – 2e– 2t (C1 sin 2 3 t  + C2 cos 2 3 t )+ 2 3 e–2t (C1 cos 2 3 t – C2 sin 2 3 t)
or x' (t) ! e– 2t {(– 2 C1 – 2 3 C2) sin 2 3 t + ( 2 3 C1 – C2) cos 2 3 t} ...(4)

Applying the initial conditions (2) to equation (3) and (4), we have C2 ! 1/2 and 2 3 C1 – 2C2

! 0 so that C1 ! 3 / 6  and C2 ! 1/2.
Hence from (3), the solution of (1) is given by

x ! e– 2t {( 3 / 6 ) × sin 2 3t  + (1/2) × cos 2 3t } ...(5)

But 
3

6
 sin 2 3t  + 

1
2

 cos 2 3t !
3

3
 (

1
2

 sin 2 3t  + 
3

2
 cos 2 3t ) !

3
3

 cos( 2 3t – 6
>

)

� (5) takes the form x ! Χ ∆3 / 3  × e– 2t cos ( 2 3t  – >/6) ...(6)
Interpretation: (6) represents a damped oscillatory motion. The damping factor is

( 3 / 3 ) e– 2t, the perod is (2>)/(2 3 ) ! ( 3 >)/3. The graph of the solution (6) is shown in the
following figure, where the dashed curves represent the curves given by x ! ± ( 3 /3) × e– 2t.

O

0.5

x

t
1.5

1.00.5

–0.5

2.0

x e = ( 3 /3) × –2t

x e = – ( 3/3) × –2t
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11.12 Applications of differential equations

Example 5. A 32-pound weight is attached to the lower end of a coil spring suspended from
the ceiling. The weight comes to rest in its equilibrium position, thereby stretching the spring 2
feet. The weight is then pulled down 6 inches below its equilibrium position and released at t = 0.
No external forces are present; but the resistance of the medium is numerically equal to
10 (dx/dt), where dx/dt is the instantaneous velocity in feet per second. Determine the resulting
motion of the weight on the spring.

Sol. Here e ! the elongation of the spring after the weight is attached ! 2 feet. Using Hooke’s
law, we have 32 ! k × 2 so that k ! 16 lb/ft. Again, W ! mg 2 32 ! m ×32 2 m ! 1 slug. Here
damping factor ! a ! 10.

Using these facts, the basic differential equation of the vibrations of the given mass on the
spring for free damped motion (refer Art 11.8) namely, m(d2x/dt2) + a (dx/dt) + k x ! 0 reduces to

d2x/dt + 10(dx/dt) + 16x ! 0              or              (D2 + 10 D + 16) x ! 0, D / d/dt...(1)
The initial conditions are:        x(0) ! 6/12 ! 1/2              and                   x' (0) ! 0...(2)
The auxiliary equaion for (1) as D2 + 10D + 16 ! 0 giving D ! – 2, – 8.

Hence the system is over-damped (refer case I of Art 11.8). The general solution of (1) is
x(t) ! C1 e– 2t + C2 e– 8t, C1 and C2 being arbitrary constants.

From (3), x' (t) ! – 2 C1 e– 2t – 8 C2 e– 8t ...(4)
Applying the initial conditions (2) to (3) and (4), we get C1 + C2 ! 1/2 and – 2C1 – 8C2 ! 0

so that C1 ! 2/3 and C2 ! – (1/6) Hence, from (3), the solution of the given problem is
x ! (2/3) ! e– 2t – (1/6) ! e– 8t ...(5)

Interpretation: Qualitatively the motion is the same as that of the solution (5) of Ex. 2. Here,
however, due to the increased damping, the weight returns to its equilibrium position at a slower
rate. The graph of (5) is shown in the following figure.

1.51.00.5
O

0.5

x

t

11.10 Forced Motion
In the present article, we propose to discuss an important special case of forced motion. That

is, we not only consider the effect of damping upon the mass on the spring but also the effect upon
it of a periodic external impressed force F defined by F(t) ! p cos Εt for all t Φ 0, where p and Ε
are constants. Then the basic differential equation of forced motion is given by (refer equation (2)
of Art 11.6).

m(d2x/dt2) + a (dx/dt) + kx ! p cos Εt ...(1)
or        d2x/dt2 + 2b(dx/dt) + ≅2 x ! E cos Εt.   or     (D2 + 2bD + ≅2)x ! E cos Εt. ...(2)
where,    2b ! a/m, k/m ! ≅2, p/m ! E and D / d/dt ...(3)
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Applications of differential equations 11.13

We shall assume that the positive damping constant a is small enough so that the damping is
less than critical. In other words we assume that b < ≅. Now, the auxiliary equation for (2) is

D2 + 2b D + ≅2 ! O so that D ! – b ± i (≅2 – b2)1/2

� Complementary function of (2) ! C e –bt cos ((≅2 – b2)½ t + 4), where C and 4, are arbitrary
constants. Again, as usual, P.I., (i.e.,) particular integral of (2) is given by

P.I. ! 2 2 2 2
1 1Ecos = E cos

D 2 D 2 D
t t

b b
Ε Ε

+ + ≅ −Ε + + ≅

! ; < ; <; <
2 2

2 2 2 2

1E ( ) 2 D cos
( ) 2 D ( ) 2 D

b t
b b

≅ − Ε − ! Ε
≅ − Ε − ≅ − Ε +

! ; <2 2
2 2 2 2 2

1E ( ) 2 D cos
( ) 4 D

b t
b

≅ − Ε − ! Ε
≅ − Ε −

! ; <2 2
2 2 2 2 2

1E ( ) 2 D cos
( ) 4b

b t≅ − Ε − Ε
≅ − Ε + Ε

! 2 2 2 2 2
E

( ) 4b≅ − Ε + Ε
; <2 2( )cos 2 sint b t≅ − Ε Ε + Ε Ε

! 
2 2

2 2 2 2 1/ 2 2 2 2 2 1/ 2 2 2 2 2 1/ 2
E 2cos sin

{( ) (2 ) } {( ) (2 ) } {( ) (2 ) }
bt t

b b b
Γ Η≅ − Ε Ε

Ε + ΕΙ ϑ
≅ − Ε + Ε ≅ − Ε + Ε ≅ − Ε + ΕΚ Λ

!
; < ; <1/ 2 1/ 22 2 2 2 2 2 2 2

E(cos cos sin sin ) Ecos( )

( ) (2 ) ( ) (2 )

t t t

b b

Μ Ε + Μ Ε Ε − Μ
,

≅ − Ε + Ε ≅ − Ε + Ε

where
; < ; <

2 2

1/ 2 1/ 22 2 2 2 2 2 2 2

2cos , sin
( ) (2 ) ( ) (2 )

b

b b

≅ − Ε Ε
, Μ , Μ

≅ − Ε + Ε ≅ − Ε + Ε
...(4)

The general soluton of (2) is given by
x(t) ! C e– bt cos ((≅2 – b2)1/2 t + 4) + E{(≅2 – b2)2 + 4b2Ε2}–1/2 cos (Εt – Μ) ...(5)

Observe that this solution is sum of two terms. The first term, C e– bt cos ((≅2 – b2)1/2 t + 4)
represents the damped oscillation which would be the entire motion of the system if the external
force p cos Εt were not present. The second term E{(≅2 – Ε2)2 + 4b2Ε2}–1/2 cos (Εt – Μ), which
results from the presence of the external force, represents a simple harmonic motion of period
2>/Ε. Because of the damping factor Ce– bt the contribution of the first term will decrease as time
increases and will eventually become negligible. The first term is thus  known as transient term.
The second term  however, being cosine term of constant amplitude, continues, to contribute to the
motion in a periodic, oscillatory manner. Eventually, the transient term having become relatively
small, the entire motion will consist essentially of that given by this second term. This second term
in thus known as the steady state term.

An illustrative example. A 16-lb weight is attached to the lower end of a coil spring
suspended from the ceiling, the spring constant of the spring being 10 lb/ft. The weigth comes to
rest in its equilibrium position. Beginning at t = 0 an external force given by F (t) = 5 cos 2t is
applied to the system. Determine. the resulting motion if the damping force is numerically equal
to 2 (dx/dt), where dx/dt is the instantaneous velocity in feet per second. [Delhi Maths 2007]
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11.14 Applications of differential equations

Sol. For the present problem, k ! the spring constant ! 10 lb/ft. Again, W ! mg 2 16 ! 32 m
2 m ! 1/2 (slug) and the damping factor ! a ! 2.Also, external force ! F(t) ! 5cos 2t. Using the
above facts the basic differential equation of the vibrations of the given mass on the spring for
forced motion (refer Art 11.6), namely, m (d2x/dt2) + a(dx/dt) + kx ! F(t) reduces to

(1/2) × (d2x/dt2) + 2(dx/dt) + 10x ! 5 cos 2t or (D2 + 4D + 20) x ! 10 cos 2t ...(1)

The initial conditions are: x(0) ! 0 and x1 (0) ! 0 ...(2)
The auxiliary equation for (1) is D2 + 4D + 20 ! 0 giving D ! – 2 ± 4i. Hence, for (1),
Complementary function ! e–2t(C1 sin 4t + C2 cos 4t), C1, C2 being arbitrary constants

P.I. ! 2
1 10cos 2
4 20

t
D D+ +

! 10 2
1 5 1cos 2 cos 2

2 4–2 4 20
t t

DD
,

++ +

! Χ ∆ Χ ∆ Χ ∆
5 1– 4 cos 2
2 – 4 4

D t
D D +

! Χ ∆ 2
5 1– 4 cos 2
2 –16

D t
D

! Χ ∆ 2
5 1– 4 cos 2
2 –2 –16

D t ! Χ ∆1– cos 2 – 4 cos 2
8

D t t

! – (1/8) × (–2 sin 2t – 4 cos 2t) ! (1/2) × cos 2t + (1/4) × sin 2t
Hence the general solution of (1) is given by

x (t) ! e– 2t (C1 sin 4t + C2 cos 4t) + (1/2) × cos 2t + (1/4) × sin 2t ...(3)
Differentiating (3) w.r.t. ‘t’, we obtain
x' (t) ! – e– 2t (C1 sin 4t + C2 cos 4t) + 4e– 2t (C1 cos 4t – C2 sin 4t) – sin 2t + (1/2) × cos 2t

or x1 (t) ! e– 2t {(–2 C1 – 4C2) sin 4t + (–2 C2 + 4C1) cos 4t} – sin 2t + (1/2) × cos 2t...(4)
Putting t ! 0 in (3) and (4) and using the condition (2), we get
C2 + 1/2 ! 0      and      4C1 – 2C2 + 1/2 ! 0 so that C1 ! – (3/8)      and      C2 ! – (1/2)
� (3) reduces to x (t) ! – (1/8) × e– 2t (3 sin4t + 4 cos 4t) + (1/4) × (2 cos 2t + sin 2t) ...(5)
We now re-write (5) in the “phase angle” form as follows:
We have, 3 sin 4t + 4 cos 4t ! 5{(3/5) × sin 4t + (4/5) × cos 4t} ! 5 cos(4t – 4)

where, cos Μ ! 4/5 and sin 4 ! 3/5 ...(6)

Again, 2 cos 2t + sin 2t ! 5  {(2/ 5 ) × cos 2t + (1/ 5 ) × sin 2t} ! 5  cos (2t – Μ)

where, cos Μ ! 2/ 5 and sin Μ ! 1/ 5 ...(7)
Using above results, (5) may be re-written as

x ! – (5/8) × e– 2t cos (4t – 4) + ( 5 /4) × cos (2t – Μ), ...(8)
where 4 and Μ are given by (7) and (8) respectively. Thus, we obtain 4 Ν 0.64 (rad) and
Μ Ν 0.46 (rad). Thus the solution (8) is given approximately by

x ! – 0.63 e– 2t cos(4t – 0.64) + 0.56 cos (2t – 0.46) ...(9)
Explanation: The first term on R.H.S. of (9) is the transient term, representing a damped

oscillatory motion. It becomes negligble in a short time, for example, for t > 3, its numerical value
is less han 0.002. Its graph is shown in figure (i). The second term of the R.H.S. of (9) is the steady
term, representing a simple harmoic motion of amlitude 0.56 and  period >. Its graph is shown in
figure (ii). The graph in figure (iii) is that of the complete solution. From this figure we see that
the effect of the transient term soon becomes negligible, and after a short time the contribution of
the steady state term is essentially all that remains.
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11.11 Resonance Phenomena
Refer Art 11.10 Let us examine the amplitude of steady-state vibration which results from the

periodic external force defined for all t by F (t) ! p cos Εt, where we assume that p >o. For fixed b,
≅ and E, we obtain from equation (5) of Art. 11.10 that this is the function f of Ε defined by

f(Ε) ! E/{(≅2 – Ε2)2 + 4b2Ε2}1/2 ...(i)
If Ε ! 0, then F(t) is the constant p and the amplitude f(Ε) has the value E/≅2>0. Also, from

(i), as Ε # ∃, f(Ε) # 0. Let us examine the function f for 0 < Ε < ∃.
From (i),         f 1 (Ε) ! –(1/2) × E {( ≅ 2 – Ε2)2 + 4b2 Ε2}–3/2 × {2(≅2 – Ε2) × (–2Ε) + 8b2Ε}

or f 1(Ε) ! –2Ε E {2b2 – (≅2 – Ε2)}×{(≅2 – Ε2)2 + 4b2 Ε2}–3/2

� f 1(Ε) ! 0 2 Ε{2≅2 – (≅2– Ε2)} ! 0, as E > 0
Thus, f 1 (Ε) ! 0 only if Ε ! 0 or Ε ! (≅2 – 2b2)1/2. Three cases arise:
Case 1. If ≅2 < 2b2, (≅2 – 2b2)1/2 is a complex number. Hence in this case f has no extremum

for 0 < Ε < ∃, but rather f decreases monotonically for 0 < Ε < ∃ from the value E/≅2 at Ε ! 0
and approaches zero as Ε # ∃.
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11.16 Applications of differential equations

Case 2. If ≅2 > 2b2, then f has a relative maximum at Ε1 ! (≅2 – 2b2)1/2 and this maximum
value is given by

f(Ε1) !
; <1/ 22 2 2 2 2(2 ) 4 ( – 2 )

E

b b b+ ≅
! 2 2 1/ 22 ( – )

E
b b≅

...(ii)

When the frequency of the forcing function p cos Εt is such that Ε ! Ε1, then the forcing
function is said to be in resonance with the system. In other words, the forcing function defined
by p cos Εt is in resonance with system when Ε assumes the value Ε1 at which f(Ε) is a maximum.
The value Ε1/2> is known as the resonance frequency of the system. It is to be noted carefully that
resonance occurs only when ≅2 > 2b2. Since ≅2 > b2, the damping force must be less than critical
in such a case.

Refer equation (1) of Art. 11.10. Using relations of equation (3) of Art. 11.10, we express
f(Ε) in terms of m, a, k and p and obtain.

f(Ε) !
; <1/ 22 2 2 2

( / )

( / – ) ( / )

p m

k m a mΕ + Ε
...(iii)

Also, the resonance frequency ! 1
2
Ε

>
!

1/ 22 2( – 2 )
2

b≅
>

!
1/ 22

2
1 –

2 2
k a
m m

% &
∋ (∋ (> ) ∗

...(iv)

Since the frequency of the corresponding free, damped oscillation is given by
(1/2>) × (k/m – a2/4m2)1/2, ...(v)

we find that the resonance frequency is less than that of the corresponding free, damped oscillation.
The graph of f(Ε) is known as the resonance curve of the system. For a given system with m,

k and p, there is a resonance curve corresponding to each value of the damping coefficient
a Φ 0. Taking m ! k ! p ! 1, we now, graph the resonance curves corresponding to certain selected
values of a. For this particular case, we have

f(Ε) ! {(1 – Ε2)2 + a2 Ε)2}–1/2

and the resonance frequency is given by (1/2>) ! (1 – a2/2)½. See figure (i) For the present case
note that resonance occurs only if a < 2 . As a decrease from 2  to 0, the value Ε1 at which
resonance occurs increases from 0 to 1 and the corresponding maximum value of f(Ε) becomes
larger and larger. In the limiting case a ! 0, the maximum has disappeared and an infinite
discontinuity occurs at Ε ! 1. In this case our solution actually breaks down, for then

f( )Ε

4

3

2

1

0 1 2
Ε

a = 1.5

a = 1

a = 0.5

a = 0.25

Fig. (i)
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Applications of differential equations 11.17

f(Ε) ! 1/{(1 – Ε2)2}1/2 ! 1/(1 – Ε2), ...(vi)
showing that f(1) is undefined. This limiting case is an example of undamped resonance, a
phenomenon which we shall now discuss.

Undamped resonance occurs when there is no damping and the frequency of the impressed
force in equal to the natural frequency of the system. Since in this case a ! 0 and the frequency
Ε/2> equals the natural frequency (1/2>) ! (k/m)1/2 (use equation (v) with a ! 0), the differential
equaion (1) of Art. 11.10 reduces to

m(d2x/dt2) + kx ! p cos {t(k/m)1/2} or d2x/dt2 + (k/m)x ! E cos {t(k/m)1/2}
or          {D2 + (k/m)}x ! E cos {t(k/m)1/2},     where            E ! p/m ...(vii)

The auxiliary equation for (vii) is         D2 + k/m ! 0         giving         D = ± i(k/m)1/2.

� C.F. ! C cos (t /k m  + 4), C, and 4 being arbitrary constants

and P.I. ! xp !  1/ 2
2 1/ 2 2

1 cos{ ( / ) }
{( / ) }

E t k m
D k m

!
Χ ∆

Χ ∆1/ 2
1/ 2 sin{ / }

2 /
tE t k m

k m!
, as 2 2

1 cos ax
D a+

! sin
2
x ax
a

Hence the general soluion of (vii) is given by

x ! C cos (t /k m  + 4) + (E t/2) ! (m/k)1/2 sin {t(k/m)1/2}  ...(viii)
The motion defined by (viii) is thus the sum of a periodic

term and an oscillatory term whose magnitude (E/2) ! (m/k)1/2t
increases with t. The graph of the function defined by the
second term on R.H.S. of (viii) is shown in the adjoining
figure. As t increases, this term clearly dominates the entire
motion. One might argue that (viii) informs us that as t # ∃
the oscillations will become infinite. However,  common sense
intervenes and convinces us that before this exciting
phenomenon can occur the system will break down and then
(viii) will no longer apply.

An Illustrative Solved Example
A 64–lb weight is attached to the lower end of a coil spring suspended from the ceiling, the

spring constant being 18lb/ft. The weight comes to rest in its equlitium position. It  in then pulled
down 6 inches below its equilibrium position and released at t = 0. At this instant an external force
given by F(t) = 3 cos Εt is applied to the system. (i) Assuming the damping force in pounds is
numerically equal to 4(dx/dt), where dx/dt is the instantaneouse velocity in feet per second,
determine the resonance frequency of resulting motion. (ii) Assuming there is no damping,
determine the value of Ε which gives rise to undamped resonance.

Sol. For the present problem, k ! the spring constant ! 18lb/ft, W ! mg 2 64 ! 32m
2 m ! 2 (slugs), damping factor ! a and external force ! F(t) ! 3 cos Εt. Using these facts, the
basic differential equation of the vibrations of the given mass on the spring for forced motion (refer
Art. 11.6), namely, m (d2x/dt) + a (dx/dt) + kx ! F(t) reduces to

2 (d2x/dt2) + a (dx/dt) + 18x ! 3cos Εt ...(1)
Part (i). For this case a ! 4. Hence (1) reduces to

2 (d2x/dt2) + 4 (dx/dt) + 18x ! 3 cos Εt ...(2)

0
t

xp

Figure (ii)
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11.18 Applications of differential equations

In part (i), we are not required to solve (2). Using formula (4) of Art. 11.11 we have

Resonance frequency !
1/ 22

2
1 –

2 2
k a
m m

% &
∋ (∋ (> ) ∗

!
1/ 21 18 16–

2 2 2 4
% &
∋ (> !) ∗

!
7

2>
Ν 0.42 (cycles/sec)

Therefore resonance occurs when Ε ! 7 Ν 2.65
Part (ii). In this case a ! 0. Hence (1) reduces to

d2x/dt2 + 9x ! (3/2) ! cos Εt  or (D2 + 9)x ! (3/2) ! cos Εt, where   D / d/dt ...(3)
Undamped resonance occurs when the frequency Ε/2> of the impressed force is equal to the

natural frequency. The C.F. of (3) is C1 sin 3t + C2 cos 3t, where C1 and C2 are arbitrary constants.
From this we find that the natural frequency is 3/2>. Thus, Ε ! 3 gives rise to undamped resonance
and equation (3) in this case reduces to

d2x/dt2 + 9x ! (3/2) ! cos 3t or (D2 + 9)x ! (3/2) ! cos 3t ...(4)

The initial conditions are x(0) ! 1/2 and x1 (0) ! 0 ...(5)
C.F. of (4) ! C1 cos 3t + C2 sin 3t, C1 and C2 being arbitrary constants

and P.I. ! 2
1 3 cos3

29
t

D +
! 2 2

3 1 3cos3 sin3
2 2 2 33

tt t
D

,
!+

! 1 sin 3
4

t t ,

2 2
1 cos sin

2
tat at
aD a

Γ Η
,Ι ϑ

+Ι ϑΚ Λ
�

Hence the general solution of (4) satisfying (5) is x ! C1 cos 3t + C2 sin 3t + (t/4) × sin 3t

EXERCISE 11(B)
1. A 12–lb weight is placed upon the lower end of a coil spring suspended from the ceiling.

The weight comes to rest in its equilibrium position, thereby stretching the spring 1.5  inches. The
weight is then pulled 2 inches below its equilibrium position and released from rest at t ! 0. Find
the displacement of the weight as a function of the time, determine the amplitude, period, and
frequency of the resulting motion.

Ans. x(t) ! (1/6) ! cos 16t, 1/6ft, >/8 sec, 8/> oscillations/sec.
2. A 4–lb weight is attached to the lower end of a coil spring suspended from the ceiling. The

weight comes to rest in its equilibrium position, thereby stretching the spring 6 inches. At t ! 0 the
weight is then struck so as to set it into motion with an initial velocity 2ft/sec, directed downward.
(i) Deermine the resulting displacement and velocity of the weight as function of time (ii) Find the
amplitude, period, and frequency of the motion (iii) Determine the times at which the weight is 1.5
inches below its equilibrium position and moving  downward (iv) Determine the times at which it
is 1.5 inches below its equilibrium position and moving upward.

Ans. (i) x ! (1/4) × sin 8t (ii) 1/4 ft, >/4 sec, 4/> oscillations/sec.
(iii) t ! >/8 + (n>)/4 (n ! 0, 1, 2,...) (iv) t ! (5>)/48 + (n>)/4 (n ! 0, 1, 2, ...)

3. An 8–lb weight is attached to the lower end of a coil spring suspended from the ceiling and
comes to rest in its equilibrium position, thereby stretching the spring 0.4 ft. The weight is then pulled
down 6 inches below its equilibrium position and released at t ! 0. The resistance of the medium in
pounds is numerically equal to 2 (dx/dt), where dx/dt is the instantaneous velocity in feet per second.
(i) Set up the differential equation for the motion and list the initial conditions (ii) Solve the initial
value problem set up in part (i) to determine the displacement of the weight as a function of the time.
(iii) Express the solution found in part (ii) in an alternative form also (iv) what is the so called
“period” of the motion. (v) Graph the displacement as a function of the time.
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Ans. (i) (1/4) × (d2x/dt2) + 2 (dx/dt) + 20 x = 0, x(0) = 1/2, x' (0) = 0
 (ii) x = e– 4t {(1/4) ! sin 8t + (1/2) × cos 8t}

(iii) x = ( 5 / 4) e– 4t cos (8t – 4), where 4 Ν 0.46 (iv) >/4 sec.

4. An 8–lb weight is attached to the lower end of a coil spring suspended from a fixed
support. The weight comes to rest in its equilibrium position, thereby stretching the spring
6 inches. The weight is then pulled down 9 inches below its equilibrium position and released at
t ! 0. The medium offers a resistance in pounds equal to 4(dx/dt), where dx/dt is the instantaneous
velocity in feet per second. Determine the displacement of the weight as a function of the time.

[Delhi B.Sc. II (Prog) 2009, 10] Ans. x ! (6t + 3/4)e– 8t

5. A 6–lb weight is attached to the lower end of a coil spring suspended from the ceiling, the
spring constant being 27 lb/ft. The weight comes to rest in its equilibrium position, and  beginning
at t ! 0 an external force given by F(t) ! 12 cos 20 t is applied to the system. Determine the
resulting displacement as a function of the time, assuming damping is negligible.

[Delhi B.Sc. II (Prog) 2011] Ans. x ! (cos 12t – cos 20t)/4
6. A 10–lb weight is hung on the lower end of a coil spring suspended from the ceiling, the

spring constant of the spring being 20 lb/ft. The weight comes to rest in its equlibrium position, and
beginning at t ! 0 an external force given by F(t) ! 10 cos 8t is applied to the system. The medium
offers a resistance in pounds numerically equal to 5(dx/dt), where dx/dt is the instantaneous
velocity in feet per second. Find the displacement of the weight of the weight as a function of the
time. Ans. x(t) ! – 2t e– 8t + (1/4) × sin 8t

7. A 6–lb weight is hung on the lower end of a coil spring suspended from the ceiling. The
weight comes to rest in its equilibrium position, thereby stretching the spring 4 inches. Then
beginning at t ! 0 an external force given by F(t) ! 27 sin 4t – 3cos 4t is applied to the system. If
the medium offers a resistance in pounds numerically equal to three times the instantaneous
velocity, measured in feet per second, find the displacement as a function of the time.

Ans. x(t) ! (1/2) × e– 8t ( 2  sin 4 2 t + 2 cos 4 2 t) + sin4t – cos 4t
8. A 12–lb weight is attached to the lower end of a coil spring suspended from the ceiling.

The weight comes to rest in its equilibrium position thereby stretching the spring 6 inches.
Begninning at t ! 0 an external force gives by F(t) ! 2cos Εt is applied to the system. (i) If the
damping force in pounds is numerically equal to 3(dx/dt), where dx/dt is the instantaneous velocity
in feet per second, determine the resonance frequency of the resulting motion and find the
displacement as a function of the time when the forcing function  is in resonance with the
system.(ii) Assuming there is no damping, determine the value of Ε which gives rise to undamped
resonance and find the displacement as a function of the time in this case.

Ans. (i) (2 2 )/>; x(t) ! – (1/18) × e– 4t ( 3 sin 4 3 t + cos 4 3 t) + (1/18) × ( 2  sin 4 2 t

+ cos 4 2 t) (ii) 8; x(t) ! (t/3) × sin 8t
9. The differential equation for the motion of a unit mass on a certain coil spring under the

action of an external force of the form F(t) ! 30 cos Εt is (d2x/dt2) + a (dx/dt) + 24x ! 30 cos Εt,
where a Φ 0 is the damping coefficient (i) If a ! 4, find the resonance frequency and determine the
amplitude of the steady–state vibration when the forcing function is in resonance with the system.

(b) Proceed as in part (i) if a ! 2. Ans. (i) 2/>; 3 5 /4 (ii) 22 / 2> ; 15 23 / 23
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11.20 Applications of differential equations

11.12 Electric Circuit Problems
In this article we propose to study the application of differential equations to series circuits

containing (1) an electromotive force, and (2) resistors,inductors, and capacitors. In what follows,
the following conventional symbols will be used.

E

C

R

L

Figure showing LRC-series circuit

E

R

L

C

Some useful results related to series circuits:
Electromotive force (for example, a battery or generator) produces a flow of current in a

closed circuit and that this current produces a so called voltage drop across each resistor, inductor
and capacitor. See the following table for symbols and unis.

Quantity and symbol Unit
emf or voltage E volt (V)
current i ampere
charge q coulomb
resistance R ohm (Ο)
inductance L henry (H)
capacitance C farad

Recall the following three laws concerning the voltage drops across resistor, inductor and
capacitor:

Law I: The voltage drop ER acorss a resisor is given by                   ER ! R i, ...(1)
where R is a constant of proportionally called the resistance, and i the current.

Law II: The voltage drop EL across an inductor is given by              EL ! L(di/dt), ...(2)
where L is a constant of proportionality called the inductane.

Law III: The voltage drop EC across a capacitor is given              EC ! q/C, ...(3)
where C is a constant of proportionality called the capacitance and q is instantaneous charge on
the capacitor.

The fundamental law in the study of electric circuits is the following:
Kirchhoff’ Voltage Law: The sum of the voltage drops across resistor, inductors, and

capacitors is equal to the total electromotive force in a closed circuit.
Let us apply Kirchhoff’s law to the circuit of figure. Let E denote the electromotive force.

Then, using the above mentioned laws 1, 2 and 3 for voltage drops, we obtain
L (di/dt) + R i + q/C ! E ...(4)

containing two dependent variables i and q. But, we also have
i ! dq/dt so that di/dt ! d2q/dt2 ...(5)

Using (5), (4) takes the form L (d2q/dt2) + R (dq/dt) + q/C ! E, ...(6)
which is a second – order linear differential equation in the single dependent variable q. So we can
obtain q from (6).
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Now, differentiating (4) w.r.t. ‘t’, gives   L (d2i/dt2) + R (di/dt) + (1/C) × (dq/dt) ! dE/dt
or L (d2i/dt2) + R (di/dt) + (1/C) × i ! dE/dt, using (5) ...(7)
which is a second order linear differential equation in the single dependent variable i. So we can
obtain i from (7).

Particular cases: We now consider two very simple cases in which the problem reduces to a
first order linear differential equation.

Case I: If the circuit contains no capacitor (so that C ! 0), then (4) reduces to
L (di/dt) + R i ! E ...(8)

Case II: If the circuit contains no inductor (so that L ! 0), then (6) reduces to
R (dq/dt) + q/C ! E ...(9)

Electro-mechanical analogy: Observe that the differential equation (6) for the charge is
exactly the same as the differential equation (2) of Art. 11.6 for the vibrations of a mass on a coil
spring, except for the notations  used. That is, the electrical system described by (6) is analogous
to the mechanical system described by equation (2) of Art. 11.6.

Since electrical circuits are easy to assemble and the currents and voltages are accurately
measured very easily, this affords a practical method of studying the oscillations of complicated
mechanical systems which are expensive to make and unwieldy to handle by cosidering an
equivalent electric circuit. While making an electric equivalent of a mechanical system, the
correspondence between the elements shown in the following table should be kept in mind.

Mechanical system Electric system
mass m inductance L
damping constant a Resistance R
spring constant k reciprocal of

capacitance ! 1/C
impressed force F(t) impressed voltage

or     emf E
displacement x charge q
velocity ! v ! dx/dt current ! i ! dq/dt

11.13 Solved examples based on Art. 11.2
Ex.1. A circuit has in series an electromotive force given by E ! 100 sin 40t V, a resistor of

10 Ο and an inductor of 0.5 H. If the initial current in 0, find the current at time t > 0.
Sol. For the given problem the circuit diagram is

shown in the adjoining figure. Let i denote the current in
amperes at time t. The total electromotive force is
100 sin 40 t. Then, as usual (refer laws 1 and 2 of Art
11.12), we have

The voltage drop across the resistor ! ER ! Ri ! 10i
and the voltage drop across the inductor ! EL ! L (di/dt) ! (1/2) × (di/dt)

Applying Kirchhoff’s law, we have             (1/2) × (di/dt) + 10i ! 100 sin 40t
or di/dt + 20i ! 200 sin 40t, which is first order linear equation ...(1)

Since the initial current is 0, the initial condition is                   i (0) ! 0 ...(2)

E

R

L
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11.22 Applications of differential equations

Integrating factor of (1) !
20dt

e. ! e20t and hence its solution is

i e20t ! . {(200 sin 40 t) × e20t } dt + C ! 200 . e20t sin 40t dt + C ...(3)

� Since, from Integral Calculus,   sinaxe bx dx. ! {eax (a sin bx – b cos bx)}/(a2 + b2),

hence, 20 sin 40te t dt. !
Χ ∆

Χ ∆ Χ ∆

20

2 2
20sin 40 – 40cos 40

20 40

te t t

+
!

Χ ∆20 sin 40 – 2 cos 40
100

te t t

� (3) reduces to                        i e20t ! 2 e20t (sin 40t – 2cos 40t) + C
or i ! 2 (sin 40t – 2cos 40t) + C e–20t ...(4)

Applying the condition (2), i ! 0 when t ! 0, (4) gives C ! 4. Hence (4) becames
i ! 2 (sin 40 – 2 cos 40t) + 4 e– 20t ...(5)

We transform (5) in a “phase – angle” form as follows:

sin 40t – 2 cos 40t ! 5 Χ ∆ Χ ∆; <1/ 5 sin 40 – 2 / 5 cos 40t t ! 5  sin (40t + 4) ...(6)

where cos 4 ! 1/ 5 and sin 4 ! 2 / 5 ...(7)

From (7), 4 Ν – 1.11 radians Hence, sin 40t – 2 cos40t ! 5  sin (40t – 1.11)

� (5) transforms to                               i ! 2 5  sin (40t – 1.11) + 4e– 20t

or i ! 4.47 sin (40t – 1.11) + 4e– 20t ...(8)
Interpretation. The current is presented as the sum of a sinusodial term and an exponential.

The exponential becomes so very small in a short time that its effect is soon practically negligible;
it is the transient term. Thus, after a short time, essentially all that remains is the sinusodial term;
it is the steady current. Observe that its period >/20 is the same as that of the electromotive force.
However, the phase angle 4 Ν – 1.11 radians indicates that the electromotive force leads the
steady–state current by approximately (1/46) × 1.11. The grah of the current as a function of time
is shown in the following figure.

5

–5

0 t

i

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ex. 2.  A circuit has in series an electromotive force given by E = 100 sin 60 t V, a resistor
of 2Ο, an inductor of 0.1H, and a capacior of 1/260 farads. If the initial current and the initial
charge on the capacitor are both zero, find the charge on the capacitor at any time t > 0.

Sol. The circuit diagram is shown in
the adjoining figure. We have L ! 1/10
heneries, C ! 1/260 farads, R ! 2 ohms
and E ! 100 sin 60t V. Let q denote the
instantaneous charge on the capacitor.
Then q is given in terms of L, C, R and E
by the following second–order linear
differential equation:

E

R = 20 hns

L=
1

10
heneries

C=
1

260
farads
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L (d2q/dt2) + R (dq/dt) + q/C ! E or (1/10) × (d2q/dt2) + 2 (dq/dt) + 260 q!100 sin 60 t
or (D2 + 20 D + 2600)q ! 1000 sin 60t, where D /   d/dt ...(1)

Since the charge q is initially zero, we have first initial condition:          q(0) ! 0 ...(2)
Since the current i is also initially zero and i ! dq/dt ! q1 (t), we have
Second initial condition: q1(0) ! 0 ...(3)
The auxiliary equation for (1) is      D2 + 20 D + 2600 ! 0    giving     D ! – 10 ± 50 i.
� qc ! C.F. of (1) ! e–10t (C1 sin 50 t + C2 cos 50 t), C1,C2 being arbitrary constants

and qp ! P.I. ! 2
1 1000sin 60

20 2600
t

D D+ +
! 2

11000 sin 60
–(60) 20 2600

t
D+ +

! 150 sin 60
– 50

t
D

! 50 (D + 50) 2 2
1 sin 60

– (50)
t

D

! 50 (D + 50) 2 2
1 sin 60

–(60) – (50)
t ! 1

– (60cos60 50 sin 60 )
(2 61)

t t+
!

! – (25/61) × sin 60t – (30/61) × cos 60t
Hence the general solution of (1) is                        q ! qc + qp, that is,

q(t) ! e– 10t (C1 sin 50t + C2 cos 50t) – (25/61) × sin 60t – (30/61) × cos 60t ...(4)
Differentiating (4) w.r.t. ‘t’ and simplifying, we obtain

q1 (t) ! e– 10t {(–10C1 – 50C2} sin 50t + (50C1 – 10C2) cos 50t}

– (500/61) × sin 60t + (1800/61) × sin 60t ...(5)
Applying condition (2) to equation (4) and condition (3) to equation (5), we get

C2 – (30/61) ! 0 and 50 C1 – 10 C2 – (1500/61) ! 0 giving C1! 36/61, C2!30/61
Substituting these values in (4), the required solution is

q ! (6/61) × e– 10t (6 sin 50t + 5cos 50t) – (5/61) × (5 sin 60t + 6 cos 60t) ...(6)
We shall now re-write (6) in a “phase-angle” form. We have

6 sin 50t + 5 cos 50t ! ; <61 (6 / 61 sin 50 (5 / 61) cos50t t+ ! 61cos(50 – )t 4 , ...(7)

where cos 4 ! 5 / 61 and sin 4 ! 6 / 61 ...(8)

and  5 sin 60t + 6 cos 60t ! ; <61 (5 / 61)sin 60 (6 / 61) cos60t t+ ! 61  cos (60t – Μ), ...(9)

where cos Μ ! 6 / 61 and sin Μ ! 5 / 61 ...(10)
From (8) and (9), we get 4 Ν 0.88 radians and Μ Ν 0.69 radians

� (7) reduces to                     6 sin 50t + 5 cos 50t ! 61  cos (50t – 0.88)
and (9) reduces to                    5 sin 60t + 6 cos 60t ! 61  cos (60t – 0.69)

Using the above results (6) takes the form
q ! 0.77 e– 10t cos (50t – 0.88) – 0.64 cos (60t – 0.69) ...(11)

Interpretation: Clearly the first term on R.H.S. of (11) becomes negligible after a relatively
short time, it is the transient term. After a sufficient time essentially all that remains is the periodic
second term on the R.H.S. of (11); this is the steady–state term. The graph of these two
components and that of their sum (the complete solution) are shown in the following diagrams.
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EXERCISE  11(C)
1. A circuit has in series a constant electromotive force of 40 V, a resistor of 10Ο and an

inductor of 0.2H. If the initial current is 0, find the current at time t > 0.      Ans. i ! 4(1 – e– 50t)
2. A circuit has in series a constant electromotive force of 100 V, a resistor of 10Ο and a

capacitor of 2 × 10– 4 farads. The switch is closed at time t ! 0, and the charge on the capacitor at
this instant is zero. Find the charge and current at time t > 0. Ans. q ! (1 – e– 500t)/50; i ! 10 e– 500t

3. A circuit has in series an electromotive force given by E(t) ! 100 sin 200t V, a resistor of
40Ο, an inductor of 0.25 H, and a capacitor of 4 × 10– 4 farads. If the inital current is zero, and he
initial charge on the capacitor is 0.01 coulombs, find the current at any time t > 0.

Ans. i ! e– 80t (– 4.588 sin 60t + 1.247 cos 60t) – 1.247 cos 200t + 1.331 sin 200t
4. A circuit has in series a resistor R Ο, an inductor L H, and a capacitor of C farads. The

initial current is zero and the initial charge on the capacitor in Q0 coulombs.
(a) Show that the charge and the current are damped oscillatory functions of time if and only

if R < 2 (L/C)1/2, and find the expressions for the charge and the current in this case.
(b) If R Φ 2 (L/C)1/2, discuss the nature of the charge and current as functions of time.
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Ans. (a) i ! – / 20
2 2 1/ 2

2
–

(4 – )
Rt LQ

e
LC R C

 sin 
2 1/ 2(4 – )

2
L R C t

L C

% &
∋ (∋ (
) ∗

;

q !
2 1/ 2 2 1/ 2

– / 2 0
02 1/ 2

(4 – ) (4 – )sin cos
2 2(4 – )

Rt L Q R C L R C L R Ce t Q t
L C L CL R C

Γ Η% & % &
+Ι ϑ∋ ( ∋ (∋ ( ∋ (Ι ϑ) ∗ ) ∗Κ Λ

Part III. Applications to Simultaneous Differential Equations
11.14 Applications to Mechanics

System of linear differential equations originate in the mathematical formulation of various
problems in mechanics. In the next article we shall discuss such problems in details. For details of
method of solution refer Chapter 8.

11.15 Solved example based on Art. 11.14
Ex.1. On a smooth horizontal plane BC an object A1 is connected to a fixed point P by a

massless spring S1 of natural length L1. An object A2 is then connected to A1 by a massless spring
S2 of natural length L2 in such a way that the fixed point P and the centres of gravity A1 and A2
all lie in a straight line (refer fig. (i))

The object A1 is then displaced a distance a1 to the right or left of its equilibrium position
O1, the object A2 is displaced a distance a2 to the right or left of its equilibrium position O2 and
at time t = 0 the two objects are released (see fig. (ii)). What are the positions of the two objects
at any time t > 0.

Sol. Let m1 and m2 be masses of objects A1 and A2 respectively Also, assume that spring
constants of springs S1 and S2 be k1 and k2 respectively.

B
P

S1
A1

L1
O1

S2
A2

L2
O2

C

Figure (i)

B
P

S1
A1

O1

S2
A2

O2

C

Figure (ii)

a2a1

B
P

S1
A1

O1

S2
A2

O2

C

Figure (iii)

x2x1

Let x1 denote the displacement of A1 from its equilibrium position at time t Φ 0 and assume
that x1 is positive when A1 is to the right of O1. Similarly, let x2 denote the displacement of A2 from
its equilibrium position O2 at time 0t Φ  and assume that x2 is positive when A2 is to the right of
O2 (see figure (iii)).
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The forces acting on A1 at time t > 0 are: (i) Force F1 exerted by the spring S1 (ii) Force F2
exerted by spring S2. By Hooke’s law, the force F1 is of magnitude k1|x1|. Since this force is
exterted toward the left when A1 is to the right of O1 and toward the right when A1 is to the left of
O1, we have F1 ! – k1x1. Again using Hooke’s law, the force F2 is of magnitude k2e, where e is the
elongation of S2 at time t. But e ! |x2 – x1| and hence magnitude of F2 is k2 |x2 – x1|. Again, since
this force is exerted toward the left when x2 – x1 < 0 and toward the right when x2 – x1 > 0, we have
F2 ! k2 (x2 – x1).

Applying Newton’s second law to the object A1, we have
m1(d2x/dt2) ! – kx1 + k2 (x2 – x1)            or            (m1D2 + k1 + k2) x1 – k2 x2! 0, ...(1)
where D / d/dt. The object A2 is acted upon by only one force F3 which is exerted by spring S2.
By Hooke’s law, the magnitude of F3 is k2|x2 – x1|. Since F3 is exerted toward the left when
x2 – x1 > 0 and toward the right when x2 – x1 < 0, we have F3 ! – k2(x2 – x1). Applying Newton’s
second law to the object A2, we have

m2 (d2x2/dt2) !  – k2(x2 – x1) or (m2D2 + k2) x2 – k2 x1!0 ...(2)
From the statement of the problem, the inditial conditions are:

x1(0) ! a1, x' (0) ! 0,             x2(0) ! a2,             and             x12 (0) ! 0 ...(3)
Solution of a specific case: Suppose the two objects A1 and A2 are each of unit mass, so that

m1 ! m2 ! 1. Also, suppose that the springs S1 and S2 have spring constants k1 ! 3 an k2 ! 2,
repectively. Further, we take a1 ! –1 and a2 ! 2. Then, (1), (2) and (3) take the following forms:

(D2 + 5)x1 – 2x2 ! 0 ...(4)
– 2x1 + (D2 + 2) x2 ! 0 ...(5)

x1(0) ! – 1, 1x1 (0) ! 0,               x2(0) ! 2               and                x'2(0) ! 0 ...(6)

Operating both sides of (4) by (D2 + 2) and multiplying (5) by 2 and then adding the resulting
equations, we find

{(D2 + 2) (D2 + 5) – 4}x1 ! 0 or (D4 + 7D2 + 6)x1 !0 ...(7)
The auxiliary equation for (7) is D4 + 7D2 + 6 ! 0 or (D2 + 6) (D2 + 1) ! 0

so that D ! ± 6i , ± i and hence the general solution of (7) is

x1 ! C1 sin t + C2 cos t + C3 sin 6t  + C4 cos 6t , C1, C2, C3, C4 being arbitrary contants ...(8)

(8) 2 Dx1 ! C1 cost – C2 sin t + C3 6  cos t 6  – C4 6  sin t 6 ...(9)

(9) 2 D2x1 ! – C1 sin t – C2 cos t – 6 C3 sin t 6   – 6C4 cos t 6 ...(10)

Now, (4) 2 2x2 ! D2x1 + 5x1 ! – C1 sin t – C2 cos t – 6 C3 sin 6t  – 6 C4 cos 6t

+ 5(C1 sin t + C2 cos t + C3 sin 6t  + C4 cos 6t ), using (8) and (10)

or x2 ! 2C1 sin t + 2C2 cos t – (1/2) × C3 sin 6t  – (1/2) × C4 cos 6t ...(11)

From (6), we have x1 ! –1 and 1x1 ! dx1/dt ! Dx1 ! 0 when t ! 0. Hence (8) and (9) give

– 1 ! C2 + C4 and 0 ! C1 + C3 6 ...(12)

From (11), x'2 ! dx2/dt ! 2C1 cos t – 2C2 sin t – Χ ∆6 / 2 × C3 cos t 6  + Χ ∆6 / 2 × C4 sin t 6  ...(13)

From (6), we have x2 ! 2 and 2x1 ! dx2/dt ! 0 when t ! 0. Hence (11) and (13) give

2 ! 2C2 – (1/2) + C4 and 0 ! 2C1 – Χ ∆ 36 / 2 C! ...(14)
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 Solving (12) and (14),      C1 ! 0,     C2 ! 3/5,    C3 ! 0        and       C4 ! –(8/5).
Substituting the above values in (8) and (11), the particular solution of the specific problem

consisting of the system of equations (4) and (5) and initial conditions (6) is given by
   x1(t) ! (3/5) × cos t – (8/5) ! cos t 6 and    x2 (t) ! (6/5) × cos t + (4/5) × cos t 6
Ex 2. Solve the problem of Ex. 1. for the case in which the objects A1 has mass

m1 = 2, the object A2 has mass m2 = 1, the spring S1, has spring constant k1 = 4, the spring S2 has
s2 has spring constant k2 = 2, and the initial conditions are x1(0) = 1, 1x1 (0) = 0, x2(0) = 5 and

2x1 (0) = 0. Ans. x1 ! 2 cos t – cos 2t, x2 ! 4 cos t + cos 2t
Ex. 3. A projectile of mass m is fired into the air from a gun which is inclimed at an angle Μ

with the horizontal, and suppose the initial velocity of the projectile is v0 feet per second. Neglect
all forces except that of gravity and the air resistance, and assume that this latter force (in pounds)
is numerically equal to k times the velocity (in feet/second). (i) Taking the origin at the position of
the gun, with x-axis horizontal and the y-axis vertical, show that the differential equations of the
resulting motion are m (d2x/dt2) + k (dx/dt) ! 0 and m(d2y/dt2) + k (dx/dt) + mg ! 0. (ii) Find the
solution of the system of differential equation of part (i).

MISCELLANEOUS EXAMPLES ON CHATPER 11
Ex. 1. When a switch is closed in circuit containing a battery E, a resistor R and an

inductance L, the current i builds up at a rate given by L (di/dt) + Ri = E.
Find i as a function of t. [M.S. Univ. T.N. 2007]
Sol. Re-writing the given equation,                        di/dt + (R/L) × i ! E/L ... (1)

Integrating factor of linear equation (1) ! ( / ) /. ,R L dt Rt Le e

� Solution of (1) is       ieRt/L ! /( / ) ,+. Rt LE L e dt c c being an arbitrary constant
or i eRt/L ! (E/L) × (L/R) eRt/L + c or i ! E/R + ce–(Rt/L) ... (2)

Initially, at t ! 0, i ! 0. So (2) givens              0 ! E/R + c so that c ! – E/R
Hence, (2) reduces to i ! (E/R) × (1 – e–Rt/L) ... (3)
Ex. 2. A 12 volt battery is connected to a simple series circuit in which the inductance is

(1/2) H and the resistance is 10 Ο. Determine the current i if i(0) = 0. [M.S.Univ. T.N. 2007]
Sol. If a circuit has in series an electromotive force E volt, a resistor R ohm and an inductor

L heneries, then current i in amperes at time t is given by
L (di/dt) + Ri ! E ... (1)

Here L ! (1/2) H, R ! 10Ο and E ! 12 volt, So (1) reduces to
(1/2) × (di/dt) + 10i ! 12 or di/dt + 20i ! 24 ... (2)

Its I.F. ! 20 20. ,dt te e  and solution is given by

i e20i ! 20(24 ) +. te dt c or i e20t ! (6/5) × e20t + c

or i ! (6/5) + c e–20t, c being an arbitrary constant ... (3)
Since i (0) ! 0, putting i ! 0 and t ! 0 in (3), we get c ! – 6/5
Hence, (3) reduces to                         i ! (6/5) × (1 – e–20t)
Ex. 3. 16 lb weight is placed upon the lower end of a coil spring suspended from the ceiling

and comes to rest in the equilibrium position, thereby stretching the spring 8 in At time t = 0 the
weight is then struck so as to set it into motion with initial velocity of 2ft/sec  directed downward.
The mediam ofters a resistance in pounds numerically equal to 6 (dx/dt), where dx/dt is the
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11.28 Applications of differential equations

instantaneous velocity in feet per second. Determine the resulting displacement of the weight as a
function of time. [Delhi B.Sc. II (Prog.) 2008]

4. For an electric circuit with circuit constants L, R, C the charge q on a plate of condenser is
given by 2 2( / ) ( / ) / 100L d q dt R dq dt q c+ + , . Given L = 1, R = 1200, C = 10–6, q = dq/dt = 0 for
t > 0, find the charge q. [Madurai Kamraj 2008]

5. A current of electricity on a circuit of resistance R ohms commences at time t = 0. The self
induction of the circuit is L and when t = 0, the electromotive force is E. The current satisfies the
equation ( / )L di dt Ri E+ , . Solve the equation and show that / 2( / ) (1 )Rti E R e−, ! −

[Madurai Kamraj 2008]
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M.1

MISCELLANEOUS PROBLEMS BASED ON THIS PART OF THE BOOK
Ex. 1. What is the general solution of 2x (dy/dx) = 10x3y5 + y ?
(a) y4 ! cx2 – 4x3 (b) y – 4 = c/x2 + 4x3

(c) y4 = c/x2 + 4x3 (d) y – 4 = c/x2 – 4x3 [I.A.S. Prel.  2008]
Sol. Ans. (d). Re-writing, the given equation reduces to

4
5 25

2
dy yy x
dx x

!
! � #     or      5 4 21 5

2
dyy y x
dx x

! !! �   …(1)

Let y – 4 ! v  so that – (4y–5) × (dy/dx) ! d v /dx. Then, (1) reduces to
– (1/4) × (d v /dx) – (1/2x) × v ! 5x2     or         d v /dx + (2/x) × v ! – 20x2,  …(2)

whose I.F. ! 2log 2xe x
∃

� �
(2/x)dx

e  and hence its solution is

% &2 2( 20 )x x dx c� ! ∋ #∃2vx                 or                          4 2 54y x x c! � ! #

or    y–4 ! c/x2 – 4x3, c being an arbitrary constant.
Ex. 2. Solve the differential equation ydx + (x + x3y2)dy = 0 [I.A.S. 2008]
Sol. Re-writing the given equation,                      y (dx/dy) + x + x3 y2 ! 0

or    dx/dy + (1/y) × x ! – x3y                 or        x–3 (dx/dy) + (1/y) × x–2 ! – y  ...(1)
Let x–2 ! v               so that             – (2x–3) × (dx/dy) ! d v /dy. . Then, (1) reduces to

– (1/ 2) ( / )d dy /y = – y∋ #v v                         or                   dv/dy – (2/y) × v ! 2y, …(2)

whose I.F. ! 2log 2ye y! !� �∃– (2/y)dy
e  and hence its solution is

v y–2 ! )dy c#∃ -2(2y ×y                              or                        2 2 2log 2logx y y c! ! � !

or log (y/c) ! 1/(2x2y2)                  or                              y = c
2 2(1/ 2 )x ye

Ex. 3. Solve (1 + x + xy2)dy + (y + y3)dx = 0 [Delhi 2008]
Sol. Re-writing the given equation,         y(1 + y2)dx + {1 + x (1 + y2)}dy ! 0

or (1 + y2) (ydx + xdy) + dy ! 0       or                       d(xy) + {1/(1+y2)}dy ! 0
Integrating,       xy + log (1 + y2) – log c ! 0           or               log {(1+y2)/c} ! – xy

or       1 + y2 ! c e–xy, c being an arbitrary constant.
Ex. 4. What is the solution of the equation x(dy/dx) + y2/x = y? Here ln x ! logex
(a) ln(y/x) – (1/x) = C (b) ln x – (x/y) = C
(c)  ln(x/y) – (1/x) = C (d) ln x + (x/y) = C [I.A.S. (Prel.) 2009]
Sol. Ans. (b). Given      x(dy/dx) + y2/x ! y           or              dy/dx – (1/x)y ! – (y2/x2)

or                                y–2 (dy/dx) – (1/x)y–1 ! – (1/x2) …(1)
Putting y–1 ! v  so that – y–2 (dy/dx) ! d v /dx, (1) reduces to

– (d v /dx) – (1/x) v ! – (1/x2)         or            d v /dx + (1/x) v ! 1/x2,  …(2)

which is a linear differential equation whose I.F. ! ∃(1/x)dxe ! logxe ! x and hence solution of (2) is

      v x ! % &2(1/ ) log lnex x dx c x c x c( ( (∋ # � # � #∃ , c( being an arbitrary constant.

or x/y ! ln x c(#                       or                            ln ( / ) ,x x y c��
where c ! ( )c(� !  is an arbitrary constant.
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M.2 Miscellaneous problems based on this part of the book

Ex. 5. Which one of the following differential equations represents the orthogonal
trajectories of the family of curves xy = k2?

Sol. Ans. (c). Given xy ! k2,   where k is a parameter … (1)
Differentiating (1) w.r.t. ‘x’, y + x (dy/dx) ! 0, … (2)

which is the differential equation of the given family of curves (1). Replacing dy/dx by – (dx/dy),
the differential of the required orthogonal trajectories is given by

y – x (dx/dy) ! 0                          or                                xdx – ydy ! 0
Ex. 6. Solve (D3 + D)y = 2x2 + 4 sin x [Delhi 2008]
Sol. The auxiliary equation of the given equation is given by
D3 + D ! 0,             i.e.,              D(D2 + 1) ! 0             giving             D ! 0, i)

Hence C.F. ! .
1 2 3cos sino xC e C x C x# # , C1, C2 and C3 being arbitrary constants

Here, P.I. corresponding to 2x2

! 2 2 1 2
2
1 22 (1 )

( 1)
x D x

DD D
!� #

#
! 2 4 2 22 2

(1 ) ( 2)D D x x
D D

! # ∗ � ! !
32 4

3
x x!

and P.I. corresponding to 4 sin x

! 3 2 2 2
1 1 1 1 14sin 4 sin 4 ( cos ) 4 cos

1 1 1
x x x x

DD D D D D
� � ! � !

# # # #

! 4 sin 2 sin ,
2 1

x x x x! ∋ � !
∋

         as       2 2
1 cos sin

2
xax ax
aD a

�
#

Hence the required solution is                   y ! C.F. + total P.I.,  i.e.,

y ! C1 + C2 cos x + C3 sin x + 3(2 /3)x  – 4x – 2x sin x

Ex. 7. Solve the differential equation 2 2 2( / ) 9 xd y dx y e x! � #  by the method of
undetermined coefficients. [Delhi 2008]

Hint. Do like Ex 2, page.5.54. Ans. y ! 3 3 2
1 2 ( / 5) ( / 9)x x xc e c e e x!# ! !

Ex. 8. One particular solution of y111 – y11 – y1 + y = – ex is a constant multiple of
(a) xe–x                 (b) xex                   (c) x2e–x                   (d) x2ex [GATE 2008]
Sol. Ans. (d). Let D ! d/dx. Then, the given equation reduces to
(D3 – D2 – D + 1)y ! – ex                   or                        (D – 1)2 (D + 1) y ! – ex

P.I. !
2 2

2 2 2
1 1 1 1 1 1 1( )

1 2 2 2 2! 4( 1) ( 1) ( –1)

x
x x x xx x ee e e e

DD D D
+ ,! � ! � ! � ! ∋ ∋ � !− .# / 0! !

which is a constant multiple of 2 .xx e .

Ex. 9. Solve (x2D2 – xD + 1)y = (log x sin log x + 1)/x [Madurai Kamraj 2008]
Sol. Try yourself as in Ex. 17, page 6.10 Ans.  y ! x(c1 + c2 log x) + (1/4x)
 + {(log x) × (3 log sin x + 4 log cos x)}/25x + (110 cos log x + 20 sin log x)/625x
Ex. 10. Solve the differential equation (D2 – 2D + 1)y = x log x, (x > 0) by using the method

of variation of parameters. [Delhi 2008]
Sol. Re-writing the given equation,                            y2 – 2y1 + y ! x log x … (1)
Comparing (1) with        y2 + Py1 + Qy ! R,            here                    R ! x log x
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Miscellaneous problems based on this part of the book M.3

Consider y2 – 2y1 + y ! 0       or        (D2 – 2D + 1)y ! 0,     where   D 1 d/dx … (2)
The auxiliary equation of (2) is              D2 – 2D + 1 ! 0      giving D ! 1, 1.
Hence, C.F. of (1) ! (c1 + c2x)ex, c1 and c2 being arbitrary constants … (3)

Let     u ! ex      and               xv = x e . Also,  here    R ! x log x … (4)

Now,                 W ! 2 2( ) 0
x x

x x x x x
x x x

e xe
e e xe xe e

e e xe
� � # ! � 2

#1 1

u v
u v

Then,    P.I of (1) ! u f (x) + v g (x), where … (5)

f (x) ! 2
2

( ) ( log ) ( log )
x

x
x

xe x xdx dx e x x dx
e

!� ! � !∃ ∃ ∃
vR–
W

! % &2( log ) ( ) (2 log ) ( ) ,x xx x e x x x e dx! !! ! ! # !∃  integrating by parts

! 2 log (2 log )x xe x x e x x x dx! !! #∃
! % &2 log (2 log ) ( ) (2 log 2 1) ( )x x xe x x x x x e x e dx! ! !! # ! ! # # !∃
! 2 log (2 log ) (2 log 3)x x xe x x e x x x e x dx! ! !# # ! #∃
! % &2( log 2 log ) (2log 3)( ) (2 / ) ( )x x xe x x x x x x e x e dx! ! !# # ! # ! ! !∃
! 2( log 2 log 2 log 3) 2 ( / )x xe x x x x x x e x dx! !# # # # ! ∃ … (6)

g(x) ! 2
( log ) ( log )

x
x

x
uR e x xdx dx e x x dx
W e

!∋
� �∃ ∃ ∃

! ( log ) ( ) (log 1) ( )x xx x e x e dx! !! ! # !∃ ! log (log 1)x xxe x e x dx! !! # #∃
! % &log (log 1) ( ) (1/ ) ( )x x xxe x x e x e dx! ! !! # # ! ! ∋ !∃ , integrating by parts

! ( log log 1) ( / )x xe x x x e x dx! !! # # # ∃ … (7)

Using (4), (6) and (7), (5) yields

P.I. of (1) ! % &2( log 2 log 2log 3) 2 ( / )x x xe e x x x x x x e x dx! !# # # # ! ∃
+ % &( log log 1) ( / )x x xxe e x x x e x dx! !! # # # ∃
! 2 log 2 log 2log 3 2 ( / )x xx x x x x x e e x dx!# # # # ! ∃

2 log log ( / )x xx x x x x xe e x dx!! ! ! # ∃
! log 2 log 3 (2 ) ( / )x xx x x x e e x dx!# # ! ! ∃

Hence the required solution is                  y ! C.F. + P.I.,     i.e.,

         y ! 1 2( ) log 2 log 3 (2 ) ( / )x x xc c x e x x x x e e x dx!# # # # ! ! ∃
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M.4 Miscellaneous problems based on this part of the book

Ex. 11. Use the method of variation of parameters to find the general solution of
x2y(( – 4xy( + 6y = – x4 sin x. [I.A.S. 2008]

Sol. Re-writing the given equation,         y2 – (4/x) × y1 + (6/x2) × y ! – x2 sin x. …(1)
Comparing (1) with y2 + Py1 + Qy ! R,           here             R ! – x2 sin x
Consider y2 – (4/x) × y1 + (6/x2) × y ! 0    or     (x2D2 – 4xD + 6)y ! 0, D 1 d/dx   …(2)
In order to apply the method of variation of parameters, we shall reduce (2) into linear

differential equation with constant coefficients.
Let    x ! ez,        i.e.,         log x ! z            and          let        D1 1 d/dz …(3)
Then, xD ! D1, x

2D2 ! D1 (D1 – 1) and so (2) reduces to

{D1 (D1 – 1) – 4D1 + 6}y ! 0           or                         2
1 1( 5 6) 0D D y! # � ,

whose auxiliary equation is       2
1 15 6 0D D! # �         giving          D1 ! 2, 3.

3  C.F. of (1) ! c1 e2z + c2 e3z ! c1 (e
z)2 + c2 (e

z)3 ! c1x
2 + c2x

3 … (4)

Let u ! x2      and      3v = x . Also,                 here               R ! sin x2–x …(5)

Here                        
2 3

4 4 4
2

1
3 2 0

2 3

u x x
W x x x

u x x
� � � ! � 2

1

v
v

Hence,    P.I. of (1) ! u f (x) + v g (x), where …(6)

                                f (x) !
3 2

4
( sin ) sinx x xdx dx x x dx

x
∋ !

! � ! �∃ ∃ ∃
vR
W

                                ! % &( cos ) 1 ( cos ) cos sinx x x dx x x x! ! ∋ ! � ! #∃ …(7)

and      g (x) !
2 2

4
( sin ) sin cosuR x x xdx dx x dx x

W x
∋ !

� � ! �∃ ∃ ∃    …(8)

Using (5), (7) and (8), (6) reduces to
P.I. of (1) ! x2 (– x cos x + sin x) + x3 cos x ! x2 sin x
Hence the required general solution is                  y ! C.F. + P.I.,   i.e.,

y ! c1x
2 + c2x

3 + x2 sin x, c1 and c2 being arbitrary constants.

Ex. 12.  Solve 2( / ) / 1 and / / 2dx dt dy dt x y dx dt dy dt x y t# ! ! � # # ! � .
          [Delhi Maths (Prog.) 2008]

Sol. Given                                 2( / ) / 1dx dt dy dt x y# ! ! � ... (1)

and                / / 2dx dt dy dt x y t# # ! � ... (2)

Subtracting (2) from  (1)                     / 3 1dx dt x t! � ! , ... (3)

which is linear differential equation whose I.F. !
( 3) 3dt te e! !∃ �  and solution is

        3 3 3 3
1 1(1 ) (1 ) ( / 3) ( 1) ( / 9)t t t txe t e dt c t e e c! ! ! !� ! # � ! ! ! ! ∋ #∃

[Using the chain rule of integration by parts]

or                     % &3 3 3
1 1(3 2) / 9 or (3 2) / 9t t txe t e c x c e t! !� ! # � # ! ... (4)
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Miscellaneous problems based on this part of the book M.5

From (4), 3
1/ 3 1/ 3tdx dt c e� # ... (5)

From (2),       / ( / ) 2dy dt y t dx dt x! � ! !

or                          % &3 3
1 1/ (3 1/ 3) 2 (3 2) / 9t tdy dt y t c e c e t! � ! # ! # !

or                                  3
1/ 5 / 3 1/ 9tdy dt y c e t! � ! # # ... (6)

which is linear differentail equation whose I.F. ! ( 1)dt te e! !∃ �   and solution is

            3 2
1 2 1 2( 5 / 3 1/ 9) 5 ( / 3 1/ 9)t t t t tye c e t e dt c c e dt t e dt c! ! !� ! # # # � ! # # #∃ ∃ ∃

or                      2
1 2(5 / 2) ( / 3 1/ 9) ( ) (1/ 3) ( )t t t tye c e t e e c! ! !� ! ∋ # # ∋ ! ! ∋ #

[Using the chain rule of integration by parts]

or                     2
1 2(5 / 2) ( / 3 4 / 9) ( )t t tye c e t e c! !� ! ∋ ! # ∋ #

3
1 2(5 / 2) /3 4 /9t ty c e t c e� ! ∋ ! ! # ... (7)

        The required solution is given by (4) and (7), where  c1 and c2  are arbitrary constants.
Ex. 13. Solve the following simultaneous differential equations.

(a)  2( / ) ( / ) 1, ( / ) ( / ) 2dx dt dy dt x y dx dt dy dt x y t# ! ! � # # ! �
(Delhi B.Sc. II (Prog) 2008)

(b) 2/ 4 sec 2 , / .dx dt y t dy dt x# � � [Delhi B.A. II (Prog)  2009]

(c) / 9( / ) 2 31 , 3( / ) 7( / ) 24 3tdx dt dy dt x y e dx dt dy dt x y# # # � # # # �
[Delhi B.Sc. II (Prog) 2009]

Ans. (a) 3 3
1 2 1(3 2) / 9; (5 / 2) ( / 3) (4 / 9)� # ! � ! ∋ ! !t t tx c e t y c e c e t

(b) 1 22 sin 2 2 cos 2 (1/ 2) {cos 2 log (sec 2 tan 2 ) tan 2 }x c t c t t t t t� ! # # ∋ # #

    1 2cos 2 sin 2 (1/ 4) {sin 2 log (sec 2 tan 2 ) 1}y c t c t t t t� # # ∋ # !
Ex. 14. If f (D) = xD + 2 and g (D) = D + 5, then  find [f (D) g (D)]y, where D ! d/dx.

[Pune 2010]
Sol. [f (D) g(D)] y ! [(xD + 2) (D + 5)]y ! "xD (D + 5) + 2(D + 5)]y

                ! (xD2 + 5 xD + 2D + 10)y
Ex. 15. (a) Find the particular solution of the equation (D2 – 3D + 2) y = cos (e–x) by using

the method of variation of parameters.
(b) Solve by variation of parameters (D2 – 3D + 2) y = cos (e–x)  [G.N.D.U. Amritsar 2011]
Sol. (a). Given y2 – 3y1 + 2y ! cos (e–x) ... (1)
Comparing (1) with    y2 + Py1 + Qy ! R,         we have   R ! cos (e–x) ... (2)
Auxiliary equation of (2) is D2 – 3D + 2 ! 0  giving D ! 1,2
Hence, C.F. of  (1) ! c1 ex + c2 e2x, c1 and c2 being arbitrary constants ... (3)
Let             u = ex     and     v ! e2x.    also, here     R ! cos (e–x) ... (4)

Now,
2

2
1 2

x x

x x

u v e e
W

u v e e
� � ! 3 3 32 0x x xe e e! � 2 ... (5)

Then,     particular solution (or integral) of (1) ! uf (x) + vg(x), ... (6)
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M.6 Miscellaneous problems based on this part of the book

where ( ) vRf x dx
W

� ! �∃
2

3
cos( )x x

x
e e dx

e

!

!∃ ! cos( )x xe e dx! !!∃ ! cos sin sin xt dt t e!� �∃
[Putting e–x ! t so that e–xdx ! – dt]

and            3
cos( )( )

x x

x
uR e eg x dx dx
W e

!

� �∃ ∃ ! 2 cos( ) cos ,x xe e dx t dt! ! � !∃ ∃ putting e–x ! t

                [ sin sin ]t t t dt� ! ! ∃ ! sin cos sin ( ) cos ( )x x xt t t e e e! ! !! ! � ! !

Substituting the above values of f(x) and g(x) in (6), we have
P.S. ! Particular solution ! ex sin (e–x) + e2x {–e–x sin (e–x) – cos (e–x)] ! –e2x cos (e–x)
Part (b). Proceed as in part (a) to get C.F. and P.S. Then, the required solution is

y ! C.F. + P.I. ! c1 ex + c2 e2x – e2x cos (e–x)
Ex. 16. Given that the complementary solution of the differential equation (x2 – 1)y(( – 2x y(

+ 2y ! x2 – 1 is yc ! c1 x + c2 (1 + x2), find the particular solution using the method of variation
of parameters. [Delhi B.Sc. (Hons) II 2011]

Sol. Re-writing the given equation,         y2 – {2x/(x2 – 1)}y1 + {2/(x2 – 1)} y ! 1 ... (1)
Comparing (1) with y2 + Py1 + Qy ! R,  we have R ! 1 ... (2)
Given that C.F. of (11 ! yc ! c1x + c2 (1 + x2), c1 and c2 being arbitrary constants ... (3)
Let             u = x, v ! 1 + x2.   Also here  R ! 1 ... (4)

Now,
2

1 1

1
1 2

u v x xW
u v x

#� � ! 2x2 – (1 + x2) ! x2 – 1 2 0 ... (5)

Then,        the required particular solution ! yp ! uf(x) + vg(x), ... (6)

where
2

2
1( )

1
vR xf x dx dx
W x

#
� ! � !

!∃ ∃ !
2

2
2 (1 ) 1log

11 e
x xdx x

xx
! ! #

� !
!!∃

and 2( )
1

uR xg x dx dx
W x

� �
!∃ ∃ ! 2

2
1 ( 2 ) 1 log (1 )
2 21 e

x dx x
x

!
� !

!∃
Using the above values of f (x) and g (x) in (6), the required particular solution is

2 21 1log (1 ) log (1 )
1 2p e e

xy x x x x
x

4 # 5
� ! # # ∋ !6 7

!8 9
! 2 2 21 1

log (1 ) log (1 )
1 2e e

xx x x x
x

#
! # # # !

!

Ex. 17.(a) Given that y = x is a solution of (x2 + 1) (d2y/dx2) – 2x (dy/dx) + 2y = 0. Find a
linearly independent solution by reducing the order. Write the general solution.

[Delhi B.Sc. (Hons) II 2011]
(b) Verify that y1 = x/(x–1)2 is a solution of the differential equation x (x – 1) y(( + 3xy( + y

= 0. Find the other linearly independent solution of the equation and hence its general solution.
[Mumbai 2010]

Sol. (a) Comparing the given equation with p(x) y(( + q(x) y( + r(x) y ! 0, we have p(x) ! x2 +
1 and q(x) ! – 2x. Also here f(x) ! x. Hence the required second linearly independent solution is
vf(x), i.e., xv, where v is given by (refer formula (6) off Art. 10.4A of chapter 10).

                                  v !
% &
% &2

exp [ ( ) / ( ) ]

( )

q x p x dx
dx

f x

! ∃
∃ ... (1)
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Miscellaneous problems based on this part of the book M.7

Here, 2
( ) 2
( ) 1

q x x
dx dx

p x x
! �

#∃ ∃ ! 2log ( 1)e x #   and hence we have

% &exp ( ) / ( )q x p x dx: ;!< =∃ !
2log ( 1)2 2exp log ( 1) 1e x

e x e x#: ;# � � #< =

Hence, from (1), v !
2

2 2
1

( 1)
x dx
x

#
#∃ ! 1

2 tan
1

dx x
x

!�
#∃

and hence the required second linearly independent solution of the given equation is vf (x), i.e., x
tan–1 x. Hence, the required solution is given by

y ! c1x + c2x tan–1x, c1 and c2 being arbitrary constants
Part (b). Hint. Proceed as in part (a). Here f(x) ! y1 ! x/(x – 1)2. Then, as before, show that

v ! x–1 + log x and hence the second linearly solution of the given equation in vf(x), i.e.,
{x/(x–1)2} × (x–1 + log x). Required general solution is given by

y ! (c1x)/(x – 1)2 + c2 × {x/(x – 1)2} × (x–1 + log x), c1 and c2 being arbitrary constants.
Ex. 18. Let f(x) and x f(x) be the particular solutions of the differential equation
( ) ( ) 0.y R x y S x y(( (# # � Then the solution of the differential equation ( ) ( ) ( )y R x y S x y f x(( (# # �  is

(a) 2( / 2 ) ( )y x x f x� ! #> #? (b) 2( / 2 ) ( )y x x f x� #> #?

(c) 2( ) ( )y x x f x� ! # > #? (d) 2( ) ( )y x x f x� # > #?         [GATE 2012]

Sol. Ans. (b).  For the given objective type problem, use working rule of Art. 7.4B. Accordingly,
here  ( ), ( ) and ( )u xf x v f x R f x� � � ... (1)

Let y Au Bv� # ...(2)

be the general solution of  ( ) ( ) ( )y R x y S x y f x(( (# # � ... (3)
Then  A and B are given by [Refer equations (5) and (8) of Art 7.4B]

1 1 0A u B v# �                  i.e.,         1 1 1 1( ) ( ) 0 or 0A xf x B f x A x B# � # � ...(4)

and   1 1 1 1A u B v R# �               i.e.,            1 ( ( )) ( ( )) ( )d dA xf x B f x f x
dx dx

# �

or                                       1 1{ ( ) ( )} ( ) ( )A f x xf x B f x f x( (# # � (5)

Eliminating B, between (4) and (5) ,   1 1 1( ) ( ) ( ) ( )A f x A x f x A x f x f x( (# ! � , giving

A1 = 1       or      dA/dx = 1       giving ,A x� #> >  being a constant ...(6)
Since    A1 = 1, (5) yields   B1 = –x         or     dB/dx = –x       or        dB = –xdx

Integrating,               2( / 2) ,B x� ! #? ?  being a constant ... (7)

using (6) and (7) , (2) yields 2 2( ) ( ) ( / 2) ( ) ( / 2 ) ( )y x xf x x f x x x f x� #> # ?! � # > #?

Ex. 19. If a transformation y = uv  transforms the given  differential equation
( ) 4 ( )f x y f x y(( ( (!  + g(x)y = 0  into the equation of the form 4 ( ) 0v h x v(( # � , then u must be

(a) 1/f 2    (b) xf     (c) 1/2f       (d) f 2                       [GATE 2012]

1 4 ( ) ( )1 2
2 ( ) 2log ( ) 2( )2 [ ( )]

f x f xdx dxpdx f x f xf xu e e e e f x
(4 5 (! ∃ ∃6 7! ∃

8 9� � � � �
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M.8 Miscellaneous problems based on this part of the book

Sol. Ans. (d). Re-writing the given equation, we have

                {4 ( ) / ( ) { ( ) / ( )} 0y f x f x y g x f x y(( ( (� # � ... (1)

Comparing (1) with 0y Py Qy(( (# # � , here {4 ( ) / ( )P f x f x(�

Using result of working rule of Art. 10.7, the required value of u is given by

1 4 ( ) ( )1 2
2 ( ) 2log ( ) 2( )2 [ ( )]

f x f xdx dxpdx f x f xf xu e e e e f x
(4 5 (! ∃ ∃6 7! ∃

8 9� � � � �
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1
Picard’s Iterative Method Uniqueness

And Existence Theorems
1.1. Introduction. In many practical problems we come across with a differential equation which
cannot be solved by one of the standard methods known so far. Various methods have been formulated
for getting to any desired degree of accuracy the numerical solution of the above mentioned type of
differential equation with numerical coefficients and given conditions. In this chapter we propose
to discuss Picard’s iteration method for finding an approximate solution of the initial value problem
of the form

dy/dx = f(x, y),   y(x0) = y0.
The condition y(x0) = y0 is called the initial condition. Here y(x0) denotes the value of y at

x = x0. Sometimes y(x0) = y0 is also expressed by saying that y = y0 when x = x0.
An iteration method is a method which consists of a repeatred application of exactly the

same type of steps where in each step we use the result of the previous step (or steps).
1.2A. Picard’s method of successive approximations (or Picard’s iteration method)

[Himanchal 2004, Bangalore 2002, 06; Allahabad 2001; Meerut 2000, 10; Ujjan 2003]
Consider an initial value problem of the form

  dy/dx = f(x, y),     y(x0) = y0. ...(1)
By integrating over the interval (x0, x), (1) gives

dy
y

y

0
z = f x y dx

x

x
( , )

0
z or y(x) – y0 = f x y dx

x

x
( , )

0
z

or y(x) = y0 + f x y dx
x

x
( , )

0
z . ...(2)

Thus, the solving of initial value problem (1) is equivalent to finding a function y(x) which
satisfies the equation (2), since by differentiating (2) we get dy/dx = f(x, y) and putting x = x0 in (2)
yields y(x0) = y0 + 0 i.e., y(x0) = y0. Conversely, (2) has been obtained from (1) by integration over
the interval (x0, x) and employing the initial condition y(x0) = y0.

Since the information concerning the expression of y in terms of x is absent, the integral on
the R.H.S. of (2) cannot be evaluated. Hence the exact value of y cannot be obtained. Therefore we
determine a sequence of approximations to the solution (2) as follows. As a crude approximation,
we put y = y0 in the integral on the right of (2) and obtain

y1(x) = y0 + 
0

0( , ) ,
x

x
f x y dx! ...(3)

where y1(x) is the corresponding value of y(x) and is called first approximation and is better
approximation of y(x) at any x. To determine still better approximation we replace y by y1 in the
integral on R.H.S. in (2) and obtain the second approximation y2 as

 y2(x) = y0 + f x y dx
x

x
( , ) .1

0
z ...(4)

1.3
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1.4 Picard’s Iterative Method. Uniqueness and Existence Theorems

Proceeding in this way, the nth approximation yn is given by

yn(x) = y0 + f x y dxn
x

x
( , )�z 1

0

. ...(5)

Thus, we arrive at a sequence of approximate solutions y1(x), y2(x), y3(x),...........yn(x),.....
1.2B. Solved examples based on Art. 1.2A

Ex. 1. Apply Picard’s method to solve the following initial value problem upto third
approximation : dy/dx = 2y – 2x2 – 3 given that y = 2 when x = 0.

[Agra 2005; Gwalior 2003; Delhi Maths (Hons.) 1998, 2005; Meerut 2000, 04, 05, 11]
Sol. Given problem is     dy/dx = 2y – 2x2 – 3,    where y = 2,     x = 0. ... (1)
We know that the nth approximation yn of the initial value problem

  dy/dx = f(x, y), where y = y0 when x = x0 ...(2)

is given by yn = y0 + f x y dxn
x

x
( , ) .�z 1

0

...(3)

Comparing (1) and (2), f(x, y) = 2y – 2x2 – 3, x0 = 0     and  y0 = 2. ...(4)

# from (3), yn = 2 + ( ) .2 2 31
2

0
y x dxn

x
� � �z ...(5)

First approximation. Putting n = 1 in (5), we have

y1 = 2 + ( )2 2 30
2

0
y x dx

x
� �z = 2 + ( )4 2 32

0
� �z x dx

x
, using (4)

or y1 = 2 + ( )1 2 2

0
�z x dx

x
= 2 2

3
2 2

3
3

0

3
∃ � FHG

I
KJ

L
NM

O
QP % ∃ �x x x x

x

. ...(6)

Second approximation. Putting n =2 in (5), we have

y2 = 2 + ( )2 2 31
2

0
y x dx

x
� �z = 2 + 2 2 2

3
2 3

3
2

0
∃ �F
HG

I
KJ � �

L
NM

O
QPz x x x dx

x
, using (6)

or y = 2 +
0

2
3

1 2 2 4
3

x
x x x dxz ∃ � �

F
HG

I
KJ = 2 + x + x2 – 2

3 3
3 4x x� . ...(7)

Third approximation : Putting n = 3 in (5), we have

y3 = 2 +
0

2
22 2 3

x
y x dxz � �d i = 2 + 

0

2
3 4

22 2 2
3 3

2 3
x

x x x x x dxz ∃ ∃ � �F
HG

I
KJ � �

L
NM

O
QP , using (7)

or y = 2 +
0

3
41 2 4

3
2
3

x
x x x dxz ∃ � �

L
NM

O
QP = 2 + x + x2 – x x4 5

3
2
15

� .

Ex. 2. Using the Picard’s method of successive approximations, find the third approximation
of the solution of the equation : dy/dx = x + y2, where   y = 0 when x = 0.

[Delhi Maths (Hons) 1996; Meerut 2007; Ravishankar 2001
Indore 2001; Jabalpur 2000, 02, 05; Gwalior 2006; Rohilkhand 2004]

Sol. Given problem is            dy/dx = x + y2, where y = 0 when x = 0. ...(1)
We know that the nth approximation yn of the initial problem

dy/dx = f(x, y)    where   y = y0  when  x = x0. ...(2)

is given by yn = y0 +
x

x
nf x y dx

0
1z �( , ) . ...(3)

Comparing (1) and (2),  f(x, y) = x + y2,   x0 = 0   and y0 = 0. ...(4)
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Picard’s Iterative Method. Uniqueness and Existence Theorems 1.5

#  from (3) ,    yn = 0
1

2x
nx y dxz ∃ � . ...(5)

First approximation. Putting n = 1 in (5) and using (4) we have

y1 = 0
0
2

0

21
2

x x
x y dx x dx xz z∃ % %d i . ...(6)

Second approximation. Putting x = 2 in (5) and using (6), we have

   y2 = 0
1
2x

x y dxz ∃d i % ∃
L
NM
O
QPz x x dx

x 4

0 4 = 1
2

1
20

2 5x x∃ . ...(7)

Third approximation. Putting n = 3 in (5), we get

        y3 = 0
2
2x

x y dxz ∃d i =
0

2 5
21

2
1
20

x
x x x dxz ∃ ∃FH IK
L
NM

O
QP , using (7)

   =
0

4 10 71
4

1
400

1
20

x
x x x x dxz ∃ ∃ ∃L
NM

O
QP = 1

2
1
20

1
4400

1
160

2 5 11 8x x x x∃ ∃ ∃ .

Ex. 3. Find the third approximation of the solution of the equation dy/dx = 2 – (y/x) by
Picard’s method, where y = 2 when x = 1.
[Delhi Maths (Hons.) 1997, 99, 2008, 2009; Gwalior 2004; Meerut 2002, 11; Rohilkhand 2000]

Sol. Given problem is dy/dx = 2 – (y/x),   where  y = 2   when  x = 1. ...(1)
We know that the nth approximation yn of the initial value problem
      dy/dx = f(x, y),   where   y = y0      when       x = x0. ...(2)

is given by yn = y0 + f x y dxn
x

x
( , )�z 1

0

. ...(3)

Comparing (1) and (2), f(x, y) = 2 – (y/x), x0 = 1 and y0 = 2. ...(4)

#  from (3), yn = 2 + [ ( / ) ]2 1 1
1

� �z x y dxn
x

. ...(5)

First Approximation. Putting n = 1 in (5), we get

y1 = 2 + 2 1 0
1

�z / x y dx
x a f = 2 + 2 2

1
�z / x dx

x b g , using (4)

   = 2 + 2 2 1x x x� log = 2 + 2x – 2 log x – 2 = 2x – 2 log x. ...(6)

Second Approximation. Putting n = 2 in (5), we get

           y2 = 2 + 2 1
1

�FH
I
Kz y

x
dx

x
= 2 + [ ( log )] ,2 1 2 2

1
� �z x

x x dx
x

 by (6)

= 2 +2 1
1

log .x
x

dx
xz = 2 + (log ) (log ) .x x

x2
1

22% ∃ ...(7)

Third Approximation. Putting n = 3 in (5), we get

           y3 = 2 + 2 1
2

1
� FH IKL
NM

O
QPz x

y dx
x

= 2 + 2 1 2 2

1
� FH IK ∃L
NM

O
QPz x x dx

x
(log )n s , by (7)

   = 2 + 2 2 12

1
� �L
NM

O
QPz x

x
x

dx
x

(log ) = 2 + 2 2
3

3

1

x x
x

x

� �
L
N
MM

O
Q
PPlog

(log )

   = 2 + 2x – 2 log x – (1/3) × (log x)3 – 2 = 2x – 2 log x – (1/3) × (log x)3.
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1.6 Picard’s Iterative Method. Uniqueness and Existence Theorems

Ex. 4. (a) Using Picard’s method of successive approximation, find a sequence of two functions
which approach solution of the initial value problem dy/dx = ex + y2, y(0) = 1.

[Delhi Maths (Hons.) 1994, 2002]
Sol. Given problem is   dy/dx = ex + y2,   where   y = 1    when  x = 0. ...(1)
We know that the nth approximation yn of the initial value problem
     dy/dx = f(x, y), where     y = y0     when      x = x0 ...(2)

is given by  yn = y0 + f x y dxn
x

x
( , ) .�z 1

0

...(3)

Comparing (1) and (2),    f(x, y) = ex + y2,    x0 = 0  and    y0 = 1. ...(4)

#  from (3), yn = 1 + ( ) .e y dxx
n

x
∃ �z 1

2

0
...(5)

First Approximation. Putting n = 1 in (5), and using (4), we get

y1 = 1 + ( )e y dxxx
∃z 0

2

0
= 1 + ( )e dxxx

∃z 1
0

= 1 + e xx x
∃

0
= 1 + ex + x – 1 = ex + x. ...(6)

Second Approximation. Putting n = 2 in (5), we have

 y2= 1 + ( )e y dxxx
∃z 1

2

0
= 1 + e e x dxx xx

∃ ∃z ( )2

0
, by (6)

    = 1 + ( )e e x x e dxx x xx
∃ ∃ ∃z 2 2

0
2 = 1 + e e x x e dxx x

x
xx

∃ ∃L
NM

O
QP ∃ z1

2 3
22

3

0 0

= 1 + ex + 1
2 3

1 1
2

2 12
3

0 0
e x x e e dxx x x xx

∃ � � ∃ �L
NM

O
QPz ( . ) =  ex + 

1
2

e2x + 
1
3 x3 – 

1
2

 + 2 0xe ex x x� [ ]

    = ex + (1/2) × e2x + x3/3 – (1/2) + 2x ex – 2 (ex – 1) = (1/2) × e2x + x3/3 + 3/2 + (2x – 1) ex.
Ex. 4(b). Find three successive approximations of the solution of dy/dx = ex + y2, y(0) = 0.

[Delhi Maths (Hons.) 2007]
Sol. Given problem in dy/dx = ex + y2, y(0) = 0 ... (1)
We know that the nth approximation yn of the initial value problem.
dy/dx = f(x, y), where y = y0          when     x = x0 ... (2)

in given by       
0

0 1( , )
x

n n
x

y y f x y dx�% ∃ ! ... (3)

Comparing (1) and (2), here f(x, y) = ex + y2,  x0 = 0,     y0 = 0   ... (4)

# (3) reduces to              2
1

0
( )

x x
n ny e y dx�% ∃! ... (5)

First approximation : Putting n = 1 in (5) and using (4), we get

2
1 0 0

0 0
( ) [ ] 1

x xx x x x xy e y dx e dx e e% ∃ % % % �! ! ... (6)

Second approximation : Putting n = 2 in (5) and using (4) and (6), we get

2 2 2
2 1

0 0 0
( ) { ( 1) } ( 1)

x x xx x x x xy e y dx e e dx e e dx% ∃ % ∃ � % � ∃! ! !
2 2

0[(1/ 2) ] (1/ 2) ( 2 2 1)x x x x xe e x e e x% & � ∃ % & � ∃ ∃ ... (7)
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Picard’s Iterative Method. Uniqueness and Existence Theorems 1.7

Third approximation : Putting n = 3 in (5) and using (4) and (7), we get

2 2 2
3 2

0 0
( ) { (1/ 4) ( 2 2 1) }

x xx x x xy e y dx e e e x dx% ∃ % ∃ & � ∃ ∃! !
4 2 2 3 2 2

0

1 (4 4 4 1 4 4 2 8 4 4 )
4

x x x x x x x x xe e e x e xe e xe e x dx% ∃ ∃ ∃ ∃ � ∃ ∃ � � ∃!
4 3 2 2 2

0

1 ( 4 2 4 4 1 4 8 )
4

x x x x x xe e e x x xe xe dx% � ∃ ∃ ∃ ∃ ∃ �!
3

4 3 2 2
0 0 0

0

1 1 1 1 4 2
16 3 4 4 3

x
x x xx x x xe e e x x

∋ (
∋ ( ∋ ( ∋ (% � ∃ ∃ ∃ ∃) ∗+ , + , + ,

+ ,

2 2

0

1 1(1)
2 4

x
x xx e e∋ (− . − .∃ & � &/ 0 / 0) ∗1 2 1 2+ ,

0
2 ( ) ( ) (1) ( )

xx xx e e∋ (� � &+ , , on integrating by parts the last two terms

4 3 2 3 2(1/16) ( 1) (1/3) ( 1) (1/ 4) ( 1) (1/12) (4 6 3 )x x xe e e x x x% & � � & � ∃ & � ∃ & � ∃

2 2( / 2) (1/ 4) 1/ 4 2( 1)x x x xx e e xe e∃ & � & ∃ � � ∃

4 3 2 3 2(1/16) (1/3) (1/4) (1/12) (4 6 3 )x x xe e e x x x% & � & ∃ & ∃ & � ∃ 2(1/ 4) (2 1) 2 ( 1) (83 / 48).x xx e x e∃ & � � � �

Ex. 5. Use Picard’s method to obtain a solution of the differential equation: dy/dx = x2 – y,
y(0) = 0. Find at least the fourth approximation to each solution. [Meerut 1996]

Sol. Given       dy/dx = x2 – y, where y = 0 when x = 0.    ...(1)
We know that the nth approximation yn of the initial value problem

dy/dx = f(x, y),    when      y = y0      when x = x0   ...(2)

is given by yn = y0 + f x y dxn
x

x
( , )�z 1

0

. ...(3)

Comparing (1) and (2), f(x, y) = x2 – y,   x0 = 0     and     y0 = 0. ...(4)

#  from (3),      yn = ( ) .x y dxn
x 2

1
0

� �z ...(5)

First approximation. Putting n = 1 in (5) and using (4), we get

      y1 = ( )x y dx
x 2

0
0

�z = x dx x x
x x

2

0

3

0

31
3

1
3z % LNM

O
QP % . ...(6)

Second approximation. Putting n = 2 in (5) and using (6), we get

           y2 = ( )x y dx
x 2

1
0

�z = x x dx
x 2 3

0

1
3

�FH IKz = 1
3

1
12

1
3

1
12

3 4

0

3 4x x x x
x

�L
NM

O
QP % � . ...(7)

Third approximation. Putting n = 3 in (5) and using (7), we get

        y3 = x y dx
x 2

2
0

�z d i = x x x dx
x 2 3 4

0

1
3

1
12

� �FH IKL
NM

O
QPz = 1

3
1

12
1

60
3 4 5

0
x x x

x
� ∃L

NM
O
QP

or      y3 = x3/3 – x4/12 + x5/60. ...(8)
Fourth approximation. Putting n = 4 in (5) and using (7), we get
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1.8 Picard’s Iterative Method. Uniqueness and Existence Theorems

y4 = ( )x y dx
x 2

3
0

�z = x x x x dx
x 2 3 4 5

0

1
3

1
12

1
60

� � ∃FH IKL
NM

O
QPz = 3 4 5 6

0

1 1 1 1
3 12 60 360

x

x x x x∋ (� ∃ �) ∗+ ,
or y = x3/3 – x4/12 + x5/60 – x6/360.

Ex. 6. (a) Apply Picard’s method to find the solution of the problem dy/dx = y – x, y(0) = 2.
Show that the iterative solution approaches the exact solution. [Meerut 1995]

Sol. Given dy/dx = y – x, where y = 2   when    x = 0. ...(1)
We know that the nth approximation of the initial value problem

      dy/dx = f(x, y) where          y = y0   when        x = x0 ...(2)

is given by yn = y0 + f x y dxn
x

x
( , )�z 1

0

. ...(3)

Comparing (1) and (2), f(x, y) = y – x,  x0 = 1  and   y0 = 2. ...(4)

#  from (3),   yn = 2 + ( )y x dxn
x

� �z 1
0

. ...(5)

First approximation. Putting n = 1 in (5) and using (4), we get

y1 = 2 + ( )y x dx
x

0
0

�z = 2 + ( )2 2 2 1
20

2� % ∃ �z x dx x x
x

. ...(6)

Second approximation. Putting n = 2 in (5) and using (6) we get

y2 = 2 + ( )y x dx
x

1
0

�z = 2 + 2 2 1
2

2

0
∃ � �FH IKz x x x dx

x
2 31 12 2

2 6
x x x% ∃ ∃ � ... (7)

Third approximation. Putting n = 3 in (5) and using (7), we get

       2 3
3 2

0 0
2 ( ) 2 [2 2 / 2 / 6 ]

x x
y y x dx x x x x dx% ∃ � % ∃ ∃ ∃ � �! !

              = 2 + 2x + x x x2 3 4

2 6 24
∃ � = 1 + x + 1 + x x x x

1 2 3 4

2 3 4

! ! ! !
∃ ∃ � ...(8)

To find the exact solution of (1). Rewriting (1), we have
( / )dy dx – y = –x, which is a linear differential equation ...(9)

Its I.F. =e e
dx x( )� �z %

1
 and hence its solution is

 ye–x = ( )( )� ∃�z x e dx cx = – x e e dx cx x( ) .( )� � �L
NM

O
QP∃

� �z1 , c being an arbitrary constant

or      ye–x = xe–x + e–x + c or  y = x + 1 + c ex.  ...(10)
Given that y = 2, when x = 0, so (10) gives 2 = 1 + c     or     c = 1.
Hence, from (10), the exact solution is          y = x + 1 + ex. ...(11)

We know that ex = 1 + x + ( / !) ( / !)x x2 32 3∃  + ........ ad inf. ...(12)

Keeping (12) and (8) in view, we find that the approximate solution tends to

y = 1 + x + 1 + x x x/ ! / ! / !1 2 32 3∃ ∃  + .... = 1 + x + ex i.e., which is exact solution of (4).

Ex. 6 (b) Apply Picard’s iteration method to the initial value problem dy/dx = y, y(0) = 1 and
show that the successive approximations tend to the limit y = ex, the exact solution.

[Allahabad 2001, 05; Gwalior 2005; Indore 2002, 03; Kurukshetra 2003; Pune 2002]
Sol. Proceeding as in Ext. 6 (a), we have
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y1 = 1 + x, y2 = 1 + x x
1 2

2

! !
∃ , y3 = 1 + x x x

1 2 3
2 3

! ! !
∃ ∃ .

In general, yn = 1 + x x x x
n

n

1 2 3
2 3

! ! !
......

!
∃ ∃ ∃ ∃ . ...(1)

Also, solving dy/dx = y,   we have   (1/y)dy = dx  so that   y = c ex.
... (2)

Given that y = 1 when x = 0, so (2) given 1 = c and hence
the exact solution (2) becomes y = ex. ...(3)
From (1), we see that the successive approximations tend to the limit y = ex as n 3 4, which

is the exact solution.

Ex. 6. (c).  Show that successive approximation 5n(x) for the equation ( ) ( )y x y x6 %

( )x�4 7 7 4  with initial condition y(0) = 1 are given by 5n(x) = 1 + x + x2/2! + x3/3! + ... + xn/n!
[Kolkata 2002, 04, 07]

EXERCISE 1 (A)
1. Apply Picard’s method to the following initial value problems and find the first three

successive approximations.
(i) dy/dx = 2xy, y(0) = 1. [Allahabad 1994, Delhi Maths (Hons.) 95, 2001, 04, 06]

Ans.  y1 = 1 + x2,   y2 = 1 + x2 + (x4/2 ),   y3 = 1 + x2 + (x4/2) + (x6/6)
(ii) dy/dx = 3ex + 2y, y(0) = 0.

[Himanchal 2002; Meerut 1993, 94, M.K.U. (Tamil Nadu), 2002, 02]
Ans. y1 = 3(ex – 1),   y2 = 9ex – 6x – 9,   y3 = 21 ex – 6x2 – 18x – 21.

(iii) dy/dx = x + y, y(0) = 1. [Allahabad 1999; Calicut 2004; Meerut 1993, 95]
Ans. y1 = 1 + x + (x2/2),   y2 = 1 + x + x2 + (x3/6),   y3 = 1 + x + x2 + (x3/3) + (x4/24)

(iv) dy/dx = 1 + xy, y(0) = 2.
[Agra 2001, 04, 05 Himanchal 2004, 05; Lucknow 2003, Meerut 2001, 06]

Ans. y1 = 2 + x + x2,       y2 = 2 + x + x2 + (x3/3) + (x4/4),
y3 = 2 + x + x2 + (x3/3) + (x4/4) + (x5/15) + (x6/24)

(v) dy/dx = 2x – y2, where y = 0 at x = 0.
Ans. y1 = x2,   y2 = x2 – (x5/5),    y3 = x2 – (x5/5) + (x8/120) – (x11/275).

(vi) dy/dx = ex + y2, y(0) = 0. Ans. y1 = ex –1 , y2 = (1/2)e2x – ex + x + (1/2), y3 = (1/16)e4x

– (1/3)e3x + (1/2)xe2x + (1/2)e2x – 2xex + 2ex + (1/3)x3 + (1/2)x2 + (1/4)x – (107/48).
2. Solve the differential equation dy/dx = x – y with the condition y = 1 when x = 0 and show

that the sequence of approximations given by Picard’s method tend to the exact solution as a limit.
[Agra 2001; Meerut 2003]

Ans. y1 = 1 – x + x2

2! , y2 = 1 – x + 2
2 3

2 3x x
! !

� , y3 = 1 – x + 2
2

2
3 4

2 3 4x x x
! ! !

� ∃ ;

y4 = 1 – x + 2
2

2
3

2
4 5

2 3 4 5x x x x
! ! ! !

� ∃ �  tending to y = –1 + x + 2e–x, which is exact solution.

3. Use Picard’s method to approximate the solution of the equation dy/dx + 2xy2 = 0 with
y = 1 when x = 0 and hence show that y = 1/(1 + x2).   [Rohtak 2001, Meerut 1995]

Ans. y1= 1 – x2, y2= 1 – x2 + x4 – (1/3)x6, y3= 1 – x2 + x4 – x6 + (2/3)x8 – (1/3)x10 + (1/9)x12 – (1/63)x14.
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1.10 Picard’s Iterative Method. Uniqueness and Existence Theorems

4. State the conditions under which the initial value problem dy/dx = x2, x0 = 2, y0 = 1 has
unique solution by Picard’s method of successive approximation. Obtain the solution of the initial
value problem dy/dx = x2 + y2, y(0) = 1, by Picards method as far as the term, involving x4.

[Himanchal 2003, 05; Jabalpur 2004, 06; Kurukshetra 2006]
Ans. y1(x) = 1 + x + x3/3, y2(x) = 1 + x + x2 + (2x3/3) + (2x4)/12 + (2x5)/15 + x6/63

5. Using Picard’s method find the third approximation of the solution of the initial value
problem dy/dx = 1 + y2, y(0) = 0. [Kolkata 2004, 07, Pune 2002]

Ans. y1(x) = x,  y2(x) = x + x3/3, y3(x) =x + x3/3 + (2x5)/15 + x7/63
6. Find the exact solution of initial value problem dy/dx = x + y, y(0) = 0. Next apply Picard’s

iterative method to obtain three successive approximate solutions y1(x), y2(x), y3(x).
[Allahabad 2003, 07]

7. Solve the initial value problem dy/dx = y2, y(0) = 1 by method of successive approximation.
 [Jabalpur 2004; Osmania 2006]

Ans. y1(x) = 1 + x;   y2(x) = 1 + x + x2 + x3/3;   y3(x) = 1 + x + x2 + x3 + (2x4)/3 + x5/3 + x6/9 + x7/63
8. (a) Under what condition does the initial value problem of the form y6 = f(x, y), y(x0) = y0

has unique solution ? Give statement only.
(b) Consider the initial value problem y6 = x – y2, y(0) = 1/2. (i) Does this have a unique

solution ? Justify your answer (ii) Applying Picard method find an approximate solution of the
above initial value problem containing at least four no-zero terms (iii) Give your comments regarding
the utility of Picard’s method in view of the above initial value problem.

[Lucknow 2004, 05]
9. Consider the initial value problem dy/dx = f(x, y), y(a) = b and discuss Picard’s method of

successive approximation to solve it.  [Bangalore 2002, 06; Himanchal 2004]
10. Let {yn} be a sequence of successive approximation to the solution of dy/dx = f(x, y),

y(x0) = y0 such that y10 = y9. Show y10 is exact solution. [Himanchal 2002, 03, 05, 07]
11. Explain initial value problem and equivalent integral equation.

[Kanpur 2002, 07; Rohilkhand 2001, Ujjain 2000, 01, 06]

1.3 A.Working rule for Picard’s method of solving simultaneous differntial equations with
initial conditions, namely
dy/dx = f(x, y, z),   dz/dx = g(x, y, z)  where   y = y0,   z = z0  when x = x0. ...(1)

The nth approximation (yn, zn) to the initial value problem (1) is given by

yn = y0 + f x y z dxn n
x

x
( , , )� �z 1 1

0

...(2)

and zn = z0 + g x y z dxn n
x

x
( , , )� �z 1 1

0

. ...(3)

1.3B. Solved examples based on Art 1.3A.
Ex. 1(a) Find the third approximation of the solution of the equation  dy/dx = z, dz/dx = x3(y

+ z) by Picard’s method where y = 1, z = 1/2 where x = 0.
[Meerut 2006,07;  Rohilkhand 2002; Gwalior 2003]

Sol. Given dy/dx = z, dz/dx = x3(y + z), y = 1,  z = 1/2   when     x = 0. ...(1)
We know that the nth approximation (yn, zn) to the initial value problem
dy/dx = f(x, y, z),    dz/dx = g(x, y, z),    when    y = y0,    z = z0        when    x = x0 ...(2)

is given by yn = y0 + f x y z dxn n
x

x
( , , )� �z 1 1

0

...(3)
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and zn = z0 + g x y z dxn n
x

x
( , , )� �z 1 1

0

. ...(4)

Comparing (1) and (2), we have
f(x, y, z) = z,     g(x, y, z) = x3 (y + z),     y0 = 1,    z0 = 1/2,   x0 = 0.   ...(5)

# From (3),        yn = 1 + z dxn
x

�z 1
0

...(6)

and from (4),       zn =
1
2

 + x y z dxn n
x 3

1 1
0

� �∃z d i . ...(7)

First approximation. Putting n = 1 in (6) and using (5), we get

y1 = 1 + z dx dx x
x x

0
0 0

1 1
2

1 1
2z z% ∃ % ∃ . ...(8)

Next, putting n = 1 in (7) and using (5), we gets

               z1 =
1
2

3
0 0

0
∃ ∃z x y z dx

x
( ) = 1

2
1 1

2
1
2

3
8

3 4

0
∃ ∃FH IK % ∃z x dx x

x
. ...(9)

Second approximation. Putting n = 2 in (6) and using (9), we get

      y2 = 1 + z dx x dx
xx

1
4

00
1 1

2
3
8

% ∃ ∃FH IKzz = 1 + 1
2

3
40

5
x x∃ . ...(10)

Next, putting n = 1 in (7) and using (8) and (9), we get

    z2 =
1
2

3
1 1

0
∃ ∃z x y z dx

x
( ) = 1

2
1 1

2
1
2

3
8

3 4

0
∃ ∃ ∃ ∃FH IKz x x x dx

x

        = 1
2

3
2

1
2

3
8

3 4 7

0
∃ ∃ ∃FH IKz x x x dx

x
= 1

2
3
8

1
10

3
64

4 5 8∃ ∃ ∃x x x . ...(11)

Third approximation. Putting n = 3 in (6) and (11), we get

y3 = 1 + z dx
x

2
0z = 4 5 8 5 6 9

0

1 3 1 3 1 3 1 11 1 .
2 8 10 64 2 40 60 192

x
x x x dx x x x x− .∃ ∃ ∃ ∃ % ∃ ∃ ∃ ∃/ 0

1 2!
Next, putting n = 3 in (7) and using (10) and (11), we get

 z3 =
1
2

3
2 2

0
∃ ∃z x y z dx

x
( ) = 1

2
1

2
3
40

1
2

3
8 10

3
64

3 5 4 5 8

0
∃ ∃ ∃ ∃ ∃ ∃ ∃
L
NM

O
QPz x x x x x x dx

x

= 1
2

3
2

1
2

3
8

7
40

3
64

3 4 7 8 11

0
∃ ∃ ∃ ∃ ∃FH IKz x x x x x dx

x
  

4 5 8 9 121 3 3 7
2 8 10 64 360 256

x x x x x
% ∃ ∃ ∃ ∃ ∃

Ex. 1 (b) Find the third approximation of the solution of the equation d2y/dx2

= x3(y + dy/dx), where y = 1  and  dy/dx = 1/2  when  x = 0
(Agra 2000, 02; Himanchal 2004, 05; Meerut 2000; Rohilkhand 2002)

Sol. Given that  d2y/dx2 = x3(y + dy/dx),  where  y = 1  and  dy/dx = 1/2 when  x = 0. ...(1)
Let dy/dx = z so that d2y/dx2 = dz/dx. Then, we have
dy/dx = z, dz/dx = x3(y + z), where y = 1 and z = 1/2  when   x = 0.  ...(2)

which, is the same as given in solved Ex. 1 (a) Proceed now as before and obtain the required third
approximation:              y3 = 1 + x/2 + 3x5/40 + x6/60 + x9/192.

Note : For complete solution of Ex. 1(b), you need not find z3.
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1.12 Picard’s Iterative Method. Uniqueness and Existence Theorems

Ex. 2 (a) Find the third approximation of the solution of the equation dy/dx = z, dz/dx = x2z
+x4y by Picard’s method, y = 5 and z = 1 when x = 0. [Bangalore 2001, Meerut 2006, 07]

Sol. Given dy/dx = z, dz/dx = x2z + x4y,  y = 5,  z = 1  when x = 0. ...(1)
We know that the nth approximation (yn, zn) to initial value problem
dy/dx = f(x, y, z), dz/dx = g(x, y, z) where y = y0, z = z0, when x = x0    ...(2)

is given by yn = y0 + f x y z dxn n
x

x
( , , )� �z 1 1

0

...(3)

and zn = z0 + g x y z dxn n
x

x
( , , )� �z 1 1

0

. ...(4)

Comparing (1) and (2), we have
f(x, y, z) = z,    g(x, y, z) = x2z + x4y,   y0 = 5,    z0 = 1,   x0 = 0. ...(5)

# from (3), yn = 5 + z dxn
x

�z 1
0

...(6)

and from (4), zn = 1 + ( ) .x z x y dxn n
x 2

1
4

1
0

� �∃z ...(7)

First approximation. Putting n = 1 in (6) and using (5), we get

y1 = 5 + z dx dx x
xx

0
00

5 5% ∃ % ∃zz . ...(8)

Next putting n = 1 in (7) and using (5), we get

     z1 = 1 + ( )x z x y dx
x 2

0
4

0
0

∃z = 1 + ( ) .x x dx x x
x 2 4

3
5

0
5 1

3
∃ % ∃ ∃z ...(9)

Second approximation. Putting n = 2 in (6) and using (9), we get

     y2 = 5 + z dx
x

1
0z = 5 + 1

3
5

12 6
3

5
4 6

0
∃ ∃F
HG

I
KJ % ∃ ∃ ∃z x x dx x x xx

. ...(10)

Next, putting n = 2 in (7) and using (8) and (9), we get

     z2 = 1 + x z x y dx
x

2
1

4
1

0

∃z d i = 1 + x x x x x dx
x

2
3

5 4

0

1
3

5∃ ∃F
HG

I
KJ ∃ ∃

L
NM

O
QPz ( )

         = 1 + x x x x dx
x 2 4 5 7

0
5 4

3
∃ ∃ ∃FH IKz = 1 + 1

3
2
9

1
8

3 5 6 8x x x x∃ ∃ ∃ . ...(11)

Third approximation. Putting n = 3 in (6) and using (11), we get

y3 = 5 + z dx
x

2
0z =  5  +  1 1

3
2
9

1
8

3 5 6 8

0
∃ ∃ ∃ ∃FH IKz x x x x dx

x 4 6 7 925
12 6 63 72
x x x xx% ∃ ∃ ∃ ∃ ∃

Next, putting n = 3 in (7) and using (10) and (11), we have

z3 = 1 + x z x y dx
x 2

2
4

2
0

∃z d i = 1 + x x x x x x x x x dx
x 4

4 6
2

3
5

6 8

0
5

12 6
1

3
2

9 8
∃ ∃ ∃F
HG

I
KJ ∃ ∃ ∃ ∃ ∃F
HG

I
KJ

L
NM

O
QPz

= 1 + (1/3)x3 + x5 + (2/9)x6 + (1/8)x8 + (11/224)x9 + (7/264)x11.
Ex. 2 (b) Find the third approximation of the solution of the equation d2y/dx2 = x2(dy/dx) +

x4y where y = 5 and dy/dx = 1 when x = 0.
Sol. Let dy/dx = z so that dz/dx = d2y/dx2 = x2z + x4y, where y = 5 and z = 1 when x =

0. (� dy/dx = 1 8 z = 1)
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This is exactly the same problem as given in Ex. 2.(a) Proceed as above and obtain the
required value of y3.

In the solution of Ex. 2 (b), you need not compute z3 because we want third approximation of
the solution of the original equation in which y is dependent variable.
#     The required third approximation = y3(x) = 5 + x + (1/12)x4 + (1/6)x6 + (2/63)x7 + (1/72)x9.

Ex. 3. Find the third approximation of the initial value problem
d2y/dx2 = xy + 1, when (y)0 = 1 and (dy/dx)0 = 0. [Meerut 1994]

Sol. Let dy/dx = z so that dz/dx = d2y/dx2 = xy + 1.
Again, re–writing the initial conditions, y0 = 1, z0 = 0 when x = 0.
In order to solve the given problem, we shall solve the following initial value problem involving

differential equations : dy/dx = z, dz/dx = 1 + xy, y = 1, z = 0 when  x = 0
      ...(1)

We know that the nth approximation (yn, zn) to the initial value problem
dy/dx = f(x, y, z), dz/dx = g(x, y, z), when y = y0, z = z0 when x = x0 ...(2)

is given by yn = y0 + f x y z dxn n
x

x
, ,� �z 1 1

0
d i ...(3)

and zn = z0 + g x y z dxn n
x

x
, ,� �z 1 1

0
d i . ...(4)

Comparing (1) and (2), we have
f(x, y, z) = z, g(x, y, z) = 1 + xy, y0 = 1, z0 = 0 and x0 = 0. ...(5)

# From (3), yn = 1 + z dxn
x

�z 1
0

...(6)

and from (4), zn = ( ) .1 1
0

∃ �z xy dxn
x

...(7)

First approximation. Putting n = 1 in (6) and using (5), we get

y1 = 1 1 0 10
0 0

∃ % ∃ %z zz dx dx
x x

( ) . ...(8)

Next, putting n = 1 in (7) and using (5), we get

z1 = ( ) ( ) .1 1
20

0 0

2
∃ % ∃ % ∃z zxy dx x dx x xx x

...(9)

Second approximation. Putting n = 2 in (6) and using (9), we get

y2 = 1 + z dx x x dx
x x

1
0

2

0
1

2z z% ∃ ∃
F
HG
I
KJ = 1 1

2
1
6

2 3∃ ∃x x . ...(10)

Next, putting n = 2 in (7) and using (8), we get

z2 = 1 1
0

∃z xy dx
xb g = 1 1 1

2
2

0
∃ ∃ % ∃z x dx x x

x b g . ...(11)

Third approximation. Putting n = 3 in (6) and using (11), we get

y3 = 1 + z dx x x dx
x x

2
0

2

0
1 1

2z z% ∃ ∃FH IK = 1 1
2

1
6

2 3∃ ∃x x .

Next, putting n = 3 in (7) and using (10), we get

z3 = 1 2
0

∃z xy dx
xb g = 1 1 1

2
1
6

2 3

0
∃ ∃ ∃FH IKL
NM

O
QPz x x x dx

x 2 4 5

2 8 30
x x xx% ∃ ∃ ∃
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EXERCISE 1 (B)
1. Apply Picard’s method upto third approximation to solve the equations:

dy/dx = x + z, dz/dx = x – y2, given that y = 2, z = 1 when x = 0
[Bhopal, 2002; Meerut 2000; Agra 2003, 04; Gwalior 2004]

[Ans. y1 = 2 + x  + (1/2)x2, z1 = 1 – 4x  + (1/2)x2 ; y2 = 2 + x  –(3/2)x2 + (1/6)x3; z2 = 1
– 4x  – (3/2)x2 – x3 – (1/4)x4 – (1/20)x5 ; y3 = 2 + x  – (3/2)x2 – (1/2)x3 – (1/4)x4

– (1/20)x5 – (1/120)x6 ; z3 = 1 – 4x – (3/2)x2 + (5/3)x3 + (7/12)x4 – (31/60)x5 + (1/12)x6 –  (1/252)x8.]
2. Find the third approximation of the solution of the following equations:

dy/dx = 2x + z, dz/dx = 3xy + x2z where y = 2 and z = 0 when x = 0.
[Meerut 2000, 05; I.A.S. 2000]

[Ans. y3 = 2 + x2 + x3 + (3/20)x5 + (1/10)x6, z3 = 3x2 + (3/4)x4 + (6/5)x5 + (3/28)x7 + (3/40)x8.]
1.4. Problems of existence and uniqueness : An Introduction.

Consider the initial value problem
| dy/dx | + | y | = 0, y(0) = 1. ...(1)

If possible, let y 9  0. Then division by | y | and integration leads to an absurd result. Hence
y = 0 is the only solution of the differential equation. Clearly this solution does not satisfy the
initial condition y(0) = 1. Thus, we see that the initial value problem (1) has no solution at all.

Now let us consider the initial value problem
      dy/dx = x,   y (0) = 1. ...(2)

Separating the variables, we get dy = x dx.
Integrating, y = (x2/2) + c, where c is an arbitrary constant.
Using the initial condition y (0) = 1 i.e., x = 0, y = 1, we get c = 1. Hence, the initial value

problem (2) has only one solution, namely,      y = (x2/2) + 1.
Finally consider the following initial value problem

dy/dx = (y – 1)/x,             y (0) = 1. ...(3)
Separating the variables, (dy)/(y – 1) = (dx)/x.
Integrating,  log (y – 1) = log x + log c or y – 1 = xc.
Using the given initial condition, i.e., x = 0, y = 1, we see that c cannot be dertermined. Thus,

the given initial value problem (3) has infinite solutions given by y – 1 = xc, where c is an arbitrary
constant.

From the above examples, we conclude that an initial value problem
  dy/dx = f(x, y),      y (x0) = y0 ...(4)

may have none, exactly one, or more than one solution. This leads us to the following two
fundamental questions.

Problem of existence. Under what conditions does an initial value problem of the form (4)
has at least one solution ?

Problem of uniqueness. Under what conditions does that problem has a unique solution,
that is, only one solution ?

Theorems which state such conditions are called existence theorem and uniqueness theorem,
respectively.

It may be noted that the above three examples are very simple and investigation about their
existence and uniqueness is evident by mere inspection (or by actually solving), without using any
theorem. However, when the equation cannot be solved by standard methods, existence and
uniqueness theorem will play an important role.
1.5. Lipschitz condition. A function f(x, y) is said to satisfy a Lipschitz condition in a region D
in xy–plane if there exists a positive constant k such that
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| f(x, y2) – f(x, y1) | : K | y2 – y1 |
whenever the points (x, y1) and (x, y2) both lie in D. The constant K is called a Lipschitz constant
for the function f(x, y).
1.6. Picard’s Theorem. Existence and uniqueness theorem.

[Himanchal 2008, 09; Agra 2003, Calicut 2003, I.A.S. 1985 ; Meerut 2001, 02, 07, 11;
Gwalior 2004, 05; G.N.D.U. Amritsar 2000; Jiwaji 2002 Ravishankar 2002,

Rajasthan 2004, Rohilkhand 2007; Kolkata 2003; Ujjain 2003, 06]
Statement. Let f(x, y) be continuous in a domain D of the (x, y) plane and let M be a

constant such that               | f(x, y) | : M     in  D.    ...(1)
Let f(x, y) satisfy in D the Lipschitz condition in y namely

    | f(x, y1) – f(x, y2) | : K | y1 – y2 |, ...(2)
where the constant K is independent of x, y1, y2.

Let the rectangle R, defined by | x – x0 | : h, | y – y0 | : k, ...(3)
lie in D, where Mh < k. Then, for | x – x0 | : h, the differential equation dy/dx = f(x, y) has a unique
solution y = y (x) for which y (x0) = y0.

Proof. [Read article 1.2A also for this proof carefully.]
We shall prove this theorem by the method of successive approximations. Let x be such that

| x – x0 | : h. We now define a sequence of functions y1 (x), y2 (x), ... yn, (x) ..., called the successive
approximations (or Picard Iterants) as follows :

y1 (x) = y0 + f x y dx
x

x
( , )0

0
z

y2 (x) = y0 + f x y dx
x

x
( , )1

0
z

...    ...    ...    ...   ....   .... ...(4)

        yn – 1 (x) = y0 + f x y dxn
x

x
( , )�z 2

0

           yn (x) = y0 + f x y dxn
x

x
( , )�z 1

0

We shall divide the proof into five main steps.
First Step. We prove that, for x0 – h : x : x0 + h the curve y = yn (x) lies in the rectangle R,

that is to say y0 – k < y < y0 + k.

Now, y y1 0� = f x y dx
x

x
( , )0

0
z : | ( , )|.| |f x y dx

x

x
0

0
z , by (4)

or y y1 0� : M | x – x0 | : Mh < k, using (1), (3) and the given result viz Mh < k.
This proves the desired result for n = 1. Assume that y = yn – 1 (x)

lies in R and so f(x, yn – 1) is defined and continuous and satisfies

      f x yn( , )�1 : M       on       [x0 – h, x0 + h].

From (4), we have y yn � 0 = f x y dxn
x

x
( , )�z 1

0

: f x y dxn
x

x
( , ) .�z 1

0

: M x x� 0 : Mh < k,

as before which shows that yn (x) lies in R and hence f(x, yn) is defined and continuous on
[x0 – h, x0 + h]. The above arguments show that the desired result holds for all n by induction.

Second Step. We prove again by induction, that    y yn n� �1 : MK
n

x x
n n�

�
1

0!
. ...(5)

;
<
<
=
<
<>
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1.16 Picard’s Iterative Method. Uniqueness and Existence Theorems

We have already verified (5) for n = 1 in first step where we have shown that | y1 – y0 |
: M  | x – x0 |. Assume that this inequality (5) holds for n – 1 in place of n, that is, let

y yn n� ��1 2 : MK
n x x

n n� �

�
�

2

0
1

1( )!
. ...(6)

Then, we have y yn n� �1 = ? ≅
0

1 2( , ) ( , )
x

n n
x

f x y f x y dx� ��! , by (4)

or y yn n� �1 : f x y f x y dxn n
x

x
( , ) ( , ) .� ��z 1 2

0

. ...(7)

Lipschitz condition (2) gives f x y f x yn n( , ) ( , )� ��1 2 : K y yn n� ��1 2 ...(8)
From (7) and (8), we get

y yn n� �1 : K y y dxn n
x

x
� ��z 1 2

0

. : K . MK
n

x x
n

n n�

�
�1

0
1( )!

. | | , by (6)

Hence by mathematical induction, we conclude that (5) is true for each natural number n.
Third Step. We shall now prove that the sequence yn converges uniformly to a limit for

x0 – h : x : x0 + h. For the interval under consideration, x x� 0 : h.

Hence from second step, we get        y yn n� �1 : 
MK h

n

n n�1

!  is true for all n.

Using this, the infinite series
   y0 + (y1 – y0) + (y2 – y1) – ... + (yn – yn – 1) + .... ...(9)

: y0 + Mh + 1
2

12 1
!

...
!

...MKh
n

MK hn n∃ ∃ ∃� : y0 + M
K

eKh �1 ,

which is known to be convergent for all values of K, h and M. Consequently, the series (9) is surely
convergent. Thus, by the Weirstrass M–test, the series (9) converges uniformly on [x0 – h, x0 + h].
Now since the terms of (9) are continuous functions of x, therefore,

its sum = Lim
n34

yn (x) = y (x), say,, as     0 1
1

( )
n

n n n
n

y y y y �
%

% ∃ �Α ...(10)

must be continuous.
Fourth Step. We now show that y = y(x) satisfies the differential equation dy/dx = f(x, y).
Since yn (x) tends uniformly to y (x) in [x0 – h, x0 + h] and by Lipschitz condition,

f x y f x yn( , ) ( , )� : K y yn� ,
it follows that f [x, yn (x)] tends uniformly to f [x, y (x)]. Again from (4) we have

yn (x) = y0 + f x y x dxn
x

x
[ , ( )]�z 1

0

or     Lim
n34

yn (x) = y0 + Lim
n n

x

x
f x y x dx

34
�z [ , ( )]1

0

, letting n 3 4.

Since the sequence f [x, yn (x)], consisting of continuous functions on the given interval,
converge uniformly to f [x, y(x)] on the same interval, the interchanges of limiting operations given
below are valid. Thus using (10), we have

y(x) = y0 + Lim
n n

x

x
f x y x dx

34
�z [ , ( )]1

0

       or            y(x) = y0 + f x y x dx
x

x
[ , ( )]

0
z   ....(11)
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The integrand on the right–hand side of (11) being a continuous function of x, we conclude
that the integral has the derivative. Thus, the limit function y(x) satisfies the differential equation
dy/dx = f(x, y) on [x0 – h, x0 + h] and is such that y(x0) = y0.

[In the above four steps we have thus proved the existence of a solution of the given
initial value problem. The next step will show that the solution y(x) is unique.]

Fifth Step. Uniqueness of the solution : We now prove that the solution y = y(x) just found
is the only solution for which y(x0) = y0.

Assume if possible y = Y(x), say, is another solution of the given initial value problem.

Let Y x y x( ) ( )� : B,      where x0 – h : x : x0 + h. ...(12)
It may be noted here that we can surely take B = 2K. From (11), we get

Y x y x( ) ( )� = f x Y x f x y x
x

x
, ( ) , ( )l q l q�z

0

 or Y x y x( ) ( )� : f x Y x f x y x dx
x

x
, ( ) , ( ) .l q l q�z

0

or Y x y x( ) ( )� : K Y x y x dx
x

x
( ) ( ) .�z

0

. ...(13)

� f x Y x f x y x K Y x y x, ( ) , ( ) ) ( )l q l q b g� : � , by Lipschitz condition

or Y x y x( ) ( )� : K.B x x� 0 , using (12) ...(14)
Now substituting (14) for integrand in (13), we get

| Y(x) – y(x) | : K2B x x dx
K B x x

x

x
� :

�z 0

2
0

2

20 !
. ...(15)

Again, substituting (15) for the integrand in (13), we get

Y x y x( ) ( )� :
K B x x dx

K B x x
x

x3

0
2

3
0

3

2 30! !
� :

�z
Continuing in this way, we shall surely get

Y x y x( ) ( )� :
K B x x

n
B Kh

n

n n n�
:0

! !
a f , as 0| |x x h� : ...(16)

Now the series B Kh
n

n

n n

%
Α

0

a f
!

 converges, and so Lim
n

n
B Kh

n3 4

a f
!

= 0 .

Thus Y x y x( ) ( )�  can be made less than any number however small and consequently we
conclude that Y(x) – y(x) = 0        i.e.,     Y(x) = y(x)

This shows that the solution y = y(x) is always unique, and the proof of the theorem is
complete.

Important note : The above theorem is an existence theorem because it says that the initial
value problem does have a solution. It is also a uniqueness theorem, because it says that there is
only one solution.

Remark 1. If the existence theorem is asked then you need not mention uniqueness in the
statement of theorem and finish up the proof just after the fourth step. Again if you are asked to
state and prove the uniqueness theorem, then give the complete proof of first four steps and fifth
step.

Remark 2. If f(x, y) satisfies the condition                  Β Βf y : K ...(i)
for all values of x, y in the given range then for the same constant K the Lipschitz’s condition is
also satisfied.
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1.18 Picard’s Iterative Method. Uniqueness and Existence Theorems

By the mean value theorem of differential calculus, we get

f(x, y2) – f(x, y1) = (y2 – y1) 
Β
Β
F
HG
I
KJ %

f
y y y

, where y1 < y  < y2, ...(ii)

where (x, y1) and (x, y2) are assumed in the given range.

Now (i) and (ii) 8 f x y f x y K y y( , ) ( , ) ,2 1 2 1� : � ...(iii)
which is Lipschitz condition. It follows that the Lipschitz condition (iii) can be replaced by the
stronger condition (i).
1.7. An Important Theorem. If S in either a rectangle | x – x0 | : h, | y – y0 | : k, (h, k > 0) or
a strip | x – x0 | : h, | y | < 4 (h > 0), and if f(x, y) is a real valued function defined on S such that

Β Βf y exists, is continuous on S, and Β
Βy

f x y( , ) : K, (x, y) Χ S for a positive constant K, then

f(x, y) satisfies a Lipschitz condition on S with Lipschitz constant K.   [Meerut 1994]

Proof. Now,   f x y f x y( , ) ( , )1 2� = Β
Βz y

f x y dy
y

y
( , )

1

2
= Β

Β
: zz y

f x y dx K dy
y

y

y

y
( , )

1

2

1

2
.

Thus, f x y f x y( , ) ( , )1 2� = K y y1 2� for (x, y1), (x, y2) Χ S,
showing that f(x, y) satisfies Lipschitz condition on S with Lipschitz constant K.
1.8. Solved examples based on Articles 1.4 to 1.7

Ex. 1. Show that f(x, y) = xy2 satisfies the Lipschitz condition on the rectangle R:  | x | : 1, | y |
: 1 but does not satisfy a Lipschitz condition on the strip S | x | : 1, | y | < 4.

[Meerut 2005, 07, Kanpur 2002, Bilaspur 2004]

Sol.   Method I. We have f x y f x y( , ) ( , )2 1� = xy xy2
2

1
2� , as    f(x, y) = xy2

or f x y f x y( , ) ( , )2 1� = 2 1 2 1 .x y y y y∃ � ...(1)

Hence in the rectangle | x | : 1, | y | : 1, (1) 8 f x y f x y( , ) ( , )2 1� : (1) × (2) × y y2 1� ,
showing that Lipschitz condition is satisfied.

Next,     f x y f x
y

( , ) ( , )2

2

0
0

�
�

= x y2 3 4      when       | y2 | 3 4       if      x 9 0,

showing that the Lipschitz condition is not satisfied on the strip x : 1, y  < 4.

Method II. We have    | / | 2 | | 2 | | | |f y xy x yΒ Β % % ... (1)

# In the rectangle | | 1, | | 1,x y: : | / | 2,f yΒ Β :  for eah ( , ) ,x y RΧ

showing that f(x, y) satisfies Lipschitz condition in R, with Lipschitz constant 2.

On the other hand, on the strip :| | 1,S x : | | ,y 7 4  (1) shows that | / |f yΒ Β  is unbounded on

the strip S as | | .y 3 4  Hence Lipschitz condition is not satisfied on the strip S.
Ex. 2. If S is defined by the rectangle | x | : a, | y | : b, show that the f(x, y) = x2 + y2, satisfies

the Lipschitz condition. Find the Lipschitz constant.
[Meerut 2000, 05, 07; Himanchal 2003; Rohilkhand 2007]

Sol. Let (x, y1) and (x, y2) be two arbitrary points in the rectangle S. Then, we have

f x y f x y( , ) ( , )2 1� = x y x y2
2
2 2

1
2∃ � ∃d i d i , as  f(x, y) = x2 + y2
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= y y y y y y2
2

1
2

2 1 2 1� % ∃ � .

Thus, f x y f x y( , ) ( , )2 1� : 2 2 1b y y� ,   since    | y | < b in S.
showing that the Lipschitz condition is satisfied. Here the Lipschitz constant K = 2b.

Ex. 3. Prove that the continuity of f(x, y) is not enough to guarantee the uniqueness of the
solution of the initial value problem : dy/dx = f(x, y) = | |y , y(0) = 0.

[Himanchal 2003; Lucknow 2006; Meerut 1998]
OR  Show that the solution of the initial value problem dy/dx = f(x, y), y(x0) = y0 may not be unique
although f(x, y) is continuous.

Sol. Consider the initial value problem   dy/dx = | |y ,            y(0) = 0.   ...(1)

Clearly f(x, y) = | |y  is continuous for all y and (1) has the following two solutions :

y ∆ 0          and        y =
2

2

4, when 0

4, when 0.

x x

x x

Ε Φ<
Γ
� 7<Η

We now show that Lipschitz condition
f x y f x y

y y
( , ) ( , )2 1

2 1

�
�

: K ...(2)

does not hold good in any region which includes the line y = 0. For example, when y1 = 0 and y2 is

positive, then           
f x y f x y

y y
( , ) ( , )2 1

2 1

�
�

=
y

y y
2

2 2

1% ,   as   2 0y Ι

showing that quantity on L.H.S. of (2) can be made as large as we please by choosing y2 sufficiently
small. This violates (2) because the quantity on L.H.S. of (2) should not exceed a fixed constant K.

Ex. 4. Illustrate by an example that a continuous function may not satisfy a Lipschitz condition
on a rectangle. [Meerut 1995]

Sol.  As an example, consider the function  f(x, y) = y2/3 on the rectangle S : x : 1, y : 1. ..(1)
Clearly, f(x, y) is continuous in the rectangle S.

Here Β
Βy

f x y( , ) = 2
3 1 3y

3 4ϑ when, y 3 0. ...(2)

Since y = 0 is a point of the rectangle S, (2) shows that the Lipschitz condition is not satisfied
by the function f(x, y) = y2/3 on the rectangle S.

Ex. 5. (a) For the initial value problem dy/dx = ey, y(0) = 0. Find the largest interval
x : a in which the Picard’s theorem guarantees existence of a unique solution.

[Meerut 2007, 11 Gwalior 2000, 02, 05]

(b) For the initial value problem dy/dx = ey, y(0) = 0; find the largest interval | |x a:  in
which the Picard’s theorem holds. [Meerut 2007]

Sol. Here the condition of boundedness of f(x, y), namely, f x y( , ) : M for y y� 0 : Ma,

reduces to ey : M for y � 0 : Ma, as ( , ) yf x y e%
Let y1, y2 lie in the range | y | : Ma and y1 < y2. Then, using the mean value theorem, we have

e ey y2 1� = (y2 – y1) 
Β
Β
F
HG
I
KJ %

e
y
y

y y
, where   y1 < y < y2
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1.20 Picard’s Iterative Method. Uniqueness and Existence Theorems

or e ey y2 1� : (y2 – y1) M, since ey : M,
showing that the function ey satisfies the Lipschitz condition.

Again, the inequality ey : M will be satisfied for all values of y such that  | y | : Ma provided
it is satisfied for y = Ma. Hence eMa : M    or          a : (log M)/M.

Using the well known methods of finding maximum and minimum values of a function, we
can easily show that the function (log M)/M is maximum when M = e = 2.718. Hence uniqueness
theorem of the given initial value problem gives | x | : a where a = 1/e = 0.308. Thus, the required
largest interval is | x | : 0.308.

Ex. 6. Show that for the problem dy/dx = y, y(0) = 1, the constant a in Picard’s theorem must
be smaller than unity.  [Agra 1992; Meerut 1993]

Sol. The condition of bounded of f(x, y), namely    f x y( , ) : M       for      y y� 0 : Ma

reduces to       y : M     for    y �1 : Ma.
Choose M Φ 1. Then the Lipschitz condition is also satisfied because in this situation, the

Lipschitz condition takes the form

f x y f x y( , ) ( , )2 1� = y y2 1� : M y y2 1� ,   as   M Φ 1.

Again, y �1 : Ma   8 y – 1 : Ma.

It follows that the condition y : M will be satisfied for all values of y �1 : Ma provided

it is satisfied for y = 1 + Ma.
#   1 + Ma : M or a < (M – 1)/M = 1 – (1/M) < 1,     as    1 : M < 4.

Ex. 7. For the initial value problem statement (I.V.P.) ( , )y f x y6 %      with       y(0) = 0
which of the following statement is true:

(a) f(x, y) = (xy)1/2 satisfies Lipschitz’s condition and so I.V.P. has unique solution.
(b) f(x, y) = (xy)1/2 does not satisfy Lipschitz’s condition and so, I.V.P. has no solution.
(c) f(x, y) = | y | satisfies Lipschitz’s condition and so I.V.P. has unique solution.
(d) f(x, y) = | y | does not satisfy Lipschitz’s condition still I.V.P. has unique solution.

Sol. Ans. (a) Proceed as in Ex. 3 of Art. 1.8. (GATE 2003)
Ex. 8. (i) Define Lipschitz conditions and Lipschitz constant.

     (ii) Give an example to show that there exist functions which do not satisfy the Lipschitz
condition.

       (iii) Give an example to show that the existence of partial derivative of f(x, y) is not
necessary for f(x, y) to be a Lipschitz function.

Sol. (i) Lipschitz condition and Lipschitz constant
Definitions. Let f(x, y) be a function defined for all (x, y) in a domain D. We say, (x, y)

satisfies a Lipschitz condition on D, if there exists a constant K > 0, such that

1 2 1 2( , ) ( , )f x y f x y K y y� : �
for all (x, y1), (x, y2) in D. The constant K is known as Lipschitz constant.

As a consequence of the definition, a function f(x, y) satisfies Lispschitz condition if and only
if there exists a constant K > 0 such that

1 2

1 2

( , ) ( , )
,

f x y f x y
K

y y
�

:
�

1 2y y9 , whenever (x, y1), (x, y2) belongs to D.
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We now state a general criterion which would ensure the Lipschitz condition :

Let f(x, y) be a continuous function defined over a rectangle ? ≅0 0( , ); , .D x y x x a y y b% � : � :

Here a, b are some positive real numbers. Let /f yΒ Β  be defined and continuous on D and

/ , for each ( , )f y K x y DΒ Β : Χ

for some K > 0. Then f satisfies a Lipschitz conditon on D with Lipschitz constant K.

(ii) Let f(x, y) = y1/2 be defined on the rectangle ? ≅( , ) : | | 2, | | 2 ,D x y x y% : :  Let y1 > 0.

Then,
1/ 2

1 1
1/ 2

1 1 1

( , ) ( ,0) 1 ,
0

f x y f x y
y y y

�
% %

�
 which is unbounded as 1 0.y 3

 Hence f(x, y) does not satisfy the Lipschitz condition in D.

(iii) Let ( , ) | |f x y y%  be defined on the square ? ≅( , ) : | | 1, | | 1 .D x y x y% : :

Recall that the partial derivatives of f(x, y) w.r.t. ‘y’ at the point ( , )x y6 6  is defined as

0( , )

( , ) ( , )lim
kx y

f f x y k f x y
y k36 6

6 6 6 6− .Β ∃ �
%/ 0Β1 2

# Using the above definition, we get         
0 0

( , 0)

( ,0 ) ( ,0) | |lim lim ,
k kx

f f x k f x k
y k k3 3

− .Β ∃ �
% %/ 0Β1 2

which does not exist. Thus /f yΒ Β  fails to exist at (x, 0).

Again, 1 2 1 2

1 2 1 2

( , ) ( , ) | | | |
1,

| |
f x y f x y y y

y y y y
� �

% :
� �

       as 1 2 1 2| | | | | |y y y y� Φ �

showing that f(x, y) satisfies Lipschitz condition in x on D with Lipschitz constant K = 1.

Ex.9. If S is defined by the rectangle | | , | | ,x a y b: :  show that the function f(x, y) =  x sin y
+ y cos x, satisfy the Lipschitz condition. Find the Lipschitz constant.

[Agra 2006; Jabalpur 2005; Kanpur 2002; Meerut 2003]
Sol. From the given function,            / cos cosf y x y xΒ Β % ∃ ... (1)

Since x, cos y and cos x are continuous functions, /f yΒ Β  is also continuous on S. Also,
we have          | / | | cos cos | | cos | | cos |f y x y x x y xΒ Β % ∃ : :

or    | / | | | | cos | | cos | | | 1 1f y x y x x aΒ Β % ∃ : ∃ : ∃  for each ( , ) ,x y SΧ         [� | x | < a]
showing that f(x, y) satisfies Lipschitz condition and Lipschitz constant is a + 1.

Ex. 10. Show that the function f(x, y) = y2/3 does not satisfy the Lipschitz condition on the
rectangle :| | 1, | | 1.R x y: :

Sol. We have 1/ 3/ 2 / 3f y yΒ Β % , which is unbounded in every neighbourhood of the origin.

Hence f(x, y) does not satisfy the Lipschitz condition

Second method. We have
2/3

1/3

0(0, ) (0,0) 1 ,
0 | |

yf y f
y y y

��
% %

�
which is unbounded in every neighbourhood of the origin and so f(x, y) does not satisfy the Lipschitz
condition.
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Ex. 11. Give an example to prove that we cannot drop the Lipschitz condition in the
statement of Picard’s theorem.

Sol. Consider the problem dy/dx = 3 y2/3,           y(0) = 0 ... (1)

and let R be the rectangle | | 1, | 1 |x y: : . Clearly f(x, y) = 3 y2/3, which is continuous on R.
We easily verify that y1(x) = x3 and y2(x) = 0 are two distinct solutions of (1) valid for all x.

Thus (1) has solution that is not unique. The reason for this non uniqueness lies in the fact that
f (x,  y) does not satisfy a Lipschitz condition on the rectangle R, since

2/3

1/ 3

(0, ) (0,0) 3 3
0 | |

f y f y
y y y

�
% %

�

is unbounded in every neighbourhood of the origin.
Ex. 12. Show that the f(x, y) = 4x2 + y2 on : | | 1, | | 1R x y: : satisfies Lipschitz condition.

Sol. Since / | 2 | 2,f y yΒ Β % : for each        ( , ) .x y RΧ

Hence f(x, y) satisfies the Lipschitz condition with Lipschitz constant 2.
Ex. 13. Consider f(x, y) = x3| y |. Prove that f satisfies a Lipschitz condition

on :| | 2, | | 2R x y: :  even though /f yΒ Β  does not exist at (x, 0) if 0x 9 .
Sol. By definition of partial derivative, we have

3

0 0
( ,0)

( , ) ( ,0) | |lim lim ,
k k

x

f f x k f x x k
y k k3 3

− .Β �
% %/ 0Β1 2

which does not exist. However, we have
3 3 3

1 2 1 2 1 2( , ) ( , ) | | | | | | | | | |f x y f x y x y x y x y y� % � % & � ... (1)

Also, we have 1 2 1 2| | | |y y y y� : � ... (2)

(1) and (2) 8 3
1 2 1 2( , ) ( , ) | |f x y f x y x y y� : �

# 1 2 1 2( , ) ( , ) 8 ,f x y f x y y y� : �  which is true for all (x, y1), (x, y2) in R. ... (3)

 (3) shows that f(x, y) satisfies Lipschitz condition with Lipschitz constant 8.
Ex. 14. For the initial value problem dy/dx = y2 + cos2x, y(0) = 0, determine the interval of

existence of its solution given that R is the rectangle containing origin,

? ≅: ( , ) : 0 , | | , 1/ 2, 0R x y x a y b a b: : : Ι Ι

Sol. Let f(x, y) = y2 + cos2x Also, 2 2 2 2 2( , ) cos | | | cos | 1f x y y x y x b% ∃ : ∃ : ∃

Let b2 + 1 = M so that | ( , ) |f x y M:

Again, since / | 2 | 2f y y b KΒ Β % % %  (say), we see that f(x, y) satisfies Lipschitz condition

We find that y(x) exists for 20 min( , / ) min( , /(1 ))x h a b M a b b: : % % ∃ ... (1)

Now,  
Κ Λ2 2

1 1 ,
1/1 1/ 2

b
b bb b b

% %
∃∃ � ∃

    8     The maximum value of 21
b
b∃

 is 
1
2

Hence (1) 8   h = 1/2 and so y(x) exists on the interval 0 1/ 2.x: :

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Picard’s Iterative Method. Uniqueness and Existence Theorems 1.23

Ex. 15. Consider the initial value problem dy/dx = y2, y(0) = 2. Let R be the

rectangle :{( , ) :| | , 2 , 0, 0}.R x y x a y b a b: � : Ι Ι  Find the largest interval of existence of its
solution. By explicitly solving the given initial value problem, show that there exists an interval of
existence which is larger than that obtained by the application of Picards’ method.

Sol. Given dy/dx = y2, y(0) = 2 ... (1)
To find the interval of existence by application of Picard’s theorem: Let f(x, y) = y2.

Then, in R, we have 2 2| ( , ) | | | ( 2) ,f x y y b M% : ∃ %  say and hence the interval of existence of

solution is given by | | ,x h: where   Κ Λ2min , /( 2) 1/ 8.h a b b% ∃ %

8 The interval of existence is (1/ 8) (1/ 8).x� : :
To find the interval of existence by solving (1). We have dy/dx = y2   so that   y–2dy = dx.
Integrating, –y–1 = x + c, c being an arbitrary constant. ... (2)

Putting x = 0 and y = 2, (2) gives –2–1 = c. Then (2) gives   1 1
2

x
y

� % �   or  2( ) ,
1 2

y x
x

%
�

showing that y(x) exists on 1/ 2.x�4 7 7  This interval of existence is much larger than that obtained
by the application of Picard’s method.

Ex. 16. The Picard’s theorem assumes Lipschitz condition. Can we drop this condition. If
answer is no, give an example to illustrate this point.

Sol. In the following two examples, we shall show that if Lipschitz condition is not satisfied
then we do not arrive at unique solution as stated in Picard’s theorem.

Consider   dy/dx = 4y3/4,     y(0) = 0,     0x Φ ... (1)

Let f(x, y) = 4y3/4. Then, we get
3/4

1/ 4
( , ) ( ,0) 4 4 , 0

0
f x y f x y y

y y y
�

% % 9
�

which is unfounded for 0,x Φ  since it can be made as large as possible by choosing y close to zero.
Thus f(x, y) fails to satisfy Lipschitz condition.

Using Picard’s method of successive approximation (refer Art. 1.2), we easily see that
yn(x) = 0 for n = 0, 1, 2, 3..... Hence ( ) lim ( ) 0nn

y x y x
34

% %  on [0, [.4  We also not that y(x) = x4 is

also solution of (1). Hence (1) does not possess unique solution.

EXERCISE 1(C)
Ex. 1 (a) Show that the function f given by f(x, y) = y1/2 does not satisfy a Lipschitz condition

on : | | 1, 0 1R x y: : : . Show that f satisfies a Lipschitz condition on any rectangle R of the form

: | | , , ( , , 0)R x a b y c a b c: : : Ι

(b) Show that a function f given by f(x, y) = x2 | y | satisfies a Lipschitz condition on
: | | 1, | | 1R x y: :

(c) Show that f(x, y) = xy2 (i) satisfies a Lipschitz condition on any rectangle ,a x b: :

.c y d: :  (ii) does not satisfy a Lipschitz condition on any strip ,a x b: : y�4 7 : 4

(d) Show that f(x, y) = xy (i) satisfies Lipschitz condition on any rectangle ,a x b: : c y d: :

(ii) satisfies a Lilpschitz condition on any strip ,a x b: : y�4 7 7 4 (iii) does not satisfy a
Lipschitz condition on the entire plane.
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(e) For what points (x0, y0) does Picard’s theorem imply that the initial value problem dy/dx =
y | y |, y(x0) = y0 has a unique solution on some interval 0| | ?x x h� : [Ans. All point (x0, y0)]

(f) Consider the initial value problem : / 2 / ,dy dx y x%  if x > 0 and dy/dx = 0, if x = 0; y(0) =
0. Show that 2y/x does not satisfy Lipschitz condition in any closed rectangle containing (0, 0) and
the given initial value problem has solution which is not unique.

Sol. Left as an exercise for the reader.
Ex. 2. By computing appropriate Lipschitz constants, show that the following functions satisfy

Lipschitz conditions on the domain D of xy–plane indicated.
(i) f(x, y) = 4x2 + y2, on : | | 1, | | 1D x y: :

(ii) f(x, y) = x2cos2y + y sin2x, on : | | 1, | |D x y: 7 4

(iii) 23( , ) ,xyf x y x e�% on : 0 , | | , ( 0)D x a y a: : 7 4 Ι

(iv) f(x, y) = a(x) y2 + b(x) y + c(x),      on    : | | 1, | | 2,D x y: :

where a(x), b(x) and c(x) are continuous functions on | | 1.x :

(v) f(x, y) =a(x) y + b(x), on : | | 1, | | ,D x y: 7 4  where a(x) and b(x) are continuous on | x | < 1
Ans. (i) K = 2 (ii) K = 3 (iii) K = max {2a3, 2a4}

(iv) K = 4 Ma + Mb; where 
| | 1 | | 1
max | ( ) |, max | ( ) |a b
x x

M a x M b x
: :

% %       (v)   
| | 1
max | ( ) |
x

K a x
:

%

3. Let (x0, y0) be an interior point of a closed rectangle R, a : x : b, c : y : d in which f(x, y)
is continuous. Let f(x, y) satisfy the Lipschitz condition. | f(x, y1) – f(x, y2)| : K (y1 – y2), for all
possible (x, y1) and (x, y2) in R and some fixed constant K. Prove that dy/dx = f(x, y), y(x0) = y0 has a
unique solution.

4. Write a note on Picard’s existence theorem regarding the existence and uniquencess of the
solution of the equation dy/dx = f(x, y), where f satisfies Lipschitz condition.

5. (a) Show that (i) | y6 | + | y | = 0, y(0) = 1 has no solution.
(ii) y6 = x, y(0) = 1 has one solution (iii) y6= (y – 1)/x, y(0) = 1 has an infinity of solutions.

Explain what you mean by existence and uniqueness of a differential equation.
(b) State carefully any existence and uniqueness theorem for differential equation you know

and apply it to the above three examples.
6. Show that the conditions for the exitence and uniqueness of a solution of the following

initial value problem are not satisfied by the function f(x, y) = (y – 1)/x in any rectangle R of xy–
plane with (0, 1) as its centre : y 6 = (y – 1)/x, y(0) = 1 ; but a solution does exist of above problem.
Give reason for your answer. Draw some possible solution curves.

7. Apply Picard’s iteration process to get the solution of y 6 = (y – 1)/x, y(1) = 1. Give your
arguments, why Picard’s iteration process is applicable to the above initial value problem.

8. If f(x, y) = y2/3, show that Lipschitz condition in not satisfied in any region containing the
origin and that the solution of the differential equation dy/dx = f(x, y) satisfying the initial condition
y = 0 when x = 0 is not unique.    [Meerut 1999]

9. By giving suitable example prove that a function does not satisfy the Lipschitz condition
on the prescribed domain. [Madurai 2001, 05]

10. Examine existence and uniqueness of the solution of the initial value problem dy/dx = y2,
y(1) = –1.    [Meerut 2011]

11. Show that the Picard’s theorem ensures a unique solution in the interval x :  1/2 for the
initial value problem dy/dx = x + y2, y(0) = 0.
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12. State Picard’s theorem on existence of solutions of differential equations. Show that
f(x, y) = y1/2 does not satisfy Lipschtiz’s condition on x :  1, 0 : y :  1 while
f(x, y) = x2 cos2 y + y sin2 x satisfies Lipschitz’s condition on x :  1, | y | < 4. Find the Lipschitz’ss
constant. [I.A.S. 2000]

13. Examine the exitence and uniqueness of solution of the initial value problem
dy/dx = y1/3, y(0) = 0   [Himanchal 2003; Kanpur 2000; Kolkata 2000, Osmania 2005, 07;

G.N.D.U. Amritsar 2003, 05; Meerut 2000]
14. Show that for the problem dy/dx = y, y(0) = 1, the constant h in Picard’s theorem must be

smaller than unity. [Rohilkhand 2007; Meerut 1995]
15. Discuss the existence and uniqueness of a solution of the initial value problem

dy/dx = y4/3, y(x0) = y0. [Bhopal 2010; Rajasthan 2010; Himachal 2010]
16. Examine existence and uniqueness of the solution of the initial value problem

dy/dx = y2, y(1) = –1. [ Gwalior 2000, 01, 03; Ujjain 2000, 02, 04, Rajasthan 2000;
Agra 1997; Kanpur 2000; Meerut 1994, 96]

17.  State and prove the uniqueness theorem for  the initial value problem
dy/dx = f(x, y), y(x0) = y0.  [Meerut 1998]

18. Examine whether the following differential equation possesses unique solution. Justify

your answer. (1 2 ), 0
(2 1), 0

y x xdy
y x xdx

� ΙΕ
% Γ � 7Η

 subject to the condition: y = 1 at x = 1    [Jabalpur 2003]

19. Verify that the initial value problem 0,xy y6 � % y(0) = 0 has two solutions y1(x) = 0 and
y2(x) = x. Does it contradict the Picard’s theorem.  [Himanchal 2002, 03, 05]

20. Let 2( , ) (cos ) /(1 ), (| | 1).% � 7f x y y x x Show that f satisfied a Lipschitz condition on every

strip : | | ,:aS x a , where 0 < a < 1. [Himanchal 2009]

21. Define Lipschitz condition (with respect to y) of the function ( , )f x y  and investigate its

geometrical significance. Show that the function 2( , ) ∃% x yf x y x e  satisfies Lipschitz condition in

the rectangle defined by | | , | | .: :x a y b [Himanchal 2009]
22. State and prove Picard’s existence theorem for the solution of differential equation dy/dx

= f (x, y), y(x0) = y0. Show that dy/dx = x2 + y2, y (0) = 0 has a unique solution. [Himanchal 2009]
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2
Simultaneous Equations of the Form

(dx)/P = (dy)/Q = (dz)/R

2.1. Introduction.
In this chapter we shall study simultaneous equations of the first order and of the first degree in the
derivatives. Equations containing only three variables will be studied. It will be noted that the
method of solution presented here can be applied to equations involving any number of variables.

The general type of a set of simultaneous equations of the first order having three variables is
P1dx + Q1dy + R1dz = 0 and                      P2dx + Q2dy + R2dz = 0,      ...(1)

where the coefficients are functions of x, y, z. Solving these equations simultaneously, we have

  dx
Q R Q R

dy
R P R P

dz
P Q P Q1 2 2 1 1 2 2 1 1 2 2 1!

�
!

�
!

,

which is of the form (dx)/P = (dy)/Q = (dz)/R, ...(2)
where P, Q, and R are functions of x, y, z. Thus we note that the simultaneous equations (1) can
always be put in the form (2).
2.2. The nature of solution of (dx)/P = (dy)/Q = (dz)/R.
The given equations are said to be completely solved when we get a solution of the form u1(x, y, z)
= c1 and u2 (x, y, z) = c2, where u1 and u2 are two independent integrals (solutions) of the given
equations. u1 and u2 are said to be independent integrals if u1/u2 is not merely a constant. For
example, u1 = x2 + y2 + z2 and u2 = x + y + z are independent integrals whereas u1 = 2x + 2y + 2z
and u2 = 2(x + y + z) are not independent.
2.3. Geometrical Interpretation of (dx)/P = (dy)/Q = (dz)/R.
From three dimensional coordinate geometry, it is known that the direction cosines of the tangent
to a curve are proportional to dx: dy: dz. The given differential equations, therefore, express the
fact that the direction cosines of the tangent to the curve at that point are proportional to P : Q : R.
Suppose that the solution of the given equations is given by u1(x, y, z) = c1 and u2(x, y, z) = c2. Then
we observe that the solution represents the curves of intersection of the surfaces u1(x, y, z) = c1 and
u2(x, y, z) = c2. Since c1 and c2 can take any values in infinite number of ways, we get a doubly
infinite number of such curves.
2.4. Rule I for solving        (dx)/P = (dy)/Q = (dz)/R. ...(1)

By equating two of the three fractions of (1), we may be able to get an equation in only two
variables. Sometimes such an equation is obtained after cancellation of some factor from the chosen
two fractions of (1). On integrating the differential equation in only two variables by well known
methods, we shall obtain one of the relations in the general solution of (1). This method may be
repeated to give another relation with help of two other fractions of (1).
2.5. Solved examples based on Art. 2.4.

Ex. 1. Solve (a) xdx
y z

dy
xz

dz
y2 2� � . [Nagpur 1996; Bangalore 2005]

2.1
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(b) 2 2
xdx dy dz

xzy z y z
� � [Poona 2006; Vikram 1996]

Sol. (a) Taking the first two fractions, we get x2dx = y2dy
or 3x2dx – 3y2dy = 0         and  so x3 – y3 = c1. ...(1)

Next, taking the first and the third fractions, we get xdx = zdz
or 2xdx – 2zdz = 0         and  so x2 – z2 = c2. ...(2)

Since x3 – y3 and x2 – z2 are independent, the required general solution is given by the
relations (1) and (2), c1 and c2 being arbitrary constants.

(b) Proceed as in part (a). Ans. x3 – y3 = c1, x
2 – 2z = c2

Ex. 2. Solve dx
yz

dy
zx

dz
xy

� � . [Agra 1996; Delhi Maths (G) 1998]

Sol. Taking the first two fractions, we have
xdx = ydy or    2xdx – 2ydy = 0           so that            x2 – y2 = c1.  ...(1)
Again, taking the first and the third fractions, we have
xdx = zdz            or     2xdx – 2zdz = 0           so that             x2 – z2 = c2. ...(2)
The required general solution is given by the relations (1) and (2).
Ex. 3. (dx)/x = (dy)/0 = (dz)/(–x)
Sol. From the second fraction, we have dy = 0   so that y = c1. ...(1)
Taking the first and the third fractions, xdx + zdz = 0     or    2xdx + 2zdz = 0.
Integrating, x2 + z2 = c2, c2 being an arbitrary to constant. ...(2)
The required solution is given by the relations (1) and (2).

Ex. 4. Solve dx
y

dy
x

dz
x y z2 2 2 2 2� � . [Delhi Maths (G) 2000]

Sol. Taking the first two fractions,    3x2dx – 3y2dy = 0.
Integrating, x3 – y3 = c1, being an arbitrary constant ...(1)
Taking the first and third fractions,           3x2dx – 3z–2dz = 0.
Integrating, x3 + 3z–1 = c2, c2 being an arbitrary constant ...(2)
The required general solution is given by the relations (1) and (2).

Ex. 5. Solve dx
x y

dy
xy

dz
xz2 22#

�
!

� . [Delhi Maths (Hons.) 1994]

Sol. Taking the last two fractions,    (1/y)dy + (1/z)dz = 0.
Integrating,   log y + log z = log c1        or       yz = c1. ...(1)
Again, taking the first two fractions, we have
dx
dy
= x y

xy

2 22#
!

or x dx
dy

= ! !x
y

y
2

2   or 222 4dx
x x y

dy y
# � ! ... (2)

Putting x2 = v so that 2x(dx/dy) = dv/dx, (2) reduces to
                  (dv/dx) + (2/y)v = –4y, which is linear differential equation ...(3)

Integrating factor of (3) = e
y dy( / )2z = e2 log y = y2 and so its solution is

vy2 = 2
2{( 4 ) }y y dy c! ∃ ∃ #% or x2y2 + y4 = c2. ...(4)

The required general solution is given by the relations (1) and (4).
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EXERCISE 2 (A)
Solve the following simultaneous differential equations :

1. dx = dy = dz Ans. x – y = c1, x – z = c2
2. (dx)/a = (dy)/a = dz Ans. x – y = c1, y – az = c2
3. (dx)/x = (dy)/y = (dz)/z Ans. x/y = c1, x/z = c2
4. (dx)/tan x = (dy)/tan y = (dz)/tan z Ans. (sin x)/(sin y) = c1, (sin x)/(sin z) = c2
5. dx = dy = (dz)/sin x Ans. x – y = c1, z + cos x = c2

2.6. Rule II for solving (dx)/P = (dy)/Q = (dz)/R. ...(1)
Suppose only one relation u1(x, y, z) = c1 can be found by using rule I of Art 2.4. Then,

sometimes we try to use this relation in expressing one variable in terms of the others. This may
help us to obtain an equation in two variables. The solution of this equation will give us second
relation for the general solution of (1). Note that the second relation will involve the arbitrary
constant c1. To find the final form the second relation, the arbitrary constant c1 must be removed
with help of the first relation u1(x, y, z) = c1.
2.7. Solved examples based on Art. 2.6

Ex. 1. Solve dx
xz z xy

dy
yz z xy

dz
x( ) ( )2 2 4#

�
! #

� . [Delhi Maths (H) 2001]

Sol. Cancelling z(z2 + xy), the first two fractions give
(1/x)dx = – (1/y)dy or (1/x)dx + (1/y)dy = 0,
Integrating, log x + log y = log c1       or xy = c1. ...(1)
Using (1), the first and third fractions give
x4dx = xz(z2 + c1)dz or x3dx – (z3 + c1z)dz = 0.

Integrating, 1
4

4 1
4

4 1
2 1

2x z c z! #d i = 1
4 2c  or x4 – z4 – 2c1z

2 = c2.

Using (1) to remove c1, we get x4 + z4 – 2xyz2 = c2. ...(2)
The complete solution is given by the relations (1) and (2).

Ex. 2. Solve dx
xy

dy
y

dz
zxy x

� �
!2 22

. [Rohilkhand 1993]

Sol. Taking the first two fractions, (1/x)dx – (1/y)dy = 0 so that x/y = c1. ...(1)
From (1), x = c1y. So the second and third fractions give

dy
y2 =

dz
c zy c y1

2
1
2 22!

or         c1dy = dz
z c! 2 1

2 .

Integrating,   c1y – log (z – 2c2
1) = c2, c1 and c2 being arbitrary constants. ...(2)

Using (1) to remove c1, (2) gives            x – log (z – 2x2/y2) = c2. ...(3)
The complete solution is given by the relations (1) and (3).

Ex. 3. Solve 
1 2 5 tan( 2 )
� �

# !
dx dy dz

z y x
. (Delhi Maths (H) 2005; Mumbai 2007)

Sol. Taking the first two fractions, dy – 2dx = 0.
Integrating, y – 2x = c1, c1 being an arbitrary constant. ...(1)
Using (1), the first and the third fractions give
dx = dz/(5z + tan c1)      so that       x – (1/5) × log (5z + tan c1) = c2/5.
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Using (1) to remove c1, this gives on simplification
5x – log [5z + tan (y – 2x)] = c2, c2 being an arbitrary constant. ...(2)

The complete solution is given by the relations (1) and (2).

Ex. 4. Solve dx
y

dy
x

dz
xyz x y

� �
!2 2 2( )

.

Sol. Taking the first two fractions, 2xdx – 2ydy = 0.
Integrating, x2 – y2 = c1,  c1 being an arbitrary constant ...(1)
Using relation (1), the first and third fractions give

dx
y
= dz

xyz c2
1

               or 2c1xdx – 2z–2dz = 0.

Integrating,       c1x
2 + 2z–1 = c2     or            (x2 – y2)x2 + 2z–1 = c2, by (1)  ...(2)

The required general solution is given by the relations (1) and (2).
Ex. 5. Solve (dx)/(xz) = (dy)/(yz) = (dz)/(xy).
Sol. Taking the first two fractions,          (1/x)dx – (1/y)dy = 0.
Integrating, log x – log y = log c1             or x/y = c1. ...(1)
From the second and third fractions, xdy = zdz.

or 2c1ydy = 2zdz [� from (1), x = c1y]
Integrating, c1y

2 – z2 = c2       or (x/y) × y2 – z2 = c2, using (1).
Thus,        xy – z2 = c2, c2 being an arbitrary constant ...(2)
The required general solution is given by the relations (1) and (2).

Ex. 6. Solve dx
xy

dy
y

dz
axz!

� �2 3 .

Sol. Taking the first two fractions,              (1/x)dx + (1/y)dy = 0.
Integrating, log x + log y = log c1 or xy = c1. ...(1)
From (1), x = c1/y. Hence the last two fractions give

dy
y3 =

1( / )
dz

az c y∃
 or   dz

z
– ac1  y

–4dy = 0.

Integrating,     log z – (ac1) × [(y–3/(–3)] = c2, c2 being an arbitrary constant.
Using (1), we get   log z + (axy)/3y3 = c2 or     log z + (ax/3y2) = c2.  ...(2)
The required general solution is given by the relations (1) and (2).

EXERCISE 2 (B)
Solve the following simultaneous differential equations :

1. Solve 21 2 3 sin( 2 )
dx dt dz

x y x
� �
! #

(Gulbarga 2005) Ans. y + 2x= c1, x
3  sin (y + 2x) – z=c2

2. Solve 2 2 .
( )

dx dy dz
z z z x y
� �
! # #

Ans. x + y = c1 and z2 + (x + y)2 = c1e
2x

3. Solve 
1 1 /( )
dx dy dz

z x y
� �
! #

Ans. x + y = c1 and x – (x + y) log z = c2

4. (dx)/(zx) = (dy)/(–zy) = (dz)/(z + xy) [Delhi Maths (G) 2006]
Ans. xy = c1, log x + xy log (z + xy) – z = c2
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2.8. Rule III for solving (dx)/P = (dy)/Q = (dz)/R ...(1)
Let P1, Q1, R1 be functions of x, y, z. Then, by a well–unknown principle of algebra, each

fraction in (1) will be equal to
(P1dx + Q1dy + R1dz) / (P1P + Q1Q + R1R). ...(2)

If P1P + Q1Q + R1R = 0 in (2), then we know that numerator of (2) is also zero. This gives
P1dx + Q1dy + R1dz = 0 which can be integrated to give u1(x, y, z) = c1. This method may be
repeated to get another integral u2(x, y, z) = c2. P1, Q1, R1 are called multipliers. As a special case,
these can be constants also. Sometimes only one integral is possible with help of multipliers. In
such cases second integral should be obtained by using Rule I of Art. 2.4 or Rule II of Art. 2.6 as
the case may be.
2.9. Solved examples based on Art. 2.8

Ex. 1. Solve the simultaneous equations     adx
b c yz( )!

= bdy
c a zx

cdz
a b xy( ) ( )!

�
!

.

[Kolkata 2001; Kumaoun 2002; Guwahati 2001, 02; Nagpur 2003, 04;
Delhi Maths 1995, 1996; Bangalore 2005; Lucknow 2006]

Sol. Choosing x, y, z as multipliers, each fraction of given equations

= axdx bydy
xyz b c c a a b

axdx bydy czdzczdz# #
! # ! # !

�
# #

[( ) ( ) ( )] 0
.

& ax dx + by dy + cz dz = 0 or      2ax dx + 2by dy + 2cz dz = 0.
Integrating, ax2 + by2 + cz2 = c1, c1 being an arbitrary contant.
Again choosing ax, by, cz as multipliers, each fraction of the given equations

= a xdx b ydy c zdz
xyz a b c b c a c a b

a xdx b ydy c zdz2 2 2 2 2 2

0
# #

! # ! # !
�

# #
[ ( ) ( ) ( )]

.

&  a2x dx + b2y dy + c2z dz = 0 or      2a2x dx + 2b2y dy + 2c2z dz = 0.
Integrating, a2x2 + b2y2 + c2z2 = c2, c2  being an arbitrary constant ...(2)
The complete solution is given by relations (1) and (2).

Ex. 2. Solve : dx
z x y

dy
z x y

dz
x y( ) ( )#

�
!

�
#2 2

. [Delhi Maths (H) 2009]

[Agra 2005; Gauhati 1996, Meerut 2006, 11; Kanpur 2002; Rajasthan 2003]
Sol. Choosing, x, –y, –z as multipliers, each fraction of the given equations

= xdx ydy zdz
xz x y yz x y z x y

xdx ydy zdz! !
# ! ! ! #

�
! !

( ) ( ) ( )2 2 0
.

& x dx – y dy – z dz = 0 or 2x dx – 2y dy – 2z dz = 0.
Integrating, x2 – y2 – z2 = c1, c1 being an arbitrary constants
Now choosing, y, x, –z as multipliers, each fraction of the given equations

= ydx xdy zdz
yz x y xz x y z x y

ydx xdy zdz# !
# # ! ! #

�
# !

( ) ( ) ( )2 2 0
.

& 2y dx + 2x dy – 2z dz = 0 or 2d(xy) – d(z2) = 0.
Integrating, 2xy – z2 = c2, c2 being an arbitrary constant ...(2)
The complete solution is given by the relations (1) and (2).

Ex. 3. Solve dx
mz ny

dy
nx lz

dz
ly mx!

�
!

�
!

. [Bangalore 1997, Delhi Maths (H) 2001;

Lucknow 2002; Karnataka 2004; Mysore 2005; Rajasthan 2006]
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2.6 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

Sol. Choosing l, m, n as multipliers, each fraction of given equations

= ldx mdy ndz
l mz ny m nx lz n ly mx

ldx my ndz# #
! # ! # !

�
# #

( ) ( ) ( ) 0
.

Thus, l dx + m dy + n dz = 0          so that            lx + my + nz = c1.  ...(1)
Similarly, choosing x, y, z as multipliers, each fraction of the given equations

= xdx ydy zdz
x mz ny y nx ly z ly mx

xdx ydy zdz# #
! # ! # !

�
# !

( ) ( ) ( ) 0
.

& x dx + y dy + z dz = 0 or         2x dx + 2y dy + 2z dz = 0.
Integrating, x2 + y2 + z2 = c2, c2 being an arbitrary constant. ...(2)
The complete solution consists of (1) and (2).

Ex. 4.  Solve dx
x y z

dy
y z x

dz
z x y( ) ( ) ( )2 2 2 2 2 2!

�
!

�
!

. [Bangalore 1993, Delhi Maths (Hons.) 2006]

Sol. Choosing x, y, z as multipliers, each fraction of the given equations

= xdx ydy zdz
x y z y z x z x y

xdx ydy zdz# #
! # ! # !

�
# #

2 2 2 2 2 2 2 2 2 0( ) ( ) ( )
.

& x dx + y dy + z dz = 0 or 2x dx + 2y dy + 2z dz = 0.
Integrating, x2 + y2 + z2 = c1, c1 being an arbitrary constant. ...(1)
Again choosing 1/x, 1/y, 1/z as multipliers, each fraction of the given equations

= dx x dy y dz z
y z z x x y

dx x dy y dz z/ / /
( ) ( ) ( )

/ / /# #
! # ! # !

�
# #

2 2 2 2 2 2 0 .

&    dx/x + dy/y + dz/z = 0. so that      log x + log y + log z = log c2
or   log xyz = log c2     or        xyz = c2, c2 being an arbitrary constant ...(2)

The complete solution is given by the relations (1) and (2).
Ex. 5. Solve (dx)/y = (dy)/(–x) = (dz)/(bx – ay).
Sol. Taking a, b, 1 as multipliers, each fraction of the given equations.

( ) / 0a dx b dy dz� # # so that 0a dx b dy dz# # � .

Integrating, ax by z c# # � 1 , c1 being an arbitrary constant. ... (1)
From first two fractions, x dx + ydy = 0 so that            x2 + y2 = c2    ... (2)
The required solution is given by (1) and (2).

Ex. 6. Solve xdx
z yz y

dy
y z

dz
y z2 22! !

�
#

�
!

. [Bangalore 2007, Rohilkhand 1997]

Sol. Choose 1, y, z as multipliers, each fraction of the given equations
= (xdx + ydy + zdz)/0 so that 2x dx + 2y dy + 2z dz = 0.
Integrating, x2 + y2 + z2 = c1, c1 being an arbitrary constant. ...(1)
From the last two fractions, (y – z)dy = (y + z)dz

or 2(ydz + zdy) – 2ydy + 2zdz = 0 or          2d(yz) – d(y2) + d(z2) = 0.
Integrating, 2yz – y2 + z2 = c2, c2 being an arbitrary constant. ...(2)
The required complete solution is given by (1) and (2).

Ex. 7. Solve dx
y x x

dy
y x y

dz
z x y3 4 4 3 3 32 2 9!

�
!

�
!( )

.
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Simultaneous Equations of the Form cx/P = dy/Q = dz/R 2.7

Sol. Choosing 1/x, 1/y, 1/3z as multipliers, each fraction of the given equations

= dx x dy y dz z
y x y x x y

dx x dy y dz z/ / /
( ) ( ) ( )

/ / / .# #
! # ! # !

� # #3
2 2 3

3
03 3 3 3 3 3

&   (1/x)dx + (1/y)dy + (1/3z) dz = 0 so that   log x + log y + (1/3) × log z = log c1
or xyz1/3 = c1, c1 being an arbitrary constant.  ...(1)

Now the first two fractions give (2y4 – x3y)dx = (y3x – 2x4)dy.

Dividing by x3y3, 2 1
3 2
y

x y
dx!

F
HG

I
KJ = 1 2

2 3x
x

y
dy!

F
HG

I
KJ   or 1 2 1 2

2 3 2 3x
dy

y
x

dx
y

dx
x

y
dy!F

HG
I
KJ # !
F
HG

I
KJ = 0.

or d(y/x2) + d(x/y2) = 0. so that                  y/x2 + x/y2 = c2.   ...(2)
The required solution is given by the relations (1) and (2).
Ex. 8. Solve (dx)/y2 = (dy)/x2 = (dz)/x2y2z2. [Mysore 2004]
Sol. First two fractions give 3x2dx – 3y2dy = 0      so that          x3 – y3 = c1.  ...(1)
Choosing x2, y2, –2/z2 as multipliers, each fraction of the given equations

=
2 2 2 2 2 2

2 2 2 2 2 2
(2 / ) (2 / )

02
x dx y dy z dz x dx y dy z dz
x y x y x y

# ! # !
�

# !
.

& x2dx + y2dy – (2/z2)dz = 0      or         3x2dx + 3y2dy – (6/z2)dz = 0.
Integrating, x3 + y3 + 6/z = c2, c2 being an arbitrary constant. ...(2)
(1) and (2) together give the complete solution.

Ex. 9. dx
x y z

dy
y x z

dz
z x y( ) ( ) ( )2 2 2 2#

�
! #

�
!

. [Meerut 2007]

Sol. Choosing 1/x, 1/y, 1/z as multipliers, each fraction of the given equations

= 2 2 2 2
(1/ ) (1/ ) (1/ ) (1/ ) (1/ ) (1/ )

0( )
x dx y dy z dz x dx y dy z dz

y z x z x y
# # # #

�
# ! # # !

.

& (1/x)dx + (1/y)dy + (1/z)dz = 0 so that xyz = c1. ...(1)
Next choosing x, y, –1 as multipliers, each fraction of the given equations

= xdx ydy dz
x y z y x z z x y

xdx ydy dz# !
# ! # ! !

�
# !

2 2 2 2 2 2 0( ) ( ) ( )
& 2xdx + 2ydy – 2dz = 0 so that x2 + y2 – 2z = c2. ...(2)
(1) and (2) together give the complete solution.

Ex. 10. (a) Solve dx
z y

dy
x z

dz
y x!

�
!

�
!

. [Delhi Maths (G) 1994]

(b) Show that u = x + y + z, v = x2 + y2 + z2 are integrals of the linear system
dx/dt = y – z, dy/dt = z – x, dz/dt  x – y.  [Amravati 2003]

Sol. (a) Choosing 1, 1, 1 as multipliers, each fraction of the given equations

= dx dy dz
z y x z y x

dx dy dz# #
! # ! # !

�
# #

0
.

& dx + dy + dz = 0 so that x + y + z = c1. ...(1)
Again, choosing x, y, z as multipliers, each fraction

= xdx ydy zdz
x z y y x z z y x

xdx ydy zdz# #
! # ! # !

�
# #

( ) ( ) ( ) 0
.

& xdx + ydy + zdz = 0 or 2xdx + 2ydy + 2zdz = 0.
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2.8 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

Integrating, x2 + y2 + z2 = c2, c2 being arbitrary constant. ...(2)
The required solution is given by the relations (1) and (2).
(b) Given system yields (dx)/(y – z) = (dy)/(z – x) = (dz)/(x – y). Now proceed as in part to

show that x + y + z = c1 and x2 + y2 + z2 = c2. Hence u = x + y + z and v = x2 + y2 + z2, as required.

Ex. 11. Solve yzdx
y z

zxdy
z x

xydz
x y!

�
!

�
!

. [Delhi Maths (G) 1996]

Sol. Choosing 1, 1, 1 as multipliers, each fraction of the given equations

                = yzdx zxdy xydz
y z z x x y

d xyz# #
! # ! # !

�
( )
0

.

& d(xyz) = 0 so that xyz = c1. ...(1)
Again choosing 1/yz, 1/zx, 1/xy as multipliers, each fraction of the given equations

= dx dy dz
y z yz z x zx x y xy

# #
! # ! # !( ) / ( ) / ( ) /

= dx dy dz
z y x z y x

dx dy dz# #
! # ! # !

� # #
1 1 1 1 1 1 0/ / / / / /

& dx + dy + dz = 0 so that x + y + z = c2. ...(2)
The required general solution is given by the relations (1) and (2).

Ex. 12. Solve dx
x y z

dy
y z x

dz
z x y( ) ( ) ( )2 2 2 2 2 2!

�
! #

�
#

. [Delhi Maths (H) 1993]

Sol. Choosing x, y, z as multipliers, each fraction of the given equations

= xdx ydy zdz
x y z y z x z x y

xdx ydy zdz# #

! ! # # #
�

# #
2 2 2 2 2 2 2 2 2 0( ) ( ) ( )

&   xdx + ydy + zdz = 0 so that          x2 + y2 + z2 = c1. ...(1)
Again, choosing 1/x, –1/y, –1/z as multipliners, each fraction

= ( / ) ( / ) ( / )
( ) ( ) ( )

( / ) ( / ) ( / )1 1 1 1 1 1
02 2 2 2 2 2

x dx y dy z dz
y z z x x y

x dx y dy z dz! !
! # # ! #

�
! ! .

& (1/x)dx – (1/y)dy – (1/z)dz = 0  so that log x – log y – log z = log c2
or log (x/yz) = log c2 or                        x/yz = c2.    ...(2)

The required general solution is given by the relations (1) and (2).

Ex. 13. Solve dx
y zx

dy
x yz

dz
x y!

�
#

�
#2 2 . [Nagpur 1996, Delhi Maths (H) 1998]

Sol. Choosing x, –y, z as multipliers, each fraction of the given equations

= xdx ydy zdz
x y zx y x yz z x y

xdx ydy zdz! #
! ! # # #

�
! #

( ) ( ) ( )2 2 0

& xdx – ydy + zdz = 0           so that 2xdx – 2ydy + 2zdz = 0.
Integrating it, x2 – y2 + z2 = c1, c1 being an arbitrary constants. ...(1)
Again, choosing y, x, –1 as multipliers, each fraction of the given equation

= 2 2 0( ) ( ) ( )
y dx x dy dz y dx x dy dz

y y zx x x yz x y
# ! # !

�
! # # ! #

.

& y dx + x dy – dz = 0 or d(xy) – dz = 0.
Integrating it,            xy – z = c2, c2 being an arbitrary constant. ...(2)
The required general solution is given by the relations (1) and (2).
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Simultaneous Equations of the Form cx/P = dy/Q = dz/R 2.9

Ex. 14. Solve dx
x

dy
y

dz
nxy2 2� � . [Delhi Maths (G) 1995]

Sol. Taking the first two fractions, x–2dx = y–2dy.

Integrating ! 1
x
= ! !1

1y
c or 1 1

x y
! = c1

or y – x = c1xy or x – y + c1xy = 0. ...(1)
Choosing 1/x, –1/y, c1/n as multipliers, each fraction of the given equations

= ( / ) ( / ) ( / ) ( / ) ( / ) ( / )1 1 1 1
0

1

1

1x dx y dy c n dz
x y c xy

x dx y dy c n dz! #
! #

�
! # , using (1)

& (1/x)dx – (1/y)dy + (c1/n)dz = 0.
Integrating, log x – log y + (c1/n)z = (c1/n)c2, c2 being arbitrary constant

or
c
n

z1 =
c
n

c y
x

1
2 # log          or      z = c n

c
y
x

c nxy
y x

y
x2

1
2# � #

!
log log , using (1)

The required general solution is given by the relations (1) and (2).

Ex. 15. Solve dx
y z

dy
xy

dz
xz2 2#

�
!

�
!

. [Delhi Maths. (H) 1995]

Sol. Taking the last two fractions,      (1/y)dy – (1/z)dz = 0.
Integrating, log y – log z = log c, or y/z = c1. ...(1)

Choosing x, y, z or multipliers,  each given fraction = xdx ydy zdz
x y z xy xz

xdx ydy zdy# #
# ! !

� # #
( )2 2 2 2 0

.

& xdx + ydy + zdz = 0 so that x2 + y2 + z2 = c2.
The required general solution is given by the relations (1) and (2).

Ex. 16. Solve dx
x y z

dy
y z x

dz
z x y( ) ( ) ( )2 24 4 4 4 4 4!

�
!

�
!

.

Sol.  Choosing 1/x, 1/y, 2/z as multipliers, each fraction

= ( / ) ( / ) ( / )
( ) ( ) ( )

( / ) ( / ) ( / )1 1 2
2 2 2

1 1 2 1
04 4 4 4 4 4

x dx y dy z dz
y z z x x y

x dx y dy z dz# #
! # ! # !

�
# #

& (1/x)dx + (1/y)dy + 2(1/z)dz = 0     so that          log x + log y + 2 log z = log c2
or log x + log y + log z2 = log c2     or xyz2 = c2.     ...(1)

Again, choosing x3, y3, z3 as multipliers, each fraction

= x dx y dy z dz
x y z y z x z x y

x dx y dy z dz3 3 3

4 4 4 4 4 4 4 4 4

3 3 3

2 2 0
# #

! # ! # !
�

# #
( ) ( ) ( )

& x3dx + y3dy + z3dz = 0 so that             x4 + y4 + z4 = c2. ...(2)
The required general solution is given by the relations (1) and (2).
Important Note: Sometimes multipliers are chosen by using a trial method. The whole

procedure is explained in the next solved Ex. 17.

Ex. 17. Solve 
4 3 4 2 2 3

dx dy dz
y z x z y x

� �
! ! !

.

Sol. Choosing l, m, n as multipliers, each fraction of the given equations

  = ldx mdy ndz
l y z m x z n y x

# #
! # ! # !( ) ( ) ( )4 3 4 2 2 3

...(1)
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2.10 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

Now, choose l, m, n such that l(4y – 3z) + m(4x – 2z) + n(2y – 3x) = 0
or (4m – 3n)x + (4l + 2n)y + (–3l – 2m)z = 0,
which is satisfied if   4m – 3n = 0,   4l + 2n = 0,   –3l – 2m = 0      or      l : m : n = 2 : –3 : –4.

& from (1), each given ratio = (2dx – 3dy – 4dz)/0.
& 2dx – 3dy – 4dz = 0 so that 2x – 3y – 4z = c1.
Again, choose l, m, n such that l(4y – 3z) + m(4x – 2z) + n(2y – 3x) = 0

or 4(ly + mx) + 3(–lz – nx) + 2(ny – mz) = 0,
which is satisfied if   ly + mx = 0,    –lz – nx = 0,    ny – mz = 0     or      l : m : n = x : –y : –z.

& from (1), each given ratio = (xdx – ydy – zdz)/0.
& xdx – ydy – zdz = 0 so that   x2 – y2 – z2 = c2.  ...(3)
The required general solution is given by the relations (1) and (2).

Ex. 18. Solve dx
z yz y

dy
y z

dz
y z2 22! !

�
#

�
!

.

Sol. From the last two fractions, (y – z)dy = (y + z)dy
or ydy – zdz – (zdy + ydz) = 0 or           2ydy – 2zdz – 2d(yz) = 0.

Integrating,            y2 – z2 – 2yz = c1, c1 being an arbitrary constant ...(1)
Taking, 1, y, z as multipliers, each fraction

= dx ydy zdz
z yz y y y z z y z

dx ydy zdz# #
! ! # # # !

�
# #

2 22 0( ) ( )
.

& dx + ydy + zdz = 0               or              2dx + 2ydy + 2zdz = 0.
Integrating,              2x + y2 + z2 = c2, c2 being an arbitrary constant ...(2)
The required general solution is given by the relations (1) and (2).

Ex. 19. Solve dx
y xz

dy
yz x

dz
x y!

�
#

�
#2 2 .

Sol. Choosing y, x, –1 and x, –y, z as multipliers by turn each given fraction,

= ydx xdy dz xdx ydy zdz# !
�

! #
0 0

& ydx + xdy – dz = 0 and  xdx – ydy + zdz = 0.
Integrating, xy – z = c1 and x2 – y2 + z2 = c2. ... (3)
The required general solution is given by (3).

Ex. 20. Solve dx
x y z

dy
y z x

dz
z x y2 2 2( ) ( ) ( )!

�
!

�
!

.

Sol. Choosing 1/x, 1/y, 1/z and 1/x2, 1/y2, 1/z2 as multipliers by turn, each fraction

= ( / ) ( / ) ( / ) ( / ) ( / ) ( / )1 1 1
0

1 1 1
0

2 2 2x dx y dy z dz x dx y dy z dz# #
�

# #

&     (1/x)dx + (1/y)dy + (1/z)dz = 0       and x–2dx + y–2dy + z–2dz = 0.
Integrating,     log x + log y + log z = log c1       and –x–1 – y–1 – z–1 = –c2

or xyz = c1      and      x–1 + y–1 + z–1 = c2,  which give the desired solution.

Ex. 21. dx
x z

dy
zx y

dy
x y#

�
!

�
#2 4 2 2 .

Sol. Choosing y, x, –2z as multipliers, each fraction

= ydx xdy zdz
y x z x zx y z x y

d xy zdz# !
# # ! ! #

�
!2

2 4 2 2
2

02( ) ( ) ( )
( )
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Simultaneous Equations of the Form cx/P = dy/Q = dz/R 2.11

&   d(xy) – 2zdz = 0 so that xy – z2 = c1. ...(1)
Choosing 2x, –1, –1 as multipliers, each fraction

= 2
2 2 4 2

2
02

xdx dy dz
x x z zx y x y

xdx dy dz! !
# ! ! ! #

�
! !

( ) ( ) ( )
.

& 2xdx – dy – dz = 0 so that x2 – y – z = c2. ...(2)
The required general solution is given by relations (1) and (2).

Ex. 22. Solve dx
x y

dy
x y

dz
xz!

�
#

�
2 .

Sol. Choosing 1, 1, –1/z as multipliers, each given fraction

= (1/ ) (1/ )
( ) ( ) (1/ ) (2 ) 0

dx dy z dz dx dy z dz
x y x y z xz

# ! # !
�

! # # ! ∃
.

&  dx + dy – (1/z)dz = 0     so that x + y – log z = c1.  ...(1)

Taking the first two fractions dy
dx
= x y

x y
y x
y x

#
!

�
#
!

1
1

( / )
( / )

. ...(2)

Let y/x = v     so that y = xv. ...(3)
From (3), dy/dx = v + x(dv/dx). ...(4)
Using (3) and (4), (2) reduces to

d
x

dx
#

vv = 1
1
#
!

v
v

or d
x

dx
v =

21 1 + (1 ) 1=
1 1 1
# ! ! #

! �
! ! !

v v v v v
v

v v v

or 2
1

1
d

!

#

v
v

v
= dx

x
or 2 2

2 2 2
1 1

dxd
x

∋ (
! �) ∗) ∗# #+ ,

v v
v v

Integrating, 2 tan–1 v – log (1 + v2) = 2 log x – log c2        or          log x2 – log (1 + v2) – log c2= 2 tan–

1 v

or log {x2(1 + v2)/c2} = 2 tan–1 v          or  x2(1 + v2) = c2e2 1tan! v

or x2{1 + (y2/x2)} = c2 e y x2 1tan ( / )!
, as v = y/x by (3)

or            (x2 + y2)e y x! !2 1tan ( / ) = c2, c2 being an arbitrary constant ...(5)
The required general solution is given by the relations (1) and (5).

Ex. 23. Solve dx
x x y

dy
y x y

dz
z y x( ) ( ) ( )2 2 2 2 2 23 3 2#

�
! #

�
!

.

Sol. Choosing 1/x, 1/y, –1/z as multipliers, each fraction of the given equations.

= ( / ) ( / ) ( / )1 1 1
0

x dx y dy z dz# ! so that       dx
x

dy
y

dz
z

# ! = 0.

Integrating,    log x + log y – log z = log c1 so that             (xy)/z = c1.  ...(1)

Taking the first two fractions, dy
dx
=

2 2 2

2 2 2
(3 ) 3 ( / )
( 3 ) 1 3( / )

y x y y y x
xx x y y x

# #
! � ! ∃

# #

Putting    y/x = v    or    y = xv    so that    dy/dx = v + x (dv/dx),    we get

d
x

dx
#

v
v =

2

2
3
1 3
#

!
#

vv
v

or
d

x
dx

v =
2

2
3 1
1 3

− .#
! #/ 0

#1 2

vv
v
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2.12 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

or d
x

dx
v =

2

2
4(1 )

1 3
#

!
#

v v
v

or
2

2
1 34 0
(1 )

dx d
x

#
# �

#
v v

v v

or
2

1 24
1

dx
d

x

∋ (
# #) ∗) ∗#+ ,

v
v

v v
= 0, on resolving into partial fractions

Integrating, 4 log x + log v + log (1 + v2) = log c23        or x4v(1 + v2) = c23
or x4(y/x)[1 + (y/x)2)] = c23   or       xy(x2 + y2) = c23     or     c1z(x2 + y2) = c23, using (1)
or z(x2 + y2) = c2, where c2 = c23/c1, c2 being an arbitrary constant ...(2)

The required general solution is given by the relations (1) and (2).

Ex. 24. Solve 
( )

dx dy dz
y z x z x z

� �
# ! # !

. [Mysore 2004]

Sol. Choosing 1, 1, 1 as multipliers each fraction 
( ) 0

dx dy dz dx dy dz
y z x z x y

# # # #
� �

# ! # # !
so that dx + dy + dz = 0 and so x + y + z = C1 ... (1)

From (1), y + z = C1 – x and x + z = C1 – y
Hence the first two fractions of the given problem may be re-written as

1 1( )
dx dy

C x C y
�

! ! !
    or

1 1
0dx dy

C x C y
# �

! !

Integrating, – log (C1 – x) – log (C1 – y) = – log C2, C2 being an arbitrary constant
or (C1 – x) (C1 – y) = C2     or           (y + z) (x + z) = C2 ... (2)

The required solution is given by the relations (1) and (2).

EXERCISE 2 (C)
Solve the following simultaneous differential equations :

1.
4 5 4 5 4 52 3 3 2 3 3 2 3 3

dx dy dz

x y z y z x z x y
� �

! ! !
[Delhi Maths (G) 2005]

Hint. Do like Ex. 4. of Art. 2.9, Ans. x2 + y2 + z2 = c1, 1/x + 1/y + 1/z = c2

2. .
( ) ( ) ( )

dx dy dz
x y z y z x z x y

� �
! ! !

[Pune 2010; Nagpur 1996; Bangalore 1993]

Sol. Try yourself Ans. x + y + z = c1 and xyz = c2

3. .
( ) ( ) ( )
ldx mdy ndz

mn y z nl z x lm x y
� �

! ! !
[Delhi Maths (G) 2001]

Sol. Try yourself as in Ex. 1 of Art. 2.9 Ans. l2x + m2y + n2z = c1, l
2x2 + m2y2 + n2z2 = c2

4. (dx)/y = (dy)/(–x) = (dz)/(2x – 3y) [Osmania 2003] Ans. x2 + y2 = C1, 3x + 2y + z = C2

5. (dx)/(zx) = (dy)/(–zy) = (dz)/(y2 – x2) Ans. xy = C1, x
2 + y2 + z2 = C2

2.10. Rule IV for solving              (dx)/P = (dy)/Q = (dz)/R. ...(1)
Let P1, Q1, R1 be functions of x, y, z. Then, by a well known principle of algebra, each

fraction in (1) will be equal to
(P1dx + Q1dy + R1dz)/(P1P + Q1Q + R1R). ...(2)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Simultaneous Equations of the Form cx/P = dy/Q = dz/R 2.13

Suppose the numerator of (2) is exact differential of the denominator of (2). Then (2) can be
combined with a suitable fraction in (1) to give an integral. However, in some problems, another
set of multipliers P2, Q2 and R2 are so chosen that the fraction

(P2dx + Q2dy + R2dz)/(P2P + Q2Q + R2R) ...(3)
is such that its numerator is exact differential of denominator. Fractions (2) and (3) are then combined
to give an integral. This method may also be repeated in some problems to get another integral.

Sometimes only one integral is possible with help of multipliers. In such cases second integral
should be obtained by using rule I of Art. 2.4 or rule II of Art. 2.6 or rule III of Art 2.8 as the case
may be.
2.11. Solved examples based on Art. 2.10

Ex. 1. Solve dx
y x y2 ( )!

= dy
x x y

dz
z x y! !

�
#2 2 2( ) ( )

Sol. Given dx
y x y

dy
x x y

dx
z x y2 2 2 2( ) ( ) ( )!

�
! !

�
#

. ... (1)

Taking the first two fractions in (1), we get
x2dx = –y2dy or 3x2dx + 3y2dy = 0.

Integrating, x3 + y3 = c1, c1 being an arbitrary constant ...(2)
Choosing 1, –1, 0 as multipliers, each fraction of (1)

                                   = dx dy
y x y x x y

dx dy
x y x y

!
! # !

�
!

! #2 2 2 2( ) ( ) ( )( )
.   ...(3)

Combining the third fraction in (1) with fraction (3), we get

dz
z x y( )2 2#

= dx dy
x y x y

!
! #( )( )2 2 or dz

z
dx dy

x y
�

!
!

Integrating       log (x – y) – log z = log c2 or  (x – y)/z = c2.
...(4)

The required solution is given by (2) and (4).

Ex. 2. Solve dx
x y z

dy
xy

dz
xz2 2 2 2 2! !

� � . [Guwahati 2007; Delhi Maths (H) 2000,

Delhi Maths (Prog) 2009]

or dx
y z x

dy
xy

dz
xz2 2 2 2 2# !

�
!

�
!

.  [Delhi Maths (G) 2000; Nagpur 1995]

Sol. Given 2 2 2 2 2
dx dy dz

xy xzx y z
� �

! !
... (1)

Taking the last two fractions of (1), (1/y)dy – (1/z)dz = 0
Integrating, log y – log z = log c1 or y/z = c1. ...(2)
Choosing x, y, z as multipliers, each fraction in (1)

            = xdx ydy zdz
x xy xz xy xz

xdx ydy zdz
x x y z

# #
! ! # #

�
# #
# #3 2 2 2 2 2 2 22 2 ( )

.   ...(3)

Combining the third fraction in (1) with fraction (3), we get

xdx ydy zdz
x x y z

# #
# #( )2 2 2 = dz

xz2
or 2

2 2 2
( )xdx ydy zdz

x y z
# #
# #

= dz
z

.

Integrating, log (x2 + y2 + z2) – log z = log c2    or  (x2 + y2 + z2)/z = c2.  ...(4)
The required solution is given by (2) and (4).
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2.14 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

Ex. 3. Solve dx
x yz

dy
y zx

dz
z xy2 2 2!

�
!

�
!

[Bangalore 2005, Delhi Maths (G) 1998, 2008]

Sol. Given         2 2 2
dx dy dz

x yz y zx z xy
� �

! ! !
... (1)

Choosing 1, –1, 0 and 0, 1, –1 as multipliers by turn, each fraction of (1)

= dx dy
x y z x y

dy dz
y z x y z

!
! # !

�
!

! # !2 2 2 2( ) ( )

&
dx dy

x y x y z
!

! # #( )( ) =
dy dz

y z y z x
!

! # #( )( )
              or dx dy

x y
!
!

= dy dz
y z
!
!

.

Integrating, log (x – y) – log (y – z) = log c1         so that          (x – y)/(y – z) = c1. ...(2)
Choosing x, y, z as multipliers, each fraction in (1)

= xdx ydy zdz
x y z xyz

# #
# # !3 3 3 3

= xdx ydy zdz
x y z x y z xy yz zx

# #
# # # # ! ! !( )( )2 2 2 ...(3)

Again, choosing 1, 1, 1 as multipliers, each fraction in (1)

  = dx dy dz
x y z xy yz zx

# #
# # ! ! !2 2 2   ...(4)

From (3) and (4), we get (xdx + ydy + zdz)/(x + y + z) = dx + dy + dz
or 2(x + y + z)(dx + dy + dz) – 2(xdx + ydy + zdz) = 0

Integrating, 2 2 2 2( ) ( )x y z x y z# # ! # # = 2c2

or 2 2 2 2 2 2( 2 2 2 ) ( )x y z xy yz zx x y z# # # # # ! # # = 2c2

or                 xy + yz + zx = c2, c2 being an arbitrary constant. ...(5)
The required solution is given by (2) and (5).

Ex. 4. Solve dx
y z

dy
z x

dz
x y#

�
#

�
#

.  [Delhi Maths 1999; 2002]

Sol. Given dx
y z

dy
z x

dz
x y#

�
#

�
#

... (1)

Choosing, 1, –1, 0 and 0, 1, –1 as multipliers each fraction of (1)

= dx dy
y z z x

!
# ! #( ) ( ) =

dy dz
z x x y

!
# ! #( ) ( ) . ...(2)

So      dx dy
x y
!

! !( )
= dy dz

y z
!

! !( ) or       dx dy
x y
!
!

= dy dz
y z
!
!

.

Integrating,  log (x – y) – log (y – z) = log c1      so that          (x – y)/(y – z) = c1.  ...(3)

Choosing 1, 1, 1 as multiplers, each given fraction of (1) = dx dy dz
x y z
# #
# #2( ) . ...(4)

Combining the first fraction in (2) which fraction (4), we have
dx dy

x y
!

! !( ) =
dx dy dz

x y z
# #
# #2( )

or        dx dy
x y

dx dy dz
x y z

!
!

#
# #
# #2( ) = 0.

Integrating, log (x – y) + (1/2) × log (x + y + z) = log c2       or       (x – y)(x + y + z)1/2 = c2. ...(5)
The required solution is given by (3) and (5).
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Ex. 5. Solve dx
y

dy
x

dz
z1 1#

�
#

� . [Delhi Maths (Hons) 2007, 08; Meerut 2005]

Sol. Given dx
y

dy
x

dz
z1 1#

�
#

� ...(1)

Taking the first two fractions in (1), we have
2(1 + x)dx – 2(1 + y)dy = 0 so that (1 + x)2 – (1 + y)2 = c1. ...(2)
Taking 1, 1, 0 as multipliers, each fraction in (1) = (dx + dy)/(2 + x + y). ...(3)
Combining the last fraction in (1) with (3), we get

dx dy
x y
#

# #2
= dz

z
so that     log (2 + x + y) – log z = log c2

or                 (2 + x + y)/z = c2, c2 being an arbitrary constant. ...(4)
The required solution is given by (2) and (4).

Ex. 6. Solve 
2 2 2 1/ 2( )

dx dy dz
x y z a x y z
� �

! # #
.

Sol. Given
2 2 2 1/ 2( )

dx dy dz
x y z a x y z
� �

! # #
... (1)

Taking the first two fractions in (1), (1/x)dx – (1/y)dy = 0
Integrating, log x – log y = log c1 or x/y = c1. ...(2)
Choosing x, y, z as multipliers, each fraction in (1)

                   = 2 2 2 2 2 2 1/ 2 2( )
xdx ydy zdz tdt dt

t azx y z az x y z t azt

# #
� �

!# # ! # # !
.     ...(3)

[Put x2 + y2 + z2 = t2 so that xdx + ydy + zdz = tdt]

Putting x2 + y2 + z2 = t2 in (1), we get                    dx dy dz
x y z at
� �

!
... (4)

Then,    (3) and (4)      6                dz
z at!

= dt
t az

dx
x!

� . ...(5)

Choosing 1, 1, 0 as multipliers, each fraction in (5)

            = dz dt
z t a t z

dz dt
z t a

#
# ! #

�
#

# !( ) ( )( )1
. ...(6)

Combining the last fraction in (5) with (6), we get

dz dt
z t a

#
# !( )( )1

= dx
x

or ( )1 ! !
#
#

a dx
x

dz dt
z t

= 0.

Integrating, (1 – a) log x – log (z + t) = log c2

or x
z t

a !

#

1
= c2 or

1

2 2 2 1/ 2( )

ax
z x y z

!

# # #
= c2.   ...(7)

The complete solution is given by (2) and (7).
Ex. 7. Solve (dx)/cos (x + y) = (dy)/sin (x + y) = (dz)/z.
Sol. Given     (dx)/cos (x + y) = (dy)/sin (x + y) = (dz)/z. ... (1)
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2.16 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

From (1), using 1, 1, 0 and 1, –1, 0 as multipliers by turn, we have

dz
z
= dx dy

x y x y
dx dy

x y x y
#

# # #
�

!
# ! #cos ( ) sin ( ) cos ( ) sin ( )

. ...(2)

Putting x + y = t so that dx + dy = dt, the first two fractions give

dz
z
= dt

t tcos sin#
or 2 dz

z
= cosec t dt#FH IK74

�cos sin cos sin sint t t t t# � #F
HG

I
KJ � #FH IK

L
NM

O
QP2 1

2
1
2

2
4
7

Integrating, 2  log z = log tan log1
2 4 1t c#FH IK #7 or z 2 = c t1

1
2 4

tan #FH IK7

or z x y2 1
2 4

cot # #FH IK7 = c1,   as    t = x + y. ...(3)

Now from the last two fractions in (2), we get

cos ( ) sin ( )
cos ( ) sin ( )

( )x y x y
x y x y

dx dy# ! #
# # #

# = dx – dy or cos sin
cos sin

t t
t t

dt!
#

= dx – dy.

Integrating, log (cos t + sin t) – log c2 = x – y or (cos t + sin t)/c2 = ex – y.
or [cos (x + y) + sin (x + y)]ey – x = c2,   as   t = x + y. ...(4)

The complete solution is given by (3) and (4).

Ex. 8. Solve dx
x y yz

dy
x y zx

dz
z x y2 2 2 2! !

�
! !

�
!( ) . [Garhwal 2010]

Sol. Choosing 1, –1, 0 and x, – y, 0 as multipliers by turn, each fraction of the given equations.

= dx dy
z x y

xdx ydy
x y x y

!
!

�
!

! !( ) ( )( )2 2

In view of the last fraction of the given equations and the above fractions, we have

2 2( ) ( ) ( ) ( )
dz dx dy xdx ydy

z x y z x y x y x y
! !

� �
! ! ! ! ... (1)

From the first two fractions of (1), dz = dx – dy.
Integrating, z = x – y + c1     so that   z – x + y = c1.

...(2)

Now taking the first and the last fraction in (1), 8dz
z
= 2

2 2
( )xdx ydy

x y
!
!

.

Integrating,      2 log z = log (x2 – y2) – log c2. or           (x2 – y2)/z2 = c2.   ...(3)
The required general solution is given by the relations (2) and (3).
Ex. 9. Solve (dx)/xz = (dy)/yz = (dz)/xy.
Sol. Given (dx)/xy = (dy)/yz = (dz)/xy ... (1)
Taking the first two fraction, (1/x)dx – (1/y)dy = 0.
Integrating, log x – log y = log c1 or x/y = c1. ...(2)
Choosing 1/x, 1/y, 0 as multipliers, each fraction of (1)

                             =
(1/ ) (1/ )

(1/ ) (1/ ) 2
x dx y dy ydx xdy

x xz y yz xyz
# #

�
∃ # ∃

   ...(3)

Combining the last fraction of (1) with fraction (3), we have
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ydx xdy
xyz
#

2 = dz
xy

or ydx + xdy = 2zdz

or d(xy) = 2zdz     so that          xy – z2 = c2.   ...(4)
The required general solution is given by the relations (2) and (4).

Ex. 10. Solve dx
x y yz

dy
x y xz

dz
z x y2 2 2 2# #

�
# !

�
#( ) . [Kanpur 2009]

Sol. Given dx
x y yz

dy
x y xz

dz
z x y2 2 2 2# #

�
# !

�
#( )

... (1)

Choosing 1, –1, 0 as multipliers, each fraction of (1)

         = dx dy
x y yz x y xz

dx dy
z x y

!
# # ! # !

�
!
#( ) ( ) ( )2 2 2 2 . ...(2)

Choosing x, y, 0 as multipliers, each fraction of (1)

        = xdx ydy
x x y yz y x y xz

xdx ydy
x y x y

#
# # # # !

�
#

# #( ) ( ) ( )( )2 2 2 2 2 2   ...(3)

From (1), (2) and (3), dz
z x y( )#

= dx dy
z x y

xdx ydy
x y x y

!
#

�
#

# #( ) ( )( )2 2 ...(4)

Taking the first two fractions of (4),             dz – dx + dy = 0.
Integrating, z – x + y = c1, c1 being an arbitrary constant ...(5)

Taking the first and third fractions of (4),       d x y
x y

dz
z

( )2 2

2 2 2#
#

! = 0.

Integrating, log (x2 + y2) – 2 log z = log c2 or (x2 + y2)/z2 =
c2.   ...(6)

The required general solution is given by relations (1) and (2)

Ex. 11. Solve dx
x xy

dy
y x y

dz
z x y3 2 3 2 2 23 3 2#

�
#

�
#( )

.

Sol. Given dx
x xy

dy
y x y

dz
z x y3 2 3 2 2 23 3 2#

�
#

�
#( )

... (1)

Choosing 1, 1, 0 as multipliers, each fraction of (1)    = dx dy
x xy x y y

d x y
x y

#
# # #

�
#
#3 2 2 3 33 3

( )
( )

.   ... (2)

Choosing 1, –1, 0 as multipliers, each fraction of (1) = dx dy
x xy y x y

d x y
x y

!

# ! !
�

!

!3 2 3 2 33 3
( )

( )
. ...(3)

From (2) and (3), (x + y)–3d(x + y) = (x – y)–3d(x – y).
or u–3du – v–3dv = 0,       [putting    u = x + y    and v = x – y]

Integrating, u–2/(–2) – v–2/(–2) = c1/2          or v–2 – u–2 = c1
or (x – y)–2 – (x + y)–2 = c1,    as u = x + y, v = x – y. ...(4)

Choosing 1/x, 1/y, 0 as multipliers, each fraction of (1)

            = ( / ) ( / )
( / )( ) ( / )( )

( / ) ( / )
( )

1 1
1 3 1 3

1 1
43 2 3 2 2 2

x dx y dy
x x xy y y x y

x dx y dy
x y

#
# # #

�
#
#

.  ...(5)

Combining the last fraction of (1) with fraction (5), we have
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dz
z x y2 2 2( )#

= ( / ) ( / )
( )

1 1
4 2 2
x dx y dy

x y
#
#

or dx
x

dy
y

dz
z

# ! 2 = 0.

Integrating,       log x + log y – 2 log z = log c2  or     (xy)/z2 = c2. ...(6)
The required general solution is given by the relations (4) and (6).
Ex. 12. Solve dx = dy = (dz)/(x + y + z).

Sol. Given dx dy dz
x y z1 1

� �
# #

... (1)

Taking the first two fractions, dx – dy = 0 so that x – y = c1.   ...(2)
Choosing 1, 1, 1 as multipliers, each fraction of (1)

= dx dy dz
x y z

d x y z
x y z

# #
# # # #

�
# # #
# # #1 1

2
2( )
( ) ...(3)

Combining the first fraction of (1) with fraction (3), we get

d x y z
x y z

( )2
2
# # #
# # #

= dx so that log (2 + x + y + z) – log c2 = x.

or [(2 + x + y + z)/c2] = ex or e–x(2 + x + y + z) = c2. ...(4)
The required general solution is given by (2) and (4).

Ex. 13. Solve dx
y yz z

dy
z zx x

dz
x xy y2 2 2 2 2 2# #

�
# #

�
# #

. [Delhi Maths (H) 2004; Meerut 1996]

Sol. Given         dx
y yz z

dy
z zx x

dz
x xy y2 2 2 2 2 2# #

�
# #

�
# #

... (1)

Choosing 1, –1, 0 as multipliers, each ratio of (1)

= dx dy
y yz z z zx x

dx dy
y x z y x

!
# # ! # #

�
!

! # !( ) ( ) ( ) ( )2 2 2 2 2 2 = !
!

! # #
dy dx

y x y x z( )( )
· ...(2)

Again, choosing 0, 1, –1 as multipliers, each ratio of (1)

= dy dz
z zx x x xy y

dy dz
z y x z y

!
# # ! # #

�
!

! # !( ) ( ) ( ) ( )2 2 2 2 2 2 = !
!

! # #
dz dy

z y z y x( )( )
· ...(3)

From (2) and (3),         d y x
y x
( )!
!

– d z y
z y
( )!
!

� 0.

Integrating,    log (y – x) – log (z – y) = log c1          or         (y – x)/(z – y) = c1.  ...(4)
Choosing x, y, z as multipliers, each ratio of (1)

= xdx ydy zdz
x y yz z y z zx x z x xy y

# #
# # # # # # # #( ) ( ) ( )2 2 2 2 2 2 = xdx ydy zdz

x y z xy yz zx
# #

# # # #( )( )
    ...(5)

Again, choosing y + z, z + x, x + y as multipliers, each ratio of (1)

         = ( ) ( ) ( )
( )( ) ( )( ) ( )( )

y z dx z x dy x y dz
y z y yz z z x z zx x x y x xy y

# # # # #
# # # # # # # # # # #2 2 2 2 2 2

            = ( ) ( ) ( )
( )

ydx xdy ydz zdy zdx xdz
x xy xz y yx yz z zx zy

# # # # #
# # # # # # # #2 3 2 2 3 2 2 3 2 2

            = d xy d yz d zx
x y z x y z

d xy yz zx
x y z x y z

( ) ( ) ( )
( )( )

( )
( )( )

# #
# # # #

�
# #

# # # #2 22 2 2 2 2 2 . ...(6)
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From fractions (5) and (6), we have
xdx ydy zdz

x y z xy yz zx
# #

# # # #( )( )
= d xy yz zx

x y z x y z
( )

( )( )
# #

# # # #2 2 2 2 .

or       (xy + yz + zx) d(xy + yz + zx) – (x2 + y2 + z2) (2xdx + 2ydy + 2zdz) = 0.
Integrating,            (xy + yz + zx)2 – (x2 + y2 + z2)2 = c2. ...(7)
The required general solution is given by the relations (4) and (7).

Ex. 14. Solve dx
x x y

dy
y x y

dz
x y x y z( ) ( ) ( )( )#

�
! #

�
! ! # #2 2 .

Sol. Given dx
x x y

dy
y x y

dz
x y x y z( ) ( ) ( )( )#

�
! #

�
! ! # #2 2 ... (1)

Taking the first two fractions in (1), we get           (1/x)dx + (1/y)dy = 0.
Integrating, log x + log y = log c1 or xy = c1. ...(2)
Choosing, 1, 1, 0 as multipliers, each fraction of (1)

                 = dx dy
x x y y x y

dx dy
x y x y

#
# ! #

�
#

# !( ) ( ) ( )( )
. ...(3)

Again, choosing 1, 1, 1 as multipliers, each fraction of (1)

  = dx dy dz
x x y y x y x y x y z

# #
# ! # ! ! # #( ) ( ) ( )( )2 2

= dx dy dz
x y x y x y x y z

# #
! # ! ! # #( )( ) ( )( )2 2

                     = dx dy dz
x y x y x y z

dx dy dz
x y x y z

# #
! # ! # #

� ! # #
! # #( ){ ( )} ( )( )2 2

.  ...(4)

From fractions (3) and (4), dx dy
x y x y

#
# !( )( )

= !
# #

! # #
dx dy dz

x y x y z( )( )

or dx dy
x y

dx dy dz
x y z

#
#

#
# #
# #

= 0.

Integrating,  log (x + y) + log (x + y + z) = log c2,   so that   (x + y)(x + y + z) = c2. ...(5)
The required general solution is given by the relations (2) and (5).
Ex. 15. Solve (dx)/x2 = (dy)/y2 = (dz)/z(x + y)

Sol. Given           dx
x

dy
y

dz
z x y2 2� �

#( )
... (1)

From the first two fractions in (1),         x–2dx – y–2dy = 0.
Integrating, –x–1 + y–1 = c1   or            (1/y) – (1/x) = c1.     ...(2)

Choosing 1, –1, 0 as multipliers, each fraction of (1)     = dx dy
x y

dx dy
x y x y

!
!

�
!

! #2 2 ( )( )
.

...(3)
Taking the last fraction of (1) and fraction (3), we have

dz
z x y( )#

= dx dy
x y x y

!
! #( )( )

or d x y
x y

dz
z

( )!
!

! = 0.

Integrating,    log (x – y) – log z = log c2       or        (x – y)/z = c2.   ...(4)
The required general solution is given by the relations (2) and (4).
Ex. 16. Solve (dx)/(x2 + y2) = (dy)/(2xy) = (dz)/z(x + y).

Sol. Given              dx
x y

dy
xy

dz
x y z2 2 2#

� �
#( )

... (1)
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2.20 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

Choosing 1, 1, 0 as multipliers, each fraction of (1) = dx dy
x y xy

dx dy
x y

#
# #

�
#
#2 2 22 ( )

. ...(2)

Choosing 1, –1, 0 as multipliers, each fraction of (1) = dx dy
x y xy

dx dy
x y

!
# !

�
!
!2 2 22 ( )

.  ...(3)

From fractions (2) and (3),      (x + y)–2(dx + dy) = (x – y)–2(dx – dy).
Integrating, –(x + y)–1 = –(x – y)–1 + c1 or (x – y)–1 – (x + y)–1 = c1....(4)
From the last fraction of (1) and fraction (2), we have

dx dy
x y
#
#( )2 =

dz
x y z( )#

    or d x y
x y

dz
z

( )#
#

! = 0.

Integrating,      log (x + y) – log z = log c2 or (x + y)/z = c2. ...(5)
The required general solution is given by relations (4) and (5).
Ex. 17. Solve (dx)/y = (dy)/x = (dz)/z.

Sol. Given ( ) / ( ) / ( ) /dx y dy x dx z� � ... (1)
From the first two fractions, 2xdx – 2ydy = 0 so that x2 – y2 = c1. ...(2)
Choosing 1, 1, 0 as multipliers, each fraction of (1) = (dx + dy)/(y + x).
Combining this fraction which the last fraction (1), we get

dx dy
x y

dz
z

#
#

� so that log (x + y) – log z = log c2.

or log [(x + y)/z] = log c2         or (x + y)/z = c2. ...(3)
The required general solution is given by the relations (2) and (3).
Ex. 18. Solve (dx)/x = (dy)/z = (dz)/(–y).
Sol. Given (dx)/x = (dy)/z = (dz)(–y) ... (1)
From the last two fractions,       2ydy + 2zdz = 0.        so that           y2 + z2 = c1. ...(2)
Choosing, 0, z, –y as multipliers each fraction of (1)

= zdy ydz
z z y y

zdy ydz
z y

z dy y z dz
y z

!
! !

�
!
#

�
!

#. ( )
( / ) ( / )

( / )2 2

2

2
1

1
= d y z

y z
dt

t
( / )
( / )1 12 2#

�
#

, where t = y
z

 ...(3)

Combining the above fraction with the first fraction of (1), we get
dx
x
= dt

t1 2#
so that log x – log c2 = tan–1 t = tan–1 (y/z).

or log (x/c2) = tan–1 (y/z)       or x = c e y z
2

1tan ( / )!

...(4)
The required general solution is given by the relations (2) and (4).
Ex. 19. Solve (dx)/(x2 + a2) = (dy)/(xy – az) = (dz)/(xz + ay).

Sol. Given dx
x a

dy
xy az

dz
xz ay2 2#

�
!

�
#

... (1)

Taking 0, z, –y as multipliers, each fraction of (1)

= zdy ydz
z xy az y xz ay

zdy ydz
a y z

!
! ! #

�
!

! #( ) ( ) ( )2 2 . ...(2)

Taking 0, y, z as multipliers, each fraction of (1)

= ydy zdz
y xy az z xz ay

ydy zdz
x y z

#
! # #

�
#
#( ) ( ) ( )2 2 . ...(3)
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Simultaneous Equations of the Form cx/P = dy/Q = dz/R 2.21

Taking the first fraction of (1) and fraction (3), we have

dx
x a2 2#

= ydy zdz
x y z

#
#( )2 2   or 2 2 2

2 2 2 2
xdx

x a
ydy zdz
y z#

!
#
#

= 0.

Integrating, log (x2 + a2) – log (y2 + z2) = log c2.
or (x2 + a2)/(y2 + z2) = c2, c2 being an arbitrary constant ...(4)

Taking the first fraction of (1) and fraction (2), we have

dx
x a2 2#

= zdy ydz
a y z

!
! #( )2 2 or adx

x a
zdy ydz
z y2 2 2 2#

# !
#

= 0

or adx
x a

z dy y z dz
y z2 2

2

2
1

1#
#

!
#

( / ) ( / )
( / )

= 0 or adx
x a

d y z
y z2 2 21#

#
#

( / )
( / )

= 0

or adx
x a

dt
t2 2 21#

#
#

= 0,   where        t = y
z

.

Integrating, a tan–1 (x/a) + tan–1 t = c2  or a tan–1 (x/a) + tan–1 (y/z) = c2. ...(5)
The required general solution is given by the relations (4) and (5).

Ex. 20. Solve dx
y x y az

dy
x x y az

dz
z x y( ) ( ) ( )# #

�
# !

�
#

.

[Delhi Maths (Hons) 2005, Nagpur 2005, 10]

Sol. Given dx
y x y az

dy
x x y az

dz
z x y( ) ( ) ( )# #

�
# !

�
#

... (1)

Choosing 1, 1, 0 as multipliers, each fraction of (1)

= dx dy
y x y az x x y az

dx dy
x y

#
# # # # !

�
#
#( ) ( ) ( )2 . ...(2)

From the last fraction of (1) and the fraction (2), we have

dx dy
x y
#
#( )2 =

dz
z x y( )#

           or     d x y
x y

dz
z

( )#
#

! = 0.

Integrating, log (x + y) – log z = log c1      or                 (x + y)/z = c1.  ...(3)
Choosing x, –y, 0 as multipliers, each fraction of (1)

  = xdx ydy
x y x y az y x x y az

xdx ydy
az x y

!
# # ! # !

�
!
#[ ( ) ] [ ( ) ] ( )

.  ...(4)

From the first fraction of (1) and fraction (4), we have

xdx ydy
az x y

!
#( ) =

dz
z x y( )#

           or 2xdx – 2ydy – 2adz = 0.

Integrating, x2 – y2 – 2az = c2, c2 being an arbitrary constant ...(5)
The required general solution is given by relations (3) and (5).

Ex. 21. Solve 
dx

x y xy
dy

x y x y
dz

z y x# !
�

! !
�

!2 2 2 2( )
[Delhi Maths (H) 1997, 2002, 07]

Sol. Given dx
x y xy

dy
x y x y

dz
z y x# !

�
! !

�
!2 2 2 2( )

... (1)
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2.22 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

Each fraction of (1) 2 2 2 2( ) ( ) ( ) (1 )
y dx xdy ydx xdy

y x y xy x x y x y y x xy
# #

� �
# ! # ! ! ! !

Combining the above fraction with last fraction of (1), we get

2 2 2 2 or 0.
1( )(1 ) ( )

y dx xdy dz y dx xdy dz
xy zy x xy z y x

# ! !
� # �

!! ! !
Integrating,    1 1log (1 ) log log or (1 )xy z c z xy c! # � ! � ... (2)

Again, each fraction of (1) = [ (1/ ) ] / 0xdx ydy z dz# #

Hence      2 2
22 2 2(1/ ) 0 so that 2logx dx y dy z dz x y z c3# # � # # �

or x y c xy c2 2
1 22 1# # ! � 3log{ / ( )} ,  using (2)

or 2 2
2 2 2 12log (1 ) , where 2logx y xy c c c c3# ! ! � � ! ... (3)

The required general solution is given by (2) and (3)

EXERCISE 2 (D)
Solve the following simultaneous differential equations :

1. (dx)/x = (dy)/z = (dz)/y Ans. y2 – z2 = C1, (y + z)/x = C2
2. (dx)/cos (x + y) = (dy)/sin (x + y) = (dz)/(z + 1/z)

Ans. 9 : 9 :2 1/ 2
1 2cos( ) sin( ) , ( 1) tan 3 / 8 ( ) / 2y xe x y x y C z x y C! # # # � # 7 ! # �

3. (dx)/x = (dy)/(–y) = (dz)/(y2 – x2) (Bangalore 2005)    Ans. xy = C1, x
2 + y2 – 2z = C2

4. (dx)/y2 = (dy)/x2= (dz)/z2(x2 – y2)  (Bangalore 2005)   Ans. x3 – y3 =  c1, x + y + (1/z) =C2
5. Solve (dx)/(xz – y) = (dy)/(yz – x) = (dz)/(1– z2)              (Pune 2010)

  Ans. (x – y) (1 – z)= c1,(x + y)  (1 + z) =  c2
2.12. Orthogonal trajectories of a system of curves on a surface

Let the given surface be          f(x, y, z) = 0 ... (1)

and let the given system of surface be         ( , , ) ,x y z c; � c being a parameter.. ... (2)
Then, the given system of curves lying on the surface (1) are the curves of intersection of (1)

and (2).
Clearly the direction ratios dx, dy, dz of the tangent at any point (x, y, z) on the given curve

lying on the surfaces (1) and (2) are given by

( / ) ( / ) ( / ) 0f x dx f y dy f z dz< < # < < # < < �          and ( / ) ( / ) ( / ) 0x dx y dy z dz<; < # <; < # <; < �
Solving these for dx, dy, dz, we have

(dx)/P = (dy)/Q = (dz)/R ... (3)

where ,f f
P

y z z y
< <; < <;

� !
< < < <

     ,f f
Q

z x x z
< <; < <;

� !
< < < <

f f
R

x y y x
< <; < <;

� !
< < < <

... (4)

Thus, P, Q, R are the direction ratio of tangents to the given curves of intersection of (1) and
(2). By, definition, P, Q, R will be direction ratios of normal of the required orthogonal trajectories.
Therefore, if dx, dy, dz be the direction ratios of the required orthogonal trajectorie, then the
differential equations of the orthogonal trajectories are given by

( / ) ( / ) ( / ) 0f x dx f y dy f z dz< < # < < # < < �       and      Pdx + Qdy + Rdz = 0
Solving these for dx, dy, dz, we obtain

( ) / ( ) / ( ) / ,dx P dy Q dz R3 3 3� � ... (5)
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Simultaneous Equations of the Form cx/P = dy/Q = dz/R 2.23

where ( / ) ( / ),P R f y Q f z3 � < < ! < < ( / ) ( / ),Q P f z R f x3 � < < ! < < ( / ) ( / )R Q f x P f y3 � < < ! < < ... (6)
The solution of simultaneous differential equations (5) together with the given surface (1)

gives the system of required orthogonal trajectories.
2.12A. Solved Example based on Art. 2.12.

Ex. 1. Find the orthogonal trajectories on the cone x2 + y2 = z2 tan2= of its intersection with
the family of planes parallel to z = 0. [Madurai 2005; Pune 2010]

Sol. Given surface is     f(x, y, z) = x2 + y2 – z2tan2= = 0 ... (1)
and the family of planes parallel to z = 0 is         z = k. ... (2)
where k is parameter. Then, the system of differential equations of the given curves of intersection
of (1) and (2) is given by

2x dx + 2ydy – 2z tan2= dz = 0;           dz = 0
Solving these equation for dx, dy, dz, we get

       (dx)/y = (dy)/(–x) = (dz)/0
Hence the system of differential equations of the required orthogonal trajectories of the given

curves is     xdx + y dy – 2z tan2= dz = 0          and          y dx – x dy + 0 . dz = 0     ... (3)
Solving these for dx, dy, dz, we have

2 2 2 2tan tan
dx dy dz

xz yz x y
� �

= = # ... (4)

Taking x, y, 0 as multipliers, each fraction of (4)   2 2 2( ) tan
xdx ydy

x y z
#

�
# =

Combining this fraction with last fraction in (4), we have

2 2 2 2 2( ) tan
xdx ydy dz

x y z x y
#

�
# = # so that 2x dx + 2y dy – 2z tan2= dz = 0

Integrating, 2 2 2 2tan ,x y z c3# ! = � c3  being an arbitrary constant.

Choosing 0,c3 �  we obtain the given surface (1).
Taking the first and second fractions of (4), (1/x) dx – (1/y)dy = 0.
Integrating, log x – log y = log c or      x/y = c, c being an arbitrary constant.
Hence the required family of the orthogonal trajectories is given by x2 + y2= z2 tan2= and x = cy.
Ex. 2. Find the orthogonal trajectories on the conicoid (x + y)z = 1 of the conics in which it

is cut by the system of planes x – y + z = k, where k is parameter. [ K o l k a t a
2001]

Sol. Given surface is f(x, y, z) = xz + yz – 1 = 0 ... (1)
and the given system of planes is x – y + z = k ... (2)

Then the system of differential equations of the given curves of intersection of (1) and (2) is
given by

zdx + z dy + (x + y)dz = 0 and dx – dy + dz = 0

Solving these for dx, dy, dz we see             
2

dx dy dz
z x y x y z z

� �
# # # ! !

Hence the system of differential equations of the required orthogonal trajectories of the given
curves is
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2.24 Simultaneous Equations of the Form cx/P = dy/Q = dz/R

( ) 0
and ( ) ( ) 2 0

zdx zdy x y dz
z x y dx x y z dy zdz

# # # � >
?# # # # ! ! � ≅

... (3)

Solving the above simultaneous system of equations for dx, dy, dz, we get

             2 2 2 2 22 ( ) ( ) ( ) ( ) 2 2
dx dy dz

z x y z x y x y z x y z z
� �

! ! # # # # # # # ! ... (4)

&       (4)      6        22 ( ) 2
dx dy dz
z x y z
#

�
# ! or 0dx dy dz

x y z
#

# �
#

Integrating, log(x + y) + log z= log c or        (x + y)z=c, ... (5)
where c is an arbitrary constant. Choosing c = 1, we get the given surface (1), namely, (x + y) z = 1... (6)

Now, choosing the first and the last fractions in (4) and using (6), we have

2 2 22 1/ 1 2
dx dz

z z z
�

! ! # !
or         dx= {1 + (1/2 )× z–4 – (1/2) × z–2}dz

Integrating, 3(1/ 6 ) (1/ 2 ),x c z z z3# � ! # c3  being an arbitrary constant.
Hence the required family of the orthogonal trajectories is given by

(x + y)z=c  and 3(1/ 6 ) (1/ 2 ).x c z z z3# � ! #

EXERCISE 2(E)
1. Find the orthogonal trajectories on the surface x2 + y2 + 2fyz + d= 0 of its curves of intersection

with planes parallel to xy-plane. [Nagarajuna 1993]

Ans. x2 + y2 + 2f yz + d= 0, ,fyz d c x3# � c3  being an arbitrary constant.
2. Find the equations of the system of curves on the cylinder 2y = x2 orthogonal to intersection

with the hyperboids xy= z + c. Ans. 2y= x2, 3 2( 1/ ) .z x x c3# ! �

3. Find the orthogonal trajectories on the sphere x2 + y2 + z2 = a2 of its intersections with the
paraboloids xy= cz, c being parameter.

4. Show that the orthogonal trajectories on the hyperboloid x2 + y2 – z2= 1 of the conics in which
it is cut by the system of planes x + y = c are its curves of intersection with the surfaces
(x – y) z= k, where k is  parameter.

MISCELLANEOUS   PROBLEMS   ON   CHAPTER  2
1. If u (x, y, z) = c1 and v (x, y, z) = c2 are integral curves of dx/P= dy/Q = dz/R, then what is the

geometrical meanings of P, Q, R. [Pune 2010]
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3.1

3
Total (or Pfaffian)

Differential Equations
3.1. Introduction. In this chapter, we propose to discuss differential equations with one independent
variable and more than one dependent variables.

Pfaffian differential form. Pfaffian differential equation. Definitions
Let ui, i ! 1, 2, .., n be n functions of some or all of n independent variables x1, x2, .., xn.

Then, u dxi i
i

n

!
�

1

 is called a Pfaffian differential form in n variables and u dxi i
i

n

!
�

1

! 0 is called a

Pfaffian differential equation in n variables x1, x2, .., xn.
3.2. Total (or single) differential equation (or Pfaffian differential equation).

An equation of the form    Pdx + Qdy + Rdz ! 0, ...(1)
where P, Q, R are functions of x, y, z is called the single or total differential equation in three variables
x, y, z.

Equation (1) can be directly integrated if there exists a function u(x, y, z) whose total differential
du is equal to the left hand number of (1). In other cases (1) may or may not be integrable. We now
proceed to find the condition which P, Q, R must satisfy, so that (1) may be integrable. This will be
called the condition or criterian of integrability of the single differential equation (1).
3.3. Necessary and sufficient conditions for integrability of total (or single) differential
equation Pdx + Qdy + Rdz ! 0. [Bangalore 2005; Patna 2003; Delhi Maths Hons.
1994;

Agra 2002, 05, 07; Indore 2001, 02; Kanpur 1999; Lucknow 2003, 05; Meerut 2006, 07;
Gwalior 2006; Karnataka 2003; Nagarajuna 2004; Sagar 2001, 04, Ujjain 2001, 02]

Necessary condition : Consider the total (or single) differential equation
Pdx + Qdy + Rdz ! 0, where P, Q, R are functions of x, y, z. ...(1)

Let (1) have an integral u(x, y, z) ! c. ...(2)
Then total differential du must be equal to Pdx + Qdy + Rdz, or to it multiplied by a factor.

But, we know that du ! (#u/#x)dx + (#u/#y)dy + (#u/#z)dz.    ...(3)
Since (2) is an integral of (1), P, Q, R must be proportional to #u/#x, #u/#y, #u/#z

Therefore # ! # ! #u dx
P

u dy
Q

u dz
R

/ / / ! ∃(x, y, z), say..

% ∃P ! /u x# # , ∃Q ! /u y# # and ∃R ! / .u z# #  ...(4)
From the first two equations of (4), we get

#
#y

 (∃P) ! #
# #

! #
# #

! #
#

#
#
F
HG
I
KJ ! #

#

2 2u
y x

u
x y x

u
y x

Q( )∃
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3.2 Total (or Pfaffian) Differential Equations

or ∃ #
#

& #∃
#

P
y

P
y
! ∃ #

#
& #∃

#
Q
x

Q
x

i.e. ∃ #
#

∋ #
#

F
HG

I
KJ

P
y

Q
x

! Q
x

P
y

#∃
#

∋ #∃
#

. ...(5)

Similarly, ∃ #
#

∋ #
#

F
HG

I
KJ

Q
z

R
y

! R
y

Q
z

#∃
#

∋ #∃
#

...(6)

and ∃ #
#

∋ #
#

FH IK
R
x

P
z

! P
z

R
x

#∃
#

∋ #∃
#

. ...(7)

Multiplying (5), (6) and (7) by R, P and Q respectively and adding, we get

  P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0. ...(8)

This is, therefore, the necessary condition for the integrability of the equation (1).
Sufficient condition : Suppose that the coefficients P, Q, R, of (1) satisfy the relation (8). It

will now be proved that this relation gives the required sufficient condition for the existence of an
integral of (1). For this we show that an integral of (1) can be found when relation (8) holds.

We first prove that if we take P1 ! µP, Q1 ! µQ, R1 ! µR, where µ is any function of x, y and
z, the same condition is satisfied by P1, Q1, R1 as by P, Q, R. We have

#
#

∋
#
#

Q
z

R
y

1 1 ! ( (#
#

& #(
#

∋ #
#

& #(
#

F
HG

I
KJ

Q
z

Q
z

R
y

R
y

,   as    Q1 ! µQ,    and    R1 ! µR

or #
#

∋ #
#

Q
z

R
y

1 1 ! ( #
#

∋ #
#

F
HG

I
KJ & #(

#
∋ #(

#
Q
z

R
y

Q
z

R
y

· ...(9)

Similarly, #
#

∋
#
#

R
x

P
z

1 1 ! ( #
#

∋ #
#

FH IK & #(
#

∋ #(
#

R
x

P
z

R
x

P
z

...(10)

and #
#

∋
#
#

P
y

Q
x

1 1 !
P Q P Q
y x y x

) ∗# # #( #(
( ∋ & ∋+ ,# # # #− .

· ...(11)

Multiplying (9), (10) and (11) by P1, Q1, R1 respectively, adding and replacing P1, Q1, R1 by
µP, µQ, µR respectively in resulting R.H.S., we obtain

P Q
z

R
y

Q R
x

P
z

R P
y

Q
x1

1 1
1

1 1
1

1 1#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
F
HG

I
KJ & #

#
∋ #

#
F
HG

I
KJ

  ! ( P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ

RST
UVW ! 0, by (8) ...(12)

Now Pdx + Qdy may be regarded as an exact differential. For if it is not so, then multiplying
the equation (1) by the integrating factor µ(x, y, z), we can make it so. *Thus there is no loss of
generality in regarding Pdx + Qdy as an exact differential. For this the condition is

   #P/#y ! #Q/#x ...(13)
Let V ! / (Pdx + Qdy) ...(14)

then it follows that       P ! #V/#x       and          Q ! #V/#y.  ...(15)

*By this we mean here that if Pdx + Qdy is not exact differential, then as explained µPdx + µQdy, i.e., P1dx
+ Q1dy will be exact differential and in the whole discussion (12) may be used in place of (8).
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From (15), #
#
P
z

! #
# #

2V
z x

and                       #
#
Q
z

! #
# #

2V
z y

.

Using the above relations, (13) and (15), (8) gives

#
#

#
# #

∋ #
#

F
HG

I
KJ & #

#
#
#

∋ #
# #

F
HG

I
KJ

V
x

V
z x

R
y

V
y

R
x

V
z x

2 2
! 0.     or      V V V V

R R
x y z y x z

# # # # # #) ∗ ) ∗∋ ∋ ∋+ , + ,# # # # # #− . − .
! 0.

or
#
#

#
#

#
#

∋FH IK
#
#

#
#

#
#

∋FH IK

V
x x

V
z

R

V
y y

V
z

R
! 0.

*This shows that a relation independent of x and y exists between V and ( / )V z R# # ∋ .

Consequently ( / )V z R# # ∋  can be expressed as a function of z and V alone. That is, we can take
 (#V/#z) – R ! 0(z, V). ... (16)

Now, Pdx + Qdy + Rdz ! #
#

& #
#

& #
#

∋FH IK
V
x

dx V
y

dy V
z

dz0 , using (14) and (16)

          ! #
#

& #
#

& #
#

F
HG

I
KJ ∋V

x
dx V

y
dy V

z
dz dz0 ! dV – 0 dz.

Thus (1) may be written as dV – 0 dz ! 0 which is an equation in two variables. Hence its
integration will give an integral of the form F(V, z) ! 0.

Hence the condition (8) is sufficient.
Thus (8) is both the necessary and sufficient condition that (1) has an integral.
Theorem. Prove that the necessary condition for integrability of the total differential equation.

A.dr ! Pdx + Qdy + Rdz ! 0 is 0.curl !A A1

[Himanchal 2003, 04, 05, 06; Indore 2004; Lucknow 2001, 04]

Proof. Given    0.d Pdx Qdy Rdz! & & !A r1 ...(1)
Let   r ! xi + yj + zk so that dr ! dx i + dy j + dz k ...(2)

and A ! P i + Q j + R k. ...(3)
Then we see that (1) is satisfied by usual rule of dot product of two vectors A and dr.
Now show (as explained in Art 3.2) that the necessary condition for integrability of (1) is

P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0. ...(4)

From vector calculus, we know that

Curl A ! #
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ

Q
z

R
y

R
x

P
z

P
y

Q
x

i j k. ...(5)

Hence, using (3) and (5) and applying the usual rule of dot product of two vectors, the
necessary condition (4) may be rewritten as A · Curl A ! 0 as desired.
3.4. The conditions for exactness of Pdx + Qdy + Rdz ! 0.

The given total differential equation is said to be exact if the following three conditions are

*Refer a chapter on Jacobians in any text book on advanced Differential Calculus.
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3.4 Total (or Pfaffian) Differential Equations

satisfied
#P/#y ! #Q/#x, #Q/#z ! #R/#y and #R/#x ! #P/#z. ...(1)
Note that when conditions (1) are satisfied, the condition for integrability of
Pdx + Qdy + Rdz ! 0, namely,

  P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0    ... (2)

is also satisfied, for each term of (2), vanishes identically.
3.5. Methods of solving Pdx + Qdy + Rdz ! 0. ...(1)

There are several methods of solving (1). We know that (1) is integrable when the following

condition is satisfied               P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0.    ...(2)

Before applying any method of solving (1), the students are strongly advised not to forget to
verify the condition (2) for integrability of (1). Since this verification is quite simple, we have
verified the same in some problems only and have left the same for the students to do themselves.
3.6. Special Method I. Solution by inspection. Sometimes by the rearranging the terms of
the given equation and/or by dividing by a suitable function of x, y, z, the equation thus obtained
will contain several parts which are exact differentials. The following list will help to re–write the
given equation. Students should note that each formula of the list is quite general, that is, we can
replace x by y (or z) and so on as may be necessary in a particular problem:

(i) xdy ydx
x
∋

2 ! d
y
x
FH IK (ii) xdy ydx

xy
∋ ! d log y

x
FH IK

(iii) xdy ydx
x y

∋
&2 2 ! d tan∋FH IK1 y

x (iv) xdy ydx
xy
& ! d[log (xy)].

(v) xdy ydx
x y

&
&2 2 ! 2 21

2 log ( ) .d x y2 3&4 5 (vi) 2 2

2
xy dy y dx

x
∋ ! d y

x

2F
HG
I
KJ .

(vii) x dy + y dx ! d (xy). (viii) d(xyz) ! xy dz + xz dy + yz dx.

(ix) [ ( , , )] ( , , )f x y z df x y znz ! [ ( , , )]f x y z
n

n &

&

1

1
, (n 6 –1). [Power formula]

(x) df x y z
f x y z

( , , )
( , , )z ! log f(x, y, z). [Log formula] (xi) 2 22 2

4
x y dy xy dx

x
∋ ! d y

x

2

2
F
HG
I
KJ

(xii) ∋ &xdy ydx
x y2 2 ! d 1

xy
F
HG
I
KJ (xiii) ye dx e dy

y

x x∋
2 ! d e

y

xF
HG
I
KJ

(xiv) y2dx + 2xy dy ! d(y2x) (xv) 2(xdx + ydy) ! d(x2 + y2).
(xvi) 2(xdx + ydy + zdz) ! d(x2 + y2 + z2). (xvii) 3x2ydx + x3dy ! d(x3y).

3.7. Solved examples based on Special Method I of Art. 3.6.
Ex. 1(a). Verify the condition of integrability for z dx + z dy + 2(x + y + sin z)dz ! 0.

[Bangalore 2004, 07]
Sol. Comparing the given equation with Pdx + Qdy + Rdz ! 0, here

P ! z, Q ! z and R ! 2(x + y + sin z). ...(1)
Now, P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x)

! z(1 – 2) + z(2 – 1) + 2(x + y + sin z) (0 – 0) ! 0, using (1)
showing that the condition of integrability is satisfied.
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Total (or Pfaffian) Differential Equations 3.5

Ex. 1(b). Show that (2x + y2 + 2xz)dx + 2xydy + x2dz ! 0 is integrable. [Bangalore 1995]
Sol. Comparing the given equation with Pdx + Qdy + Rdz ! 0, here

P ! 2x + y2 + 2xz, Q ! 2xy and R ! x2. ... (1)
Now, P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x)

! (2x + y2 + 2xz) (0 – 0) + 2xy (2x – 2x) + x2 (2y – 2y) ! 0, using (1)
showing that the condition of integrability is satisfied and hence the given equation is integrable.

Ex. 1(c). Test for the integrability of the equation (y2 + yz) dx + (xz + z2) dy
+ (y2 – xy) dz ! 0  [Gulberga 2005]

Sol. Comparing the given equation with Pdx + Qdy + Rdq ! 0, we get
P ! y2 + yz, Q ! xz + z2      and R ! y2 – xy ... (1)

Here, ( / / ) ( / / ) ( / / )P Q z R y Q R x P z R P y Q x# # ∋ # # & # # ∋ # # & # # ∋ # #

! (y2 + yz) {(x + 2z) – (2y – x)} + (xz + z2) (–y –y) + (y2 – xy) {(2y + z) – z}
! 2(y2 + yz) (x – y + z) – 2y(xz + z2) + 2y(y2 – xy)
! 2(xy2 + xyz – y3 – y2z + y2z + yz2 – xyz – yz2 + y3 – xy2) ! 0,

showing that the condition of integrability is satisfied and hence the given equation is integrable.
Ex. 2(a). Solve (yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz ! 0.

[Delhi Maths (G) 2002; Agra 2002; Gujrat 2001, 05; Indore 1997; Karnataka 2001;
Meerut 1998; Rajasthan 2004; Vikram 1999]

Sol. Comparing the given equation with Pdx + Qdy + Rdz ! 0, we get
P ! yz + xyz, Q ! zx + xyz and R ! xy + xyz.

% P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x)
! yz(1 + x) {(x + xy) – (x + xz)} + zx(1 + y) {(y + yz) – (y + xy) + xy(1 + z) {(z + xz) – (z + yz)}
! yz(1 + x) x(y – z) + zx(1 + y) y(z – x) + xy(1 + z) z(x – y)
! xyz {(1 + x) (y – z) + (1 + y) (z – x) + (1 + z) (x – y)}
! xyz [{(y – z) + (z – x) + (x – y)} + {x(y – z) + y(z – x) + z(x – y)}] ! xyz [0 + 0] ! 0,

showing that the given total differential equation is integrable.
Dividing each term by xyz, the given equation becomes

(1/x + 1)dx + (1/y + 1)dy + (1/z + 1)dz ! 0.
Integrating it, log x + x + log y + y + log z + z ! c or log (xyz) + x + y + z ! c,

which is the required general solution, c being an arbitrary constant.
Ex. 2(b). Solve (yz + 2x)dx + (zx – 2z)dy + (xy – 2y)dz ! 0.

[Delhi Maths (G) 1996; Garhwal 1993; Meerut 1997, 2007]
Sol. Comparing the given equation with Pdx + Qdy + Rdz ! 0, we get
P ! yz + 2x, Q ! zx – 2z and R ! xy – 2y. ...(1)
% P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x)

! (yz + 2x) {(x – 2) – (x – 2)} + (zx – 2z) (y – y) + (xy – 2y) (z – z) ! 0, by (1)
showing that the given total differential equation is integrable.

On rearranging, the given equation can be rewritten as
(yz dx + zx dy + xy dz) + 2xdx – 2(zdy + ydz) ! 0. or d(xyz) + d(x2) – 2d(yz) !0
Integrating,  xyz + x2 – 2yz ! c,

which is the required general solution, c being an arbitrary constant.
Ex. 3. Solve (y2 + z2 – x2)dx – 2xy dy – 2xz dz ! 0.

[Delhi B.A. (Prog) II 2010; Kumaun 2005; Meerut 2007]
Sol. As usual, verify that the given equation is integrable.
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3.6 Total (or Pfaffian) Differential Equations

Adding and subtracting x2dx, the given equation becomes

(x2 + y2 + z2)dx – x(2x dx + 2y dy + 2z dz) ! 0     or dx
x

! 2 2 2
2 2 2

x dx y dy z dz
x y z

& &
& &

Integrating, log x + log c ! log (x2 + y2 + z2)    or           xc ! x2 + y2 + z2,
which is the required solution, c being an arbitrary constant.

Ex. 4. Solve 2yz dx + zx dy – xy(1 + z)dz ! 0. [Meerut 1998; Garhwal 2010]
Sol. As usual, verify that the given equation is integrable.
Dividing each term by xyz, the given equation becomes

(2/x)dx + (1/y)dy – (1 + 1/z)dz ! 0.
Integrating, 2 log x + log y – z – log z – log c ! 0 or log [(x2y)/(cz)] ! z

or  x2y ! czez,  which is the required general solution, c being an arbitrary constant.
Ex. 5(a). Solve x dy – y dx – 2x2z dz ! 0. [Rajasthan 2001; Banglore 1997]
Sol. As usual, verify that the given equation is integrable.
Dividing the given equation by x2, we have

        xdy ydx
x
∋
2 – 2z dz ! 0 or d y

x
FH IK – 2z dz ! 0.

Integrating, (y/x) – z2 ! c, c being an arbitrary constant.
Ex. 5(b). Solve zy dx ! zx dy + y2 dz.

[Mysore 2004; Delhi B.Sc. (H) 2000, 04, 06, 08; Delhi BA/B.Sc (Prog.) Maths 2007]
Sol. As usual, verify that the given equation is integrable.
Dividing by zy2, the given equation can be rewritten as

y dx x dy
y
∋
2 ! dz

z
or d x

y
F
HG
I
KJ !

dz
z

.

Integrating, (x/y) ! log z – log c or log (z/c) ! x/y or z ! c ex/y.
Ex. 6. Solve yz log z dx – zx log z dy + xy dz ! 0. [Delhi Maths (G) 1997, 1999;

Agra 1998; Kanpur 1999; Garhwal 1997; Sgar 1996; Delhi Math (Prog.) 2007]
Sol. As usual, verify that the given equation is integrable.

Dividing by xy log z, the given equation becomes 1 1 1
x

dx
y

dy z dz
z

∋ & ( / )
log

! 0.

Integrating, log x – log y + log log z ! log c or x log z ! cy.
Ex. 7. Solve (a – z) (ydx + xdy) + xy dz ! 0. [Delhi Maths (G) 2002; Meerut 1999]
Sol. As usual, verify that the given equation is integrable.
Dividing by xy(a – z), the given equation becomes

dx
x

dy
y

dz
a z

& &
∋

! 0 so that log x + log y – log (a – z) ! log c

or xy ! c(a – z), c being an arbitrary constant.
Ex. 8(a). Solve yz2(x2 – yz)dx + zx2(y2 – xz)dy + xy2(z2 – xy)dz ! 0. [Meerut 1997]
(b) (x2y – y3 – y2z)dx + (xy2 – x2z – x3)dy + (xy2 + x2y)dz ! 0.
[Lucknow 2006; Sagar 2003, 05; Rajasthan 2002, 07; Agra 1998; Gorakhpur 2003,05;

[Delhi Maths (G) 2001; 2004; Meerut 1996; Rohilkhand 1997]
Sol. (a) As usual, verify that the given equation is integrable.
Dividing each term by x2y2z2, the given equation becomes

(1/y)dx – (z/x2)dx + (1/z)dy – (x/y2)dy + (1/x)dz – (y/z2)dz ! 0
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or dx
y

x
y

dy dy
z

y
z

dz dz
x

z
x

dx∋
F
HG

I
KJ & ∋FH

I
K & ∋FH

I
K2 2 2 ! 0, on rearranging

or ydx xdy
y

zdy ydz
z

xdz zdx
x

∋ & ∋ & ∋
2 2 2 ! 0     or x y zd d d

y z x
) ∗ ) ∗ ) ∗& &+ , + , + ,

− . − .− .
! 0.

Integrating, (x/y) + (y/z) + (z/x) ! c         or x2z + y2x + z2y ! cxyz.
(b) As usual, verify that the given equation is integrable.
Dividing each term by x2y2, the given equation becomes

dx
y

ydx
x

zdx
x

dy
x

zdy
y

xdy
y

dz
x

dz
y

∋ ∋ & ∋ ∋ & &2 2 2 2 ! 0

or dx
y

xdy
y

dy
x

ydx
x

dz
x

zdx
x

dz
y

zdy
y

∋
F
HG

I
KJ & ∋FHG

I
KJ & ∋FHG

I
KJ & ∋
F
HG

I
KJ2 2 2 2 ! 0, on re-arranging

or ydx xdy
y

xdy ydx
x

xdz zdx
x

ydz zdy
y

∋ & ∋ & ∋ & ∋
2 2 2 2 ! 0

or d(x/y) + d(y/x) + d(z/x) + d(z/y) ! 0.
Integrating, (x/y) + (y/x) + (z/x) + (z/y) ! c or x2 + y2 + z(x + y) ! cxy.
Ex. 9. Solve (2x2 + 2xy + 2xz2 + 1)dx + dy + 2zdz ! 0.   [Delhi Maths (Hons) 1993, 2001]
Sol. As usual verify that the given equation is integrable. On rearranging,

2x(x + y + z2)dx + (dx + dy + 2zdz) ! 0 or dx dy zdz
x y z
& &
& &

2
2 ! –2xdx.

Integrating, log (x + y + z2) – log c ! –x2 or x + y + z2 ! ce x∋ 2
.

Ex. 10. Solve (a) xz3dx – zdy + 2ydz ! 0. [Delhi Maths (G) 1996]
(b) (x2z – y3)dx + 3xy2dy + x3dz ! 0. [Himanchal 2004; Delhi Maths (G) 1995, 96]
Sol. (a) As usual verify that the given equation is integrable.
Dividing each term of the given equation by z3, we get

xdx – dy
z

ydz
z2 3

2∋FH
I
K ! 0 or     2xdx – 2d

z
y1

2 .FH
I
K ! 0.

Integrating, x2 – 2 (y/z2) ! c or     x2z2 – 2y ! cz2.
(b) Dividing each term by x2, the given equation becomes

zdx – y
x

3

2 dx + 3 2y
x

dy + xdz ! 0 or               (zdx + xdz) + 3 2 3

2
y dy

x
y dx

x
∋

F
HG

I
KJ ! 0.

Integrating, xz + (y3/x) ! c or x2z + y3 ! cx.
Ex. 11. Solve 2xz dx + zdy – dz ! 0. [Delhi Maths (Hons) 1998]
Sol. Dividing by z,     2xdx + dy – (1/z)dz ! 0.
Integrating, x2 + y – log z ! c, c being an arbitrary constant.
Ex. 12. (a) Solve 2yzdx – 3zxdy – 4xydz ! 0. [Delhi Maths 2003]
(b) Solve yzdx + 2xzdy – 3xydz ! 0. [Delhi Maths (Hons) 1993]
Sol. (a) Dividing each term by xyz, the given equation becomes
(2/x)dx – (3/y)dy – (4/z)dz ! 0 so that 2 log x – 3 log y – 4 log z ! log c

or log x2 ! log y3 + log z4 + log c or x2 ! cy3z4.
(b) Proceed as in part (a). Ans. x2y ! cz.
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Ex. 13. Solve (x – 3y – z)dx + (2y – 3x)dy + (z – x)dz ! 0. [Delhi BA (Prog) II 2011]
Sol. As usual verify that the given equation is integrable.
One rearranging, the given equation can be written as

x dx + 2y dy + z dz – 3(y dx + x dy) – (z dx + x dz) ! 0.
Integrating, x2/2 + y2 + z2/2 – 3xy – xz ! c/2

or x2 + 2y2 + z2 – 6xy – 2xz ! c, c being an arbitrary constant.
Ex. 14. Very that x(y2 – a2)dx + y(x2 – z2)sdy – z(y2 – a2)dz ! 0 is integrable and solve it.

[G.N.D.U. (Amritar) 2004, 07; Himanchal 2003, 04, 05]
Sol. As usual verify that the given equation is integrable.
Dividing each term by (y2 – a2) (x2 – z2), the given equation becomes
2 2

2 2 2 2
( )xdx zdz

x z
ydy

y a
∋

∋
&

∋
! 0 or      d{log (x2 – z2)} + d{log (y2 – a2)} ! 0.

Integrating, log (x2 – z2) + log (y2 – a2) ! log c or       (x2 – z2) (y2 – a2) ! c.

Ex. 15. Solve yz dx
x y

xz dy
x y

y
x

dz2 2 2 2
1

&
∋

&
∋ ∋tan ! 0.

Sol. As usual, verify that the given equation is integrable. On rearranging it, we get
z ydx xdy

x y
y
x

dz( ) tan∋
&

∋ ∋
2 2

1 ! 0 or 1 1
11 2 2 2tan ( / )

.
( / )

.∋ &
∋ &

y x y x
xdy ydx

x
dz
z

! 0.

Integrating, log tan–1 (y/x) + log z ! log c or tan–1 (y/x) ! c/z
or y/x ! tan (c/z) or y ! x tan (c/z), c being an arbitrary constant.

Ex. 16. Solve (a) xdx + ydy – ( )a x y dz2 2 2∋ ∋ ! 0. [Gujrat 1997]

(b) zdz + (x – a)dx ! [ ( ) ]h z x a dy2 2 2∋ ∋ ∋ . [Agra 1994; Rajasthan 2000, 07]
Sol. (a) On rearranging, [a2 – (x2 + y2)]–1/2 (2xdx + 2ydy) – 2dz ! 0  ...(1)
Putting x2 + y2 ! t so that 2x dx + 2y dy ! dt. Then (1) gives (a2 – t)–1/2 dt – 2dz ! 0.
Integrating, – 2(a2 – t)1/2 – 2z ! 2c or – (a2 – t2)1/2 ! z + c.
Squaring, a2 – t2 ! (z + c)2    or t2 + (z + c)2 ! a2       or       x2 + y2 + (z + c)2 ! a2.
(b)On rearranging, [h2 – z2 – (x – a)2]–1/2 [2zdz + 2(x – a)dx] ! 2dy.
Putting z2 + (x – a)2 ! t     so that 2z dz + 2(x – a)dx ! dt
% (h2 – t)–1/2dt ! 2dy     so that –2(h2 – t)1/2 ! 2y – 2c

or (h2 – t)1/2 ! c – y or h2 – t ! (c – y)2         or          t + (c – y)2 ! h2

or z2 + (x – a)2 + (c – y)2 ! h2, when c is an arbitrary constant.

Ex. 17. Solve 2 2 2 1/ 2 2 2( )
xdx ydy zdz z dx x dz
x y z x z

& & ∋
&

& & &
 + 3a x2dx + 2b y dy + c dz ! 0.

Sol. We notice by inspection that all the parts are exact differentials. Hence the given equation
must be exact and so integrable. Integrating, we obtain

(x2 + y2 + z2)1/2 + tan–1 (x/z) + ax3 + by2 + cz ! k, where k is an arbitary constant.
Ex. 18.Solve (x2–y2–z2 + 2xy + 2xz)dx + (y2–z2–x2 + 2yz + 2yx)dy + (z2 – x2 – y2 + 2zx + 2zy)dz ! 0.
Sol. Adding and subtracting x2dx, y2dy, z2dz in first, second and third term respectively and

simplifying, we get
[– (x2 + y2 + z2) + 2x(x + y + z)]dx + [– (x2 + y2 + z2) + 2y(x + y + z)]dy+ [– (x2 + y2 + z2) + 2z(x + y + z)]dz ! 0
or – (x2 + y2 + z2) (dx + dy + dz) + 2(x + y + z) (xdx + ydy + zdz) ! 0
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or dx dy dz
x y z

& &
& &

! 2 2 2
2 2 2

xdx ydy zdz
x y z

& &
& &

.

Integrating, log (x + y + z) ! log (x2 + y2 + z2) + log c
or x + y + z ! c(x2 + y2 + z2), c being arbitrary constant.

Ex. 19. Solve
2 2 2 0

( ) ( ) ( ) ( ) ( ) ( )
y z x z x y x y z

dx dy
y x z x z y x y x z y z

& ∋ & ∋ & ∋
& & !

∋ ∋ ∋ ∋ ∋ ∋

[Delhi Maths (G) 2004]
Sol. Re-writing, the given euqation yields

( ) ( ) ( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) ( ) ( )
y x z x z y x y x z y z

dx dy dz
y x z x z y x y x z y z
∋ & ∋ ∋ & ∋ ∋ & ∋

& & !
∋ ∋ ∋ ∋ ∋ ∋

or
1 1 1 1 1 1 0dx dy dz

z x y x x y z y y z x z
) ∗ ) ∗ ) ∗

& & & & & !+ , + , + ,∋ ∋ ∋ ∋ ∋ ∋− . − . − .

or 0dx dy dy dz dz dx
x y y z z x

∋ ∋ ∋
∋ ∋ ∋ !

∋ ∋ ∋

Integrating, –[log (x – y) + log (y – z) + log (z – x)] ! – log c
or       (x – y) (y – z) (z – x) ! c, c being an arbitrary constant.

Ex. 20. Find f(y) such that the total differential equation {(yz + z)/x}dx – zdy + f(y)dz ! 0 is
integrable. Hence solve it.   [Indore 2000; Meerut 1994; Pune 2000]

Sol. Multiplying throughout by x, the given equation reduces to
(yz + z)dx – xzdy + xf(y)dz ! 0. ...(1)

Comparing (1) with Pdx + Qdy + Rdz ! 0, we have
P ! yz + z, Q ! –xz and       R ! xf(y). ...(2)

Suppose that (1) is integrable so that the following condition of integrability is satisfied by it.

P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0. ...(3)

Using (2) and denoting df/dy by f 7, (3) gives

(yz + z) (–x – x 7f ) – xz [f – (y + 1)] + xf [z – (–z)] ! 0.
or      xz(1 + y) f 7 ! xzf or   (df)/f ! (dy)/(y + 1).

Integrating,  log f ! log (y + 1) + log k   or   f ! k(y + 1),  where k is arbitrary constant.
Thus the required value of f(y) is k(y + 1) Putting this value f(y) in (1), we get

z(y + 1)dx – xzdy + xk(y + 1)dz ! 0. ...(4)
Dividing by xz(1 + y), (4) becomes (1/x)dx – (dy)/(y + 1) + (k/z)dz ! 0.
Integrating, log x – log (y + 1) + k log z ! log c. Hence xzk ! c(y + 1) is required solution.
Ex. 21. Find f(z) such that [(y2 + z2 – x2)/2x]dx – y dy + f(z)dz ! 0 is integrable. Hence solve it.

[Himanchal 2001; Indore 2002; Karnataka 2002; P.C.S. (U.P) 2002; Rajasthan 2003]
Sol. Multiplying throughout by 2x, the given equation reduces to

(y2 + z2 – x2)dx – 2xydy + 2xf(z)dz ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz ! 0, we have

P ! y2 + z2 – x2, Q ! –2xy, R ! 2xf(z). ...(2)
Suppose that (1) is integrable so that the following condition of integrability is satisfied by it.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



3.10 Total (or Pfaffian) Differential Equations

P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0. ...(3)

Using (2) and denoting f(z) by f, (3) gives
(y2 + z2 – x2) (0 – 0) – 2xy (2f – 2z) + 2xf [2y – (–2y)] ! 0

or –4xy(f – z) + 8xfy ! 0      or f ! –z.
Putting f(y) ! –z in (1) and re–writing, (y2 + z2 – x2)dx – 2xydy – 2xzdz ! 0. ...(4)
Adding and subtracting x2dx, (4) reduces to

(x2 + y2 + z2)dx – x (2xdx + 2ydy + 2zdz) ! 0      or dx
x

! 2 2 2
2 2 2

xdx ydy zdz
x y z

& &
& &

Integrating, log x + log c ! log (x2 + y2 + z2)      or   xc ! x2 + y2 + z2.
Ex. 22. (a) Solve x2dx2 + y2dy2 – z2dz2 + 2xydxdy ! 0. [Meerut 2002, 04]
(b) dx dy dz ! 0 [Meerut 2004, 05, 06, 07]
Sol. Re–writing,    (xdx + ydy)2 – (zdz)2 ! 0     or     (xdx + ydy + zdz) (xdx + ydy – zdz) ! 0. ...(1)
Equation (1) can be resolved into two component equations

xdx + ydy + zdz ! 0 ...(2)
and xdx + ydy – zdz ! 0. ...(3)

Integrating (2) and (3), x2 + y2 + z2 ! c1 and x2 + y2 – z2 ! c2.
Hence the complete solution of the given differential equation is

(x2 + y2 + z2 – c1) (x
2 + y2 – z2 – c2) ! 0.

(b) Given equation can be resolved in the following three component equations :
dx ! 0, dy ! 0 and dz ! 0

Integrating these,       x – c1 ! 0,    y – c2 ! 0 and  z – c3 ! 0,
where c1, c2 and c3 are arbitrary constants. Hence the complete solution of the given equation is given
by (x – c1) (y – c2) (z – c3) ! 0.

Ex. 23. (i) Solve (z + z2) cos x (dx/dt) – (z + z2) (dy/dt) + (1 – z2) (y – sin x) (dz/dt) ! 0.
(ii) Solve (z + z2) cos x dx – (z + z2)dy + (1 – z2) (y – sin x)dz ! 0.
Sol. (i) The given differential equation can be re–written as

(z + z2) cos x dx – (z + z2)dy + (1 – z2) (y – sin x)dz ! 0
or (z + z2) (cos x dx – dy) + (1 – z2) (y – sin x)dz ! 0

or cos
sin

x dx dy
y x

z
z z

dz∋
∋

& ∋
&

1 2

2 ! 0    or dy x dx
y x

z
z

dz∋
∋

∋ ∋cos
sin

1 ! 0

Integrating, log (y – sin x) – 1 1
z

dz c∋FH IK !z log

or  log (y – sin x) – log z + z ! log c    or (y – sin x)/(cz) ! –z
or y – sin x ! cz e–z, c being an arbitrary constant.

(ii) This equation is same as given in part (i).
Ex. 24. Solve (exy + cos x)dx + (ex + eyz)dy + ezdz ! 0.
Sol. On rearranging, (yexdx + exdy) + cos x dx + (zeydy + eydz) ! 0.
Integrating, yex + sin x + zey ! c, c being an arbitrary constant.
Ex. 25. Solve (2x2y + 2xy2 + 2xyz + 1)dx + (x3 + x2y + x2z + 2xyz + 2y2z + 2yz2 + 1)dy

+ (xy2 + y3 + y2z + 1)dz ! 0.
Sol. On rearranging the given reduces to
[2xy(x + y + z) + 1]dx + [x2(x + y + z) + 2yz(x + y + z) + 1]dy + [y2(x + y + z) + 1]dz ! 0
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or  (x + y + z) (2xydx + x2dy + 2yzdy + y2dz) + (dx + dy + dz) ! 0

or (2xydx + x2dx) + (2yzdy + y2dz) + 
dx dy dz

x y z
& &
& & ! 0.

Integrating, x2y + y2z + log (x + y + z) ! c, c being an arbitrary constant.
Ex. 26. (a) Solve (2x + y2 + 2xz)(dx/dt) + 2xy(dy/dt) + x2(dz/dt) ! 1.

[Kolkata 2002, 05, 06; Meerut 2003, 04, Vikram 2002]
(b) y(y + z)dx + z(u – x)dy + y(x – u)dz + y(y + z)du ! 0.
Sol. (a) Re–writing,               (2x + y2 + 2xz)dx + 2xydy + x2dz ! dt

or 2xdx + (y2dx + 2xydy) + (2xzdx + x2dz) – dt ! 0.
Integrating, x2 + xy2 + zx2 – t ! c, c being an arbitrary constant
(b) Re–writing, (y + z) (zdx + ydu) + z(u – x)dy + y(x – u)dz ! 0.
Adding and subtracting (y + z) (xdz + udy) and simplifying, we get

(y + z) (zdx + ydu + xdz + udy) – (xz + uy) (dy + dz) ! 0

or    
z dx y du x dz u dy

x z u y
& & &

&
! dy dz

y z
&
&

.

Integrating,        log (xz + uy) ! log (y + z) + log c   or xz + uy ! c(y + z).
Ex. 27. Solve (y2 + yz + z2)dx + (z2 + zx + x2)dy + (x2 + xy + y2)dz ! 0.

[Meerut 2005, 07, 11; Garhwal 1996; Karnataka 2001, 06: Rajasthan 2005; Vikram 2001]
Sol. We have, y2 + yz + z2 ! (y + z)2 – yz ! (y + z)2 + x(y + z) – (xy + yz + zx)

    ! (y + z) (x + y + z) – (xy + yz + zx).
Similarly, z2 + zx + x2 ! (z + x) (x + y + z) – (xy + yz + zx)

and x2 + xy + y2 ! (x + y) (x + y + z) – (xy + yz + zx).
Using these new forms of y2 + yz + z2 etc, the given equation becomes
(x + y + z) {(y + z)dx + (z + x)dy + (x + y)dz} – (xy + yz + zx) (dx + dy + dz) ! 0

or   (x + y + z) {(ydx + xdy) + (ydz + zdy) + (zdx + xdz)} – (xy + yz + zx) (dx + dy + dz) ! 0
or (x + y + z) d(xy + yz + zx) ! (xy + yz + zx) d(x + y + z)

or d xy yz zx
xy yz zx
( )& &

& &
! d x y z

x y z
( )& &

& &
.

Integrating,           log (xy + yz + zx) ! log (x + y + z) + log c
or  xy + yz + xz ! c(x + y + z), c being an arbitrary constant.

Ex. 28. Solve y(x + 4) (y + z) dx – x(y + 3z)dy + 2xy dz ! 0.  [Delhi Maths (Hons) 2007]
Sol. Dividing by xy(y + z), the given equation reduces to

4 2 ( 3 ) 0
( )

x ydz y y z dy
dx

x y y z
& ∋ &

& !
&

or
4 (2 2 ) 3( ) 0

( )
x y dz y dy y z dy

dx
x y y z
& & ∋ &

& !
&

or
41 2 3 0dz dy dy

dx
x y z y

&) ∗& & ∋ !+ , &− .
Integrating,  x + 4 log x + 2 log (y + z) – 3 log y ! log c

or
4 2

3
( )log x y z x
y c

&
! ∋ or

4 2

3
( ) xx y z e
y c

∋&
!

or 4 2 3( ) ,xe x y z cy& ! c being an arbitrary constant.
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EXERCISE 3 (A)
Solve the following differential equations :
1. (a) (y + z)dx + (z + x)dy + (x + y)dz ! 0. Ans. xy + yz + zx ! c.

(b) y dx + x dy + 2z dz ! 0.  [Pune 2010] Ans. xy + z2 ! c.
2. (y + z)dx + dy + dz ! 0.    [Agra 2001, 02] Ans. y + z ! c e–x.
3. (yz + 2x)dx + (zx + 2y)dy + (xy + 2z)dz ! 0. Ans. x2 + y2 + z2 + xyz ! c.
4. (2x + y2 + 2xz)dx + 2xydy + x2dz ! du. Ans. x2 + y2x + x2z ! u + c.
5. (x – y)dx – x dy + z dz ! 0.    [Delhi Maths (G) 2006] Ans. x2 – 2xy + z2 ! c.
6. (2x3y + 1)dx + x4dy + x2 tan z dz ! 0. Ans. x2y – (1/x) + log sec z ! c.
7. (y + b) (z + c) dx + (x + a) (z + c) dy + (x + a) (y + b) dz ! 0.

Ans. (x + a) (y + b) (z + c) ! c, c being an arbitrary constant

8. (x2 + z2) (xdx + ydy + zdz) + ( )x y z2 2 2& &  (zdx–xdz) ! 0. Ans. ( )x y z2 2 2& &  + tan–1 (x/z) !c.
9. (2xy + z2)dx + (x2 + 2yz)dy + (y2 + 2xz)dz ! 0. Ans. x2y + y2z + z2x ! c

10. dx + dy + (x + y + z + 1)dz ! 0. [Meerut 2005] Ans. (x + y + z)ez ! c.
11. (y – z) (y + z – 2x)dx + (z – x) (z + x – 2y)dy + (x – y) (x + y – 2z)dz ! 0.

Ans. y2x – z2x + z2y – x2y + x2z – y2z ! c.
12. (2x3 – z)zdx + 2x2yzdy + x(z + x)dz ! 0. Ans. x2 + y2 + log z + (z/x) ! c.
13. (y + a)2dx + zdy – (y + a)dz ! 0. Ans. (x + c) (y + a) ! z.
14. (a + z)ydx + (a + z)xdy – xydz ! 0. Ans. xy ! c(a + z)
15. (2xyz + y2z + z2y) dx + (x2z + 2xyz + xz2)dy + (x2y + xy2 + 2xyz)dz! 0. Ans. xyz (x + y +z) ! c
16. a2y2z2dx + b2z2x2dy + c2x2y2dz ! 0     [Himanchal 2001] Ans. a2/x + b2/y + c2/z ! k
17. y(1 + z2)dx – x(1 + z2) dy + (x2  + y2) dz ! 0 [Kurukshetra 1998]

Ans. x2 + 4y2 – 12 xy – 4 xy + 2z2 ! c
18. 2y dx ! 2 xdy + y2dz [Meerut 2006] Ans. x2 + 2yz + 2z2 ! c
19. yz dx + zx dy + xy dz ! 0 [U.P. (P.C.S.) 2005] Ans. xyz ! c
20. (2yz + y2z + yz2)dx + (x2z + 2xy z + zx2)dy + (x2y + xy2 + 2xyz)dz ! 0 [Indore 2001, 02]

Ans.  x2yz + xy2z + xyz2 ! c
21. If X is vector such that X . curl X ! 0 and µ is an arbitrary function of x, y, z then prove that

(µX) . curl (µX) ! 0.     [Amravati 2005; Kerala 2002, 05, 06]
3.8. Special Method II. Solution of homogeneous equation.

The equation Pdx + Qdy + Rdz ! 0 is called a homogeneous equation if P, Q, R are
homogeneous functions of x, y, z of the same degree.

There are two following working rules to solve such equations.
Working rule I. Solution by use of an integrating factor (I.F.)
Step 1. As usual, verify that the given equation is integrable.
Step 2. Calculate Px + Qy + Rz. If it is not equal to zero, then 1/(Px + Qy + Rz) is taken as

I.F. (Integrating factor) of the given equation. Thus, I.F. ! 1/D, where D ! Px + Qy + Rz.
Step 3. Multiply the given equation by I.F. (say 1/D) where D denotes the denominator of I.F.

Find d(D) i.e. total differential of D. Now add and subtract d(D) from the numerator. Write the

given equation in the form d D
D

( ) ...8 ! 0 or d D
D
( ) ...8 ! 0

and then integrate. Remember that the several terms in the resulting equations will be exact differential
and hence rules of Art. 3.6 have to be used while regrouping the remaining terms.
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Working rule II. The first method fails when Px + Qy + Rz ! 0. In such cases we apply the
following method which is applicable to all homogeneous equations.

Step 1. Do same as done in step 1 of working rule I.
Step 2. Put x ! zu, y ! zv    so that dx ! udz + zdu     and    dy ! zdv + vdz.
Substituting these in the given equation two cases may arise.
Case I. If the coefficient of dz is zero, we shall have an equation in only two variables u and v.

By regrouping properly, it can be easily integrated.
Case II. If the coefficient of dz is not zero, then we shall be able to separate z from u and v.

Thus the resulting equation will be of the form

1 2( , ) ( , )
( , )

f u du f u d dz
f u z

&
&

v v v
v

! 0. ...(A)

We now denote f(u, v) by D and find d(D). Add and subtract d(D) as done in step 3 of
method I. Remember all this is done only in first term. Finally we integrate. After integration u and
v are replaced by x/z and y/z respectively so as to get the desired solution in x, y and z.

Note. Sometimes integration of (A) is possible without assuming D etc. Hence we use D only
when it helps to integrate equation (A).
3.9. Solved examples based on homogeneous equations (see Art. 3.8)

Ex. 1. Solve (yz + z2)dx – xzdy + xydz ! 0. [Delhi Maths (Hons) 2007; Meerut 1997
Guwahati 2007; Gorakhpur 2003, 07; Gwalior 2003; Rohilkhand 2000; Mysore 2004]
Sol. Given (yz + z2)dx – xzdy + xydz ! 0. ...(1)
Comparing the given equation with Pdx + Qdy + Rdz ! 0, we have

here P ! yz + z2, Q ! –xz, R ! xy and    let    D ! Px + Qy + Rz.
The condition of integrability is satisfied. (Do yourself)
Now, D ! x(yz + z2) – xyz + xyz ! xz(y + z) 6 0. ...(2)

Multiplying (1) by integrating factor 1/D,     ( )yz z dx xzdy xydz
D

& ∋ &2
! 0. ...(3)

Now, d(D) ! d[xz(y + z)] ! (zdx + xdz) (y + z) + xz(dy + dz)
or d(D) ! z(y + z)dx + x(y + 2z)dz + xz dy. ...(4)

Re–writting, the numerator of (3)
! d(D) – d(D) + (yz + z2)dx – xzdy + xydz ! d(D) – 2xz(dy + dz), by (4).

% (3) becomes d D
D

xz dy dz
D

( ) ( )∋ &2 ! 0

or d D
D

xz dy dz
xy y z

( ) ( )
( )

∋ &
&

2 ! 0 so that    ( ) 2( )d D dy dz
D y z

&
∋

&
! 0.

Integrating, log D – 2 log (y + z) ! log c      or D ! c(y + z)2

or xz(y + z) ! c(y + z)2       or xz ! c(y + z),
which is the required solution, c being an arbitrary constant.

Alternative Method. Verify the usual condition of integrability.
Let     x ! uz      and      y ! � z   so that   dx ! u dz + z du     and dy ! � dz + z d� .
Putting these values of x, y, dx, dy in (1), we get

(� z2 + z2) (u dz + z du) – uz2(� dz + z d� ) + � uz2 dz ! 0
 (�  + 1)z3 du – uz3d�  + (�  + 1)uz2dz ! 0.
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Dividing by u (�  + 1)z3, we get
1

du d dz
u z

∋ &
&v
� ! 0.

Integrating, log u – log (�  + 1) + log z ! log c or uz ! c(�  + 1)
or (x/z) × z ! c(1 + y/z) or xz ! c(y + z),   as     u ! x/z and � ! y/z.

Ex. 2. Solve z2dx + (z2 – 2yz)dy + (2y2 – yz – xz)dz ! 0. [Meerut 1993]
Sol. Verify yourself the condition of integrability. Since the given equation is homogeneous, we put

x ! uz   and   y ! � z,      so that     dx ! z du + u dz     and    dy ! z d�  + � dz.    ...(1)
Putting these in the given equation, we get

z2(z du + u dz) + z2(1 – 2� ) (z d�  + � dz) + (2� 2 – � – u)z2 dz ! 0
or z3 du + z3(1 – 2� )d�  + [u + � (1 – 2� ) + 2� 2 – � – u]z2 dz ! 0
or z3 du + z3(1 – 2� )d�  + (0 ×  z2)dz ! 0 or du + (1 – 2� )d� ! 0.

Integrating, u + � – � 2 ! c or (x/z) + (y/z) – (y2/z2) ! c, by (1)
or (x + y)z – y2 ! cz2, c being an arbitrary constant.

Ex. 3. 2(y + z)dx – (x + y)dy + (2y – x + z)dz ! 0. [Bangalore 2003, 07]
Sol. The condition of integrability is satisfied. (Do yourself).
Since the given equation is homogeneous, we put
x ! uz      and     y ! � z so that     dx ! zdu + udz    and    dy ! zd�  + � dz.  ...(1)
Putting these in the given equation, we get

        2(�  + 1)z(zdu + udz) – (u + 1) z (zd�  + � dz) + (2� – u + 1) zdz ! 0
or 2z2(�  + 1)du – z2(u + 1)d�  + [2u(�  + 1) – � (u + 1) + (2� – u + 1)]zdz ! 0
or z2[2(�  + 1)du – (u + 1)d� ] + (u�  + u + �  + 1)zdz ! 0
or z2[2(�  + 1)du – (u + 1)d� ] + (u + 1) (�  + 1) dz ! 0.

Dividing by   z2(u + 1)(v + 1), 2
1 1

du d dz
u z

∋ &
& &

�
�

! 0.

Integrating, 2 log (u + 1) – log (�  + 1) + log z ! log c
or (u + 1)2z ! c(�  + 1) or (x/z + 1)2 z ! c(y/z + 1), by (1)
i.e.    (x + z)2 ! c(x + z), which is the required solution, c being an arbitrary constant.

Ex. 4. yz(y + z)dx + zx(x + z)dy + xy(x + y)dz ! 0. [Delhi Maths Hons. 1990;
Himanchal 2002; Kurukshetra 2000, 01; Delhi B.Sc. (Prog) II 2011]

Sol. As usual verify the condition of integrability. Since the given equation is homogeneous,
Put x ! uz     and      y ! � z so that       dx ! zdu + udz   and    dy ! zd�  + � dz.      ...(1)

Putting these in the given equation, we get
� (�  + 1)z3 (zdu + udz) + u(u + 1)z3 (zd�  + � dz) + u� (u + � )z3dz ! 0

or [� (�  + 1)du + u(u + 1)d� ]z4 + [u� (�  + 1) + u� (u + 1) + u� (u + � )]z3dz ! 0
or [� (�  + 1)du + u(u + 1)d� ]z4 + 2u� (u + �  + 1)z3 dz ! 0

Dividing by u� (u + �  + 1)z4, we get   ( 1) ( 1) 2
( 1) ( 1)

du u d dz
u u u z

& &
& &

& & & &
� �

� � �
! 0.

or    1 1 1 1 2
1 1

dzdu d
u u u z

) ∗ ) ∗
∋ & ∋ &+ , + ,& & &− . − .

�
� � �+

! 0   or    2
1

du d du d dz
u u z

&
& ∋ &

& &
� �

� �
! 0.

Integrating, log u + log �   – log (u + �  + 1) + 2 log z ! log c
or u� z2 ! c(u + �  + 1) or (x/z) × (y/z) × z2 ! c(x/z + y/z + 1), by (1)
i.e. xyz ! c(x + y + z), which is the required solution, c being an arbitrary constant.
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Ex. 5. Solve (y2 + yz)dx + (xz + z2)dy + (y2 – xy)dz ! 0.       [Delhi B.Sc. (Prog) II  2009]
[I.A.S. 1999; Delhi Maths (G) 1993; Garhwal 1994; Meerut 2002; Rohilkhand 1995;

Calicut 2000; G.N.D.U. Amritsar 2002; Gwalior 2004; Lucknow 2001, 04;
Mumbai 2004; Nagarjuna 2000, 04, 07; Sagar 2001, 04; Vikram 2000]

Sol. As usual, verify that the given equation is integrable.
Since the given equation is homogeneous, we put
x ! uz      and       y ! � z       so that      dx ! zdu + udz     and    dy ! zd�  + � dz. ...(1)
Putting these in the given equation, we get

(� 2 + � )z2 (zdu + udz) + (u + 1)z2 (zd�  + � dz) + (� 2 – u� )z2 dz ! 0
or   (� 2 + � )z3du + (u + 1)z3 d�  + [u(� 2 + � ) + � (u + 1) + � 2 – u� ]z2 dz ! 0
or    z3[(� 2 + � )du + (u + 1)d� ] + (u� 2 + u�  + �  + � 2)z2 dz ! 0
or         z3[(� 2 + � )du + (u + 1)d� ] + (u + 1) (� 2 + � )z2 dz ! 0.

Dividing by z3(u + 1)(� 2 + � ), we get

2

2
( ) ( 1)

( 1) ( )
du u d dz

zu
& & &

&
& &

� � �
� �

! 0 or 21
du d dz

u z
& &

& &

�
� �

! 0

or
1 1

1 1
du dzd

u z
2 3

& ∋ &9 :& &4 5
�

� �
! 0, by resolving into partial fractions

Integrating, log (u + 1) + log � – log (�  + 1) + log z ! log c

or (u + 1)� z ! c(�  + 1)         or ; </ 1 ( / )x z y z z& = = ! c ; </ 1y z & , by (1)

or (x + z)y ! c(y + z), which is the required solution, c being an arbitrary constant.
Ex. 6. Solve (2xz – yz)dx + (2yz – xz)dy – (x2 – xy + y2)dz ! 0. [Agra 2002, 03;

Garhwal 2005; Delhi Maths (H) 2005; Delhi Maths (G) 1998; Kolkata 2002]
Sol. As usual, verify that the given equation is integrable.
Since the given equation is homogeneous, we put
x ! uz     and     y ! � z so that dx ! zdu + udz    and     dy ! zd�  + � dz  ...(1)
Putting these in the given equation, we get

(2uz2 – � z2) (udz + zdu) + (2� z2 – uz2) (� dz + zd� ) – (u2z2 – u� z2 + � 2z2)dz ! 0
or      (2u – � ) (udz + zdu) + (2� – u) (� dz + zd� ) – (u2 – u�  + � 2)dz ! 0
or     z[(2u – � )du + (2� – u)d� ] + [u(2u – � ) + � (2� – u) – (u2 – u�  + � 2)]dz ! 0
or       z[2udu – (ud�  + � du) + 2� d� ] + (u2 – u�  + � 2)dz! 0   or    z[du2 – d(u� ) + d� 2] + (u2 – u�  + � 2)dz! 0

or
2 2

2 2
( )d u u dz

zu u
∋ &

&
∋ &

� �
� �

! 0.

Integrating, log (u2 – u�  + � 2) + log z ! log c or z(u2 – u�  + � 2) ! c

or
2 2

2 2
x x y yz

z zz z

) ∗
∋ = &+ ,+ ,

− .
! c or x2 – xy + y2 ! cz.

Ex. 7. Solve (a) z(z – y)dx + z(z + x)dy + x(x + y)dz ! 0. [Meerut 1996]
(b) y(y + z)dx + x(x – z)dy + x(x + y)dz ! 0.
Sol. (a) As usual, verify that the given equation is integrable.
Comparing the given equation with Pdx + Qdy + Rdz ! 0, we get

P ! z(z – y), Q ! z(z + x) and  R ! x(x + y).           ...(1)
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The given equation is homogeneous and we have
Px + Qy + Rz ! zx(z – y) + zy(z + x) + zx(x + y), using (1)

   ! z(xz – xy + yz + xy + x2 + xy) ! z(xz + yz + x2 + xy) ! z(z + x) (y + x) 6 0,

showing that I.F. of the given equation ! 1 1
Px Qy Rz z z x x y& &

!
& &( )( )

·

Multiplying the given equation by the above I.F., we have
( )

( ) ( ) ( )
z y dx

x y z x
dy

x y
xdz

z z x
∋

& &
&

&
&

&
! 0

or 1 1 1 1
x y x z

dx dy
x y z z x

dz
&

∋
&

F
HG

I
KJ &

&
& ∋

&
F
HG

I
KJ ! 0     or     dx dy

x y
dx dz

x z
dz
z

&
&

∋ &
&

& ! 0.

Integrating, log (x + y) – log (x + z) + log z ! log c
or z(x + y) ! c(x + z), c being an arbitrary constant.

(b) Proceed as in part (a). Ans. x(y + z) ! c(x + y)
Ex. 8. Solve (y2z – y3 + x2y)dx – (x2z + x3 – xy2)dy + (x2y – xy2)dz ! 0.
Sol. As usual, verify that the given equation is integrable.
Since the given equation is homogeneous, we put
x ! uz      and        y ! � z       so that     dx ! zdu + udz     and    dy ! zd�  + � dz. ...(1)
Putting these in the given equation, we get
(� 2z3 – � 3z3 + u2� z3) (udz + zdu) – (u2z3 + u3z3 – u� 2z3)(� dz + zd� ) + (u2vz3 – u� 2z3)dz ! 0

or    (� 2 – � 3 + u2� ) (udz + zdu) – (u2 + u3 – u� 2) (� dz + zd� ) + (u2� – u� 2)dz ! 0
or     z[(� 2 – � 3 + u2� )du – (u2 + u3 – u� 2)d� ]+ [u(� 2 – � 3 + u2� ) – � (u2 + u3 – u� 2) + (u2�  – u� 2)]dz ! 0
or    z[(� 2 – � 3 + u2� )du – (u2 + u3 – u� 2)d� ] + 0 × dz ! 0 or  (�  – � 2 + u2)� du – (u + u2 – � 2)ud� ! 0
or    � 2du + (u2 – � 2)� du – u2d� – (u2 – � 2)ud� ! 0     or      � 2du – u2d�  + (u2 – � 2) (� du – ud� ) ! 0

or
2 2

2 2 2 2
du d u du ud
u u

) ∗∋ ∋) ∗∋ & + , + ,+ , − .− .

� � � �
� �

! 0, on dividing by u2� 2

or u–2du – � –2d�  + {1 – (u/� )–2} d{u/� } ! 0    or     u–2du – � –2d�  + {1 – t–2}dt ! 0, taking t ! u/� .
Integrating,  –u–1 + � –1 + t + t–1 ! c or     – (1/u) + (1/� ) + (u/� ) + (u/� )–1 ! c

or – (z/x) + (z/y) + (x/y) + (y/x) ! c, using (1)
or x2 + y2 – zy + xz ! cxy, c being an arbitrary constant.

EXERCISE 3 (B)
Solve the following differential equations :
1. (x2y – y3 – y2z)dx + (xy2 – x2z – x3)dy + (xy2 + x2y)dz ! 0. [Rohilkhand 1997]
[Hint : Do as in Ex. 8 of Art. 3.9. For solution by inspection see Ex. 8(b) of Art. 3.7]

Ans. x2 + y2 + z(x + y) ! cxy
2. (x – y)dx – xdy + zdz ! 0.  [Meerut 2011] Ans. x2 – 2xy + z2 ! c
[Hint : Do as in Ex. 3 of Art 3.9. We now solve it by inspection also.
Re–writing, xdx – (ydx + xdx) + zdz ! 0 or 2xdx – 2d(xy) + 2zdz ! 0.
Integrating, x2 – 2xy + z2 ! c, c being an arbitrary constant.]
3. yz2(x2 – yz)dx + x2z(y2 – xz)dy + xy2(z2 – xy)dz ! 0. [Meerut 1997]
[Hint : Do as in Ex. 8 of Art. 3.9. For solution be inspection see Ex. 8(a) of Art 3.7.]

Ans. x2z + y2x + z2y ! cxyz
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4. (x2 – y2 – z2 + 2xy + 2xz)dx + (y2 – z2 – x2 + 2yz + 2yx)dy + (z2 – x2 – y2 +  2xz  +  2zy)dz ! 0.
[Hint : Put x ! uz and y ! vz. Alternatively, solution can be obtained by inspection. For solution
refer Ex. 18 of Art. 3.7] Ans. x2 + y2 + z2 ! c(x + y + z)
5. (2z2 – xy + y2)zdx + (2z2 + x2 – xy)zdy – (x + y) (xy + z2)dz ! 0. Ans. (x + y)2z ! c(z2 – xy)
6. 2(2y2 + yz – z2)dx + x(4y + z)dy + x(y – 2z)dz ! 0. Ans. x2 (2y2 + yz – z2) ! c

3.10. Special Method III. Use of auxiliary equations.
Let Pdx + Qdy + Rdz ! 0 ...(1)

be the given equation. Its condition of integrability is
P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x) ! 0. ...(2)

Comparing (1) and (2), we obtain simultaneous equations, known as auxiliary equations

dx
Q z R y# # ∋ # #/ /

! dy
R x P z

dz
P y Q x# # ∋ # #

!
# # ∋ # #/ / / /

. ...(3)

Equations (3) are solved by methods of chapter 2. Let u ! c1 and � ! c2 be two integrals so
obtained. With these formulate the following equation

A du + B d� ! 0. ...(4)
Compare (1) and (4) and thus get values of A and B. Put these values of A and B in (4) and

then integrate the resulting equation. Now substitute the values of u and �  in the relation after
integration. We thus obtain the required general solution.

Note 1. Method III discussed in Art 3.10 will fail in case the given equation (1) in exact, i.e.,
when #Q/#z ! #R/#y, #R/#x ! #P/#z and #P/#y ! #Q/#x.

Note 2. This method is generally applied when solution by method I of Art. 3.6 and method
II of Art. 3.8 are not convenient.
3.11. Solved examples based on special method III of Art. 3.10.

Ex. 1. Solve xz3dx – zdy + 2ydz ! 0.
Sol. Given xz3dx – zdy + 2ydz ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz ! 0, here     P ! xz3,   Q ! –z,   R ! 2y.     ...(2)
The auxiliary equations of the given equation are

dx
Q z R y# # ∋ # #/ /

! dy
R x P z

dz
P y Q x# # ∋ # #

!
# # ∋ # #/ / / /

.

or dx
∋ ∋1 2

! dy
xz

dz
0 3 02∋

! , using (2) or    dx
1

! dy
xz

dz
2 0

! . ...(3)

Taking the third member of (3), we have
dz ! 0 so that z ! c1 ! u, say ...(4)

Taking the first and 2nd members of (3), we have
xz2dx – dy ! 0 or 2xu2dx – 2dy ! 0, using (4)

Integrating, x2u2 – 2y ! c2 ! � , say or    x2z2 – 2y ! � , using (4)
...(5)

Substituting the value of u and �  from (4) and (5) in Adu + Bd� ! 0, we get
Adz + Bd(x2z2 – 2y) ! 0 or Adz + B(2xz2dx + 2x2zdz – 2dy) ! 0

or 2Bxz2dx – 2Bdy + (A + 2Bx2z)dz ! 0. ...(6)
Comparing (1) and (6), xz3 ! 2Bxz2, – z ! – 2B, 2y ! A + 2Bx2z.
% B ! z/2 and A ! 2y – 2Bx2z ! 2y – x2z2

or B ! u/2 and A ! –� , using (4) and (5).
Substituting these values of A and B in Adu + Bd� ! 0, we get
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– � du + (1/2) × ud� ! 0       or (1/� )d� ! (2/u)du.
Integrating,   log � ! 2 log u + log c   or � ! cu2.

...(7)
Putting the values of u and �  from (4) and (5) in (7), we get

x2z2 – 2y ! cz2, which is the required general solution.
Ex. 2. Solve (2xz – yz)dx + (2yz – zx)dy – (x2 – xy + y2)dz ! 0.    [Delhi Maths (G) 1998]
Sol. Given (2xz – yz)dx + (2yz – zx)dy – (x2 – xy + y2)dz ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz ! 0, we have

P ! 2xz – yz, Q ! 2yz – zx, R ! –(x2 – xy + y2)    ...(2)
The auxiliary equations of the given equation are

dx
Q z R y# # ∋ # #/ /

! dy
R x P z

dz
P y Q x# # ∋ # #

!
# # ∋ # #/ / / /

or dx
y x x y( ) ( )2 2∋ ∋ ∋

! dy
x y x y

dz
z z( ) ( ) ( )∋ & ∋ ∋

!
∋ ∋ ∋2 2

, using (2)

or dx
y x2 2( )∋

! dy
y x

dz
2 2 0( )∋

! . ...(3)

Taking the third member of (3), we have
dz ! 0 so that z ! c1 ! u, say ...(4)

Taking the first and second members of (3), we have
(y – 2x)dx ! (2y – x)dy or ydx + xdy – 2xdx – 2ydy ! 0.

Integrating, xy – x2 – y2 ! c2 ! � , say ...(5)
We now proceed to determine two functions A and B in such a manner so that the given

equation (1) becomes idential with                  A du + B d� ! 0. ...(6)
Using (4) and (5), (6) reduces to
Adz + Bd(xy – x2 – y2) ! 0 or       Adz + B(xdy + ydx – 2xdx – 2ydy) ! 0

or (By – 2xB)dx + (xB – 2yB)dy + Adz ! 0. ...(7)
Comparing (7) with (1), we have
B(y – 2x) ! z(2x – y), B(x – 2y) ! z(2y – x)           and A ! –(x2 – xy + y2),

giving B ! –z ! –u and A ! � , using (4) and (5)
Putting these values of A and B in (6), we have

� du – ud� ! 0 or (1/� )d� – (1/u)du ! 0.
Integrating, log � – log u ! log c or � ! cu

or xy – x2 – y2 ! cz, by (4) and (5), c being an arbitrary constant.
Ex. 3. Solve (y2 + yz + z2)dx + (z2 + zx + x2)dy + (x2 + xy + y2)dz ! 0.   [Garhwal 1996]
Sol. Given (y2 + yz + z2)dx + (z2 + zx + x2)dy + (x2 + xy + y2)dz ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz ! 0, we have
P ! y2 + yz + z2, Q ! z2 + zx + x2 and  R ! x2 + xy + y2.

...(2)
The auxiliary equations of the given equation are

dx
Q z R y# # ∋ # #/ /

! dy
R x P z

dz
P y Q x# # ∋ # #

!
# # ∋ # #/ / / /

dx
x z x y( ) ( )& ∋ &2 2 ! dy

x y y z
dz

y z x z( ) ( ) ( ) ( )
.

2 2 2 2& ∋ &
!

& ∋ &

or dx
z y∋

! dy
x z

dz
y x∋

!
∋

. ...(3)
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Each member of (3) ! dx dy dz
z y x z y x

dx dy dz& &
∋ & ∋ & ∋

! & &
0

so that dx + dy + dz ! 0.
Integrating,   x + y + z ! c1 ! u, say ...(4)
Again, using multipliers z + y, x + z, y + x, each member of (3)

! ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

z y dx x z dy y x dz
z y z y x z x z y x y x

& & & & &
& ∋ & & ∋ & & ∋

! ( ) ( ) ( ) ( ) ( ) ( )xdy ydx ydz zdy zdx xdz d xy d yz d zx& & & & & ! & &
0 0

so that d(xy) + d(yz) + d(zx) ! 0.
Integrating, xy + yz + zx ! c2 ! � , say ...(5)
We now proceed to determine two functions A and B in such a manner so that the given

equation (1) becomes identical with A du + B d� ! 0.    ...(6)
Using (4) and (5), (6) reduces to

Ad(x + y + z) + Bd(xy + yz + zx) ! 0
or A(dx + dy + dz) + B(ydx + xdy + zdy + ydz + xdz + zdx) ! 0
or {A + B(y + z)}dx + {A + B(z + x)}dy + {A + B(x + y)}dz ! 0. ...(7)

Comparing (7) with (1), we have
A + B(y + z) ! y2 + yz + z2 ...(8)
A + B(z + x) ! z2 + xz + x2 ...(9)
A + B (x + y) ! x2 + xy + y2 ...(10)

Subtracting (9) from (8), we get B(y – x) ! y2 – x2 + z(y – x) ! (y – x) (x + y + z)
% B ! x + y + z ! u, by (4) ...(11)
From (8), A ! y2 + yz + z2 – B(y + z) ! y2 + yz + z2 – (x + y + z) (y + z), by (1)

   ! y2 + yz + z2 – (y2 + z2 + 2yz + xy + zx)
Thus, A ! – (xy + yz + zx) or A ! –� , by (5) ...(12)
Using (11) and (12), (6) becomes

–� du + ud� ! 0        or (1/� )d� ! (1/u)du.
Integrating, log � ! log u + log c  or � ! cu

or xy + yz + zx ! c(x + y + z), by (4) and (5).
Ex. 4. (a) Solve (y2 + yz)dx + (xz + z2)dy + (y2 – xy)dz ! 0.

[Delhi Maths (G) 1993; Garhwal 1994; Meerut 1997, 1998; Rohilkhand 1995]
(b) z(z – y)dx + (z + x)zdy + x(x + y)dz ! 0. [Meerut 1996]
Sol. Try yourself. Ans. (a) (x +z)y ! c(y + z) ;   (b) z(x + y) ! c(x + y)
Ex. 5. Solve 3x2dx + 3y2dy – (x3 + y3 + e2z)dz ! 0. Ans. x3 + y3 ! e2z + cez

3.12. General method of solving Pdx + Qdy + Rdz ! 0 by taking one variable as
constant.

Step 1. First verify the condition of integrability.
Step 2. We now treat one of the variables, say z, as a constant i.e. dz ! 0, then the resulting

equations is reduced to       Pdx + Qdy ! 0.    ...(1)
We should select a proper variable to be constant so that the resulting equation in the remaining

variables is easily integrable. Thus this selection will vary from problem to problem. The present
discussion is for the choice z ! constant. For other cases the necessary changes have to be made in
the entire procedure.
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Step 3. Let the solution of (1) by u(x, y) ! f(z), where f(z) is an arbitrary function of z. Note
that in place of taking merely an absolute constant, we have taken f(z). This is possible because the
arbitrary function f(z) is constant with respect to x and y. This is in keeping with out starting
assumption, namely z ! constant. Thus the solution of (1) is of the from

       u(x, y) ! f(z). ...(2)
Step 4. We now differentiate (2) totally with respect to x, y, z and then compare the result

with the given equation        Pdx + Qdy + Rdz ! 0.
After comparing we shall get an equation in two variables f and z. If the coefficient of d f or

dz involve functions of x and y, it will always be possible to remove them by using (2).
Step 5. Solve the equation got in step 4 and obtain f. Putting this value of f in (2), we shall

get the requried solution of the given equation.
Remarks. Many questions can be solved by this method, but the method may become tedius

in some problems. Number of exercises based on methods I, II and III can be done by this method.
We shall apply this method whenever there is no difficulty in solving the equation obtained by
treating one variable as constant.
3.13. Solved examples based on Art. 3.12.

Ex. 1 (a). Solve 3x2dx + 3y2dy – (x3 + y3 + e2z)dz ! 0.[Delhi Maths (G) 1993; Meerut 2007]
Sol. Given            3x2dx + 3y2dy – (x3 + y3 + e2z)dz ! 0. ...(1)
As usual, verify that (1) satisfies the condition of integrability.
Let z be treated as constant, so that dz ! 0. Then (1) becomes

       3x2dx + 3y2dy ! 0. ...(2)
Integrating (2)         x3 + y3 ! f(z), say, ...(3)

where the constant of integration has been taken as a function f(z) of z because we have treated z as
constant.

Differentiating (3), 3x2dx + 3y2dy – f 7(z)dz ! 0. ...(4)
Comparing (4) with (1), we have

f 7(z) ! x3 + y3 + e2z or     f 7(z) ! f(z) + e2z, by (2)

or (df/dz) – f ! e2z, which is a linear equation. Its I.F. !e dz( )∋z 1 ! e–z and hence its solution is

fe–z ! [ . ]e e dz c e cz z z2 ∋z z& ! & ! ez + c
or f(z) ! e2z + cez or x3 + y3 ! e2z + cez, using (3),
which is the required solution of (1), c being an arbitrary constant.

Ex. 1 (b). Verify that the condition of integrability for the differential equation (2x + y
+ 2xz)dx + 2xy dy + x2dz = 0. Also solve it. [Delhi Maths (Prog.) 2007]

Sol. Given       (2x + y2 + 2xz)dx + 2xydy + x2dz ! 0 ... (1)
For the first part, refer Ex. 1 (b) of Art. 3.7
Second Part:  Let x be treated as constant so that dx ! 0.
Then, (1) reduces to     2xy dy + x2dz ! 0 or 2y dy + x dz ! 0
Integrating it, y2 + xz ! f(x) ... (2)

where f(x) is taken as constant of integration as x is treated as constant. Differentiating (2), we have
   2y dy + x dz + zdx ! f 7dx or x(z – f 7 ) dx + 2xy dy + x2dz ! 0 ... (3)

Comparing (3) with (1), we get 2x + y2 + 2xz ! xz – xf 7
or 2x + y2 + xz ! – xf 7 or      2x + f ! – xf 7,using (2)
or x(df/dx) + f ! – 2x or      (df/dx) + (1/x) × f ! –2 ... (4)

which is a linear equation whose I.F. !
(1/ ) log .x dx xe e x/ ! !
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%   Solution of (4) is xf ! ( 2 )x dx c∋ &/ or 2xf x c! ∋ &

or x(y2 + xz) ! – x2 + c or x2 + xy2 + x2z ! c, using (2)
which is the equired solution, c being an orbitrary constant.

Ex. 2. Solve (2x2 + 2xy + 2xz2 + 1)dx + dy + 2zdz ! 0.
[Gwalior 2005; Indorer 1999; Jiwaji 2004; Punjab 2001, 05; Rajastan 2006;

Sager 2002; Bangalore 1995; Delhi Maths (Hons) 2008; Meerut 1997]
Sol. Given (2x2 + 2xy + 2xz2 + 1)dx + dy + 2zdx ! 0. ...(1)
As usual, verify that (1) is integrable. Let x be treated as constant, so that dx ! 0. Then (1)

becomes dy + 2zdz ! 0.    ...(2)
Integrating (1), y + z2 ! f(x), (say) ...(3)

where the constant of integration has been taken as a function f(x) of x because we have treated x
as constant

Differentiating (3), dy + 2zdz – f 7(x)dx ! 0. ...(4)
Comparing (4) with (1), f 7(x) ! –(2x2 + 2xy + 2xz2 + 1)

or f 7(x) ! –(2x2 + 1) – 2x(y + z2) ! –(2x2 + 1) – 2xf(x), using (3).

or    (df/dx) + 2xf ! –(2x2 + 1), which is a linear equation. Its I.F. !e ex dx x( )2 2z !  and hence its

solution is           
2xf e ! e x dx c x xe dx e dx cx x x2 2 2

2 1 22{ ( )} ( ) .∋ & & ! ∋ ∋ &z zz    ...(5)

Now, 2
2 2

x e dx e dt e ex t t xz z! ! ! , putting x2 ! t and 2xdx ! dt ...(6)
Applying the formula of integration by parts in first term on R.H.S. of (5) and noting

that 2
2

x e dxxz ! ex2
 as proved in (6), we have

2xf e ! ∋ ∋L
NM

O
QP ∋ & ! ∋ &z zxe e dx e dx c xe cx x x x2 2 2 2

1( . )

or f(x) ! –x + ce x∋ 2
or y + z2 ! –x + c e x∋ 2

, by (3).
Ex. 3. Solve (x2 + y2 + z2)dx – 2xy dy – 2xz dz ! 0.

[Delhi Maths (H) 1999; Delhi Maths (G) 2005]
Sol. Given   (x2 + y2 + z2)dx – 2xy dy – 2xz dz ! 0 ...(1)
As usual, verify that (1) is integrable. Let x be treated as constant, so that dx ! 0. Then (1)

becomes     –2xydy – 2xzdz ! 0       or 2ydy + 2zdz ! 0.    ...(2)
Integrating (2), y2 + z2 ! f(x), (say) ...(3)

where f(x) is taken as constant of integration as x is treated as constant.
Differentiating (3),        2ydy + 2zdz ! f 7(x)dx or xf 7(x)dx – 2xydy – 2xzdz ! 0,...(4)
Comparing (4) with (1), xf 7(x) ! x2 + y2 + z2 or xf 7(x) ! x2 + f(x), by (3)

or (df/dx) – (1/x)f ! x, which is a differential linear equation

Its I.F. !e e e xx dx x x( / ) log log∋ ∋ ∋z ! ! !
∋1 11

! 1/x and its solution is

(1/x) × f ! { (1/ )}x x dx c= &/ ! x + c      or           f(x) ! x2 + cx

or y2 + z2 ! x2 + cx, using (3); c being an arbitrary constant.
Ex. 4. Solve xz3dx – z dy + 2y dz ! 0. [Delhi Maths (Hons) 1996]
Sol. Given xz3dx – z dy + 2y dz ! 0. ...(1)
Let x be treated as constant, so that dx ! 0. Then (1) becomes

–zdy + 2ydz ! 0 or –(1/y)dy + (2/z)dz ! 0. ...(2)
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Integrating (2), –log y + 2 log z ! log f(x) or z2/y ! f(x),      ...(3)
when f(x) is taken as constant of integration as x is treated as constant.

Differentiating (3),  
2

2
2y zdz z dy

y
= ∋

! f 7(x) or   
2

( )y f x
z

) ∗
7∋ =+ ,+ ,

− .
– zdy + 2ydz ! 0.  ...(4)

Comparing (4) with (1), –(y2/z)f 7(x) ! xz3

or f 7(x) ! –x(z2/y)2 or f 7(x) ! –x[f(x)]2, using (3)
or df/dx ! –x f 2 or –f –2 df ! x dx.

Integrating,    (1/f) ! (x2/2) + c or y/z2 ! (x2/2) + c, using (3)
or     2y ! x2z2 + 2cz2, c being an arbitrary constant

Ex. 5. Solve y2z(x cos x – sin x)dx + x2z(y cos y – sin y)dy + xy(y sin x +  x sin y + xy cos z)dz ! 0.
[Meerut 1998]

Sol. As usual verify that the given equation is integrable. Let z be treated as constant, so that
dz ! 0. Then the given equation becomes

y2z(x cos x – sin x)dx + x2z(y cos y – sin y)dy ! 0

or x x x
x

dx y y y
y

dycos sin cos sin∋ & ∋
2 2 ! 0   or d x

x
d y

y
sin sinFH IK & FHG

I
KJ ! 0.

Integrating it,   sin sinx
x

y
y

& ! f(z), say ...(1)

where f(z) is taken as constant of integration as z is treated as constant.

Differentiating (1), x x x
x

dx y y y
y

dycos sin cos sin∋ & ∋
2 2 ! f 7(z) dz

or zy2(x cos x – sin x)dx + zx2(y cos y – sin y)dy – x2y2zf 7(z)dz ! 0. ...(2)
Comparing (2) with the given equation, we have

–x2y2zf 7(z) ! xy(y sin x + x sin y + xy cos z)

or – zf 7(z) ! sin sinx
x

y
y

&  + cos z ! f(z) + cos z, using (1)

or df
dz z

f& 1 ! ∋ cos z
z

, which is a linear differential equation.

Its I.F. !e z dz( / )1z ! elog z ! z and its solution is

z f(z) ! z z
z

dz c∋FH IK &z cos ! – sin z + c or   z x
x

y
y

sin sin&F
HG

I
KJ ! c – sin z, using (1).

Ex. 6. Solve (exy + ez)dx + (eyz + ex)dy + (ey – exy – eyz)dz ! 0.
Sol. As usual, verify that the given equation is integrable.
Let z be treated as constant, so that dz ! 0. Then the given equation becomes
(exy + ez)dx + (eyz + ex)dy ! 0 or (exydx + exdy) + ezdx + zeydy ! 0

or d(exy) + ezdx + zeydy ! 0. ...(1)
Integrating (1), exy + ezx + eyz ! f(z), say ...(2)

where f(z) is taken as constant of integration as z is treated as constant.
Differentiating (2), yexdx + exdy + xezdz + ezdx + zeydy + eydz ! f 7(z)dz

or (exy + ez)dx + (eyz + ex)dy + [xez + ey – f 7(z)]dz ! 0. ...(3)
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Comparing (3) with the given equation, we have
ey – exy – eyz ! xez + ey – f 7(z) or f 7(z) ! [exy + ezx + eyz] ! f(z), by (2)
or df/dz ! f(z) or (1/f)df ! dz.

Integrating, log f – log c ! z    or f(z) ! cez   or   exy + ezx + eyz ! cez, using (2).
Ex. 7. Find f(y) if f(y)dx – zx dy – xy log y dz ! 0 is integrable. Find the corresponding

integral. [Meerut 2011]
Sol. Comparing the given equation with Pdx + Qdy + Rdz ! 0, have P ! f(y), Q ! –zx,

R ! –xy log y. If the given equation is integrable, the following condition of integrability must be
satisfied by P, Q, R

P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x) ! 0.
i.e. f(y)[–x – (–x log y – x)] – xz(–y log y – 0) – xy log y[f 7(y) – (–z)] ! 0
or x log y f(y) – xy log y f 7(y) ! 0 or f(y) – yf 7(y) ! 0
or f 7(y)/f(y) ! 1/y whose integration gives, log f(y) ! log y + log c
i.e. f(y) ! cy, which is the required value of f(y).

Then the given equation becomes cy dx – zx dy – xy log y dz ! 0. ...(1)
Treating z as constant i.e. dz ! 0, (1) becomes

cy dx – zx dy ! 0 or (c/x)dx – (z/y)dy ! 0.
Integrating and remembering that z is to be regarded as constant, we get

c log x – z log y ! F(z), where F(z) is an arbitrary function of z. ...(2)
Differentiating (2), (c/x) dx – (z/y) dy – log y dz ! F7(z) dz

or cy dx – zx dy – [xy log y + xy F7 (z)] dz ! 0. ...(3)
Comparing (1) and (3), we get  xy log y + xy F 7(z) ! xy log y     or F 7(z) ! 0.
Integrating, F(z) ! c7, where c7 is an arbitrary constant.
Putting F(z) ! c7 in (2) the required solution is

c log x – z log y ! c7 or xc ! kyz, taking c7 ! log k.
Ex. 8. Solve (z + z3) cos x dx – (z + z3)dy + (1 – z2) (y – sin x)dz ! 0

or  (z + z3) cos x (dx/dt) – (z + z3) (dy/dt) + (1 – z2) (y – sin x) (dz/dt) ! 0.
[Allahabad 2005; Kolkata 2007; Nagpur 2004, 06]

Sol. Treating z as constant so that dz ! 0, the given equation becomes
(z + z3) cos x dx – (z + z3)dy ! 0 or cos x dx – dy ! 0.

Integrating, sin x – y ! f(z), where f is an arbitrary function. ...(1)
Differentiating (1),     cos x dx – dy – (df/dz) dz ! 0

or (z + z3) cos x dx – (z + z3) dy – (z + z3) f 7(z) dz ! 0 ...(2)
Comparing (2) and the given equation, we have
(1 – z2) (y – sin x) ! –(z + z3) f 7(z)    or   (1 – z2) (–f) ! –(z + z3) (df/dz), using (1)

or df
f

! 1
1

2

2
∋
&

z
z z( )

dz    or df
f

! 1 2
12z

z
z

dz∋
&

F
HG

I
KJ .

Integrating, log f ! log z – log (z2 + 1) + log c or    (z2 + 1)f ! cz
or        (sin x – y) (z2 + 1) ! cz, by (1), c being on arbitrary constant.

Ex. 9. Verify that the following equation is integrable and find its primitive :
 zy dx + (x2y – zx) dy + (x2z – xy) dz ! 0.

Sol. Given zy dx + (x2y – zx) dy + (x2z – xy) dz ! 0. ...(1)
Treating x as constant so that dx ! 0, (1) reduces to
(x2y – zx)dy + (x2z – xy) dz ! 0 or x2(ydy + zdz) – x(zdy + ydz) ! 0.    ...(2)
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Integrating (2) and remembering that x is being regarded as constant, we get

       2 2 2( / 2) ( )x y z xyz= & ∋ ! f(x), f being an arbitrary function. ...(3)

Differentiating (3), we have
2 2( )x dx y z&  + (x2/2) × (2ydy + 2zdz) – xy dz – yzdx – zx dy ! f 7(x)dx

or [x(y2 + z2) – yz – f 7(x)]dx + (x2y – xy)dy + (x2z – xy)dz ! 0.
Comparing the above equation with (1), we have
x(y2 + z2) – yz – f 7(x) ! yz or x(y2 + z2) – 2yz ! f 7(x)

or 2 2 2( / 2) ( )x y z xyz= & ∋ ! ( / 2) ( )x f x7= or f ! ( / 2) ( )x f x7=  by (3)

or f ! (x/2) × (df/dx)   or      (1/f)df ! (2/x)dx  so that        f(x) ! cx2.
Putting this value of f(x) in (3), the required primitive is

2 2 2( / 2) ( )x y z xyz= & ∋ ! cx2 or x2(y2 + z2 – 2c) ! 2xyz.

EXERCISE 3 (C)
Solve the following differential equations :
1. z2dx + (z2 – 2yz)dy + (2y2 – yz – zx)dz ! 0. Ans. xz + yz – y2 ! cz2

2. (y2 + yz)dx + (z2 + zx)dy + (y2 – xy)dz ! 0. Ans. y(x + z) ! c(y + z)
3. 2yzdx + zxdy – xy(1 + z)dz ! 0. Ans. x2y ! czez

4. (mz – ny)dx + (nx – lz)dy + (ly – mx)dz ! 0. [Rajasthan 2001, 07] Ans. nx – lz ! c(mz – ny)
5. z(z + y2)dx + z(z + x2)dy – xy(x + y)dz ! 0. [Pune 2010]   Ans. x(y2 + z) ! z(x + y)(1 – cy)
6. z(x2 – yz – z2)dx + (x + z)xzdy + x(z2 – x2 – xy)dz! 0. Ans. z–1(x + y) + x–1(y + z) !c
7. xdy – ydx – 2x2zdz ! 0. Ans. y ! x(c – z2)
8. 3ydx ! 3xdy + y2dz. Ans. x ! y log (cz)
9. zy(1 + 4xz)dx – xz(1 + 2xz)dy – xydz ! 0. [Delhi 2008, 09, 10]   Ans. x(1 + 2xz) ! cyz

10. yz log x dx – zx log z dy + xy dz ! 0. Ans. x log z ! cy
11. y2dx – 2x2dy + (xy – zy3)dz ! 0. [Bangalore 1994] Ans. 2y–1 – x–1 ! cez

12. yz dx + (xz – yz3)dy – 2xy dz. [Bangalore 2005]
3.14. Solution of Pdx + Qdy + Rdz ! 0, if it is exact and homogeneous of degree  n 6 1.

Theorem. xP + yQ + zR ! c is the solution of Pdx + Qdy + Rdz ! 0, when it is exact and
homogeneous of degree n 6 1.   [Bilaspur 2001; Meerut 1998; Guwahati 1996]

Proof : Give solution is xP + yQ + zR ! c. ...(1)
Differentiating (1), we obtain

P x P
x

y Q
x

z R
x

dx x P
y

Q y Q
y

z R
y

dy& #
#

& #
#

& #
#

F
H

I
K & #

#
& & #

#
& #

#
F
HG

I
KJ + x P

z
y Q

z
R z R

z
dz#

#
& #

#
& & #

#
F
H

I
K ! 0 ....(2)

Since Pdx + Qdy + Rdz ! 0 is exact, we have
#P/#y ! #Q/#x, #Q/#z ! #R/#y and #R/#x ! #P/#z. ...(3)
Using relation (3), (2) may be re–written as

P x P
x

y P
y

z P
z

dx Q x Q
x

y Q
y

z Q
z

dy& #
#

& #
#

& #
#

F
HG

I
KJ & & #

#
& #

#
& #

#
F
HG

I
KJ + R x R

x
y R

y
z R

z
& #

#
& #

#
& #

#
F
HG

I
KJ dz ! 0 ...(4)

Since Pdx + Qdy + Rdz ! 0 is homogeneous of degree n, it follows that P, Q and R are all
homogeneous functions of degree n. Using Euler’s theorem on homogeneous functions P(x, y, z),
Q(x, y, z) and R(x, y, z) of degree n, we get
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x(#P/#x) + y(#P/#y) + z(#P/#z) ! nP,
x(#Q/#x) + y(#Q/#y) + z(#Q/#z) ! nQ ...(5)

and x(#R/#x) + y(#R/#y) + z(#R/#z) ! nR.
Using (5), (4) reduces to

(P + nP)dx + (Q + nQ)dy + (R + nR)dz ! 0     or (n + 1)(Pdx + Qdy + Rdz) ! 0
or Pdx + Qdy + Rdz ! 0, as n 6 –1 so that  (n + 1) 6 0   ... (6)
which is given differential equation and hence (1) is solution of (6), as required.

ILLUSTRATIVE SOLVED EXAMPLE
Solve (x – 3y – z)dx + (2y – 3x)dy + (z – x)dz ! 0. [Guwahati 1996]
Sol. Given (x – 3y – z)dx + (2y – 3x)dy + (z – x)dz ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz ! 0, we have
P ! x – 3y – z, Q ! 2y – 3x and R ! z – x. ...(2)
(1) is homogeneous equation of degree n ! 1 6 –1. Also from (2), we get

(#P/#y) ! –3 ! (#Q/#x), (#Q/#z) ! 0 ! (#R/#y), (#R/#x) ! –1 ! (#P/#z).  ...(3)
(3) shows that (1) is exact. Thus, (1) is exact and homogeneous of degree n ! 1 6 –1. Hence,

solution of (1) is given by
xP + yQ + zR ! c        or x(x – 3y – z) + y(2y – 3x) + z(z – x) ! c

or x2 + 2y2 + z2 – 6xy – 2xz ! c, c being an arbitrary constant.
3.15. The non–integrable single equation

Suppose that the condition of integrability is not satisfied by the equation
Pdx + Qdy + Rdz ! 0. ...(1)

Then (1) represents a family of curves orthogonal to the family represented by the equations
dx/P ! dy/Q ! dz/R. ...(2)

However, in the present case there exists no family of surfaces orthogonal to the second
family of curves. In such cases we can find an infinite number of curves that lie on any given
surface and satisfy (1). However, note that the method of finding the above mentioned infinite
number of curves is equally applicable to integrable equation (1).
3.16. Working Rule for finding the curves represented by the solution of non–
integrable total differential equation

Pdx + Qdy + Rdz ! 0 ...(1)
which lie on given surface  f(x, y, z) ! c. ....(2)

Step 1. Verify that (1) is not integrable.
Step 2. Differentiate (2) and then eliminate z and dz from the equation so obtained with help

of (1) and (2).
Step 3. Integrate the equation obtained in step 2. This equation will involve x and y only. The

resulting solution and (2) together represent the desired curves.
3.17. Solved Examples based on working rule 3.16.

Ex. 1. Find the curves represented by the solution of y dx + (z – y) dy + x dz ! 0, which lie
in the plane 2x – y – z ! 1.    [Allhabad 2006; Bangalore 2003, 07]

Sol. Given y dx + (z – y) dy + x dz  ! 0 ...(1)
and                 2x – y – z ! 1. ...(2)

Comparing (1) with Pdx + Qdy + Rdz ! 0, here   P ! y,   Q ! z – y   and     R ! x ...(3)
Using (3), P(#Q/#z – #R/#y) + Q(#R/#x – #P/#z) + R(#P/#y – #Q/#x)

! y(1 – 0) + (z – y) (1 – 0) + x(1 – 0) ! z + x 6 0.
This shows that the condition of integrability is not satisfied by (1).
Differentiating (2), 2dx – dy – dz ! 0 or dz ! 2dx – dy. ...(4)

>
?
≅
?
Α

>
?
≅
?
Α
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Using (4) to eliminate dz, (1) gives    y dx + (z – y) dy + x(2dx – dy) ! 0
or ydx + (2x – y – 1 – y)dy + x(2dx – dy) ! 0, using (2) to eliminate z
or (y + 2x)dx + (x – 2y – 1)dy ! 0   or (ydx + xdy) + 2xdx – 2ydy – dy ! 0.

Integrating, xy + x2 – y2 – y ! c, c being an arbitrary constant. ...(5)
The required curves are given by the intersection of plane (2) and rectangular hyperbolic

cylinders (5).
Ex. 2. Show that there is no single integral of dz ! 2ydx + xdy. Prove that the curves of this

equation that lie in the plane z ! x + y lie also on surfaces of the family (x – 1)2(2y – 1) ! c.
[Agra 2001, 03, 07; Meerut 2006]

Sol. Given 2ydx + xdy – dz ! 0 ...(1)
and z ! x + y. ...(2)

As in Ex. 1, show that the condition of integrability is not satisfied
Differentiating (2), dz ! dx + dy. ...(3)
Using (3), (1) gives 2ydx + xdy – (dx + dy) ! 0

or  (2y – 1)dx + (x – 1)dy ! 0 ...(3)
or {2/(x – 1)}dx + {2/(2y – 1)} dy ! 0

Integrating,  2 log (x – 1) + log (2y – 1) ! log c or (x – 1)2(2y – 1) ! c.

Ex. 3. Show that the curves of      xdx + ydy + c 2 2 2 2(1 / / )x a y b dz∋ ∋ ! 0 ...(1)

that lie on the ellipsoid     x2/a2 + y2/b2 + z2/c2 ! 1 ...(2)
lie also on the family of concentric spheres x2 + y2 + z2 !a2.

Sol. Verify that (1) does not satisfy the condition of integrability. Form (2), 1 – x2/b2 – y2/b2

! z2/c2. Using this, (1) may be re–written as
2xdx + 2ydy + 2zdz ! 0

Integrating, x2 + y2 + z2 !  a2, a being an arbitrary constant. ...(3)
Hence the curves of (1) that lie on (2) also lie on the family of concentric spheres (3).
Ex. 4. Find the orthogonal projection on the plane of xz of curve which lie on the paraboloid

3z ! x2 + y2 and satisfy the equation 2dz ! (x + z)dx + y dy.   [Kurukshetra 1997]
Sol. Given (x + z)dx + y dy – 2dz ! 0 ...(1)

and   x2 + y2 – 3z ! 0. ...(2)
Verify yourself that (1) does not satisfy the usual condition of integrability. Differentiating

(2), we get 2x dx + 2y dy – 3dz ! 0.    ...(3)
Multiplying (1) by 3 and (3) by 2 and then subtracting the resulting equations, we get

3(x + z)dx + 3y dy – 3(2x dx + 2y dy) ! 0
or –x dx – y dy + 3z dx ! 0    or x dx + y dy ! (x2 + y2)dx, using (2)

or
2 2

2 2
xdx ydy
x y

&
&

! 2dx so that log (x2 + y2) – log c ! 2x

or x2 + y2 ! ce2x    or 3z ! ce2x, by (2) ...(4)
which gives the required projection on xy plane.

EXERCISE 3 (D)
1. Obtain the system of the curves lying on the system of surfaces zx ! c and satisfying the

differential equation yz dx + z2dy + y(z + x)dz ! 0.           Ans. x ! c/y, zx ! c
2. Show that the differential equation 3ydx + (z – 3y)dy + xdz ! 0 is not integrable.
Prove that the projection on the plane of xy of the curves that satisfy the equation and lie on

the plane 2x + y – z ! a are the rectangular hyperbolas x2 + 3xy – y2 – ay ! b.
[Meerut 2003, 05, 06; Allahabad 2001, 07; Lucknow 2003, 05, 06]
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3. Find the equation of the cylinder, with generators parallel to the axis of y, passing through
the point (2, 1, –1), and also through a curve that lies on the sphere x2 + y2 + z2 ! 4 and satisfies the
equation (xy + 2xz)dz + y2dy + (x2 + yz)dz ! 0.
3.18. Geometrical Interpretation of Pdx + Qdy + Rdz ! 0

[G.N.D.U. (Amritsar) 1997; Lucknow 2003]
The given differential equation expresses that the tangent to a curve is perpendicular to a

certain line, the direction cosines of this tangent line and another line being proportional to dx, dy,
dz and P, Q, R respectively. Suppose that the equation

Pdx + Qdy + Rdz ! 0. ...(1)
satisfies the condition of integrability and that its solution is

F(x, y, z) ! c. ...(2)
Since (2) has one arbitrary constant, it represents a single infinity of surfaces. Choosing this

constant in an appropriate manner, (2) can be made to pass through any given point of space. If a
point is moving upon this surface in any direction, its co–ordinates and direction cosines of its path
at any moment (which are proportional to dx, dy, dz since the point moves along tangent) must
satisfy (1), since (2) is the integral of (1). Again for each point (x, y, z) there will be an infinite
number of values of dx, dy, dz which will satisfy (1). Thus it follows that a point which is moving
in such a manner that its co–ordinates and the direction cosines of its path always satisfy (1) can
pass through any point in an infinity of directions. However, while passing through any point, it
must remain on the particular surface given by (2) which passes through the point. Thus, infinite
number of such possible curves which it can describe through that point must lie on that surface.
3.19. To show that the locus of Pdx + Qdy + Rdz ! 0 is orthogonal to the locus of
(dx)/P ! (dy)/Q ! (dz)/R.

The equation Pdx + Qdy + Rdz ! 0 ...(1)
means, geometrically, that a straight line whose direction cosines are proportional to dx, dy, dz, is
perpendicular to a line whose direction cosines are proportional to P, Q, R. As a consequence a
point which satisfies (1) must move in a direction at right angles to a line whose direction cosines
are proportional to P, Q, R. On the other hand, the equations

(dx)/P ! (dy)/Q! (dz)/R. ...(2)
mean, geometrically, that a straight line whose direction cosines are proportional to dx, dy, dz is
parallel to a line whose direction cosines are proportional to P, Q, R. As a consequence, a point
which satisfies (2) must move in a direction parallel to line whose direction cosines are proportional
to P, Q, R.

From the above discussion it follows that the curves traced out by the points that are moving
according to the condition (1) are orthogonal to the curves traced out by the points that are moving
according to the conditions (2). The former curves are any of the curves upon the surfaces given by
(1). Thus, geometrically, the curves represented by (2) are normal to the surfaces represented by
(1). In case (1) is not integrable, there cannot exist a family of surfaces which is orthogonal to all
lines that form the locus of (2).
3.20. Total differential equations containing more that three variables.

The total differential equation in four variables is
Pdx + Qdy + Rdz + Tdt ! 0, ...(1)

where P, Q, R and T are the functions of x, y, z and t.
Now (1) is integrable if it is integrable in any three variables also. Accordingly, the condition

of integrability of (1) can be obtained by treating t, x, y, z as constants by turn.
Let t be regarded as constant so that dt ! 0. Then (1) gives

Pdx + Qdy + Rdz ! 0. ...(2)
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The condition of integrability of (2) is

P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0. ...(3)

Similarly, taking x, y and z as constants successively, the conditions of integrability are

Q R
t

T
z

R T
y

Q
t

T Q
z
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y

#
#

∋ #
#

FH IK & #
#

∋ #
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KJ ! 0, ...(4)

R P
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FH IK & #
#

∋ #
#

FH IK & #
#
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FH IK ! 0 ...(5)

and P Q
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I
KJ ! 0. ...(6)

Hence (1) is integrable if conditions (3), (4), (5) and (6) are satisfied.
Remark 1. Proceeding as above the conditions of integrability can be derived for the total

differential equations containing more than four variables.
Remark 2. Multiplying equation (3) by T, (4) by (–P), (5) by Q and (6) by (–R) and adding,

we have      T × (3) – P × (4) + Q × (5) – R × (6) ! 0,
showing that the conditions (3) to (6) are not independent. Thus any three of the conditions (3) to
(6) give the conditions of integrability of (1).

Remark 3. If given total differential equation contains n indepdent variables, there will be
(1/2) × (n – 1) (n – 2) independent conditions for its integrability.

Methods of solving (1) : First of all satisfy any of three conditions (3) to (6) and hence
declare that (1) is integrable.

Now proceed by any of the following three methods to solve (1) :
Method I. Solution by inspection. This method is the same as discussed in Art. 3.6 for three

variables. Read that article carefully.
Method II. Homogeneous equation. Let P, Q, R and T be functions of x, y, z and t of the

same degree.
Put x ! ut, y ! vt, z ! wt in (1) and then integrate the transformed equation as in the case of

three variables (Refer Art. 3.8.)
Alternative method for solving homogeneous equation
If (Px + Qy + Rz + Tt) 6 0, then we may make use of the integrating factor (I.F) given by

 I.F. ! 1/(Px + Qy + Rz + Tt). Procedure is same as explained in Art. 3.8.
Method III. Treating two variables as constants.
This method is merely an extension of the method adopted in Art. 3.12 for three variables.

Take two suitable variables, z and t (say) as constants. Then dz ! 0 and dt ! 0. Now integrate the
reduced equation and take the constant of integration as the function of the variables which were
kept constant. Thus, for the above assumption we take f(z, t) as constant of integration. Now proceed
as discussed in Art. 3.12.

To understand the above methods, read carefully the following examples.
3.21. Solved examples based on Art. 3.20.

Ex. 1. Solve : z(y + z)dx + z(u – x)dy + y(x – u)dy + y(y + z)du ! 0.
Sol. Re–writing the given equation, (y + z)(zdx + ydu) + z(u – x)dy + y(x – u)dz ! 0

or (y + z)(zdx + ydu) + (y + z)(xdz + udy) – (y + z)(xdz + udy) + z(u – x)dy + y(x – u)dz ! 0
or (y + z)(zdx + ydu + xdz + udy) – (xz + uy)(dy + dz) ! 0, by simplification

or zdx ydu xdz udy
xz uy

& & &
&

! dy dz
y z

&
&

. ...(1)

Integrating (1), log (xz + uy) ! log (y + z) + log c or xz + uy ! c(y + z).
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Ex. 2. Solve : (2x + y2 + 2xz)(dx/dt) + 2xy(dy/dt) + x2(dz/dt) ! 1.
Sol. Re–writing the given equation, (2x + y2 + 2xz)dx + 2xydy + x2dz – dt ! 0

or 2xdx + (y2dx + 2xydy) + (2xzdx + x2dz) – dt ! 0     or     d(x2) + d(xy2) + d(x2z) – dt ! 0.
Integrating, x2 + xy2 + x2z – t ! c, c being an arbitrary constant.
Ex. 3. Solve t(y + z)dx + t(y + z + 1)dy + tdz – (y + z)dt ! 0.
Sol. Given t(y + z)dx + t(y + z + 1)dy + tdz – (y + z)dt ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz + Tdt ! 0, we have
P ! t(y + z), Q ! t(y + z + 1), R ! t, T ! –(y + z). ...(2)

Now, P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ

! t(y + z)(t – 0) + t(y + z + 1)(0 – t) + t(t – 0) ! 0. ...(3)
Similarly, we can prove that

P Q
t

T
y

Q T
x

P
t

T P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0 ...(4)

R P
t

T
x

P T
z

R
t

T R
x

P
z

#
#

∋ #
#

FH IK & #
#

∋ #
#

FH IK & #
#

∋ #
#

FH IK ! 0 ...(5)

and Q R
t

T
z

R T
y

Q
t

T Q
z

R
y

#
#

∋ #
#

FH IK & #
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
F
HG

I
KJ ! 0. ...(6)

Hence (1) satisfies the conditions of integrability (3), (4), (5) and (6). Therefore, (1) must be
integrable. We now solve (1) by the following two methods :

Method I. (By inspection). Re–writing (1), we have
(y + z)dx + (y + z + 1)dy + dz – (y + z)(1/t)dt ! 0 or  (y + z)(dx + dy) + (dy + dz) – (y + z)(1/t)dt ! 0

or dx dy dy dz
y z

dt
t

& &
&
&

∋ ! 0.

Integrating, x + y + log (y + z) – log t ! log c, c being arbitrary constant.

or    log y z
ct
&F
H
I
K ! –(x + y) or y + z ! cte–(x + y) or (y + z)ex + y ! ct.

Method II. (Regarding two variables as constants)
Treat z and t as constants so that dz ! 0 and dt ! 0. Then (1) reduces to

      t(y + z)dx + t(y + z + 1)dy ! 0 or         dx
y z

dy& &
&

F
HG

I
KJ1 1 ! 0. ...(7)

Integrating (7), x + y + log (y + z) ! f(z, t), say ...(8)

Differentiating (8), we have dx dy dy dz
y z

& &
&
&

! df

or (y + z)dx + (y + z)dy + dy + dz – (y + z)df ! 0
or t(y + z)dx + t(y + z + 1)dy + tdz – (y + z)tdf ! 0. ...(9)

Comparing (9) with (1), – (y + z)t df ! – (y + z)dt       or            df ! (1/t)dt. ...(10)
Integraing (10), f ! log t + log c or f ! tc.

or x + y + log (y + z) ! log (tc), using (8)

or      log y z
tc
&F
H
I
K ! –(x + y) or

y z
tc
&

! e– (x + y) or (y + z)ex + y ! tc.
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Ex. 4. Solve : z(y + z)dx + z(t – x)dy + y(x – t)dz + y(y + z)dt ! 0.
Sol. Given z(y + z)dx + z(t – x)dy + y(x – t)dz + y(y + z)dt ! 0. ...(1)
Comparing (1) with Pdx + Qdy + Rdz + Tt ! 0, we have
P ! z(y + z),     Q ! z(t – x), R ! y(x – t), T ! y(y + z).          ...(2)
As in Ex. 3, we can show that the conditions of integrability are satisfied.
We now solve (1) by the following two methods.
Method I. (Regardings two variables as constants)
Treat y and z as constants so that dy ! 0  and  dz ! 0. Then (1) reduces to

z(y + z)dx + y(y + z)dt ! 0      or zdx + ydt ! 0. ...(3)
Integrating (3), zx + yt ! f(y, z), (say). ...(4)
Differentiating (1), zdx + tdy + xdz + ydt ! df   or   (y + z)(zdx + tdy + xdz + ydt) ! (y + z)df

or z(y + z)dx + t(y + z)dy + x(y + z)dz + y(y + z)dt ! (y + z)df. ...(5)
Comparing (5) with (1), we have

t(y + z)dy + x(y + z)dz – (y + z)df ! z(t – x)dy + y(x – t)dz.
or   (ty + xz)dy + (ty + xz)dz ! (y + z)df
or   (ty + xz)(dy + dz) ! (y + z)df or f × (dy + dz) ! (y + z)df, using (4)
or        (1/f)df ! (dy + dz)/(y + z). ...(6)

Integrating (6), log f ! log (y + z) + log c   or f ! c(y + z)
or zx + yt ! c(y + z), using (4), c being an arbitrary constant.

Method II. (Homogeneous equation. Use of integrating factor)
Here P, Q, R and T are functions of x, y, z and t of the same degree 2.
Also, D ! Px + Qy + Rz + Tt ! xz(y + z) + yz(t – x) + yz(x – t) + ty(y + z)

   ! xz(y + z) + ty(y + z) + yz(t – x + x – t) ! (y + z)(xz + ty) 6 0.

%        Integrating factor ! I.F. ! 1 1
D y z xz ty

!
& &( )( )

. ...(3)7

Multiplying the given equation (1) by I.F., we have

y y z dx x t x dy y x t dz y y z dt
y z xz ty

( ) ( ) ( ) ( )
( )( )

& & ∋ & ∋ & &
& &

! 0. ...(4)7

Now, the numerator of (4)7
! [(y + z)(zdx + xdz + ydt + tdy) + (xz + ty)(dy + dz)] + z(t – x)dy + y(x – t)dz

– (y + z)(xdz + tdy) – (xz + ty)(dy + dz)
! d{(y + z)(xz + ty)} – 2(xz + ty)(dy + dz).
Using the above value of numerator of (4)7, (4)7 becomes

d y z xz ty xz ty dy dz
y z xz ty

{( )( )} ( )( )
( )( )

& & ∋ & &
& &

2 ! 0    or    d y z xz ty
y z xz ty

dy dz
y z

[( )( )]
( )( )

& &
& &

∋
&
&

2 ! 0  ....(5)7

Integrating (5)7, log {(y + z)(xz + ty)} – 2 log (y + z) ! log c

or log ( )( )
( )

y z xz ty
y z

& &
& 2 ! log c         or xz + ty ! c(y + z).

Ex. 5. Show that the equation y sin w dx + x sin w dy – xy sin w dz – xy cos w dw ! 0
satisfies the conditions of integrability and obtain its integral.    [Meerut 1999]

Sol. Given y sin w dx + x sin w dy – xy sin w dz – xy cos w dw ! 0. ...(1)
Compare (1) with Pdx + Qdy + Rdz + Wdw ! 0, we have
P ! y sin w, Q ! x sin w, R ! –xy sin w and W ! –xy cos w. ...(2)
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Here, P Q
z

R
y

Q R
x

P
z

R P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ

     ! y sin w (0 + x sin w) + x sin w (–y sin w – 0) + (–xy sin w)(sin w – sin w) ! 0.
...(3)

Similarly, we can prove that

P Q
w

W
y

Q W
x

P
w

W P
y

Q
x

#
#

∋ #
#

F
HG

I
KJ & #

#
∋ #

#
FH IK & #

#
∋ #

#
F
HG

I
KJ ! 0, ...(4)

R P
w

W
x

P W
z

R
w

W R
x

P
z

#
#

∋ #
#

FH IK & #
#

∋ #
#

FH IK & #
#

∋ #
#

FH IK ! 0 ...(5)

and Q
R
w

W
z

R
W
y

Q
w

W
Q
z

R
y

#
#

∋
#
#

F
HG

I
KJ &

#
#

∋
#
#

F
HG

I
KJ &

#
#

∋
#
#

F
HG

I
KJ ! 0 ...(6)

Hence (1) satisfies the conditions of integrability (3), (4), (5) and (6). Hence (1) is integrable.
Treat z and w as constants so that dz ! 0 and dw ! 0. Then (1) reduces to

y sin w dx + x sin w dy ! 0 or ydx + xdy ! 0. ...(7)
Integrating (7), xy ! f(z, w), (say). ...(8)
Differentiating (8), we have y dx + x dy ! df.

or y sin w dx + x sin w dy – sin w df ! 0. ...(9)
Comparing (9) with (1), sin w df ! xy sin w dz + xy cos w dw

or df ! xy(dz + cot w dw)     or df ! f × (dz + cot w dw), using (8)
or (1/f)df ! dz + cot w dw. ...(10)

Integrating, log f ! z + log sin w + log c, c being an arbitrary constant.
or f ! c sin w ez or xy ! c sin w ez, using (8).

3.22. Working rule (based on Art. 3.3) for solving     Pdx + Qdy + Rdz ! 0 …(i)
Step 1: Verify that (i) satisfies the condition of integrability (8) of Art. 3.3
Step 2: Let z ! constant so that dz ! 0. Then, (i) yields      Pdx + Qdy ! 0 …(ii)
Step 3: Let solution of (ii) be f(x, y, z) ! V ! constant …(iii)

Step 4: From (ii) and (iii), P∃ ! /V x# #  and  / .Q V y∃ ! # #  Determine ∃ .

Step 5: P dx Q dy R dz∃ & ∃ & ∃ ! ( / ) ( / ) ( / ) ( / )V x dx V y dy V z dz R V z dz# # & # # & # # & ∃ ∋ # #

                  Β    P dx Q dy R dz dV S dz∃ & ∃ & ∃ ! & ,      where       S ! ( / )R V z∃ ∋ # # …(iv)

Compute S in terms of z and V.
Step 6: Given equation (i) reduces to                         dV + S dz ! 0 …(v)
Substitute the value of S (obtained in step 5) in (v) and then integrate it. Finally, using (iii),

we obtain the required solution.
Remark. Select a proper variable to be constant so that the resulting equation is easily

integrable. Accordingly, necessary corresponding changes must be done in the above working rule.
The following example will make this point clear.

Solved example : Solve the following partial differential equation: zy(1 + 4xz)dx
– xz(1 + 2xz) dy – xy dz = 0               [Delhi B.A. (Prog) II 2010; Delhi Maths (H) 2008, 09]

Solution. Comparing the given equation with P dx + Q dy + R dz ! 0, we have
              P ! zy (1 + 4xz),        Q ! – xz (1 + 2xz)        and         R ! –xy …(1)
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Hence, ( / / ) ( / / ) ( / / )P Q z R y Q R x P z R P y Q x# # ∋ # # & # # ∋ # # & # # ∋ # #

! zy (1 + 4xz) (– x – 4x2z + x) – xz(1+ 2xz) (–y – y – 8xyz) – xy (z + 4xz2 + z + 4xz2) ! 0
Thus, the given equation is integrable. Let x ! constant. Then, the given equation yields

– xz (1 + 2xz) dy – xydz ! 0       or       0
(1 2 )

dy dz
y z xz

& !
&        or       

1 2
0

1 2
dy x

dz
y z xz

) ∗& ∋ !+ ,− .&

Integrating, log y + log z – log (1 + 2xz) ! log c     or      (yz)/(1 + 2xz) ! c ! constant
Let us take                                  V ! (yz)/(1 + 2xz)     ... (2)

Now,  /Q V y∃ ! # #     Β    (1 2 )xz xz∋∃ & ! z / (1 + 2xz), using (1) and (2)

Thus,                                  ∃ ! – 2{1/ (1 2 ) }x xz&     ... (3)

Hence,   S !
2

2 2
(1 4 ) 2

,
(1 2 ) (1 2 )

V zy xz z y
P

x x xz xz
# &

∃ ∋ ! ∋ &
# & &

 using (1), (2) and (3)

or        S ! 2
(1 4 2 )

(1 2 )
yz xz xz

x xz
& ∋

∋
&

! 2
(1 2 )

(1 2 )
yz xz
x xz

&
∋

&
! (1 2 )

yz
x xz

∋
& ! ,V

x
∋  using (2) …(4)

Now, the given equation reduces to dV + S dx ! 0        or         dV – (V/x)dx ! 0, by (4)
or     (1/V) dV ! (1/x) dx so that log V ! log x + log A     or    V ! xA     or     (yz)/(1+2xz) ! xA, which
is the required solution, A being an arbitrary constant

Note: The reader can solve problems of Art 3.13 and Exercise 3 (C) by using the above
working rule of Art. 3.22.

Miscellaneous Problems on Chapter 3

1.  Solve (1 ) (1 ) (1 ) 0yz x dx z xy y dy xy z dz& & & & & !         [Delhi B.A. (Prog). II 2010]

Ans. 2 / 2 log( ) .& & & & !x y z y xz c

2.  State true or false with justification : If curl (P, Q, R) ! 0, then Pdx + Qdy + Rdz ! 0 is exact.
[Pune 2010]

Hints.  Refer theorem on page 3.3.
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4.1

4
Riccati’s Equation

4.1. Introduction. A differential equation of the form
dy/dx = P + Qy + Ry2        i.e. y1 = P + Qy + Ry2,     ...(1)

where P, Q and R are functions of x, is known as the generalized Riccati’s equation. Throughout this
chapter suffixes will denote differentiation with respect to x. In 1841, the French mathematician
Liouville proved that (1) is one of the simplest differential equations of the first order and first degree
that cannot, in general, be integrated by quadratures. Due to historical and theoretical importance and
occurrence of (1) in appalications, the study of certain aspect of (1) becomes quite useful.
4.2. General solution of Riccati’s equation namely,

       y1 = P + Qy + Ry2. ...(1)
We introduce another dependent variable u such that

         y = –u1/(Ru) = –u1(Ru)–1. ...(2)
Differentiating (2) w.r.t ‘x’,         y1 = –u2(Ru)–1 + u1(Ru)–2[R1u + Ru1]. ...(3)
Using (2) and (3), (1) becomes

! � �
u
Ru

R u

R u

u

Ru
2 1 1

2
1
2

2   = P Q
u
Ru

R
u

R u
� !FHG

I
KJ �
F
HG
I
KJ

1 1
2

2 2

or –Ru2 + R1u1 = PR2u – Qu1R
or Ru2 – (QR + R1)u1 + PR2u = 0, ...(4)
which is linear differential equation of the second order. We know that the general solution of (4)
is of the form

u = Af(x) + BF(x), where A and B are arbitrary constants. ...(5)

#      (2) gives        y = !
�
�

∃
! � !

�
Af BF

R Af BF
A B f R F R

A B f F
1 1 1 1

( )
( / )( / ) ( / )

( / )

which is of the form y =
cg x G x
cf x F x

( ) ( )
( ) ( )

�
�

...(6)

where c = (A/B) is an arbitrary constant. Hence the general solution of (1) is of the form (6).

SOLVED EXAMPLES BASED ON ART. 4.2
Ex. 1. Solve (i) y1 = –2 – 5y – 2y2 (ii) x2y1 + 2 – 2xy + x2y2 = 0.
Sol. (i) Given y1 = –2 – 5y – 2y2. ... (1)
Comparing (1) with  y1 = P + Qy + Ry2,   here      R = –2 and so we take

y = –u1/(Ru) = –u1/(–2u) = u1(2u)–1. ...(2)
Differentiating (2) w.r.t. ‘x’, y1 = u2(2u)–1 – u1(2u)–2.(2u1). ...(3)

Using (2) and (3) in (1),
u

u
u

u
2 1

2

22 2
! = – 2 5

2
2

2
1 1

2

! FHG
I
KJ !
F
HG
I
KJ

u
u

u
u
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4.2 Riccatis’S Equation

or u2 + 5u1 + 4u = 0 or         (D2 + 5D + 4)u = 0,  ...(4)
where D % d/dx. The usual auxiliary equation is D2 + 5D + 4 = 0, giving D = –4, –1 and hence
solution of (4) is

u = Ae–x + Be–4x       so that u1 = –Ae–x – 4Be–4x.    ...(5)
Putting these values of u and u1 in (2), the required general solution of (1) is

y =
u
u

Ae Be
Ae Be

A B e
A B e

x x

x x

x

x
1

4

4

3

32
4

2
4

2 1
∃ !

! !
�

∃ !
�
�

! !

! !( )
( / )
[( / ) ]

or 2y(1 + ce3x) = –(4 + ce3x), where c(= A/B) is an arbitrary constant.
Part (ii) Put the equation in standard form by dividing by x2 and get y1 = –(2/x2) + (2y/x) – y2.

Now proceed as above, Ans. y(cx + x2) = c + 2x.
4.3. Theorem. The cross–ratio of any four particular integrals of a Riccati’s equation is

independent of x.
Proof. We know that the general solution of Riccati’s equation

y1 = P + Qy + Ry2 ...(1)
is of the form  y = (cg + G)/(cf + F). ...(2)
where g, G, f, F are appropriate functions of x and c is an arbitrary constant. Let p(x), q(x), r(x),
s(x) be any four integrals of (1). Then these can be obtained from (2) by giving suitable values to
c, say &, ∋, ( and ). Thus, we have

p =
&
&

g G
f F
�
�

,       q =
∋
∋

g G
f F
�
�

,     r =
(
(
g G
f F
�
�

,             s =
)
)

g G
f F
�
�

Then,     p – q = ( )( )
( )( )
& ∋
& ∋
! !
� �

gF fG
f F f F

, on simplifying.

Similarly (p – s), (r – s), (r – q) can be obtained. Hence the cross–ratio

( )( )
( )( )
p q r s
p s r q
! !
! !

=
( )( )
( )( )
& ∋ ( )
& ) ( ∋
! !
! !

∃ k , say,,

where k is indepedent of x. While forming the above cross–ratio, all the factors involving x cancel
out and we are left with a mere constant. This completes the proof.
4.4. Method of solving Riccati’s equation when three particular integrals are known.

Let the three particular integrals be q(x), r(x), s(x) and let the corresponding values of c be ∋, (, ).
Then as explained in Art. 4.3, we have

y =
cg G
cf F
�
�

, q =
∋
∋

g G
f F
�
�

,   r =
(
(
g G
f F
�
�

,            s =
)
)
g G
f F
�
�

and then ( )( )
( )( )
y q r s
y s r q
! !
! !

=
( )( )
( )( )
c
c

k! !
! !

∃∋ ( )
) ( ∋

, say

where k is independent of x. Thus, the general solution of Riccati’s eqn. y1 = P + Qy + Ry2 is given by
( )( )
( )( )
y q r s
y s r q
! !
! !

= k, ...(1)

where k is an arbitrary constant. It should be noted that in the present situation solution has been
obtained without quadratures (i.e. integrations)

An illustration : Show that 1, x, x2 are three integrals of x(x2 – 1)y1 + x2 – (x2 – 1)y – y2 = 0,
and hence obtain the general solution y(x + k) = x + kx2.
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Solution. Re–writing the given eqn. in standard form, we have

y1 = – x
x x

y
x x

y2 2
2

1
1 1

1!
� �

!( )
. ...(1)∗

Putting y = 1 so that y1 = 0 in (1)∗, we have

0 = – x
x x x x2 21

1 1 1
1

1 0
!

� + �
!

+ ∃
( )

,

showing that 1 is an integral of (1)∗. Similarly we see that x and x2 are also integrals of (1). Take
q(x) = 1, r(x) = x and s(x) = x2. Then using formula (1) of above method of Art. 4.4, the general
solution is

( )( )
( )( )
y x x
y x x
! !
! !

1
1

2

2 = k or ( )( )
( )
y x

y x
! !
!
1

2 = k

or k(y – x2) + x(y – 1) = 0 or y(k + x) = x + kx2,
where k is an arbitrary constant.
4.5. Method of solving Riccati’s equation when two particular integrals are known.

Let q(x) and r(x) be two known integrals of the Riccati’s equation
y1 = P + Qy + Ry2 ...(1)

so that q1 = P + Qq + Rq2 ...(2)
and r1 = P + Qr + Rr2. ...(3)

From (1) and (2), we get
y1 – q1 = (y – q)Q + (y2 – q2)R or y1 – q1 = (y – q){Q + (y + q)R}

or (y1 – q1)/(y – q) = Q + (y + q)R. ...(4)
Similarly, (y1 – r1)/(y – r) = Q + (y + r)R. ...(5)

From (4) and (5), we get
y q
y q

y r
y r

1 1 1 1!
!

!
!
!

= (q – r)R

Integrating this, we get log (y – q) – log (y – r) = c q r R dx� !z ( )

or log [(y – q)/(y – r)] = c q r R dx� !z ( ) , ...(6)

which is the required general solution and it requires only one integration.
An illustration. Show that there are two values of the constant k for which k/x is an integral

of x2(y1 + y2) = 2, and hence obtain the general solution.
Solution. Re–writing the given equation in standard form

y1 = P + Qy + Ry2 ...(1)
we get y1 = (2/x2) – y2, ...(2)

Let q(x) and r(x) be two–particular integrals of (1), then as above we have (to be proved in
examination for complete solution)

log[(y – q)/(y – r)] = c q r R dx� !z ( ) . ...(3)

Let   y(x) = k/x  so that  y1 = –k/x2. Putting these in (2), we get
–k/x2 = 2/x2 – k2/x2    or k2 – k – 2 = 0     so that       k = 2, –1.

Hence 2/x and –1/x are two particular integrals of (2). We take
q(x) = 2/x and r(x) = –1/x. ...(4)

Comparing (1) and (2), here R = –1 ...(5)
Using (4) and (5), (3) gives the desired solution as
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4.4 Riccatis’S Equation

log ( / )
( / )

y x
y x
!
�

2
1 = log ( )k

x x
dx� �FH IK !z 2 1 1 , taking c = log k

or log xy
xy
!
�

2
1

= log k – 3 log x or xy
xy

x!
�

F
HG

I
KJ

2
1

3 = k

or x3(xy – 2) = k(xy + 1), k being arbitrary constant.
4.6. Method of solving Riccati’s equation when one particular integral is known

Let q(x) be the known integral of the given Riccati’s equation
y1 = P + Qy + Ry2 ...(1)

so that q1 = P + Qq + Rq2. ...(2)
Let v be another dependent variable such that

 y = q(x) + 1/v. ...(3)
# y1 = q1 – v1/v

2 = P + Qq + Rq2 – v1/v
2, by (2) ...(4)

Using (3) and (4), (1) becomes

2 1
2P Qq Rq� � !

v
v

= 2
2

1 2 1q
P Q q R q, − , −� � � � �. / . /

0 1 0 1v v v

or 1!
v
v

= 2
2 1Q q

R , −� �. /
0 1v v v

or ( 2 )d
Q Rq

dx
� � vv

= –R, ...(5)

which is linear differential equation of first order and first degree in v and x. Its integrating factor

I.F. is given by  I.F. = e
Q Rq dx( )�z 2

 and hence the required general solution is

( 2 )Q Rq dx
e

�2v = – Re
( )Q Rq dx

c
�z �z 2

,

where c is an arbitrary constant and v is to be replaced by 1/(y – q) [by using (3)].
Remark. The above mentioned method is very useful in practice.

4.7 Solved examples based on Art. 4.6.
Ex. 1. Solve y1 = cos x – y sin x + y2. ...(1)
Sol. Take y = sin x so that y1 = cos x. Putting these in (1), we get
cos x = cos x – sin2 x + sin2 x, showing that sin x is a particular solution of (1).
Let y = sin x + 1/v so that y1 = cos x – v1/v

2.
Using (2), (1) becomes

cos x – v1/v
2 = cos x – sin x (sin x + 1/v) + (sin x + 1/v)2

or 1
2!

v
v

=
sin x

v
 + 2

1
v

or d
dx
v = (sin x) v = –1 ...(3)

whose I.F. = e
x dxsinz = e–cos x and so solution of (3) is

ve–cos x = c e dxx! !z cos . ...(4)

From (2), v = 1/(y – sin x) and hence (4) gives

        e
y x

x!

!

cos

sin
= c e dxx! !z cos

Ex. 2. Solve y1 = 2 + (1/2) × (x – 1/x)y – y2/2 ...(1)
Sol. Take  y = x + 1/x so that y1 = 1 – 1/x2. Then (1) gives
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1 – 1/x2 = 2 1 1 11
2

1
2

2� ! � ! �( / )( / ) ( / )x x x x x x

or 1 – 1/x2 = 2 1 2 11
2

2 1
2

2 2� ! ! � �( / ) ( / )x x x x or 1 – 1/x2 = 1 – 1/x2.
Hence x + 1/x is a particular integral of (1). So we take

y = x + 1/x + 1/v         so that y1 = 1 – 1/x2 – v1/v
2. ...(2)

Using (2) in (1), we get

1 – 1
2 2

1
x

!
v
v

=
21 1 1 1 1 1 12

2 2
x x x

x x x
, − , − , −� ! � � ! � �. / . / . /
0 1 0 1 0 1v v

or    2 2
1 11
x

! !
v

= 2
2

1 1 1 12
2 2

x x
xx

, − , −� ! � !. / . /
0 1 0 1v

2

2
1 1 2 1 1
2

x x
x x

3 4, − , −! � � � �5 6. / . /
0 1 0 15 67 8v v

or 3
2 2

d x
dx x

, −! �. /
0 1

v
v = 1

2
, on simplification. ...(3)

Its  I.F. = e–(x/2 + 3/2x)dx = e x ex x x! ! ! !∃
2 24 3 2 3 2 4/ ( / ) log / / . Hence solution of (3) is

23/2 / 4xx e! ! ∃v c x e dxx� ! !z 12 3 2 42/ / . ...(4)

From (2), 1/v = y – x – 1/x      so that v = 1/(xy – x2 – 1). ...(5)
Hence from (4) and (5), the required solution is

23/2 / 4 2( ) /( 1)xx e xy x! ! ! ! ∃ c x e dxx� ! !z12 3 2 42/ / ,

EXERCISE
1. y1 = P(1 – xy) – y2, P is a function of x.

Hint. 1/x is a particular integral. The solution is{ / ( }1 2x y x e xPdx! !z = c x e dxxPdx
! z! !z 2

2. x(1 – x3)y1 = x2 + y – 2xy2, x2 is an integral. Ans. (x4 – x)/(y – x2) = c – 2x3/3
3. y1 = 1 + y2, tan x is an integral. Ans. y(c – tan x) = c tan x + 1.
4. y1 = 2x – (x2 + 1)y + y2, x2 + 1 is an integral.
5. x3y1 = x2y + y2 – x2, x is an integral. Ans. y(ce2/x – 1) = x + cx e2/x

6. y1 = x + y(1 – 2x) – y2(1 + x), 1 is an integral. Ans.  y = 1 + 1/(x + cex)
7. x(x – 1)y1 – (2x + 1)y + y2 + 2x = 0, x is a solution. Ans. y = (x2 + c)/(x + c)

8. y1 = x + [(1/x) – x3]y + xy2, x2 is a solution.
2 22 / 4 2 / 4( ) /(x xy x xe c x e dx∃ ! � 2Ans.

9. y1 = e2x – yex + e–xy2, ex is a solution. 2( )
x xx x e x ey e e c e dx! !3 4∃ ! �5 67 82Ans.
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5
Chebyshev Polynomials

5.1. Chebyshev Polynomials
The Chebyshev polynomials of first kind, Tn(x), and second kind, Un(x) are defined by

Tn(x) = cos (n cos–1 x) ... (1)
and Un(x) = sin (n cos–1 x) ... (2)
where n is a non-negative integer.

Remark. Chebyshev polynomials are also known as Tchebicheff, Tchebieheff or Tschebysheff.
5.2. Theroem. Tn(x) and Un(x) are independent solutions of Chebyshev’s equation

2 2 2 2(1 )( / ) ( / ) 0.x d y dx x dy dx n y! ! � # [Kanpur, 2005; Garhwal 2005]

Proof.  The Chebyshev’s equation is 2 2 2 2(1 )( / ) ( / ) 0x d y dx x dy dx n y! ! � #   ... (1)
To show that Tn(x) is a solution of (1) : By definition, we have

Tn(x) = cos (n cos–1x) ... (2)

∃              
1 1

2 1/ 2
1( ) cos ( cos ) sin ( cos )

(1 )n
d d

T x n x n x n
dx dx x

! ! !
# # ! % %

!

or             
1

2 1/ 2( ) sin ( cos )
(1 )n

d n
T x n x

dx x
!#

! ... (3)

and
2

2 1/ 2 1
2 ( ) ( ) [(1 ) sin( cos )]n n

d d d dT x T x n x n x
dx dx dxdx

! !& ∋# # !( )
∗ +

2 3/ 2 1 2 1/ 2 1
2 1/ 2

1 1(1 ) ( 2 ) sin ( cos ) (1 ) cos( cos )
2 (1 )

n x x n x x n x n
x

! ! ! !, −
# ! ! ! % � ! % % %. /

!0 1

Thus,       
2

2 ( )n
d T x
dx

2
1 1

2 3/ 2 2sin( cos ) cos ( cos ).
(1 ) 1

nx n
n x n x

x x
! !# !

! !
      ... (4)

Using (2), (3) and (4), we have
2

2 2
2(1 ) ( ) ( ) ( )n n n

d dx T x x T x n T x
dxdx

! ! �

   
1 2 1

2 1/ 2 sin( cos ) cos ( cos )
(1 )

nx
n x n n x

x
! !# !

!
1 1

2 1/ 2 sin( cos ) cos ( cos ) 0,
(1 )

nx
n x n n x

x
! !! � #

!
showing that Tn(x) is a solution of (1).

To show that Un(x) is a solution of (1) : Proceed as above. Left as an exercise for students.
To show that Tn(x) and Un(x) are independent solutions of (1) : We have, by definition

Tn(x) = cos (n cos–1 x) and Un(x) = sin (n cos–1 x).
∃ Tn(1) = cos (n cos–1 1) = cos (n × 0) = 1     and Un(1) = sin (n cos–1 1) = sin (n × 0) = 0.

5.1
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5.2 Chebyshev Polynomicals

Hence Un(x) cannot be expressed as a constant multiple of Tn(x). This shows that Tn(x) and
Un(x) are independent solutions of (1).

Remark. Two solutions u(x) and v(x) are said to be linearly independent if u(x) cannot be
expressed as a constant multiple of v(x) i.e., u(x) = k v(x), where k is a constant.
5.3. Orthogonal properties of Chebyshev polynomials.

To show that

(i)
1

21

,

/ 2, 0

, 0

0
( ) ( )

(1 )
m n

m n

m n

m n

T x T x
dx

x!

2

3 # 2

3 # #

4
5# 6

! 5
7

8   (ii) 
1 ( )

21

0,
( )

/ 2, 0
(1 ) 0, 0

m x
m n

U x U
dx m n

x m n
!

24
5# 3 # 26

! 5 # #7
8

[Kanpur 2011]
Proof. (i) We have, by definition
Tm(x) = cos (m cos–1 x) and  Tn(x) = cos (n cos–1 x).  ... (1)

∃ 1(cos ) cos ( cos cos ) cosmT m m!9 # 9 # 9 , 1(cos ) cos( cos cos ) cosnT n n!9 # 9 # 9   ... (2)

Let    
1

21

( ) ( )
.

(1 )
m nT x T x

I dx
x!

#
!

8 ... (3)

Putting cosx # 9  so that sindx d# ! 9 9  and using (2), (3), reduces to

0 cos cos ( sin )
sin

m n
I d

3

9 9
# ! 9 9

98        or               
0
cos cosI m n d

3
# 9 9 98 ... (4)

Case 1. Let m n2  so that ( ) 0.m n! 2  then, (4) gives

0 0

1 12 cos cos [cos( ) cos( ) ]
2 2

I m n d m n m n d
3 3

# 9 9 9 # � 9 � ! 9 98 8
0

1 sin( ) sin( ) 0
2

m n m n
m n m n

3� 9 ! 9, −# � #. /� !0 1
Case 2. Let 0.m n# 2  Then (4) gives

2

0 0 0

1 cos 2 1 sin 2
cos .

2 2 2 2
m m

I m d d
m

33 3 � 9 9 3, −# 9 9 # 9 # 9� #. /0 18 8
Case 3. Let m = n = 0. Then cos cos 1.m n9 # 9 #  Then (4) gives

0
0

(1) (1) [ ] .I dx
3

3# # 9 # 38
From cases 1, 2 and 3, the required result (i) follows.
Part (ii). We have, by definition

Um(x) = sin (m cos–1 x)                 and                   Un(x) = sin (n cos–1 x)   ... (1)

∃ 1(cos ) sin ( cos cos ) sin ,mU m m!9 # 9 # 9 1(cos ) sin( cos cos ) sin .nU n n!9 # 9 # 9  ... (2)

Let        
1

21

( ) ( )
.

1
m nU x U x

J dx
x!

#
!

8 ... (3)

Putting cosx # 9  so that sindx d# ! 9 9  and using (2), (3) gives
0 sin sin ( sin )

sin
m n

J d
3

9 9
# ! 9 9

98 or    
0

sin sinJ m n d
3

# 9 9 98 ... (4)

Case 1. Let m n2  so that ( ) 0.m n! 2  Then, (4) gives

0 0

1 12sin sin [cos( ) cos( ) ]
2 2

J m n d m n m n d
3 3

# 9 9 9 # ! 9! � 9 98 8
0

1 sin( ) cos( ) 0.
2

m n m n
m n m n

3! 9 � 9, −# ! #. /! �0 1
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Case 2. Let 0.m n# 2  Then (4) gives

      2

0 0 0

1 cos 2 1 sin 2
sin .

2 2 2 2
m m

J m d d
m

33 3 ! 9 9 3, −# 9 9 # 9 # 9! #. /0 18 8
Case 3. Let m = n = 0. Then sin sin 0.m n9 # 9 #  Hence (4) gives

     
0

(0) (0) 0.J d
3

# 9 #8
From cases 1, 2 and (3), the required result (ii) follows

5.4. Recurrence relations (formulae) [Kanpur 2011]
I. Tn + 1(x) – 2xTn(x) + Tn – 1(x) = 0.
II. (1 – x2) Tn:(x) = –nx Tn(x) + nTn – 1(x).
III. Un + 1(x) – 2x Un(x) + Un – 1(x) = 0.
IV. (1 – x2) Un:(x) = –nx Un(x) + nUn – 1(x).
Proof 1. We have, by definition       Tn(x) = cos (n cos–1 x) ... (1)

∃ 1(cos ) cos ( cos cos ) cosnT n n!9 # 9 # 9 ... (2)

so that         1 1(cos ) cos( 1) and (cos ) cos( 1)n nT n T n� !9 # � 9 9 # ! 9  ... (3)
We are to show that Tn + 1(x) – 2x Tn(x) + Tn – 1(x) = 0. ... (4)
Replacing x by cos9  in (4), we must now prove that

1 1(cos ) 2cos (cos ) (cos ) 0n n nT T T� !9 ! 9 9 � 9 # ... (5)

i.e.   cos( 1) 2cos cos cos( 1) 0,n n n� 9! 9 9 � ! 9 #  by (2) and (3)

i.e.,                  cos( 1) cos( 1) 2cos cos 0.n n n� 9� ! 9! 9 9 # ... (6)

Now, L.H.S. (6) 2cos cos 2cos cos 0,n n# 9 9 ! 9 9 #
which proves (6) and hence (4) is true.

II.  From (1), 1
2

( ) sin( cos )
(1 )

n
n

T x n x
x

! !: # ! %
!

       or           1
2

(cos ) sin( cos cos )
(1 cos )

n
n

T n !: 9 # 9 %
! 9

Thus,                                 (cos ) ( sin ) / sinnT n n: 9 # 9 9 ... (7)

We are to show that 2
1(1 ) ( ) ( ) ( ).n n nx T x nxT x n T x!

:! # ! � ... (8)

Putting cosx # 9  and using (3) and (7), (8) may be re-written as

2 sinsin cos cos cos( 1)
sin

n n
n n n n

9
9 # ! 9 9� ! 9

9
    or   sin sin cos( 1) cos cos .n n n9 9 # ! 9! 9 9 ...

(9)
R.H.S. of (9) cos( ) cos cosn n# 9! 9 ! 9 9 cos cos sin sin cos cosn n n# 9 9 � 9 9 ! 9 9

sin sinn# 9 9 = L.H.S. of (9),
which proves (9) and hence (8) is true.

III and IV. Proceed as above. Left as exercises for students.
5.5. Some theorems on Chebyshev polynomials

Theorem I. To show that   (i) 2 1/ 2 2 1/ 2( ) (1/ 2) [{ (1 ) } { (1 ) } ].n n
nT x x i x x i x# ; � ! � ! !

(ii) 2 1/ 2 2 1/ 2( ) ( / 2) [{ (1 ) } { (1 ) } ].n n
nU x i x i x x i x# ! ; � ! ! ! !
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Proof. (i) Putting cos ,x # 9  and using definition, we have

   1( ) cos( cos ),nT x n x!# 1cos( cos cos ) cos ( ) / 2in inn n e e! 9 ! 9# 9 # 9 # �

        (1/ 2) {( ) ( ) } (1/ 2) {(cos sin ) (cos sin ) }i n i n n ne e i i9 ! 9# ; � # ; 9� 9 � 9! 9

        2 1/ 2 2 1/ 2(1/ 2) [{cos (1 cos ) } {cos (1 cos ) } ]n ni i# ; 9� ! 9 � 9! ! 9

        2 1/ 2 2 1/ 2(1/ 2) [{ (1 ) } { (1 ) } ]n nx i x x i x# ; � ! � ! ! ,  as  cosx # 9

Part (ii) Putting  cos ,x # 9  and using definition, we have
1( ) sin( cos )nU x n x!#

1 1sin ( ) {( ) ( ) }
2 2

in in i n i nn e e e e
i i

9 9 9 ! 9# 9 # ! # !
1 {(cos sin ) (cos sin ) }
2

n ni i
i

# 9� 9 ! 9! 9

2 1/ 2 2 1/ 2[{cos (1 cos ) } {cos (1 cos ) } ]/ 2n ni i i# 9� ! 9 ! 9! ! 9

2 1/ 2 2 1/ 21 [{ (1 ) } { (1 ) } ]
2

n nx i x x i x
i

# � ! ! ! ! 2 1/ 2 2 1/2[{ (1 ) } { (1 ) } ]
2

n ni
x i x x i x

!
# � ! ! ! ! , as cosx # 9

Theorem II. To show that (i)
[ / 2]

2 2

0

!( ) ( 1) (1 )
(2 ) ! ( 2 ) !

n
r r n r

n r

n
T x x x

r n r
!

#
# < ! !

!

(ii) 
[( 1) / 2]

2 1/ 2 2 1

0

!( ) ( 1) (1 ) .
(2 1) ! ( 2 1) !

n
r r x r

n r

n
U x x x

r n r

!
� ! !

#
# < ! !

� ! !
Proof. (i) As in part (i) of Art. 5.5, we have

2 1/ 2 2 1/ 21( ) [{ (1 ) } { (1 ) } ]
2

n n
nT x x i x x i x# � ! � ! ! 2 1/2 2 1/2

0 0

1
{ (1 ) } { (1 ) }

2

n n
n n s s n n s s

s s
s s

C x i x C x i x! !

# #

, −
# < ! � < ! !. /

0 1

[Since by binomial theorem, we have

1 2 2
1 2 0

( ) ... ...
n

n n n n n n n n s s n n n n s s
s n ss

a b a C a b C a b C a b C b C a b! ! ! !

#
� # � � � � � � # < ]

∃
2 / 2

0
( ) (1/ 2) (1 ) {1 ( 1) }.

n
n n s s s s

n s
s

T x C x x i!

#
# ; < ! � ! ... (1)

But
0, if is odd

1 ( 1)
2, if is even

s s
s

4
� ! # 6

7
... (2)

Using (2), (1) reduces to 2 / 2

,
( ) (1 )n n s s s

n s
s even n

T x C x x i!

=
# < ! ... (3)

Since s is even in (3), we take s = 2r where r is an integer. Hence s n= > 2r n=
> / 2.r n=  Now, if n is even, r goes from 0 to n/2, while if n is odd, r goes from 0 to (n – 1)/2;
that is, in all cases, r goes from 0 to [n/2], where

/ 2, if is even
[ / 2]

( 1) / 2, if is odd.
n n

n
n n

4
# 6 !7

Hence with s = 2r and the above arguments, (3) reduces to

[ / 2]
2 2 2

20
( ) (1 )

n
n n r r r

n rr
T x C x x i!

#
# < !

[ / 2]
2 2

0

! (1 ) ( 1) ,
( 2 ) ! (2 ) !

n
n r r r

r

n
x x

n r r
!

#
# < ! !

!  as 2 2( ) ( 1)r r ri i# # !

Part (ii). As in part (ii) of Art. 5.5, we have
2 1/ 2 2 1/ 2( ) ( / 2) [{ (1 ) } { (1 ) } ]n n

nU x i x i x x i x# ! ; � ! ! ! !
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2 1/ 2 2 1/ 2

0 0
( / 2) { (1 ) } { (1 ) } ,

n n
n n s s n n s s

s ss s
i C x i x C x i x! !

# #

, −
# ! ; < ! ! < ! !. /

0 1
using binomial theorem

2 / 2

0
( / 2) (1 ) {1 ( 1) }.

n
n n s s s s

s
s

i C x x i!

#
# ! ; < ! ! ! ... (4)

But
0, if is even

1 ( 1)
2, if is odd

s s
s

4
! ! # 6

7
... (5)

Using (5), (4) reduces to 2 / 2

odd,
( ) (1 ) .n n s s s

n s
s s n

U x i C x x i!

=
# ! < ! ... (6)

Since s is odd in (6), we take s = 2r + 1, where r is an integer. Hence s n= > 2 1r n� =

> ( 1) / 2.r n= !  Now, if n is odd, r goes from 0 to (n – 1)/2, while if n is even r goes from 0
to (n – 2)/2; that is in all cases, r goes from 0 to [(n – 1)/2], where

( 1) / 2, if is odd
[( 1) / 2]

( 2) / 2, if is even.
n n

n
n n
!4

! # 6 !7
Hence with s = 2r + 1 and the above arguments, (6) reduces to

[( 1)/ 2]
2 1 2 1/ 2 2 1

2 1
0

( ) (1 )
n

n n r r r
n r

r
U x i C x x i

!
! ! � �

�
#

# ! < !
[( 1)/2]

2 1/2 2 1

0

!( 1) (1 )
(2 1)!( 2 1)!

n
r r n r

r

n
x x

r n r

!
� ! !

#
# < ! !

� ! !

[� 2 1 2( ) (–1)r r ri i i i� # ; #  and i2 = –1]

5.6. First few Chebyshev polynomials.
We have Tn(x) = cos (n cos–1 x) ... (1)

and Un(x) = sin (n cos–1 x) ... (2)
Putting n = 0 and 1 successively in (1), we get
T0(x) = cos (0 × cos–1 x) = cos 0 = 1 and T1(x) = cos (cos–1 x) = x.
Putting n = 2 in part (i) of theorem II of Art. 5.5, we have

1
2 2 2

2
0

2 !
( ) ( 1) (1 )

(2 ) ! (2 2 ) !
r r r

r
T x x x

r r
!

#
# < ! !

!
, as  [ / 2] / 2n n#   if n is even

= x2 – (1 – x2) = 2x2 – 1.
Next, putting n = 3 in part (i) of theorem II of Art. 5.5, we have

1
2 3 3

3
0

3!
( ) ( 1) (1 )

(2 ) ! (3 2 ) !
r r r

r
T x x x

r r
!

#
# < ! !

!
,   as [n/2] = (n – 1)/2, if n is odd

       = x3 – 3(1 – x2) . x = 4x3 – 3x.
and so on. Thus, we see that Tn(x) is a polynomial of degree n.

Now, putting n = 0 and 1 successively in (2), we get
1

0( ) sin(0 cos ) sin 0 0U x x!# ; # #     and   1 1 2 1/ 2 2 1/ 2
1( ) sin cos sin sin (1 ) (1 ) .U x x x x! !# # ! # !

Putting n = 2 in part (ii) of theorem II of Art 5.5, we have
0

2 1/ 2 2 2 1
2

0

2 !
( ) ( 1) (1 )

(2 1) ! (2 2 1)!
r r r

r
U x x x

r r
� ! !

#
# < ! !

� ! !   2 1/ 2 22(1 ) 2 (1 ).x x x x# ! % # !

Putting n = 3 in part (ii) of theorem II of Art. 5.5, we have
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5.6 Chebyshev Polynomicals

    
1

2 1/ 2 3 2 1
3

1

3!
( ) ( 1) (1 )

(2 1) !(3 2 1)!
r r r

r
T x x x

r r
� � !

#
# < ! !

� ! !

= 3 (1 – x2)1/2 . x2 + (–1)1 (1 – x2)3/2 2 2 1/ 2(4 1)(1 ) .x x# ! !   ( 0! 1#� )
Remark 1. We observe that Un(x) is not a polynomial. However, if we define the Chebyshev

polynomial of second kind by
* 1 2 1/ 2 2 1/ 2

1( ) sin{( 1)cos }(1 ) {1/(1 ) }/ ,u nU x n x x x U!
�# � ! # ! ... (3)

then *( )nU x  will be polynomial of degree n. This can be easily verified by using (3).

Remark 2. Putting cosx # 9  in (1) and (2), we have

(cos ) cosnT n9 # 9 and    (cos ) sin .nU n9 # 9    ... (4)
Thus, we conclude that Chebashev polynomials can be used to obtain explansions of

cos n9  and sin / sinn9 9  in terms of cos .9
5.7. Generating functions for Chebyshev polynomials.

(i)
2

02 1

1 ( ) 2 ( )
1 2

n
nn

t T x T x t
tx t

?

#

!
# � <

! !
(ii) 

2 1/ 2

12 0

(1 ) ( ) .
1 2

n
nn

x U x t
tx t

?

�
#

!
# <

! �
Proof. (ii) To prove the desired result we must show that in the expansion of L.H.S. in

ascending powers of t the coefficient of tn for 1n ≅  is 2Tn (x) and the coefficient of tn is T0(x)

for n = 0. Putting cos ( ) / 2i ix e e9 ! 9# 9 # � , we find that

L.H.S. of the required result

  
2 2

2
1 1

1 ( ) 1i i i i i i
t t

e e t t e t e t e t e t9 ! 9 9 ! 9 9 ! 9

! !
# #

! � � ! ! � %

2 21 1
(1 ) (1 ) (1 ) (1 )i i i i i

t t
e t e t e t e t e t9 ! 9 9 9 ! 9

! !
# #

! ! ! ! !

2 1 1 2

0 0
(1 ) (1 ) (1 ) (1 ) ( ) ( )i i i r i s

r s
t e t e t t e t e t

? ?
9 ! ! 9 ! 9 ! 9

# #
# ! ! ! # ! < <

2 ( )

0 0
(1 ) i r s r s

r s
t e t

? ?
! 9 �

# #
# ! < < = ( ) ( ) 2

0 0 0 0

i r s r s i r s r s

r s r s
e t e t

? ? ? ?
! 9 � ! 9 � �

# # # #
< < � < < ... (1)

Note that we need not consider the summation for the coefficient of t0. Taking r = 0, s = 0
in the first summation in (1), we find that

Coefficient in tn in L.H.S. of the required result (0 0) 0
01 ( ).ie e T x! 9# # # #   [�   T0(x) = 1]

For 1,n ≅  we get the coefficient of tn by taking r + s = n, (i.e., s = n – r, so that 0s ≅
> 0n r! ≅ > r n=  for the total coefficient of tn) in the first summation in (1) and r + s + 2
= n, (i.e., s = n – r – 2 so that 0s ≅ > 2 0n r! ! ≅ > 2r n= ! for the total coefficient of
tn), in the second summation in (1).

∃  the total coefficient of tn in (1)
2

{ ( )} { ( 2)}

0 0

n n
i r n r i r n r

r r
e e

!
! ! 9 ! ! ! 9

# #
# < ! <

2
2 ( 2) 2

0 0

n n
in ir i n ir

r r
e e e e

!
! 9 9 ! ! 9 9

# #
# < ! <

2 4[1 ...in i ie e e! 9 9 9# � � � to (n + 1) terms] ( 2) 2 4[1 ... to ( 1) terms]i n i ie e e n! ! 9 9 9! � � � !
2 1 2 1

( 2)
2 2

1 ( ) 1 ( )
1 1

i n i n
in i n

i i
e ee e

e e

9 � 9 !
! 9 ! ! 9

9 9
! !

# !
! !

[�  For geometric series, a + ar + ar2 + ... to n term { (1 )}/(1 )]na r r# ! !
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Chebyshev Polynomicals 5.7

   
( 2) ( 2)

2 21 1

in i n i n in

i i
e e e e

e e

! 9 � 9 ! ! 9 9

9 9
! !

# !
! !

( 2) ( 2)

21

in i n in i n

i
e e e e

e

! 9 ! ! 9 9 � 9

9
! � !

#
!

2 2

2
(1 ) (1 )

(1 )

in i in i

i
e e e e

e

! 9 9 9 9

9

! � !
#

!

2

2
(1 ) ( )

(1 )

i in in
in in

i
e e e e e

e

9 ! 9 9
9 ! 9

9

! �
# # �

!

2cos , as cos ( ) / 2in inn n e e9 ! 9# 9 9 # �

= 2Tn(x). [� 1 1( ) cos ( cos ) cos ( cos cos ) cosnT x n x n n! !# # 9 # 9 ]
From the above arguments, the required result follows.
Part (ii). To Prove the desired result we must show that in the expansion of L.H.S. in

ascending powers to t, the coefficient of tn for 1n ≅  is Un + 1(x).

Now, L.H.S. 
2 2

2 2

(1 ) (1 cos )
1 2 1 2 cos

x

tx t t t

! ! 9
# #

! � ! 9 �
, putting cosx # 9

2
sin sin

1 ( ) 1i i i i i it e e t e t e t e t e t9 ! 9 9 ! 9 9 ! 9
9 9

# #
! � � ! ! � ;

sin sin
(1 ) (1 ) (1 ) (1 )i i i i ie t e t e t e t e t9 ! 9 9 9 ! 9

9 9
# !

! ! ! ! !

1 1sin (1 ) (1 )i ie t e t9 ! ! 9 !# 9 ! !
0 0

sin ( ) ( )i r i s

r s
e t e t

? ?
9 ! 9

# #
# 9 < <

( )

0 0
sin i r s r s

r s
e t

? ?
! 9 �

# #
# 9 < < ... (2)

We get the coefficient of tn by taking r + s = n (i.e., s = n – r, so that 0s ≅ > 0n r! ≅
> r n=  for the total coefficient of tn)

∃ The total coefficient of tn in (2) [ ( )] 2

0 0
sin sin

n n
i r n r in r i

r r
e e e! ! 9 ! 9 9

# #
# 9 < # 9 < %

2

0
sin

n
in r i

r
e e! 9 9

#
# 9 < 2 4 6sin [1 ... to ( 1) terms]in i i ie e e e n! 9 9 9 9# 9 � � � � �

2 1

2
1 ( )sin

1

i n
in

i
ee

e

9 �
! 9

9
!

# 9
!

2 ( 1)(1 )
2 ( )

i i in i n

i i i
e e e e

i e e e

9 ! 9 ! 9 9 �

9 9 ! 9

! !
# ;

! !
( 1) 2 ( 1) ( 1) ( 1)[ 1]

2 2

i n i n i n i ne e e e
i i

! � 9 9 � � 9 ! � 9! !
# # sin( 1)n# � 9

1sin{( 1)cos }n x!# � = Un + 1(x) by definition,  as cosx # 9 > 1cos x!9 #
Form the above argument, we get the required result.

5.8. Special values of the Chebyshev polynomials.
To show that (i) Tn(1) = 1, Tn(–1) = (–1)n, T2n(0) = (–1)n,   T2n + 1(0) = 0.

  (ii) Un(1) = 0,   Un(–1) = 0, U2n(0) = 0, U2n +

1(0) = (–1)n.
Proof (i) We have, by definition Tn(x) = cos (n cos–1 x). ... (1)
Putting x = 1 in (1), we have Tn(1) = cos (n cos–1 1) = cos (n × 0) = 1.

Putting x = –1 in (1), we have   1( 1) cos[ cos ( 1)] cos( ) ( 1) .n
nT n n!! # ! # 3 # !

Replacing x by 0 and n by 2n in (1), we have
1

2 (0) cos(2 cos 0) cos{(2 ) ( / 2)} cos ( 1) .n
nT n n n!# # ; 3 # 3 # !

Replacing x by 0 and n by 2n + 1 in (1), we have
1

2 1(0) cos[(2 1)cos 0] cos{(2 1) ( / 2)} 0.nT n n!
� # � # � ; 3 #

Part (ii) Proceed as above yourself.
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5.8 Chebyshev Polynomicals

5.9. Illustrative Solved Examples.
Ex. 1. Show that Tm {Tn(x)} = Tn{Tm(x)} = Tnm(x).
Sol. We have, by definition

Tm {Tn (x)} = Tm [cos (n cos–1 x)]
    = cos [m cos–1 { cos (n cos–1 x)}], by definition again
    = cos (nm cos–1 x). ... (1)

Again,        Tn {Tm(x)} = Tn [cos (m cos–1 x)], by definition
    = cos [n cos–1 {cos (m cos–1 x)}], by definition again
    = cos (nm cos–1 x), ... (2)

Finally, Tmn(x) = cos (mn cos–1 x), by definition ... (3)
From (1), (2) and (3), we get the required result.

Ex. 2. Show that 2 1/ 2
1(1 ) ( ) ( ) ( ).n n nx T x U x xU x�! # !

Sol. By definition, Tn(x) = cos (n cos–1 x)   and Un (x) = sin (n cos–1 x) ... (1)

Putting cos ,x # 9  (1) reduces to (cos ) cosnT n9 # 9    and  (cos ) sin .nU n9 # 9  ... (2)

Replacing x by cos ,9  the required result takes the following form

1sin (cos ) (cos ) cos (cos )n n nT U U�9 9 # 9 ! 9 9 ,  i.e., sin cos sin( 1) cos sin ,n n n9 9 # � 9! 9 9  by (2) ... (3)

Now, R.H.S. of (3) sin( ) cos sinn n# 9 � 9 ! 9 9 sin cos cos sin cos sinn n n# 9 9 � 9 9 ! 9 9

  sin cos n# 9 9 = L.H.S. of (3)
This proves the required result.

Ex. 3. Show that 2 2 12 1/ 20

1 1
( ) 1 ( ) .

2 (1 )

n

r n
r

T x U n
x

�
#

& ∋
< # �( )( )!∗ +

[Kanpur 2007, 11]

Sol. Let cos .x # 9  Then by definition, we have

1
20 0

( ) cos(2 cos )
n n

rr r
T x r x!

# #
< # < 1

0
cos(2 cos cos )

n

r
r !

#
# 9Α 0

cos 2
n

r
r

#
# < 9

Now, 20
( )

n

rr
T x

#
< = Real part of 2

0
.

n
ri

r
e 9

#
< ... (1)

But 2 2 4

0
1 ... to ( 1) terms

n
ri i i

r
e e e n9 9 9

#
< # � � � �

2 11 ( )
1

i n

i
e

e

9 �

9
!

#
!

[� a + ar + ar2 + .... to n terms (1 )
1

na r
r

!
#

!
]

(2 2) 2 (2 2) 2

2 2
(1 ) (1 ) (1 ) (1 )

(1 ) (1 ) 1 1 ( )

i n i i n i

i i i i
e e e e

e e e e

� 9 ! 9 � 9 ! 9

9 ! 9 9 ! 9

! ! ! !
# #

! ! � ! �
{1 cos(2 2) sin(2 2) }{1 cos 2 sin 2 }

2 2cos 2
n i n i! � 9! � 9 ! 9� 9

#
! 9

, as cos sin
i

e i
Β 9

# 9 Β 9

∃  (1) reduces to

2
0

( )
n

r
r

T x
#
< 1 cos(2 2) cos 2 cos(2 2) cos 2 sin(2 2) sin 2

2(1 cos 2 )
n n n! � 9! 9� � 9 9� � 9 9

#
! 9

(1 cos 2 ) cos(2 2) (1 cos 2 ) sin(2 2) sin 2
2(1 cos 2 )

n n! 9 ! � 9 ! 9 � � 9 9
#

! 9
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1 sin(2 2) sin 21 cos(2 2)
2 1 cos 2

n
n

� 9 9, −# ! � 9�. /! 90 1 2
1 sin(2 2) 2sin cos1 cos(2 2)
2 2sin

n
n

� 9 % 9 9, −# ! � 9�. /90 1

      
1 sin(2 2) cos cos(2 2) sin1
2 sin

n n� 9 9! � 9 9, −# �. /90 1

1 sin{(2 2) }1
2 sin

n � 9 !9, −# �. /90 1

      
2 1

2 1/ 2 2 1/ 2
( )1 sin(2 1) 11 1

2 2(1 cos ) (1 )
nU xn
x
�, − , −� 9

# � # �. / . /
! 9 !0 1 0 1

[� cosx # 9  so that 1
2 1( ) sin[(2 1)cos cos ] sin(2 1) ]nU x n n!
� # � 9 # � 9

Ex. 4. Show that {Tn(x)}2 – Tn + 1(x)  Tn – 1(x) = 1 – x2.
Sol. We have, by definition Tn(x) = cos (n cos–1 x).

∃ 1(cos ) cos( cos cos ) cos .nT n n!9 # 9 # 9 ... (1)
With cos ,x # 9  the required result takes the form

2 2
1 1{ (cos )} (cos ) (cos ) 1 cos ,n n nT T T� !9 ! 9 9 # ! 9 i.e., 2 2cos cos( 1) cos( 1) sin ,n n n9! � 9 ! 9 # 9 ...(2)

L.H.S. of (2) 2cos cos( ) cos( )n n n# 9! 9� 9 9!9
2 2 2cos (cos sin )n n# 9 ! 9! 9 ,    as   cos (A + B) cos (A + B) = cos2A – sin2 A
2sin# 9 = R.H.S. of (2).

This proves the required result.

EXERCISE

1. Show that (i) 2 1/ 2
1(1 ) ( ) ( ) ( ).n n nx U x xT x T x�! # !

     (ii) ( ) ( ) 2 ( ) ( ).m n m n m nT x T x T x T x� !� # [Kanpur 2006]

2. Show that  (i) 2 1/ 2( ) ( ).
(1 )

m n
n

T x U x
x

: #
!

[Kanpur 2009]

  (ii) 2{Tn(x)}2 = 1 + T2n(x).
3. Show that 2 1/ 2{1/(1 ) } ( )nx U x!   satisfies  2 2(1 ) 3 ( 1) 0.x y xy n y:: :! � � ! #

[Kanpur 2006, 07]
4. Use Chebyshev’s differential equation and the equation of exercise 3 above to show

that
[ / 2]

2

0

( 1) !( ) ( 1) (2 )
2 !( 2 ) !

n
r n r

n r

n n r
T x x

r n r
!

#

! !
# < !

!

and
[( 1) / 2]

2 2 1

0

( 1) !( ) (1 ) ( 1) (2 ) .
!( 2 1) !

n
r n r

n r

n r
U x x x

r n r

!
! !

#

! !
# ! < !

! !
5. Show that the set of Chebyshev polynomials Tn(x) = cos (n cos–1 x), (n = 0, 1, 2 .....) is

orthogonal on the interval (–1, 1) with respect to the weight function 2 1/ 2( ) 1/(1 ) .p x x# !

6. Prove that (i) 
1 6 2 1/ 2

8
1

(1 ) ( ) 0.x x T x dx!

!
! #8   (ii) Tn(x) – 2x Tn – 1 (x) + Tn – 2(x) = 0.

  7.  Show that Chebyshev’s polynomials Tn(x) = cos (n cos–1 x) are solutions of
(1 – x2) (d2y/dx2) – x(dy/dx) + n2y = 0.

8. Prove that 
2[ /2]

0

( 1) ! (1 )( )
(2 )! ( 2 )!

m m n mn

n
m

n x x
T x

m n m

!

#

! !
# <

!
[Kanpur 2007]

9. Prove that Tn (x) – 2x Tn–1 (x) + Tn–2 (x) = 0 [Kanpur 2010]
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6
Beta and Gamma Functions

6.1. INTRODUCTION
In this chapter we propose to discuss the Gamma and Beta functions. These functions arise in

the solution of physical problems and are also of great importance in various branches of
mathematical analysis. The reader in strongly advised to master important results of these functions
in order to understand the topics coverved by this book.
6.2. Euler’s integrals. Beta and Gamma functions

Beta function. Definition

The definite integral
1 1 1

0
(1 ) ,m nx x dx! !!�    for m > 0,   n > 0

is known as the Beta function and is denoted by B(m, n) [read as ‘‘Beta m, n’’]. Beta function is
also called the Eulerian integral of the first kind.

Thus,
1 1 1

0
( , ) (1 ) , 0, 0! !# ! ∃ ∃� m nB m n x x dx m n ... (1)

Gamma function. Definition (Agra 2000)

The definite integral
0

,x n ie x dx
% ! !�  for 0n ∃

is known as the Gamma function and is denoted by ( )n& [read as ‘‘Gamma n’’]. Gamma function
is also called the Eulerain integral of the second kind.

Thus,                                 1

0
( ) , for 0

%
! !& # ∃� x nn e x dx n ... (2)

Remark. The integral (1) is valid only for m > 0 and n > 0 and the integral (2) is valid only
for n > 0, because it is for just these values of m and n that the above integrals are convergent.
6.3. Properties of Gamma function. (Agra 1999)

I. To show that (1) = 1.&

Proof. By the definition of Gamma function,    1

0
( ) , 0x nn e x dx n

% ! !& # ∃� ... (1)

From (1), 1 1

0
(1) xe x dx

% ! !& # � 00
1.x xe dx e

% %! !∋ (# # ! #) ∗�
II. To show that +(n 1) = n (n), n > 0.& & (Agra  1998, Rohilkhand  1997, Delhi  Physics (H)  2000)

Proof. We have from the definition of Gamma function,

1 1

0
( 1) x nn e x dx

% ! + !& + # � 0

n xx e dx
% !# �

6.1

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



6.2 Beta and Gamma Functions

                           1
0 0

( ) ( ) ( ) ,n x n xx e nx e dx
%%! ! !∋ (# ! ! !) ∗ � on integrating by parts

,
1

0
( 1) lim 0 .

n
x n

xx

xn n e x dx
e

% ! !

−%
& + # ! + + � ...(1)

Now, we have . /0
lim 0 as 0n x

x
x e n!

−
# ∃�

      2 1lim lim
1 ... ...

1! 2! ! ( 1)!

n n

x n nx x

x x
e x x x x

n n

+−% −%
#

+ + + + + +
+

  
1

1lim
1 1 1... ...

! ( 1)!1!
x

n n
x

n nx x
−%

!

#
+ + + + +

+

=

0

Also, by definition 1

0
( ) .x nn e x dx

% ! !& # �
Using the above facts (1) reduces to ( 1) ( ).n n n& + # &

III. If n is a non-negative integer, then (n +1) = n !.&

Proof. We known that for n > 0, we have (from property II)

( 1) ( )n n n& + # & ( 1 1)n n# & ! + ( 1) ( 1),n n n# ! & !  by property II again

( 1) ( 2) ( 2),n n n n# ! ! & !  by property II again

( 1) ( 2)...3 2 1 (1)n n n# ! ! 0 0 &

(by repeated use of property II and the fact that n is positive integer)

!, as (1) 1n# & #

Remark. Gauss’s Pi-function is denoted by ( )n1  and is defined by ( ) ( 1).n n1 # & +  When

n is +ve integer, ( ) !.n n1 #

6.4. Extension of definition of Gamma function (n)&  for n < 0.

When n > 0, we known that            ( 1) ( )n n n& + # &

so that          ( ) ( 1) / .n n n& # & + ... (1)

Let –1 < n < 0. Then –1 < n  2 n + 1 > 0 so that ( 1)n& +  is well defined by definition 6.2

and so R.H.S. of (1) is well defined. Thus ( )n&  is defined for –1 < n < 0 by (1). Similarly, ( )n&

is given by (1) for –2 < n < –1, –3 < n < –2 and so on. Thus (1) defines ( )n&  for all values of n
except n = 0, –1, –2, –3, ...

Property : To show that (n) = ,& %  if n is zero or a negative integer..

Proof. Putting n = 0 in (1), we get (0) (1) / 0& # &      2      (0)& # % ... (2)

Again, putting n = –1 in (1), we get (0)( 1) ,
1

&
& ! # # %

!
 by (2) ... (3)

Next putting n = –2 in (1) and using (3), we get
( 1)( 2) ,

2
& !

& ! # # %
!

and so on. Thus, we find that ( )n&  is %  if n is zero or negative integer..
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Beta and Gamma Functions 6.3

6.5. Theorem. To show that (1/2) = .& 3 [Agra 2000, 05; Meerut 2007]

Proof. From definition of gamma function,   1

0
( ) , 0t nn e t dt n

%
! !& # ∃� ... (1)

Replacing n by 1/2 in (1), we have         
21/ 2

0 0
(1/ 2) 2t ue t dt e du

% %
! ! !& # #� �     ... (2)

[Putting t = u2 so that dt = 2u du]

,
2

0
(1/ 2) 2 xe dx

%
!& # � and

2

0
(1/ 2) 2 .ye dy

%
!& # �   ...

(3)
[Limits remaining the same, we can write x or y as the variable in the integrand of (2)].
Multiplying the corresponding sides of two equations of (3), we get

2 22

0 0
[ (1/ 2)] x ye dx e dy

% %! !4 54 5& # 6 76 7
8 98 9� �

2 2( )

0 0
4 x ye dx dy

% %
! +# � �

2/ 2

0 0
4 r

r
e r d dr

3 %
!

:# #
# :� �

(on changing the variables to polar co-ordinates ( , ),r :  where cos ,x r# : siny r# :  so that

x2 + y2 = r2 and .dx dy r d dr# : The area of integration is the positive quadrant of xy– plane).

, 2[ (1/ 2)]&
2/ 2

0 0
2 2 re r dr d

3 % !; <# := >
? ≅� �

/ 2

0 0
2 ,ve dv d

3 % !; <# := >
? ≅� � putting r2 = v so that 2r dr = dv

Hence, 2[ (1/ 2)]&
/ 2

00
2 ve d

3 %!∋ (# ! :) ∗� Α Β
/ 2 / 2

00
2 2d

3 3# : # : # 3�
Thus, 2[ (1/ 2)]& # 3 so that (1/ 2) .& # 3 ... (4)

Remark. From (3) and (4),
2

0
2 xe dx

%
! # 3� ... (5)

6.6. Transformation of Gamma function.

Form I. To show that –�
1/nx

0

1
(n) = e dx, n > .

n

%
& Χ (Meerut 1996)

Proof. By definition, 1

0
( ) , 0.x nn e x dx n

% ! !& # ∃� ... (i)

Put  xn = t so that nxn – 1 dx = dt. Then (i) gives
1/

0

1( )
ntn e dt

n

% !& # �    or                   
1/

0

1( ) .
nxn e dx

n

%
!& # � ... (ii)

Particular Case. Put n = 1/2 in (ii). Then,                       
2

0
(1/ 2) 2 .xe dx

% !& # � ... (iii)

Form II. Show that – – , .� kx n 1
n0

(n)e x dx = , n > 0 k > 0
k

% &
(Meerut 1996)

Proof. By definition, 1

0
( ) , 0.x nn e x dx n

%
! !& # ∃� ... (i)

Put x = kt so that dx = k dt, Then (i) gives

1 1

0
( ) kt n nn e k t k dt

% ! ! !& # �          or 1

0
( ) n kx nn k e x dx

% ! !& # �
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6.4 Beta and Gamma Functions

or 1

0

( ) , 0, 0.kx n
n
n

e x dx n k
k

% ! ! &
# ∃ ∃�

Form III. To show that 
–

.4 5
6 7
8 9�

n 11

0

1(n) = log dx, n > 0
x

&   [Meerut 1997, Kumaun 2000,

Agra 2008; Garhwal 2003 Purvanchal 2005, Delhi Physics (H) 2001]

Proof. By definition,      1

0
( ) .x nn e x dx

%
! !& # � ... (i)

Put   e–x = t    so that    – e–x dx = dt. Then (i) gives
1 10 1

1 0

1 1( ) log log ,
n n

n dx dt
t t

! !
4 5 4 5& # ! #6 7 6 7
8 9 8 9� �    as   e–x = t    2     

1xe
t

#     2     1logx
t

#

,
11

0

1( ) log , 0.
n

n dx n
x

!
4 5& # ∃6 7
8 9�

Form IV. To show that – –

0

%

�
2x 2n 1(n) = 2 e x dx, n > 0.&

Proof. By definition, 1

0
( ) .x nn e x dx

%
! !& # � ... (i)

Put x = t2 so that dx = 2t dt. Then (i) gives
2 2 1

0
( ) ( ) 2

x t nn e t t dt! !& # �      or    
2 2 1

0
( ) 2 t nn e t dt

%
! !& # �   or   

2 2 1

0
( ) 2 .x nn e x dx

%
! !& # �

6.7. Solved examples based on Gamma function

Ex. 1. Evaluate (i) 4

0

xx e dx
%

!�                   (ii) 6 2

0
.xx e dx

% !�
Sol. (i) 4 5 1

0 0

x xx e dx e x dx
% %! ! !#� � (5)# & 4! 24# # , by definition of Gamma function

(ii) Let 6 2

0
.xI x e dx

%
!# �  Put 2x = t so that 1 .

2
dx dt#  Then, we have

6
7 1

70 0

1 1
2 2 2

t tt
I e dt e t dt

% %
! ! !4 5# 0 #6 7

8 9� � 7
1 (7),
2

# &  by definition of Gamma function.

 = (1/27) × 6! = 45/8

 Ex. 2. Compute (i) 1
2

4 5& !6 7
8 9

[Delhi, Physics (H) 2001; Agra 2006]  (ii) 3
2

4 5& !6 7
8 9

 (iii) 5 .
2

4 5& !6 7
8 9

(iv) Prove that ( 9 / 2) (32 ) / 945& ! # ! 3 [Kanpur 2004]

Sol. We know that ( ) (1 ) /n n n& # & + ... (i)

Part (i). Putting 1
2

n # !  in (1),
1 (1/ 2) 2 ,
2 ( 1/ 2) ( 1/ 2)

& 34 5& ! # # # ! 36 7 ! !8 9
as   

1
2

4 5& # 36 7
8 9

Part (ii). Putting n = –3/2 in (1), we have
1

3 2 12
2 ( 3/ 2) 3 2

4 5& !6 74 5 4 58 9& ! # # ! & !6 7 6 7!8 9 8 9
. /2 2

3
# ! ! 3

4 ,
3
3

#  using part (i)
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Beta and Gamma Functions 6.5

Part (iii). Putting n = – 
5
2

 in (i), 

3
5 2 42 ,
2 ( 5 / 2) 5 3

4 5& !6 7 4 534 5 8 9& ! # # ! 6 76 7 6 7!8 9 8 9
 using part (ii)

Part (iv) Left as an exercise
Ex. 3. If n is a positive integer, prove that 2 (1 1/ 2) 1 3 5...(2 1) .n n& + # 0 0 + 3

[Delhi Physics (H) 2002]
Sol. Using the formula ( 1) ( ), 0.n n n n& + # & ∃ ... (1)

1
2

n4 5& +6 7
8 9

1 1
2

n4 5# & ! +6 7
8 9

1 1
2 2

n n4 5 4 5# ! & !6 7 6 7
8 9 8 9

1 3 1
2 2

n n4 5 4 5# ! & ! +6 7 6 7
8 9 8 9

, using (1)

     1 3 3
2 2 2

n n n4 54 5 4 5# ! ! & !6 76 7 6 7
8 98 9 8 9

2 1 2 3 2 3
2 2 2

n n n! ! !4 5# 0 0&6 7
8 9

2 1 2 3 5 3 1...
2 2 2 2 2

n n! !
# 0 0 0 1

2
4 5&6 7
8 9

[By repeated application of (1) and noting that (2n – 1), (2n – 3), ... are all odd].

,
1
2

n4 5& +6 7
8 9

(2 1) (2 3)... 5 3 1 ,
2n

n n! ! 0 0
# 3    as   (1/ 2)& # 3

, 2 ( 1/ 2)n n& + #  1.3.5... (2 1)n ! 3

Ex. 4. If n is a positive integer and m > –1, prove that 
1

10

( 1) !(log ) .
( 1)

n
m n

n
nx x dx

m +

!
#

+�

Sol. Let 
1

0
(log ) .m nI x x dx# �  Put log x = – t so that x = e–t and dx = – e–t dt.

,
0
( ) ( ) ( )t m n tI e t e dt! !

%
# ! !� [� log 0 # ! %  and log 1 = 0]

( 1) ( 1) 1

0
( 1)n m t ne t dt

%
! + + !# ! � 1

( 1)( 1) ,
( 1)

n
n

n
m +

& +
# ! 0

+
 provided m + 1 > 0 i.e., m > –1

[using form II of Art. 6.6]

1
( 1) ! .

( 1)

n

n
n

m +

!
#

+
[� ( 1) !,n n& + # n being the integer]

Ex. 5 (a) With certain limitations on the values of a, b, m and n, prove that

2 2( ) 2 1 2 1

0 0

( ) ( ) .
4

ax by m n
m n

m n
e x y dx dy

a b

% %
! + ! ! & &

#� �
Sol. Let

2 2( ) 2 1 2 1

0 0

ax by m nI e x y dx dy
% % ! + ! !# � � ... (1)

or
2 22 1 2 1

1 2
0 0

ax m by nI e x dx e y dy I I
% %! ! ! !# ∆ # ∆� � ... (2)

where
2 2 1

1
0

ax mI e x dx
% ! !# � ... (3)

and
2 2 1

2
0

.by nI e y dy
% ! !# � ... (4)

Put ax2 = t, i.e., x = (t/a)1/2 so that / 2 .dx dt at#  Then (3) becomes
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6.6 Beta and Gamma Functions

(2 1) / 2
1

1
0 0

1
2 2

m
t t m

m
t dtI e e t dt
a at a

!% %! ! !∋ (# #Ε Φ) ∗� �
( ) / 2 ,mm a# &  by definition of Gamma function, taking  m > 0,  a > 0

Similarly, I2 ( ) / 2 ,nn b# &  if n > 0, b > 0

,  From (1) and (2), we obtain 1 2
( ) ( ) .
4 m n
m n

I I I
a b

& &
# ∆ #

Ex. 5 (b) Show that 
2 2 1

0

( )
2

ax n
n
n

e x dx
a

% ! ! &
#� (Purvanchal 2007)

[Hint. Same as I1 of Ex. 5(a)]

Ex. 6. Evaluate 
1

0 ( log )
dx

x!� [Meerut 1996, Agra 1998]

Sol. Put – log x = t so that x = e–t and dx = – e–t dt.

,
1 0 1/ 2

0 0( log )

t
tdx e dt

e t dt
x t

! % ! !

%

!
# #

!� � � (1/ 2) 1

0

te t dt
%

! !# � = (1/ 2)& # 3

Ex. 7. Evaluate 3/2

0
(1 )tt e dt

%
! !!�

Sol. 3/2

0
(1 )tt e dt

% ! !!�
1/ 2 1/ 2

0
0

(1 ) ( )
1/ 2 1/ 2

t tt te e dt
%

! !%! !∋ (4 5 4 5
# ! !Ε Φ6 7 6 76 7 6 7! !Ε Φ8 9 8 9) ∗

�

     (1/ 2) 1

0
0 2 te t dt

%
! !# + � = 2 (1/ 2) 2& # 3

Ex. 8. Evaluate  (i) 
0

nm a xx e dx
%

!�            (ii) 
0

.
nm xx e dx

% !�
Sol. Part (i). Put axn = t so that x = t1/n/a1/n = (t/a)1/n, dx = (1/a1/n) × (1/n) × t(1/n)–1 dt

,
0

nm a xx e dx
% !�

/
(1/ ) 1

1/0

1 1m n
t n

n
t e t dt
a na

% ! !4 5# 06 7
8 9� ( / ) (1/ ) 1

( / ) (1/ )0

1t
m n n

m n n
e t dt

na

!% + !
+

# 0�
[( 1) / ] 1

( 1) / 0

1 t m n
m n e t dt

n a

%
! + !

+
# � ( 1) /

1 1 ,m n
m

nn a +
+4 5# &6 7

8 9
 by definition of Gamma function

Part (ii). Put a = 1 in part (i) Ans. (1/ 2) (( 1) / )m n∆& +

Ex. 9. Show that 10

( 1) , 0
(log )

c

x c
x cdx c
c c

%

+

& +
# ∃� (Purvanchal 2006)

Sol. 
0 0

c
c x

x
x dx x c dx
c

% % !#� � log 1

0
[ ] ,e ccx e dx

% !# �  as log ,e cc e#  if c > 0

log( 1) 1

0
e ccx e dx

% !+ !# � 1
( 1)

(log )c
e

c
c +

& +
#   [� 1

0

( ) , 0, 0n kx
n
n

x e dx n k
k

%
! ! &

# ∃ ∃� ]
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Beta and Gamma Functions 6.7

Ex. 10. Show that   
2 2 2/ 22 ( )

0 0 0 0
[ (1/ 2)] 4 4 .x y re dx dy e r dr d

% % 3 %! + !& # # :� � � �
Sol. Let

2 2( )

0 0
4 .x yI e dx dy

% % ! +# � � ...(1)

,   
2

0 0
4 x yI e e dx dy

% %
! !# � �

2 2

0 0
2 2

xx ye dx e dy
% ! !4 54 5# 6 76 7

8 98 9� � 1 1 ,
2 2

4 5 4 5# & 0&6 7 6 7
8 9 8 9

 refer Art. 6.5

, 2[ (1/ 2)]I # & ... (2)

Again, put cos , sinx r y r# : # :  so that       x2 + y2 = r2        and .dxdy r d dr# :
Furthermore, the region of integration in integral I is the first quadrant of xy plane and so in

polar coordinates the corresponding limits will be r = 0 to r # %  and 0: #  to / 2: # 3  for the

same first quadrant. Hence 2/ 2

0 0
4 .rI e r d dr

3 %
!# :� �   ... (3)

From (1), (2) and (3), the required result follows

Ex. 11. Show that 2 2

0

1exp (2 ) exp ,
2

ax x dx a
%

! # 3�  where exp k = ek.

Sol. 2

0
exp (2 )ax x dx

%
!�

2 2 2 2 2 22 ( 2 ) ( )

0 0 0

ax x a x ax a a x ae dx e dx e dx
% % %! ! ! + ! !# # #� � �

  
2 2( )

0

a x ae e dx
% ! !# �

2 2

0
,a te e dt

%
!# � on putting x – a = t and dx = dt

,
22 2

0 0
exp(2 ) exp .tax x dx a e dt

% %
!! #� � ... (1)

Now,  1

0
( ) .u nn e u du

% ! !& # � 2 1/ 2

0
(1/ 2) .ue u du

%
! !& # � ... (2)

Putting u = t2 so that du = 2t in (2), we get       
2 1

0
(1/ 2) ( 2 )te t t dt

% ! !& # 0 0�
or      

2

0
2 te dt

%
!3 # � or

2

0 2
te dt

% ! 3
#� ... (3)

Using (3), (1) reduces to 2 2

0

1exp(2 ) exp .
2

ax x dx a
%

! # 3�

EXERCISE 6(A)

1. Prove that  (i) 4 3/ 2

0

3
128

xe x dx
% ! 3

#� (ii) 
2 2

0 4
xe x dx

% ! 3
#�

2. Show that 
815 2

2 1 3 5 7 9 11 13 15
34 5& ! #6 7 0 0 0 08 9 0 0 0

3. Show that if n is a positive integer, then 1 ( 1) 2
2 1 3 5 ... (2 1)

n n
n

n
! 34 5& ! + #6 7 0 0 !8 9

4. Prove that 
11 1

0

1 ( )log , 0, 0.
m

n
m
mx dx m n

x n

!
! &4 5 # ∃ ∃6 7
8 9� [Garhwal 2003]
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6.8 Beta and Gamma Functions

5. Prove that 
1/ 2

0
, 0

ste
dt s

st

!% 34 5# ∃6 7
8 9�

6. Prove that (i) 
3

0 3
xx e dx

% ! 3
#� (ii) 

24

0
3

4 (log 3)
x dx

% ! 3
#�

7. Prove that 10

( 1) , 1, 0.ax n
n
n

e x dx n a
a

%
!

+
& +

# ∃ ! ∃�
6.8. Symmetrical property of Beta function, i.e., B(m, n) = B(n, m).

Proof. By the definition of Beta function, we have
1 1 1

0
( , ) (1 )m nB m n x x dx! !# !�

1 1 1

0
(1 ) [1 (1 )] ,m nx x dx! !# ! ! !� as 

0 0
( ) ( )

a a
f x dx f a x dx# !� �

1 11 1 1 1

0 0
(1 ) (1 )m n n mx x dx x x dx! ! ! !# ! # !� � = B (n, m), by the def. of Beta function.

,            B(m, n) = B (n, m).
6.9. Evaluation of B(m, n) in an explicit form when m or n is a positive integer

By the definition of Beta function,
1 1 1

0
( , ) (1 ) .m nB m n x x dx! !# !� ... (1)

The following three cases arise:
Case 1. When only n is positive integer. If n = 1, (1) gives

  

1
1 11 1 1 1

0 0
0

1( ,1) (1 ) ,
m

m m x
B m x x dx x dx

m m
! ! ! ∋ (

# ! # # #Ε Φ
) ∗

� � ... (2)

showing that B(m, n) can be evaluated when n = 1.
Now, let n > 1. Then from (1), we have

1 1 1

0
( , ) (1 )n mB m n x x dx! !# !�

1
11 2

0
0

(1 ) ( 1) (1 ) .( 1)
m m

n nx x
x n x dx

m m
! !∋ (

# ! 0 ! ! ! !Ε Φ
) ∗

�
1 2

0

10 (1 ) ,m nn
x x dx

m
!!

# + !�      as     n > 1, so    1

0
lim(1 ) 0

m
n

x

xx
m

!

−
! #

1 ( 1) 1 ( 1) 1

0

1 (1 )m nn
x x dx

m
+ ! ! !!

# !�
1 ( 1, 1),n

B m n
m
!

# + !  by def. of Beta function

Thus, 1( , ) ( 1, 1).n
B m n B m n

m
!

# + ! ... (3)

Replacing m by m + 1 and n by n – 1 in (3), we get

1 1( 1, 1) ( 2, 2).
1

n
B m n B m n

m
! !

+ ! # + !
+ ... (4)

Using (4), (3) becomes 1 2( , ) ( 2, 2)
1

n n
B m n B m n

m m
! !

# 0 + !
+

... (5)

Since n is a positive integer and n > 1, after applying the above process repeatedly, we get
1 2 3 1( , ) ... ( 1, 1).

1 1 2
n n n

B m n B m n
m m m m n
! ! !

# 0 0 + !
+ + + !

... (6)
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Beta and Gamma Functions 6.9

Replacing m by m + n – 1 is (2), we get 1( 1, 1)
1

B m n
m n

+ ! #
+ !

... (7)

Using (7), (6) becomes       1 2 3 1 1( , ) ...
1 2 2 1

n n n
B m n

m m m m n m n
! ! !

# 0 0 0
+ + + ! + !

or
( 1)!( , )

( 1) ( 2)...( 2) ( 1)
n

B m n
m m m m n m n

!
#

+ + + ! + ! ... (8)

Case II. When only m is a positive integer.
Since the Beta function is symmetrical in m and n, i.e., B(m, n) = B(n, m), hence from case I,

interchanging m and n in (8), we get

( 1)!( , )
( 1) ( 2)...( 2) ( 1)

m
B m n

n n n n m n m
!

#
+ + + ! + ! ... (9)

Case III. When both m and n are positive integers.
Since n is a positive integer, so by case I, we have

        
( 1)!( , )

( 1) ( 2)...( 2) ( 1)
n

B m n
m m m m n m n

!
#

+ + + ! + !

[1. 2 . 3 ... ( 1)] ( 1)!
1. 2 . 3 .... ( 1) ( 1)( 2)...( 2) ( 1)

m n
m m m m m n m n

! !
#

! + + + ! + !
( 1)!( 1)!

( 1)!
m n

m n
! !

#
+ !

6.10. Transformation of Beta function

From I. To show that
1 1

0 0
( , ) , 0, 0

(1 ) (1 )

n m

m n m n
x dx x dxB m n m n

x x

! !% %

+ +
# # ∃ ∃

+ +� �

Proof. By definition,               
1 1 1

0
( , ) (1 ) .m nB m n x x dx! !# !� ... (1)

Put x = 1/(1 + t), so that dx = –dt/(1 + t)2. Then, from (1), we have
10

1 2
1 1( , ) 1

1( 1) (1 )

n

m
dt

B m n
tt t

!

+%

4 5# ! !6 7++ +8 9�
1

10

1 1
1( 1)

n

m dt
tt

!%

+
4 5# 6 7++ 8 9�

1

0 (1 )

n

m n
t dt

t

!%

+
#

+�

or
1

0
( , )

(1 )

n

m n
x dxB m n

x

!%

+
#

+� ... (2)

Since m and n are interchangeable in Beta function, (2) gives
1

0
( , ) .

(1 )

m

m n
xB m n dx

x

!%

+
#

+� ... (3)

Thus, (2) and (3) 2
1 1

0 0
( , )

(1 ) (1 )

n m

m n m n
x dx x dx

B m n
x x

! !% %

+ +
# #

+ +� � ... (4)

Deduction. Show that 
1 1

0

1( , )
2 (1 )

m n

m n
x xB m n dx

x

! !%

+

+
#

+� [Delhi 2008; Kanpur 2004]

Proof. Adding (3) and (4), we have
1 1

0
2 ( , )

(1 )

m n

m n
x xB m n dx

x

! !%

+

+
#

+� 2
1 1

0

1( , )
2 (1 )

m n

m n
x x

B m n dx
x

! !%

+

+
#

+�
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6.10 Beta and Gamma Functions

From II. To show that
1 11

0
( , ) .

(1 )

m n

m n
x xB m n dx

x

! !

+

+
#

+�     [Delhi Phy (H) 2002, Kumaun 2002]

Proof. From form I, we have

1

0
( , )

(1 )

m

m n
x dxB m n

x

!%

+
#

+�
1 11

0 1
.

(1 ) (1 )

m m

m n m n
x dx x dx

x x

! !%

+ +
# +

+ +� � ... (1)

Put x = 1/t, so that dx = –1/t2 dt. Then, we have
1 1 20

1 1

(1/ ) ( 1/ )
(1 ) (1 1/ )

m m

m n m n
x dx t t dt

x t

! !%

+ +

!
#

+ +� �
11

0 (1 )

n

m n
t dt

t

!

+
#

+�
11

0
.

(1 )

n

m n
x dx

x

!

+
#

+� ... (2)

Using (2), (1) reduces
1 11 1

0 0
( , )

(1 ) (1 )

m n

m n m n
x dx x dx

B m n
x x

! !

+ +
# +

+ +� �
1 11

0
.

(1 )

m n

m n
x x dx

x

! !

+

+
#

+�

From III. To show that
1

0

( , )
( )

m

m n m n
x dx B m n

ax b a b

!%

+
#

+� [Delhi Maths (H) 2006]

Proof. From form I, we have
1

0
( , )

(1 )

m

m n
xB m n dx

x

!%

+
#

+� ... (1)

Put x = (at)/b so that ( ) / .dx a dt b#  Then, (1) reduces to

1 1

0 0

( / ) ( / )( , )
(1 / ) ( )

m m
m n

m n m n
at b a b t dtB m n dt a b

at b at b

! !% %

+ +

∆
# #

+ +� �
1

0
.

( )

m
m n

m n
x dxa b

ax b

!%

+
#

+�

,
1

0

( , ) .
( )

m

m n m n
x dx B m n

ax b a b

!%

+
#

+�

From IV. To show that
2 1 2 1/ 2

2 20

sin cos ( , )
( sin cos ) 2

m n

m n m n
d B m n

a b a b

! !3

+

: : :
#

:+ :�
Proof. Put 2tanx # :  so that 22 tan sec .dx d# : : :  Then from form III above, we have

2 2 2/ 2

20

( , ) tan 2 tan sec
( tan )

m

m n m n
B m n d
a b a b

!3

+

:0 : 0 : :
#

: +�
2 2 2 2/ 2

2 2 2 2 20

sin (sin / cos ) (cos )2
cos cos ( sin cos )

m m n

m m n
d

a b

! +3

! +

: : : : :
#

: : :+ :�
2 1 2 1/ 2

2 20

sin cos2
( sin cos )

m n

m n
d

a b

! !3

+

: : :
#

: + :�

,         
2 1 2 1/ 2

2 20

sin cos ( , )
( sin cos ) 2

m n

m n m n
d B m n

a b a b

! !3

+

: : :
#

:+ :�

Form V. To show that 
1 11

0

(1 ) ( , )
( ) (1 )

m n

m n n m
x x dx B m n

x a a a

! !

+

!
#

+ +�
Proof. Put 

1
x t

a t a
#

+ +
so that

2(1 )
( )

dt
dx a a

t a
# +

+
. Then (1) reduces to

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Beta and Gamma Functions 6.11

1 11 1 1
20

1 ( 1)( , ) (1 )
1 ( )

m n
m nt t a a dt

B m n a a
t a t t a

! !
! ! ! +4 5 4 5# + 6 7 6 7+ + +8 9 8 9�

1 11

0

(1 )(1 )
( )

m n
n m

m n
t ta a dt

t a

! !

+

!
# +

+�
1 11

0

(1 )(1 )
( )

m n
n m

m n
x xa a dx

x a

! !

+

!
# +

+�

,
1 11

0

(1 ) ( , ) .
( ) (1 )

m n

m n n m
x x B m ndx

x a a a

! !

+

!
#

+ +�
Form VI. To show that 1 1 1( ) ( ) ( ) ( , )

a m n m n

b
x b a x dx a b B m n! ! + !! ! # !� , m > 0, n > 0

[Delhi Maths (H) 2009]

Proof. Put t b
x

a b
!

#
!

 so that .dt
dx

a b
#

!
 Then (1) gives

1 1

( , )
m na

b

t b a t dtB m n
a b a b a b

! !! !4 5 4 5# 6 7 6 7! ! !8 9 8 9�
1 1

1
1 ( ) ( )

( )

a m n
m n b

t b a t dt
a b

! !
+ !

# ! !
! � 1 1

1
1 ( ) ( )

( )

a m n
m n b

x b a x dx
a b

! !
+ !

# ! !
! �

,    1 1 1( ) ( ) ( ) ( , )
a m n m n

b
x b a x dx a b B m n! ! + !! ! # !� ... (1)

Remark 1. By putting a = 1, b = –1 in (1), we get

1 1 1 1

1
( 1) (1 ) 2 ( , )m n m nx x dx B m n+ ! + !

!
+ ! #� 1 ( ) ( )2

( )
m n m n

m n
+ ! &

#
& +

[Delhi Maths(H) 2002]

Remark 2. Putting b = 5, a = 7, m = 7, n = 4 in (1), we get

7 6 3 10

5
( 5) (7 ) 2 (7, 4).x x dx B! ! #�

Form VII. To show that (i) 
1 11

0

(1 ) 1 ( , )
{ ( ) }

m n

m n n m
x x dx B m n
a b a x a b

! !

+

!
#

+ !�

(ii) 
1 11

0

(1 ) 1 ( , ), 0, 0.
( ) ( )

m n

m n m n
x x dx

B m n m n
b cx b c b

! !

+
!

# ∃ ∃
+ +�       [Delhi Maths (H) 2006, 09]

Proof. By definition,          
1 1 1

0
( , ) (1 )m nB m n x x dx! !# !� ... (1)

Let   a b
a b

y x
! # !        so that               

( )
by

x
a b a y

#
+ !

  ... (2)

From (2), 2
[ ( ) ] ( )

{ ( ) }
b a b a y by b a

dx dy
a b a y

+ ! ! !
#

+ !
       or           2[ ( ) ]

ab dy
dx

a b a y
#

+ !
 ... (3)

Again from (2), we see that when x = 1, y = 1 and when x = 0, y = 0. Again, using (2), we have

(1 )1 1
( )

by a y
x

a by ay a b a
!

! # ! #
+ ! + ! ... (4)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



6.12 Beta and Gamma Functions

Using (2), (3) and (4), (1) gives
1 11

20

(1 )( , )
( ) ( ) { ( ) }

m n
by a y ab dy

B m n
a b a y a b a y a b a y

! !
; < ; <!

# = > = >
+ ! + ! + !? ≅ ? ≅�

1 1 1 11 1

0 0

(1 ) (1 )
{ ( ) } { ( ) }

m n m n
n m n m

m n m n
y y dy x x dxa b a b
a b a y a b a x

! ! ! !

+ +

! !
# #

+ ! + !� �

,
1 11

0

(1 ) 1 ( , ).
{ ( ) }

m n

m n n m
x x dx B m n
a b a x a b

! !

+

!
#

+ !� ... (5)

Part (ii). Interchanging a and b in (5),    
1 11

0

(1 ) 1 ( , )
{ ( ) }

m n

m n m n
x x dx B m n
b a b x a b

! !

+

!
#

+ !� ... (6)

Putting a – b = c, i.e., a = b + c in (6), we get

1 11

0

(1 ) 1 ( , ).
( ) ( )

m n

m n m n
x x dx B m n

b cx b c b

! !

+

!
#

+ +� ... (7)

6.11. Relation between Beta and Gamma Functions.

( ) ( )( , ) , 0, 0.
( )
m n

B m n m n
m n

& &
# ∃ ∃

& +
[Agra 2000, Meerut 2004, Delhi Maths (H) 2000, 04]

Proof. From form II of Art. 6.6, 1

0

( ) zx m
m
m

e x dx
z

% ! !&
# � ... (1)

or 1

0
( ) .m zx mm z e x dx

%
! !& # � ... (2)

Multiplying both sides of (2) by e–z zn – 1, 1 (1 ) 1 1

0
( ) .z n z x m n mm e z e z x dx

%! ! ! + + ! !& # �      ...

(3)
Integrating both sides of (3) w.r.t. z from 0 to % , we have

1 (1 ) 1 1

0 0 0
( ) z n z x m n mm e z dz e z x dx dz

% % %! ! ! + + ! !; <& # = >
? ≅� � �  or  (1 ) 1 1

0 0
( ) ( ) z x m n mm n e z dz x dx

% % ! + + ! !; <& & # = >
? ≅� �

[using definition of Gamma function on L.H.S. and interchanging the order of integration on R.H.S.]

or 1

0

( )( ) ( ) ,
(1 )

m
m n

m n
m n x dx

x

%
!

+
& +

& & #
+�  by (1)

              
1

0
( )

(1 )

m

m n
x dx

m n
x

!%

+
# & +

+� ( ) ( , ),m n B m n# & +  by form I of Art. 6.10.

,
( ) ( )( , ) .
( )
m n

B m n
m n

& &
#

& +

Deduction IA. To show that ( ) (1 ) / sin , 0 1n n n n& & ! # 3 3 Γ Γ

[Agra 1999, Delhi Maths (H) 2002, 08; Delhi Physics (H) 2000; Kanpur 2006]

Proof. We know that    
1

0
( , ) , 0, 0.

(1 )

n

m n
x dxB m n m n

x

!%

+
# ∃ ∃

+� ... (1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Beta and Gamma Functions 6.13

The relation between Beta and Gamma is ( , ) [ ( ) ( )] / ( )B m n m n m n# & & & + ... (2)

From (1) and (2),
1

0

( ) ( ) .
( )(1 )

n

m n
x dx m n

m nx

!%

+

& &
#

& ++� ... (3)

Taking m + n = 1 so that m = 1 – n, (3) reduces to
1

0

(1 ) ( ) , 0 1.
1 (1)

nx dx n n
n

x

!% & ! &
# Γ Γ

+ &�  as m > 0 2  1 – n > 0 2 n < 1; Also n > 0

But we know that
1

0 1 sin

nx dx
x n

!% 3
#

+ 3� and (1) 1.& #

, / sin (1 ) ( ), 0 1n n n n3 3 # & ! & Γ Γ
Deduction IB. To show that –(1+ ) (1 ) = ( ) / sin .& & 3 3n n n n
Proof. L.H.S. ( ) (1 ),n n n# & & !  as ( 1) ( )n n n& + # &

   ( ) / sin ,n n# 3 3  by deduction IA.

Deduction II. To show that (1/2) = .& 3

Proof. We have just proved that ( ) (1 ) / sinn n n& & ! # 3 3 ... (1)
Putting 1/ 2n #  in (1), we obtain

(1/ 2) (1 1/ 2) / sin( / 2)& & ! # 3 3 or 2[ (1/ 2)]& # 3 or (1/ 2)& # 3
Deduction III. To show that

2

0
.

2
xe dx

% ! 3
#� [Meerut 1996; Rohilkhand 1999, Delhi Maths (H) 2005]

Proof. From the definition of Gamma function, we have

1

0
( ) x nn e x dx

% ! !& # � and so 1/ 2

0

1 .
2

xe x dx
% ! !4 5& #6 7

8 9 � ... (1)

Let   x = t2 so that   dx = 2t dt. Then (1) becomes
2 2 1/ 2

0

1 ( ) 2
2

te t t dt
% ! !4 5& #6 7

8 9 �       or      
2

0

1 2 .
2

te dt
% !4 5& #6 7

8 9 �     or      
2

0

1 2 .
2

xe dx
% !4 5& #6 7

8 9 �   ...(2)

Also (1/ 2) .& # 3 ... (3)

From (2) and (3), we obtain
2

0
2 xe dx

%
! # 3� or

2

0
.

2
xe dx

% ! 3
#�

Deduction IV.   (i) ( 1, ) ( , )x
B x y B x y

x y
+ #

+
    (ii) ( , 1) ( , )y

B x y B x y
x y

+ #
+

                              [Delhi Maths (H) 2009]

Proof. (i) ( 1) ( )( 1, )
( 1 )
x y

B x y
x y

& + &
+ #

& + +
( ) ( ) ,

( ) ( )
x x y

x y x y
& &

#
+ & +

 as ( 1) ( )n n n& + # &

( , ).x
B x y

x y
#

+
(ii) Proceed as in part (i)

Deduction V. To show that for   m > 0, n > 0,   B(m, n) = B(m + 1, n) + B(m, n + 1).
Proof. Using results (i) and (ii) of deduction IV, we have [Agra 2006, 07]

( 1, ) ( , 1) ( , ) ( , )m n
B m n B m n B m n B m n

m n m n
+ + + # +

+ +
, )( , ) ( n

m n
B m n B m

m n
+

# #
+
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6.14 Beta and Gamma Functions

Deduction VI. To show that

(i) 
/ 2 2 1 2 1

0

( ) ( ) ( , )sin cos , 0, 0
2 ( ) 2

m n m n B m n
d m n

m n

3
! ! & &
: : : # # ∃ ∃

& +�
[Delhi Maths (H) 2008; Purvanchal 2005; Agra 2008]

(ii) 
/ 2

0

1 1
2 2sin cos , 1, 1

22
2

p q

p q

d p q
p q

3

+ +4 5 4 5& &6 7 6 7
8 9 8 9: : : # ∃ ! ∃ !

+ +4 5&6 7
8 9

� [Agra 1999]

(iii) 
/ 2 / 2

0 0
sin cosp pd d

3 3
: : # : :� �

1 3 5 ...( 1) ,
2 4 6 ... 2

p
p

0 0 ! 3
#

0 0
 if p is even +ve integer

2 4 6 ...( 1) ,
1 3 5 ...

p
p

0 0 !
#

0 0
 is p is odd +ve integer

(iv) 
/ 2

1 1

0

( / 2) ( / 2)sin cos
2

2

p q p q
d

p q

3
! ! & &
: : : #

+4 5&6 7
8 9

�

(v)
/ 2 / 21 1

0 0
sin cosp pd d

3 3
! !: : # : :� �

( / 2) (1/ 2)
12

2

p
p

& &
#

+4 5&6 7
8 9

( / 2) ,
12

2

p
p

3 &
#

+4 5&6 7
8 9

 as 1
2

4 5& # 36 7
8 9

Proof. (i) By definition of Beta function,
1 1 1

0
( , ) (1 )m nB m n x x dx! !# !�

Let 2sinx # :  so that 2sin cos .dx d# : : :  Then, we have

/ 2 2 2 2 1

0
, )( sin (1 sin ) (2sin cos )m nnB m d

3
! !# ! : : : :�    or    

/ 2 2 1 2 1

0

( , )sin cos .
2

m n B m n
d

3
! !: : : #�

,
/ 2 2 1 2 1

0

( ) ( )sin cos
2 ( )

m n m n
d

m n

3
! ! & &
: : : #

& +� ,     as ( ) ( )( , )
( )
m n

B m n
m n

& &
#

& +
  ... (1)

Part (ii). Let p = 2m – 1 and q = 2n – 1, so that m = (p + 1)/2 and n = (q + 1)/2.

Then (1) becomes
/ 2

0

1 1
2 2sin cos

22
2

p q

p q

d
p q

3

+ +4 5 4 5& &6 7 6 7
8 9 8 9: : : #

+ +4 5&6 7
8 9

� ... (2)

Part (iii) Replacing q by 0 in (2),
/ 2

0

1 1
2 2sin

22
2

p

p

d
p

3

+4 5 4 5& &6 7 6 7
8 9 8 9: : #

+4 5&6 7
8 9

� ... (3)

Next, putting p = 0 and q = p in (2),           
/ 2

0

1 1
2 2cos

22
2

p

p

d
p

3

+4 5 4 5& &6 7 6 7
8 9 8 9: : #

+4 5&6 7
8 9

� ... (4)
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Beta and Gamma Functions 6.15

Let p be even, say p = 2r. Then R.H.S. of (3) or (4)

2 1 1 1 1
2 2 2 2

2 2 2 ( 1)2
2

r r

r r

+4 5 4 5 4 5 4 5& & & + &6 7 6 7 6 7 6 7
8 9 8 9 8 9 8 9# #

+ & +4 5&6 7
8 9

1 3 3 1 1 1...
2 2 2 2 2 2

2 . ( 1) (2 3) ... 3 . 2 .1

r r

r r r

4 5 4 5 4 5 4 5! ! 0 0& &6 76 7 6 7 6 7
8 9 8 9 8 9 8 9#

! !

(2 1) (2 3)... 3 .1
(2 ) (2 2) (2 4)...6 . 4 . 2 2

r r
r r r

! ! 3
#

! !
1. 3 . 5 ... (2 3) (2 1) ,

2 . 4 . 6 ...(2 2) (2 ) 2
r r

r r
! ! 3

#
!

as 1
2

4 5& # 36 7
8 9

1. 3 . 5 ... ( 3) ( 1) ,
2 . 4 . 6 ...( 2) 2

p p
p p
! ! 3

#
!

as  p = 2r ... (5)

Next, let p = 2r + 1 i.e., odd +ve integer. Then R.H.S. of (3) and (4)

   
( 1) (1/ 2) ( 1)...3 . 2 .1

3 1 1 3 12 2. ...
2 2 2 2 2

r r r

r r r

& + & ! 3
# #

4 5 4 54 5& + + ! 0 36 7 6 76 7
8 9 8 98 9

2 . 4 . 6 ... (2 2) (2 ) 2 . 4 . 6 ...( 1)
1 . 3 . 5 .... (2 1) (2 1) 1. 3 . 5 ...

r r p
r r p

! !
# #

! + , ... (6)

since 2r + 1 = p. Thus from (3), (4), (5) and (6) the required results follow.
Part (iv) Let 2m = p and 2n = q so that m = p/2 and n = q/2. Then (1) becomes

/ 2 1 1

0

( / 2) ( / 2)sin cos
2

2

p q p q
d

p q

3
! ! & &
: : : #

+4 5&6 7
8 9

� ... (7)

Part (v) Replacing q by 1 in (7),             
/ 2 1

0

( / 2) (1/ 2)sin
12

2

p p
d

p

3
! & &
: : #

+4 5&6 7
8 9

� ... (8)

Next, replacing p by 1 and q by p, in (7),
/ 2 1

0

(1/ 2) ( / 2)cos
12

2

p p
d

p

3
! & &
: : #

+4 5&6 7
8 9

� ... (9)

From (8) and (9), the required results follow.
6.12. Solved Examples

Ex. 1. Evaluate the following Integrals :

(i)
1 4 2

0
(1 )x x dx!� (ii)

22

0
,

(2 )
x dx

x!�

(iii) 4 2 2

0
( )

a
y a y dy!� (iv)

2 3 1/ 3

0
(8 ) .x x dx!� [Agra 2000, 03]

Sol. We know that
1 1 1

0

( ) ( )(1 ) ( , )
( )

m n m n
x x dx B m n

m n
! ! & &

! # #
& +� ... (1)

Part. (i).
1 14 2 5 1 3 1

0 0
(1 ) (1 )x x dx x x dx! !! # !� �

(5) (3)
(5 3)

& &
#

& +
4 ! 2 ! 4! 2 1

7 ! 7 5 4! 6 105
∆

# # #
∆ ∆ ∆

Part. (ii) Let 
2 2 1/ 2

0
(2 ) .I x x dx!# !�  Let x = 2t, so that dx = 2dt, Then

  
1 2 1/ 2

0
(2 ) (2 2 ) (2 )I t t dt!# !�

1 12 1/ 2 3 1 1/ 2 1

0 0
4 2 (1 ) 4 2 (1 )t t dt t t dt! ! !# ! # !� �
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6.16 Beta and Gamma Functions

    
(3) (1/ 2) 2 ! (1/ 2) 64 24 2 4 2

5 3 1(3 1/ 2) 15(1/ 2)
2 2 2

& & &
# # #

& + 0 0 &

Part (iii) Let 4 2 2

0
( ) .

a
I y a y dy# !�  Let y2 = a2t, so that 

2
.

2 2
a dt a dt

dy
y t

# #  Then

1 2 2 2 2

0

( )( ) ( )
2
a dt

I a t a a t
t

# !�
6 61 13/ 2 1/ 2 (5 / 2) 1 (3/ 2) 1

0 0
(1 ) (1 )

2 2
a a

t t dt t t dt! !# ! # !� �

   
6 (5 / 2) (3/ 2)

2 (5 / 2 3 / 2)
a & &

# ∆
& +

6 6
3 1 1
2 2 2

2 3! 32
a a0 3 0 3 3

# ∆ #

Part (iv) Let 
2 3 1/3

0
(8 ) .I x x dx# !�  Put x3 = 8t or x = 2t1/3 so that dx = (2/3) × t–2/3 dt

,
1 1 11/3 1/3 2/3 1/ 3 1/3 (2 / 3) 1 (4/3) 1

0 0 0

8 8(2 )(8 8 ) (2 / 3) (1 ) (1 )
3 3

I t t t dt t t dt t t dt! ! ! !# ! # ! # !� � �
8 (2 / 3) (4 / 3) 8 (1 1/ 3) (1 1/ 3) 8 1 1 11
3 (2 / 3 4 / 3) 3 (2) 3 3 3 3

& & & ! & + 4 5 4 5# ∆ # ∆ # & ! &6 7 6 7& + & 8 9 8 9 , as   ( 1) ( )n n n& + # &

8 16 ,
9 sin( / 3) 2 3

3 3
# ∆ #

3
 as (1 ) ( )

sin
n n

n
3

& ! & #
3

Ex. 2. Show that (a)
1

0

(1/ ) .
(1/ 2 1/ )(1 )n

dx n
n nx

& 3
# 0
& +!

� [Meerut 2004, Purvanchal  2006]

(b) 
1

4 1/ 20

(1/ 4)
4 (1/ 2 1/ 4)(1 )

dx
x

3 &
# 0

& +!� [Meerut 2007]

Sol. (a) Let 
1

1/ 20
.

(1 )n
dx

I
x

#
!�  Putting xn = so that x = t1/n and dx = (1/n)t(1/n)–1 dt, we get

          
1 1(1/ ) 1 (1/ ) 1 (1/ 2) 1

1/ 20 0

1 1 1 1 1 1(1 ) ,
2(1 )

n nI t dt t t dt B
n n n nt

! ! ! 4 5# 0 # ! # 6 7! 8 9� �

             
1 (1/ ) (1/ 2) (1/ ) .

(1/ 1/ 2) (1/ 1/ 2)
n n

n n n n
& & 3 &

# #
& + & +

(b) Taking n = 4 in part (a), we get the required result.

Ex. 3. Show that 1/0
.

sin( / )( )

a

n n n
dx

n na x
3

#
3!� [Meerut 1998]

Sol. Let 1/0
.

( )

a

n n n
dx

I
a x

#
!�  Putting xn = an t so that x = at1/n and dx = a(1/n) t(1/n)–1 dt, gives

      
1 1(1/ ) 1 (1/ ) 1 1/

1/0 0

1 1 (1 )
( )

n n n
n n n

a
I t dt t t dt

n na a t
! ! !# # !

!� �
1 (1/ ) 1 (1 1/ ) 1

0

1 (1 )n nt t dt
n

! ! !# !�
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        1 1 1,1 ,B
n n n

4 5# !6 7
8 9

1 1 1 11 1
1

1 11

n n n n
n n

n n

4 5 4 5 4 5 4 5& & ! & & !6 7 6 7 6 7 6 7
8 9 8 9 8 9 8 9# 0 #
4 5& + !6 7
8 9

1 .
sin( / )n n

3
# 0

3

[� ( ) (1 ) / sinp p p& & ! # 3 3 ]

Ex. 4. Show that 
60

1 1 2,
6 3 31 3 3

x dx
B

x

% 34 5# #6 7
+ 8 9� [Delhi Maths (H) 2007, 08]

Sol. Let 60 1
x dx

I
x

%
#

+� Putting x6 = t so that x = t1/6 and dx = (1/6)t–5/6 dt, we get

       
1/16 5/6 2 / 3

0 0

(1/ 6) 1
1 6 1

t t t dtI
t t

! !% %0
# #

+ +� �
(1/3) 1

1/ 3 2 /30

1
6 (1 )

t dt
t

!%

+
#

+�

         
1 1 2,
6 3 3

B 4 5# 6 7
8 9 �

1

0
( , )

(1 )

m

m n
x dx B m n

x

!%

+
#

+�

         
1 (1/ 3) (2 / 3) 1 1 11
6 (1/ 3 2 / 3) 6 3 3

& & 4 5 4 5# ∆ # & & !6 7 6 7& + 8 9 8 9

         
1 3
6 sin ( / 3) 9

3 3
# ∆ #

3 � ( ) (1 )
sin

n n
n
3

& & ! #
3

         ( 3) / 9.# 3

Ex. 5. Evaluate (i)
4 5

150

(1 )
(1 )

x x dx
x

% +
+� (ii)

1 1

10 (1 )

m n

m
x x dx

x

! !%

+

!
+�

(iii) 
8 6

240

(1 ) .
(1 )
x x dx

x

% !
+� [Garhwal 2000]

Sol. Part (i) 
4 5 4 9

15 15 150 0 0

(1 )
(1 ) (1 ) (1 )

x x x dx x
dx dx

x x x

% % %+
# +

+ + +� � �
5 1 10 1

5 10 10 50 0(1 ) (1 )
x dx x dx

x x

! !% %

+ +
# +

+ +� �

= B (5, 10) + B (10, 5), as 
1

0
( , )

(1 )

m

m n
x dx B m n

x

!%

+
#

+�
= 2B (5, 10), as B (5, 10) = B (10, 5)

(5) (10) 2 4 ! 9 ! 12 .
(5 10) 14 ! 5005

& & ∆ ∆
# # #

& +

Part (ii) 
1 1

0 (1 )

m n

m n
x x dx

x

! !%

+

!
+�

1 1

0 0(1 ) (1 )

m n

m n m n
x dx x dx

x x

! !% %

+ +
# !

+ +� �
= B (m, n) – B (n, m) = 0. [� B(m, n) = B(n, m)]

Part (iii) 
8 6

240

(1 )
(1 )

x x dx
x

% !
+�

8 14

24 240 0(1 ) (1 )
x dx x dx

x x

% %
# !

+ +� �
9 1 15 1

9 15 15 90 0(1 ) (1 )
x dx x

x x

! !% %

+ +
# !

+ +� �
= B (9, 15) – B (15, 9) = 0 [� B(9, 15) = B (15, 9)]
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6.18 Beta and Gamma Functions

Ex. 6. Show by means of Beta function, that 1 , 0 1
sin( ) ( )

z

t

dx
z x x t!Η !Η

3
# Γ Η Γ

3 Η! !�

Sol. Let 1( ) ( )

z

t

dx
I

z x x t!Η !Η
#

! !� ... (1)

Putting x – t = (z – t)y so that x = t + (z – t) y and dx = (z – t)dy, (1) becomes

1

10

( )
[ ( ) ] [( ) ]

z t dy
I

z t z t y z t y!Η !Η
!

#
! ! ! !�

1

1 10

( )
( ) (1 ) ( )

z t dy
z t y z t y!Η !Η !Η !Η

!
#

! ! !�
1 11 (1 ) 1 1

0 0
(1 ) (1 )y y dy y y dyΗ! Η !Η ! Η!# ! # !� � (1 , ),B# !Η Η  by definition of Beta function.

(1 ) ( )
(1 ) sin

& !Η & Η 3
# #

& !Η +Η 3 Η , as ( ) (1 )
sin

p p
p

3
& & ! #

3

Ex. 7. Prove that (a) 
/ 2

0

1 1 3 2tan
2 4 4 2

d
3 34 5 4 5: : # & & #6 7 6 7

8 9 8 9� [Kumaun 2000 Meerut 2004]

(b) 
/ 2

0
tan sec , 1 1.

2 2
n n

x dx n
3 3 3

# ! Γ Γ�

Sol. Part (a) 
/ 2

0
tan d

3
: :�

1/ 2/ 2 / 2 1/ 2 1/ 2

0 0

sin sin cos
cos

d d
3 3 !:4 5# : # : : :6 7:8 9� �

1 1/ 2 1 1/ 2
2 2
1/ 2 1/ 2 22

2

+ !4 5 4 5& &6 7 6 7
8 9 8 9#

! +4 5&6 7
8 9

Refer deduction VI (ii) of Art. 6.11.

(3 / 4) (1/ 4) 1 3 1
2 (1) 2 4 4

& & 4 5 4 5# # & &6 7 6 7& 8 9 8 9
1 1 1 1 21
2 4 4 2 sin( / 4) 2

3 34 5 4 5# & & ! # #6 7 6 7 38 9 8 9

Part (b) 
/ 2 / 2

0 0
tan sin cosn n nx dx x x dx

3 3 !#� �
1 1

2 2
22

2

n n

n n

+ !4 5 4 5& &6 7 6 7
8 9 8 9#

! +4 5&6 7
8 9

1 1 11
2 2 2

n n+ +4 5 4 5# & & !6 7 6 7
8 9 8 9

1
12 2cossin 2sin

22 2 2
nn n

3 3 3
# # #

3+ 3 34 5 4 53 +6 7 6 7
8 9 8 9

( / 2) sec( / 2),n# 3 ∆ 3   where  –1 < n < 1. [� ( ) (1 ) / sinp p p& & ! # 3 3 ]

Refer deduction VI (ii) of Art. 6.11
Here (1 + n)/2 > 0 and (1 – n)/2 > 0
2 n > –1 and n < 1 2  –1 < n < 1.
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Beta and Gamma Functions 6.19

Ex. 8. If p > 0, q > 0, m + 1 > 0, n + 1 > 0, prove 
1

0

1( ) 1,
nq mp m q q n p m

x p x dx B n
q q

+ + 4 5+
! # +6 7

8 9�

Sol. Let
0

( )
p m q q nI x p x dx# !� ... (1)

Putting xq = pqt so that x = pt1/q and dx = (p/q) t(1/q) – 1 dt, (1) reduces to

1 / (1/ ) 1

0
( ) ( ) ( / )t q m q q n qI pt p p t p q t dt!# !�

1 ( / ) (1/ ) 1 ( 1) 1

0
(1 )

m nq
m q q np p p

t t dt
q

+ ! + !0 0
# !�

  
1 11 1, 1 1,

nq m nq mp m p m
B n B n

q q q q

+ + + +4 5 4 5+ +
# + # +6 7 6 7

8 9 8 9

Ex. 9. Compute 
4 42

0 0
.x xI x e dx e dx

% %! !# 0� �
Sol. Putting x4 = t so that x = t1/4 and dx = (1/4) t – 3/4 dt, we get

1/ 4 2 3/4 3/ 4

0 0

1 1( )
4 4

t tI t e t dt e t dt
% %! ! ! !4 5# 06 7

8 9� � 1/ 4 3/ 4

0 0

1
16

t te t dt e e dt
% %

! ! ! !# 0� �

  (3/4) 1 (1/ 4) 1

0 0

1
16

t te t e t dt
% %! ! ! !# 0� �

1 3 1 1 1 11
16 4 4 16 4 4

4 5 4 5 4 5 4 5# & & # & & !6 7 6 7 6 7 6 7
8 9 8 9 8 9 8 9

   
1 2 .

16 sin( / 4) 16
3 3

# 0 #
3

� ( ) (1 )
sin

n n
n
3

& & ! #
3

Ex. 10. Show that 
/ 2 / 2

0 0
sin . .

sin
d

I d
3 3 :

# : : # 3
:� � [Delhi B.Sc. (Prog.) 2009]

[Garhwal 2002, Meerut 1998, Delhi Maths (H) 2005, 08]

Sol. We know that    
/ 2

0

1
2sin

22
2

p

p

d
p

3

+4 5& 36 7
8 9: : #

+4 5&6 7
8 9

� ... (1)

/ 2 / 21/ 2 1/ 2

0 0
sin sinI d d

3 3
!# : :0 : :� �

1/ 2 1 1/ 2 1
2 2 ,

1/ 2 2 1/ 2 22 2
2 2

+ ! +4 5 4 5& 3 & 36 7 6 7
8 9 8 9# 0

+ ! +4 5 4 5& &6 7 6 7
8 9 8 9

 using (1)

(3 / 4) (1/ 4) (1/ 4)
2 (5 / 4) 2 (3/ 4) 4 (1 1/ 4)
& 3 & 3 3&

# 0 #
& & & +

(1/ 4) .
4 (1/ 4) (1/ 4)

3&
# # 3

∆ ∆&

EXERCISE 6 B

1. Prove that (a) 
1

3 1/ 30

2
(1 ) 3 3

dx
x

3
#

!� (b) 
1

1/0 sin( / )(1 )n n
dx

nx
3

#
3!�

(c) 
21 1/

0

{ (1/ )}(1 )
2 (2 / )

n n n
x dx

n
&

! #
&� (d) 

1 1

0

1 ! ( / )(1 )
( 1 / )

m k n n m k
x x dx

a n m k
! &

! #
& + +�
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6.20 Beta and Gamma Functions

(e) 
1 1 2 1

0

1 1(1 ) ,
2 2

m nx x dx B m n! ! 4 5! # 6 7
8 9� [Garhwal 2003] (f) 

1

40

(1/ 4) (1/ 2)
4 2 (3/ 4)(1 )

dx

x

& &
#

&+
�

(g) 
11

20

{( 1) / 2}
2 ( / 2)(1 )

nx dx n
nx

! 3 & !
#

&!
� (h) 

1 2
40

1 [ (1/ 4)]
6 2(1 )

dx

x
# &

3!
�

[Delhi Math (H) 2003, Meerut 2007]

2. Prove that (a) 
1/ 41

0

1 5 31 ,
4 4 2 2

dx B
x

34 5 4 5! # #6 7 6 7
8 9 8 9�     (b)

0

1 1, .
2 2(1 )

dt
B

t t

% 4 5# # 36 7
+ 8 9�

3. Show that 
1

20

1. 3 . 5 ... ( 1)
2 . 4 . 6 ... 2(1 )

nx dx n
nx

! 3
# ∆

!
� or     2 . 4 . 6 ...( 1)

1. 3 . 5 ...
n

n
!

according as n is even or odd positive integer.
4. Show that if p and q are positive, then

/ 2 2 1 2 1

0

( ) ( )( , ) 2 cos sin
( )

p q p q
B p q d

p q

3
! ! & &

# : : : #
& +�  and deduce that 

2

0
.

2
xe dx

3 ! 3
#�

5. Prove that (i) B(l, m) B(l + m, n) = B(m, n) B(m + n, l) = B(n, l) B(n + l, m).

(ii) B(l, m) B(l + m, n) B(l + m + n, p) 
( ) ( ) ( ) ( )

( )
l m n p

l m n p
& & & &

#
& + + +

(iii) l B(l, m + l) = mB (l + l, m). [Agra 2005]

6. Prove that 1 1 1( ) ( ) (2 ) ( , )
a m n m n

a
a x a x dx a B m n! ! + !

!
+ ! #�

7. Prove 
1 1 1 1

1
(1 ) (1 ) 2 ( , )p q p qx x dx B p q! ! + !

!
+ ! #�

8. Using the integral
1

0
,0 1,

1 sin

nx dx n
x n

!% 3
# Γ Γ

+ 3�  prove that ( ) (1 ) / sin ,n n n& & ! # 3 3

0 < n < 1 Hence obtain value of (1/ 2).&

9. Prove that 
1 1 11

1

( 1) (1 ) 2 ( , ), 0, 0
3( 2)

a b a b

a b
x x dx B a b a b

ax

! ! + !

+!

+ !
# ∃ ∃

+�
10. Show that the perimeter of a loop of the curve cosn nr a n# :  can be expressed as

(1/ ) 1( / ) 2 { (1/ 2 ) / (1/ )}na n n n!∆ & &

11. Show that the area enclosed by the curve x4 + y4 = 1 is [ 2(1/ 4)] / 2 .& 3

12. With the help of double integral, prove that 
2

0
/ 2.xe dx

% ! # 3�
[Delhi Maths (H) 2007]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Beta and Gamma Functions 6.21

6.13. Legendre-Duplication Formula.  2 1
1( ) (2 ), 0.
2 2 nn n n n

!
34 5& & + # & ∃6 7

8 9
[Delhi Maths (H) 2005, 07, Delhi Phy (H) 2002 Agra 2000, 01, 02, 03, 06, 08; Meerut 1999]

Proof. We know that ( ) ( )( , ) ,
( )
m n

B m n
m n

& &
#

& +
 where m > 0, n > 0. ... (1)

Putting m = n in (1), we get 2( , ) [ ( )] / (2 )B n n n n# & & ... (2)

By the definition of the Beta function,
1 1 1

0
( , ) (1 ) .n nB n n x x dx! !# !� ... (3)

Putting 2sinx # :  so that 2sin cos ,dx d# : : :  (1) gives
/ 2 2 1 2 1

0
( , ) (sin ) (1 sin ) 2sin cosn nB n n d

3 ! !# : ! : 0 : : :�
/ 2 2 1

0
2 (sin cos ) n d

3 !# : : :�
2 1/ 2 / 2 2 1

2 20 0

sin 2 12 sin 2
2 2

n
n

n
d d

!3 3 !
!

:4 5# : # : :6 7
8 9� � 2 1

2 2 0

1 sin
22

n
n

d3
!

!
Ι

# Ι� 2 1
2 1 0

1 sin
2

n
n d

3
!

!
# Ι Ι�

[On putting 2: # Ι  and ( ) / 2d d: # Ι ]
/ 2 2 1

2 1 0

1 2 sin ,
2

n
n

d
3 !

!
# ∆ Ι Ι�              as       

2

0 0
( ) 2 ( )

a a
f x dx f x dx#� �    when   f(2a – x) = f(x)

/ 2 2 1 0
2 2 0

1 sin (cos )
2

n
n d

3
!

!
# Ι Ι Ι� 2 2

2 1 1 0 1
1 2 2

2 1 0 22 2
2

n

n

n!

! + +4 5 4 5& 0&6 7 6 7
8 9 8 9#

! + +4 5&6 7
8 9

,       
2 1
1 ( )( , ) ,

( 1/ 2)2 n
n

B n n
n!

& 3
#

& +
 as 1

2
4 5& # 36 7
8 9

... (3)

Equating two values of B (n, n) given by (2) and (3), we obtain

Α Β2
2 1

( ) 1 ( )
(2 ) ( 1/ 2)2 n

n n
n n!

& & 3
#

& & +
or       2 1( ) ( 1/ 2) (2 ).

2 nn n n
!
3

& & + # & ... (4)

Deduction 1. To show that 2 1
( )( , ) , 0

2 ( 1/ 2)n
nB n n n

n!

3 &
# ∃

& +
Proof. From (3), we get the required result.

Deduction II For all positive real values of p, 1 22 ( 1).
2 2

p p p
p

+ +4 5 4 5& & # 3 & +6 7 6 7
8 9 8 9

Proof. Putting 2n – 1 = p so that ( 1) / 2n p# +  in (4), we get

1 1 1 ( 1)
2 2 2 2 p

p p
p

+ + 34 5 4 5& & + # & +6 7 6 7
8 9 8 9

   or 1 22 ( 1).
2 2

p p p
p

+ +4 5 4 5& & # 3 & +6 7 6 7
8 9 8 9

Deduction III. When n is positive integer, to show that

2
1 (2 )! .
2 2 !n

n
n

n
4 5& + # 36 7
8 9

[Delhi Maths (H) 2003]
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6.22 Beta and Gamma Functions

Proof. Let n be positive integer, then           
(2 ) (2 1)! (2 ) (2 1) ! (2 ) !
( ) ( 1) 2 ( 1) ! 2 !

n n n n n
n n n n n

& ! !
# # #

& ! 0 ! 0
Now, from the duplication formula (4) and the above result, we have

2 1 2 1
1 (2 ) (2 ) !
2 ( ) 2 !2 2n n

n n
n

n n! !

3 & 34 5& + # 0 # 06 7 & 08 9 2
(2 ) ! .
2 !n

n
n

# 3

6.14. SOLVED EXAMPLES.
Ex. 1. Express (1/ 6)&  in terms of (1/ 3).&

Sol. From the duplication formula,             2 1
1( ) (2 ).
2 2 nn n n

!
34 5& & + # &6 7

8 9
... (1)

Putting n = 1/6 in (1), we get

2 / 3
1 2 (1/ 3)
6 3 2!

3 &4 5 4 5& & #6 7 6 7
8 9 8 9

or 2 / 3
1 (1/ 3)
6 2 (2 / 3)!

3 &4 5& #6 7
&8 9

... (2)

Now, we know that ( ) (1 ) / sin .n n n& & ! # 3 3 ... (3)
Putting n = 1/3 in (3) we get

1 2 2
3 3 sin( / 3) 3

3 34 5 4 5& & # #6 7 6 7 38 9 8 9
or

2 2
3 3 (1/ 3)

34 5& #6 7 &8 9
... (4)

Substituting the value of (2 / 3)&  given by (4) in (2), we get

2/3
1 (1/ 3) 3 (1/ 3)
6 22!

3 & &4 5& # 06 7 38 9
or

2

1/ 3
1 3 1 .
6 32

∋ (4 5 4 5& # &6 7 6 7Ε Φ38 9 8 9) ∗

Ex. 2. Prove that  1
1 ( / 2)( ) , 0 1.

2 2 cos( / 2)n
n nn n

n!

! 3 &4 5& & # Γ Γ6 7 38 9
Sol. We know that ( ) (1 ) / sin , 0 1m m m m& & ! # 3 3 Γ Γ ... (1)

and 2 1
1 (2 )( ) , 0,
2 2 m

m
m m m

!
3 &4 5& & + # ∃6 7

8 9
... (2)

Putting m = (n + 1)/2 in (1), we get
1 1

2 2 sin{( 1) / 2} sin( / 2 / 2) cos( / 2)
n n

n n n
+ ! 3 3 34 5 4 5& & # # #6 7 6 7 + 3 3 + 3 38 9 8 9 ... (3)

Putting m = n/2 in (2), we get 1
1 ( )

2 2 2n
n n n

!
+ 3 &4 5 4 5& & #6 7 6 7

8 9 8 9
... (4)

Dividing the corresponding sides of (3) and (4), we get
1[(1 )/2] 2

( / 2) cos( / 2) ( )

nn
n n n

!& ! 3
# ∆

& 3 3 &
or 1

1 ( / 2)( )
2 2 cos( / 2)n

n nn
n!

! 3 &4 5& & !6 7 38 9

Ex. 3. Prove that 1 4 1( , ) ( 1/ 2, 1/ 2) ( ) / 2 mB m m B m m m! !+ + # 3

Ex. 4. By evaluating 
/ 2 2

0
sin pI x dx

3
# �  and 

/ 2 2

0
sin pJ x dx

3
# �  derive the Legendre’ss

duplication formula for gamma function.    [Kanpur 2006]
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7
Power Series

7.1. INTRODUCTION
In this chapter we propose to study the theory of power series which is very useful tool in the

study of analyis. We shall present a summary of the pertinent results of infinite series specially
power series. These will be used in solving second order differential equations in the next chapter
8, namely, ‘Integration in series’.
7.2. *SUMMARY OF USEFUL RESULTS

In what follows, we shall deal with infinit series and hence we shall write simply nu!  to

denote 
1 nn
u

�

#
!  etc.

List A : Results related to convergence of infinite series of positive terms

A-1. Let 
1 nn
u

�

#
!  be an infinite series and let 

1
.

n

n i
i

S u
#

# !  Then 
1 nn
u

�

#
!  is said to be convergent

or divergent according as the sequence < Sn > is convergent or divergent.
A-2. Geometric series. The positive term infinite geometric series 1 + r + r2 + .. + rn + ...,

( 0)r ∃  is convergent if and only if r < 1.

A-3. Harmonic series. The positive term series 1/ n%!  is converted iff 1.% &

A-4. Comparisian test. If nu!  and n!v  are two positive term series such that

lim ( / ) 0,n nn
u l

∋�
# (v  then the two series nu!  and n!v  have identical behaviours in relation to

convergence.
A-5. D’Alembert’s ratio test. Let nu!  be a positive term series such that 1lim ( / ) .n n

n
u u l)

∋�
#

Then the series is (i) convergent if l < 1 (ii) divergent if l > 1. (iii) No firm decision if l = 1. Also,
if ,l # �  then the series is divergent.

A-6 Cauchy’s nth root test. Let nu!  be a positive term series and let 1/lim ( ) .n
n

n
u l

∋�
#  Then

the series is (i) convergent if l < 1 (ii) divergent if l > 1 (iii) No firm decision if l = 1.
A-7. Raabe’s test. Let nu!  be a positive term series and let 1lim {( / ) 1} .n nn

n u u l)
∋�

∗ #  Then

the series is (i) convergent if l > 1 (ii) divergent if l < 1 (iii) No firm decision if l = 1.
A-8. Logarithmic test. Let nu!  be a positive term series and let 1lim log{ / ) .n n

n
n u u l)

∋�
#

Then the series is (i) convergent if l > 1 (ii) divergent if l < 1 (iii) No firm decision if l = 1.

7.1

*For all results of this article, refer chapters 6, 7 and 15 of Real Analysis by Shanti Narayan and M.D.
Raisinghania, published by S.Chand & Co. New Delhi.
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7.2 Power Series

List B : Results related to convergence of infinite series with positive and negative terms
B-1. Absolutely convergent series. A series nu!  is said to be absolutely convergent if the

positive term series | |nu!  formed by the moduli of the terms of the series is convergent.
B-2. Alternating series. A series whose terms are alternatively positive and negative is referred

to an alternating series.
B-3. Leibnitz’s test. Let < un > be a sequence such that for each natural number n

(i) 0nu ∃  (ii) 1n nu u) +  (iii) lim 0.n
n

u
∋�

#  Then the alternating series 1( 1)n
nu∗! ∗  is convergent.

B-4. Every absolutely convergent series is convergent. The converse need not be true.
List C. Results related uniform convergence of infinite series of functions.

C-1. A series ( )nf x!  will converge uniformly in [a, b], if there exists a convergent series

nM!  of numbers such that [ , ], | ( ) |n nx a b f x M, − +

C-2. The sum of a uniformly convergent series of continuous functions is continuous.
C-3. If ( )nf x!  be a uniformly convergent series of intergrable functions in [a, b], then the

series is term by integrable, that is,
1 1

( ) ( )
b b

n n
n na a

f x dx f x dx
� �

# #
! # !. .

C-4. If ( )nf x!  be a uniformly convergent series of differentiable functions, then the series is

term by term differentiable, i.e.,
1 1

( ) ( )n nn n

d d
f x f x

dx dx

� �

# #
! # !

7.3. POWER SERIES

A series of the form
0

n
nn

a x
�

#
! ... (1)

is known as real infinite power series where a0, a1, ...., an, .... are real coefficients free from x, and

x is the real variable. More generally 00
( )n

nn
a x x

�

#
! ∗  is taken to represent a general power series.

Since with a shift of origin to x0 i.e., with change of variable x – x0 to x this precisely reduces to the
form (1), hence without any loss of generality our studies shall be confined to the form (1).

For the sake of brevity we shall write n
na x!  instead of 

0
n

nn
a x

�

#
!

7.4. SOME IMPORTANT FACTS ABOUT THE POWER SERIES .nna x!
(i) For all values of the coefficients, every power series converges for x = 0. Hence if a

power series converges for no value other than x = 0, we say that the given power series is nowhere

convergent. For example, the power series n nn x!  is nowhere convergent.

(ii) If a given series converges for all values of x, we say that the given power series is

everywhere convergent. For example, the power series ( / !)nx n!  is everywhere convergent.

(iii) If the given power series converges for some value of x and diverges for other values of
x, then the set of all values of x for which it is convergent is known as its region of convergence.
7.5. RADIUS OF CONVERGENCE AND INTERVAL OF CONVERGENCE

If a given power series does not converge everywhere or nowhere, then a definite positive
number R exists such that the given power series converges (indeed absolutely) for every | x | < R
and diverges for every | x | > R. Such a number R is known as the radius of convergence and the
interval ] – R, R [, the interval of convergence, of the given power series.
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Power Series 7.3

7.6. FORMULAS FOR DETERMINING THE RADIUS OF CONVERGENCE

Theorem I. If the power series n
na x!  is such that 0na (  for all n and 1lim | / | 1/ ,n n

n
a a R)

∋�
#

then n
na x!  is convergent (indeed absolutely) for | x | < R and divergent for | x | > R..

[Delhi Maths (H) 2006]
Proof. Let un = anxn so that un + 1 = an + 1 xn + 1. Then, we have

1 1 1 | |lim lim | | limn n n

n n nn n n

u a x a xx
u a a R
) ) )

∋� ∋� ∋�
# # # ... (1)

/ By D’ Alembert’s ratio test, n
na x!  converges absolutely if | | / 1,x R 0 i.e., | x | < R. Also,

n
na x!  diverges if | x | > R.

Theorem II. If the power series n
na x!  is such that 0na (  for all n and 1/lim | | 1/ ,n

n
n

a R
∋�

#

then n
na x!  is convergent (indeed absolutely) for | x | < R and divergent for | x | > R.

Proof. According to Cauchy’s second theorem on limits, if < | an | > is a sequence of positive

constants, then
1/ 1lim | | lim ,n n

n
n n n

u
u

u
)

∋� ∋�
#   ... (1)

provided the limit on the right side of (1) exists, whether finite or infinite. Also given that

    
1/lim | | 1/n

n
n

u R
∋�

# ... (2)

/ (1)  and  (2) 1 1lim | / | 1/n nn
u u R)

∋�
# ... (3)

Using (3), the result of the theorem follows from theorem I.

In view of the above discussion, the radius of convergence R of the power series n
na x!  can

be determined as follows :

11 lim n

n n

a
R

a
)

∋�
# 2 or 1/1 lim | | n

n
n

R a
∋�

# 2 ... (*)

R # � if 1lim 0n

n n

a
a
)

∋�
# or 1/lim | | 0n

n
n

a
∋�

#

R = 0,  if 1lim n

n n

a
a
)

∋�
# �      or 1/lim | | n

n
n

a
∋�

# �

Note 1. Every power series converges absolutely within its interval of convergence.
Note 2. Observe that formula (*) is derived with the supposition of existence of the finite

limit lim |an / an + 1| , that is, with the supposition that the power series n
na x!  contains all powers

of x. Indeed for the power series 2 1{(2 ) /(2 1)},nx n)! )  the coefficients of even powers of x are

equal to zero, a2m = 0 and hence 2 1 2lim ( / )n n
n

a a)
∋�

# �  and 2 2 2 1lim ( / ) 0.n n
n

a a) )
∋�

#  This shows that

we cannot apply the formula (*) to the given power series. However, a direct application of D’
Alembert’s ratio test leads to the desired result:
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7.4 Power Series

Here, let un = (2x)2n + 1/(2n + 1) so that un + 1 = (2x)2n + 3/(2n + 3)

/

2 3
2 21

2 1
(2 ) 2 1 2 1/lim lim 4 | | lim 4 | |

2 3 2 3 /(2 )

n
n

nn n nn

u x n n
x x

u n nx

)
)

)∋� ∋� ∋�

) )
# 3 # #

) )

Therefore, by D’ Alembert’s ratio test, the given power series converges absolutely if
24 | | 1x 0 or 2| | 1/ 4x 0 or | x | < 1/2.

Note. If the given power series is given in general form 0( ) ,n
na x x! ∗  then formula (*) is

used to find the radius of convergence R. In such a case, we say that the given power series
converges if | x – x0 | < R and diverges if | x – x0 | > R. The interval of convergence is given by

0 0] , [x R x R∗ ) .

7.7. SOLVED EXAMPLES BASED ON ART. 7.6.
Ex. 1. Find the radius of convergence of the following series

(i)
2 31 3 1 3 5 ....

2 2 5 2 5 8
x

x x
4 4 4

) ) )
4 4 4 [Delhi Maths (H) 2006]

(ii) 
( 1) ( 1)1 ...

1 1 2 ( 1)
a b a a b b

c c c
4 ) )

) ) )
4 4 ) [Delhi Maths (H) 2003]

Sol. (i) Let the given series be denoted by 
1

.n
nn

a x
�

#
!

Then, here
1 3 5 ... (2 1)
2 5 8...(3 1)n

n
a

n
4 4 ∗

#
4 4 ∗

        and 1
1 3 5 ... (2 1) (2 1)
2 5 8 ...(3 1) (3 2)n

n n
a

n n)
4 4 ∗ )

#
4 4 ∗ )

/  Radius of convergence 
1

3 2 3 2 / 3lim lim lim
2 1 2 1/ 2

n

n n nn

a n n
a n n∋� ∋� ∋�)

) )
# # # #

) )

(ii) Omitting the first term, let the given series be denoted by .n
na x!  Then, here we have

( 1)...( 1) ( 1) ... ( 1)
1 2 ... ( 1) ... ( 1)n

a a a n b b b n
a

n c c c n
) ) ∗ ) ) ∗

#
4 ) ) ∗

and 1
( 1)...( 1) ( ) ( 1) ... ( 1) ( )

1 2 ... ( 1) ( 1) ... ( 1) ( )n
a a a n a n b b b n b n

a
n n c c c n c n)

) ) ∗ ) ) ) ∗ )
#

4 ) ) ) ∗ )

Radius of convergence 
1

( 1) ( )lim lim
( ) ( )

n

n nn

a n c n
a a n b n∋� ∋�)

) )
# #

) )
(1 1/ ) (1 / )lim 1
(1 / ) (1 / )n

n c n
a n b n∋�

) )
# #

) )

Ex. 2. Find the radius of convergence the exact interval of convergence of the power series

    ( 1) .
( 2) ( 3)

nn
x

n n
)

!
) )

Sol. Let the given series be denoted by   n
na x!    or    .nu!  Then, we have

an = (n + 1) / {(n + 2) (n + 3)}     and an + 1 = (n + 2) / {(n + 3) (n + 4)}

/ R = radius of convergence 2
1

( 1) ( 4)lim lim 1
( 2)

n

n nn

a n n
a n∋� ∋�)

) )
# # #

)
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Power Series 7.5

Hence the given series converges for | x | < and diverges for | x | > 1. We now investigate the
nature of the given power series when | x | = 1, i.e., when x = 1 and x = –1.

For x = 1,
( 1) 1 (1 1/ )

( 2) ( 3) (1 2 / ) (1 3 / )n
n n

u
n n n n n

) )
# # 3

) ) ) )
... (1)

Let the companion series n!v  be such that 1/ .n n#v

Then, lim ( / ) 1,n n
n

u v
∋�

# which is finite and non zero.

Again, (1/ )n n! # !v  is a divergent series. So by comparison test nu!  diverges for x = 1.
Next, for x = –1, the given series is an alternating series for which un + 1 < un for each natural

number n and lim 0,n
n

u
∋�

#  by (1). Hence, by Leibnitz’s test the given series converges for x = –1.

Hence the exact interval of convergence is [–1, 1[.

Ex. 3. Determine the interval of convergence of the power series 1{(1/ ) ( 1) ( 1) }.n nn x)! 3 ∗ ∗

Sol. Let the given series be denoted by 0( )n
na x x! ∗ . Then, we have

1( 1) /n
na n)# ∗ and 2

1 ( 1) /( 1).n
na n)
) # ∗ )

/ R = radius of convergence 
1

1lim lim 1n

n nn

a n
a n∋� ∋�)

)
# # ∗ #

Since the given power series is about the point x = x0 = 1, the interval of convergence is
  0 0 ,x R x x R∗ 0 0 ) i.e.,       –1 + 1 < x < 1 + 1,      i.e.,       0 < x < 2.

For x = 2, the given series reduces to the alternating series 1( 1) /n n∗! ∗  ( 1( 1) ,n
nu∗# ! ∗  say)

for which un + 1 < un for each natural number n and lim lim (1/ ) 0.nn n
u n

∋� ∋�
# #  Hence by Leibnitz’ss

test the given series is convergent when x = 2.
Next, for x = 0, clearly the given series diverges. Hence the exact interval of convergence is

]0, 2].

EXERCISE 7 (A)
Determine the radius of convergence and the exact interval of convergence of each of the

following power series.

1. (i) 2( 1)

nnx
n

!
)

(ii) 2
!

n nx
n

! (iii) 3

nx
n

! (iv)
n

n
x
n

!

2. (i) 
2

2
(2 )!

( !)

nn x
n

!  (ii)
2

2 2
( 1)
( !) 2

n n

n
x

n
∗

! (iii)
2 1

( 1)
(2 1)!

n
n x

n

)

! ∗
)

  (iv) 
2 2( !)

(2 )!

nn x
n

! (v)
2 1

( 1)
(2 1)

n
n x

n

)

! ∗
)

3. (i) ( 1)
2

n

n
x ∗ (ii) ( 1) ( 1)

2 (3 1)

n n

n
x
n

∗ ∗
!

∗
(iii) !( 2)n

n
n x

n
)

!
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7.6 Power Series

4. If the power series n
na x!  has radius of convergence R, then prove that, for any positive

integer m, mn
na x!  has radius of convergence R1/m.

ANSWERS
1. (i) R = 1, [–1, 1[; (ii) , ;R R# � (iii) R = 1, [–1, 1] (iv) ,R R# �

2. (i) R = 1/4; (ii) , ;R R# � (iii) R = 1, [–1, 1] (iv) R = 4, ] – 4, 4 [
               (v) R = 1, [–1, 1]

3. (i) R = 2, ] –1, 3[,    (ii) R = 2, ] –1, 3]                        (iii)  R = e, ] –2 – e, – 2
+ e[

7.8. Some theorems about power series n! na x

Theorem I. If a power series n
na x! converges for x = x0, then

(i) it is absolutely convergent in the interval 0| | | |x x0

(ii) it is uniformly convergent in the interval 1| | | |,x x+  where 1 0| | | | .x x0
[Delhi Maths (H) 2004]

Solution (i) 0
n

na x!  is convergent 1 0lim 0n
n

n
a x

∋�
#

1  there exists a positive integer m such that

0| 0 | 1n
na x n m∗ 0 , ∃ so that    0| | 1/ | | ,n

na x n m0 , ∃   ... (1)

Now, 0| | | | | | | | / | | , ,n n n n
n na x a x x x n m# 0 , ∃  by (1)

Then, 0| | (| | / | |) ,n n
na x x x n m0 , ∃ ... (2)

The series on the R.H.S. of (2) converges for | x | < | x0 | (being a geometric series with

common ratio < 1). Hence, by the comparison test n
na x!  is convergent for 0| | | | .x x0  Therefore,

n
na x!  is absolutely convergent for 0| | | |x x0

(ii) Let 1 0| | / | | .n n
nM x x#  Then nM!  converges since 1 0| | | |x x0  (being a geometric series

with common ratio < 1).

Now, 0| | | | | | | | / | | ,n n n
n n na x a x x x# 0 n m, ∃  using (1)

1 0| | / | | ,n nx x n m0 , ∃   since 1| | | |x x+

Thus, | | , ,n
n na x M n N0 , −  where nM!  converges.

Hence, from the Weierstrass M-test, it follows that n
na x!  is uniformly convergent in the

interval 1| | | |x x+  where 1 0| | | | .x x0

Theorem II. If a power series n
na x!  converges for | |x R0  and if a function f(x) is defined as

( ) , | | ,n
nf x a x x R# ! 0  then ( ) n

nf x a x# !  converges uniformly on [ , ]R R∗ ) 5 ∗5  for every y 0.5 &
Proof. Let 05 &  be any given number. Then, we have

| |x R+ ∗5 1 | | | | ( )n n
n na x a R+ ∗ 5 ... (1)

Since every power series converges absolutely within its interval of convergence, it follows

that ( )n
na R! ∗ 5  converges absolutely. Hence by Weierstrass’s M-test it follows that the series

n
na x!  converges uniformly on [ , ].R R∗ ) 5 ∗ 5
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Theorem III. The series obtained by integrating and differentiating power series term by
term has the same radius of convergence as the original series.

Proof. Let R be the radius of convergence of the given power series  
0

.n
nn

a x
�

#
! ... (1)

On integrating (1) term by term, we get
1

0 1

n
n

n

a x
n

)�

#
!

)
... (2)

Let R6  be the radius of convergence of (2). Then, we have

1/
1lim

| | nn n

R
a∋�

# and       
1/

1/
( 1)lim
| |

n

nn n

nR
a∋�

)6 # ... (3)

Let 1/lim ( 1) n

n
l n

∋�
# )  so that  log(1 ) 1/( 1)log lim lim ,

1n n

n n
l

n∋� ∋�

) )
# # by L’ Hopital’s rule

1 log l = 0 1 l = e0 = 1    1 1/lim ( 1) 1n

n
n

∋�
) # ... (4)

Using (4), (3) 1 .R R6 #

Next, differentiating (1) term by term, we get 1
1

n
nn

na x
�

∗

#
! ... (5)

Let R66  be the radius of convergence of (5). Then

1/ 1/ 1/ 1/
1 1 1lim lim lim

| | | |n n n nn n nn n

R
n a n a∋� ∋� ∋�

66 # # 3 ... (6)

Let 1/lim n

n
m n

∋�
#     so that     log (1/ )log lim lim ,

1n n

n n
m

n∋� ∋�
# #  by L’ Hopital’s rule

1 log m = 0 1 m = e0 = 1 1 1/lim 1n

n
n

∋�
# ... (7)

From (3), (6) and (7), we have .R R66 #

Exercise. Show that both the power series 
0

n
nn

a x
�

#
!  and corresponding series of derivatives

1

1

n
n

n
n a x

�
∗

#
!  have the same radius of convergence.    [Delhi Maths (H) 2001]

[Hint. Refer first part of the above theorem III.]

Theorem IV. Let the given power series n
na x!  converges for | |x R0  and let ( ) .n

nf x a x# !
Then  (i) f(x) is continuous in ] – R, R [.    [Delhi Maths (H) 1995]

(ii) n
na x! can be integrated term by term in ] – R, R [.

(iii) n
na x! can be differentiated term by term in ] – R, R [.

[Note : If ( ) ,n
nf x a x# !  then f(x) is known as the sum function of the series.]

Proof (i) Since each term of the series n
na x!  is continuous on ] – R, R [ and n

na x!  is

uniformly convergent on [ , ],R R∗ ) 5 ∗ 5  hence the sum function f(x) of n
na x!  is also continuous.

(ii) Since each term of n
na x!  is continuous on [ – R, R [ and n

na x!  is uniformly covergent

in [ , ],R R∗ ) 5 ∗ 5  hence n
na x!  is term by term integrable.

(iii) Since each term of n
na x!  in continuous, possess continuous derivatives in ] , [R R∗

and n
na x!  is uniformly convergent in [ , ],R R∗ ) 5 ∗ 5  hence n

na x!  is term by term differentiable.

Exercise. Let the power series n
na x!  converge for | x | < R, and ( ) , | | ,n

nf x a x x R# ! 0

prove that n
na x!  converge uniformly on [ , ],R R∗ ) 5 ∗ 5  no matter which 05 &  is chosen, and

that the function f is continuous and differentiable on [–R, R].   [Delhi Maths (H) 2007]
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8.1

8
Integration In Series

8.1. INTRODUCTION
In may happen that a given linear differential equation comes under none of the standard

classes which are all of some particular form, and thus we may fail to express its solution in terms
of elementary functions, namely, polynomials, rational functions, exponentials, trigonometric
fucntions, hyperbolic functions, logarithms etc. In such situations we have to find a convergent
series arranged according to powers of the independent variable, which will approximately express
the value of the dependent variable. The solution in the form of an infinite series is called ‘integration
in series’. In this chapter we propose to discuss some methods of getting solution in the form of
infinite series for second order linear equation.
8.2. Some basic definitions. (Jabalpur 2004)

Power series. An infinite series of the form

C x xn
n

n
( )!

�

#

∃ 0
0

= C0 + C1(x – x0) + C2(x – x0)
2 + ... ...(1)

is called a power series in (x – x0). In particular, a power series in x is an infinite series

        C xn
n

n�

#

∃
0

= C0 + C1x + C2x
2 + ... ...(2)

For example, the exponential function ex has the power series

    ex = x
n

x x xn

n
! ! !

...
�

#

∃ � % % % %
0

2 3
1

2 3

The power series (1) converges (absolutely) for | x | < R, where

    R = lim
n

n

n

C
C&# % 1

, provided the limit exists. ...(3)

R is said to be the radius of convergence of power series (1). The interval (–R, R) is said to
be the interval of convergence.

Since R = # for the power series (2), hence the interval of convergence of the power series
(2) is (–#, #) i.e. the real line.

In what follows we shall use the following results :
(i) A power series represents a continuous function within its interval of convergence.

(ii) A power series can be differentiated termwise within its interval of convergence.
For more results about power series, refer chapter 7.

Analytic function. A function f(x) defined on an interval containing the point x = x0 is called

analytic at x0 if its Taylor series.        f x
n

x x
n

n

( )( )
!

( )0
0

0

!
�

#

∃    ...(4)

exists and converges to f(x) for all x in the interval of convergence of (4).
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8.2 Integration In Series

Hence, we find that all polynomial functions, ex, sin x, cos x, sinh x and cosh are analytic
everywhere. A rational function is analytic except at those values of x at which its denominator is
zero. For example, the rational function defined by x/(x2 – 3x + 2) is analytic everywhere except at
x = 1 and x = 2.
8.3. Ordinary and singular points. [Nagpur 1996, Ravishankar 1993]

Definitions. A point x = x0 is called an ordinary point of the equation
y∋∋ + P(x)y∋ + Q(x)y = 0 ...(1)

if both the functions P(x) and Q(x) are analytic at x = x0.
If the point x = x0 is not an ordinary point of the differential equation (1), then it is called a

singular point of the differential equation of (1). There are two types of singular points :
(i) regular singular points and (ii) irregular singular points.
A singular point x = x0 of the differential equation (1) is called a regular singular point of the

differential equation (1) if both (x – x0) P(x) and (x – x0)
2Q(x) are analytic at x = x0.

A singular point, which is not regular is called an irregular singular point.
8.4. Solved examples based on Art. 8.3.

Ex. 1. Determine whether x = 0 is an ordinary point or a regular singular point of the differential
equation 2x2(d2y/dx2) + 7x(x + 1) (dy/dx) – 3y = 0. [Delhi Maths (Hons) 1993, 2000]

Sol. Dividing by 2x2, the given equation becomes
2

2 2
7( 1) 3 0.

2 2
d y x dy y

x dxdx x
%

% ! � ...(1)

Comparing (1) with standard equation y( + P(x) y∋ + Q(x) y = 0, we have
P(x) = [7(x + 1)]/2x       and Q(x) = –3/(2x2). ...(2)

Since both P(x) and Q(x) are undefined at x = 0, so both P(x) and Q(x) are not analytic at
x = 0. Thus x = 0 is not an ordinary point and so x = 0 is a singular point.

Also, (x – 0)P(x) = 7(x + 1)/2 and (x – 0)2 Q(x) = –3/2,
showing that both (x – 0)P(x) and (x – 0)2Q(x) are analytic at x = 0. Therefore x = 0 is a regular
singular point.

Ex. 2. Show that x = 0 is an ordinary point of (x2 – 1)y( + xy∋ – y = 0, but x = 1 is a regular
singular point. [Ranchi 2010]

Sol. Dividing by (x2 – 1), the given equation becomes

d y
dx

x
x x

dy
dx x x

y
2

2 1 1
1

1 1
%

! %
!

! %( )( ) ( )( )
= 0. ...(1)

Comparing (1) with with standard equation y( + P(x)y∋ + Q(x)y = 0, we have
P(x) = x/[(x – 1)(x + 1)]      and       Q = –1/{(x – 1) (x + 1)}.

Since both P(x) and Q(x) are analytic at x = 0, so x = 0 is an ordinary point of the given
equation (1).

Since both P(x) and Q(x) are undefined at x = 1, so they are not analytic at x = 0. Thus
x = 1 is not an ordinary point and so x = 1 is a singular point.

Also (x – 1)P(x) = x/(x + 1) and (x – 1)2Q(x) = –(x – 1)/(x + 1), showing that both (x – 1)P(x)
and (x – 1)2Q(x) are analytic at x = 1. Therefore x = 1 is a regular singular point.

Ex. 3. Show that x = 0 and x = –1 are singular points of  x2(x + 1)2y( + (x2 – 1)y∋ + 2y = 0,
where the first is irregular and the other is regular.

Sol. Dividing by x2(x + 1)2, the given equation becomes
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d y
dx

x
x x

dy
dx x x

y
2

2 2 2 2
1
1

2
1

% !
%

%
%( ) ( )

= 0. ...(1)

Comparing (1) with standard equation y( + P(x)y∋ + Qy = 0, we get
P(x) = (x – 1)/[x2(x + 1)]         and Q(x) = 2/[x2(x + 1)2].

Since both P(x) and Q(x) are undefined at x = 0 and x = –1, so they are not analytic at x = 0
and x = –1. Hence x = 0 and x = –1 are both singular points.

Also     (x – 0)P(x) = (x – 1)/[x(x + 1)]      and (x – 0)2Q(x) = 2/(x + 1)2,
showing that P(x) is not analytic at x = 0 and so x = 0 is an irregular singular point.

Again, (x + 1)P(x) = (x – 1)/x2 and (x + 1)2Q(x) = 2/x2,
showing that both (x + 1)P(x) and (x + 1)2Q(x) are analytic at x = – 1 and hence x = –1 is a regular
singular point.

Ex. 4. Discuss the singularities of the equation 2 2 2( ) 0x y x y x n y∋∋ ∋% % ! �  at x = 0 and
.x � # (Delhi Physics (Hons.) 2000, 02; Bhopal 2010)
Sol. Discussion about singularity at x = 0. Re-writing the given equation

2 2 2(1/ ) {( ) / } 0y x y x n x y∋∋ ∋% % ! � ... (1)

Comparing (1) with   ( ) ( ) 0,y P x y Q x y∋∋ ∋% % �   ( ) 1/P x x�     and
2 2 2( ) ( ) / .Q x x n x� !

Here (x – 0) P(x) = 1 and (x –0)2 Q(x) = x2 – n2, showing that both (x – 0) P(x) and (x – 0)2

Q(x) are analytic at x = 0. Therefore, x = 0 is a regular singular point.
Discussion about singularity at .� #x
Let x = 1/t or t = 1/x. Then,            dt/dx = –1/x2  ... (2)

Now, 2
2

1 ,dy dy dt dy dyy t
dx dt dx dt dtx

) ∗∋ � � � ! � !+ ,
− .

 by (2) ... (3)

and
2

2
2 2

1 ,d y d dy d dy dt d dyy t
dx dx dt dx dx dt dtdx x

) ∗ ) ∗ ) ∗ ) ∗∋∋ � � � � ! !+ , + , + , + ,
− . − . − . − .

 by (2) and (3)

or
2 2

2 2 4 3
2 22 ( ) 2d y dy d y dyy t t t t t

dx dtdt dt

) ∗
∋∋ � ! ! / ! � %+ ,+ ,

− .
... (4)

Using (2), (3) and (4), the given equation reduces to

2
4 3 2 2

2 2 2
1 1 12 0d y dy dyt t t n y

dt t dtt dt t
) ∗ ) ∗ ) ∗% % ! % ! �+ , + , + ,+ , − . − .− .

   or     
2 2 2

2
2 2

1 0d y dy n tt t y
dtdt t

!
% % �

or 2 2 2 2 4( / ) (1/ ) ( / ) {(1 ) / } 0d y dt t dy dt n t t% / % ! � ... (5)

Comparing (5) with 2 2( / ) ( ) ( / ) ( ) 0,d y dt P t dy dt Q t y% % �  here

P(t) = 1/t         and       2 2 4( ) (1 ) / .Q t x t t� !  Then, we have

(t – 0) P(t) = 1 and (t – 0)2 Q(t) = (1 – n2 t2)/t2.
Since (t – 0)2 Q(t) is not analytic at t = 0, so t = 0 is irregular singular point of (5). In view

of (2), x #�  is an irregular singular point of the given equation.
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8.4 Integration In Series

EXERCISE 8 (A)
1. Show that x = 0 is an ordinary point of y( – xy∋ + 2y = 0.
2. Determine whether x = 0 is an ordinary point or regular singular point for the differential

equation 2x2y( – xy∋ + (x – 5)y = 0. Ans. x = 0 is regular singular point
3. Show that x = 0 is an ordinary point of (x2 + 1)y( + xy∋ – xy = 0.
4. Show that x = 0 is a regular singular point of x2y∋∋ + xy∋ + (x2 – 1/4)y = 0.
5. Show that x = 0 is a regular singular point and x = 1 is an irregular singular point of x(x – 1)3y(

+ 2(x – 1)3y∋ + 3y = 0.
6. Verify that origin is regular singular point of the equation 2x2y( + xy∋ – (x + 1)y = 0.
7. Determine the nature of the point x = 0 for the equations

(i) xy( + y sin x = 0 [Nagpur 1996]    (ii) x3y( + y sin x = 0 [Nagpur 2005]
Ans.  (i) Regular singular point (ii) Irregular singular point

8. Determine the singular points and their nature for the following differential equations :
(i) 3xy( + 2x(x – 1)y∋ + 5y = 0 (ii) y( + (1 – x)y∋ + (1 – x)2 y = 0 [Utkal 2003]

             Ans. (i) x = 0 is regular singular point  (ii) There is no singular point.
8.5. Power series solution in power of (x – x0) or the power series solution near the
ordinary point x = x0 or power series solution about the ordinary point x = x0.

Let the given equation be y( + P(x)y∋ + Q(x)y = 0. ...(1)
If x = x0 is an ordinary point of (1), then (1) has two non–trivial linearly independent power

series solutions of the form

  C x xn
n

n
( )!

�

#
∃ 0

0
...(2)

and these power series converge in some interval of convergence | x – x0 | < R, (where R is the
radius of convergence of (2)) about x0. In order to get the coefficients Cn’s is (2), we take

    y = C x xn
n

n
( )!

�

#
∃ 0

0
. ...(3)

Differentiating twice in succession, (3) gives

y∋ = n C x xn
n

n

( )! !

�

#

∃ 0
1

1

and     y( = n n C x xn
n

n

( ) ( )! ! !

�

#

∃ 1 0
2

2

.  ...(4)

Putting the above values of y, y∋ and y( in (1), we get an equation of form
A0 + A1(x – x0) + A2(x – x0)

2 + .... + An(x – x0)
n + .... = 0, ...(5)

where the coefficients A0, A1, A2 .... etc. are now some functions of the coefficients C0, C1, C2, .... etc.
Since (5) is an identity, all the coefficients A0, A1, A2, .... of (5) must be zero, i.e.,

A0 = 0,   A1 = 0,   A2 = 0, ...., An = 0. ...(6)
Solving equation (6), we obtain the coefficients of (3) in terms of C0 and C1. Substituting

these coefficients in (3), we obtain the required series solution of (1) in powers of (x – x0).
8.6. Solved examples based on Art. 8.5.

Ex. 1. Find the power series solution of the equation (x2 + 1)y( + xy∋ – xy = 0 in powers of x (i.e.
about x = 0).          [Delhi B.Sc. (Hons.) 1993, 2000, 06, 07]

Sol. Given that (x2 + 1)y( + xy∋ – xy = 0. ...(1)
Dividing by (x2 + 1), (1) can be written in standard form as

d y
dx

x
x

dy
dx

x
x

y
2

2 2 21 1
%

%
!

%
= 0. ...(2)

Comparing (2) with y( + P(x)y∋ + Q(x)y = 0, here we have
P(x) = x/(x2 + 1) and Q(x) = –x/(x2 + 1),
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Integration In Series 8.5

showing that P(x) and Q(x) are analytic at x = 0. So x = 0 is an ordinary point. Therefore, to solve

(1), we take power series    y = C0 + C1x + C2x
2 + C3x

3 + .... = C xn
n

n �

#

∃
0

  ...(3)

Differentiating (3) twice in succession w.r.t. ‘x’, we get

y∋ = nC xn
n

n

!

�

#

∃ 1

1
and y( = n n C xn

n

n
( )! !

�

#

∃ 1 2

1
 ....(4)

Substituting the above values of y, y∋ and y( in (1), we get

( ) ( )x n n C x x nC x x C xn
n

n
n

n

n
n

n

n

2 2

2

1

1 0
1 1% ! % !!

�

#
!

�

#

�

#

∃ ∃ ∃ = 0

or 2 1

2 2 1 0

( 1) ( 1)n n n n
n n n n

n n n n

n n C x n n C x nC x C x
# # # #

! %

� � � �

! % ! ! !∃ ∃ ∃ ∃ = 0

or n n C x n n C x nC xn
n

n
n

n

n
n

n

n
( ) ( )( )! % % % %

�

#

%
�

#

�

#

∃ ∃ ∃1 2 1
2

2
0 1

! !
�

#

∃ C xn
n

n
1

1
= 0

or       2 6 1 2 12 3 1 0 2
2

C C C C x n n C n n Cn n
n

% % ! % ! % % % %
�

#

∃( ) [ ( ) ( )( ) % ! !nC C xn n
n

1] = 0. ...(5)

Since (5) is an identity, equating the constant term and the coefficients of various powers of
x to zero, we get 2C2 = 0                  so that              C2 = 0    ...(6)

6C3 + C1 – C0 = 0       so that C3 = (C0 – C1)/6 ...(7)
n(n – 1)Cn + (n + 2)(n + 1)Cn + 2 + nCn – Cn – 1 = 0   for all    n 0 2

or Cn + 2 =
C n C
n n

n n! !

% %
1

2

1 2( )( )
, for all n 0 2. ...(8)

The above relation (8) in known as recurrence relation.
Putting n = 2 is (8),         C4 = (C1 – 4C2)/12 = C1/12,        as           C2 = 0.   ...(9)

Putting n = 3 in (8),     C5 = 3 0 1
0 1

9 9 3 ( )
20 20 6 40
C C C C C!) ∗! � ! � ! !+ ,

− .
. ...(10)

Putting the above values of C2, C3, C4, C5, .... etc. in (3), we have
y = C0 + C1x + C2x

2 + C3x
3 + C4x

4 + C5x
5 + .... ad. inf.

or y = C0 + C1x + (1/6) × (C0 – C1)x
3 + (1/12) × C1x

4 – (3/40) × (C0 – C1)x
5 + ....

or y = C x x C x x x x0
3 5

1
3 4 51 1

6
3
40

1
6

1
12

3
40

% ! %FH IK % ! % % !FH IK.... .... ,

which is the required solution near x = 0, where C0 and C1 are arbitrary constants.
Ex. 2(a). Find the solution in series of (d2y/dx2) + x(dy/dx) + x2y = 0 about x = 0.

[Delhi Maths (Hons.) 2005, 08; Ranchi 2010]
(b) Solve y( – xy∋ + x2y = 0 in powers of x [Guwahati 2007]
Sol. (a) Given that y( + xy∋ + x2y = 0. ...(1)
Comparing (1) with y( + P(x)y∋ + Q(x)y = 0, here P(x) = x and Q(x) = x2. Since P(x) and

Q (x) are both analytic at x = 0, it follows that x = 0 is an ordinary point. To solve (1), we take
y = C C x C x C x C xn

n

n
0 1 2

2
2

3

0
% % % % �

�

#

∃. . . . . ...(2)
Differentiating (2) twice in succession w.r.t. ‘x’,

y∋ = C nxn
n

n

!

�

#
∃ 1

1
and y( = C n n xn

n

n
( )!∃ !

�

#
1 2

2
. ...(3)
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8.6 Integration In Series

Putting the above values of y, y∋ and y( is (1),  C n n x x C nx x C xn
n

n
n

n

n
n

n

n
( )!∃ % ∃ % ∃!

�

# !

�

#

�

#
1 2

2

1

1

2

0
= 0

or      C n n x C nx C xn
n

n
n

n

n
n

n

n
( )!∃ % ∃ % ∃!

�

#

�

# %

�

#
1 2

2 1

2

0
= 0

or        C n n x C nx C xn
n

n
n

n

n
n

n

n
%

�

#

�

#

!
�

#
% %∃ % ∃ % ∃2

0 1
2

2
2 1( )( ) = 0

or       2 3 1 2 2
2

2 (6 ) [( 1)( 2) ] n
n n n

n

C C C x n n C nC C x
#

% !
�

% % % % % % %∃ = 0. ...(4)

Since (4) is an identity, equating the constant term and the coefficients of various powers of
x to zero, we get        2C2 = 0 so that C2 = 0

    ...(5)
6C3 + C1 = 0 so that C3 = – (C1/6) ...(6)

(n + 1)(n + 2)Cn + 2 + nCn + Cn – 2 = 0, for all      n 0 2

or Cn + 2 = !
%

% %
!nC C

n n
n n 2

1 2( )( )
   for all    n 0 2. ...(7)

Putting n = 2 in (7),       C4 = 2 0 02
12 12

C C C%
! � ! , by (5). ...(8)

Putting n = 3 in (7), C5 = 3 1 1 1 13 3 ( / 6)
20 20 40

C C C C C% ! / %
! � ! � ! , by (6)

Putting n = 4 in (7),         C6 = 0 04 2 ( / 3)4
30 30 90

C CC C !%
! � ! � , by (8)

and so as. Putting these values in (1), we get
y = C0 + C1x – (1/6) × C1x

3 – (1/12) × C0x
4 – (1/40) × C1x

5 + (1/90) × C0x
6 + ....

or y = C x x C x x x0
4 6

1
3 51 1

12
1
90

1
6

1
40

! % !FH IK % ! ! !FH IK.... .... ,

which is the required general solution about x = 0, where C0 and C1 are arbitrary constants.
(b) Ans.  y = C0 (1 –x4/12 – x6/90 + ...) + C1 (x + x3/16 – x5/40 + ....)
Ex. 3. Find the general power series solution near x = 0 of the Legendre’s equation

(1 – x2)(d2y/dx2) – 2x(dy/dx) + p(p + 1)y = 0, where p is an arbitrary constant.
[Delhi Maths (Hons.) 2006]

Sol. Given (1 – x2)y( – 2xy∋ + p(p + 1)y = 0. ...(1)
or y( – [(2x)/(1 – x2)]y∋ + [p(p + 1)/(1 – x2)]y = 0. ...(2)

Comparing (2) with y( + P(x)y∋ + Q(x)y = 0, we have
P(x) = –(2x)/(1 – x2) and Q(x) = p(p + 1)/(1 – x2),

showing that both P(x) and Q(x) are analytic at x = 0 and hence x = 0 is an ordinary point of (1).

To solve (1), let        y = C C x C x C x C xn
n

n
0 1 2

2
3

3

0
% % % % �

�

#

∃. ... . ...(3)

Differentiating (3) twice in succession w.r.t. ‘x’, we get

y∋ = C nxn
n

n

!

�

#
∃ 1

1
       and     y( = C n n xn

n

n
( )!∃ !

�

#
1 2

2
.   ...(4)

Putting the above values of y, y∋ and y( in (1), we get
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Integration In Series 8.7

( ) ( ) ( )1 1 2 12 2

2

1

1 0
! !∃ ! ∃ % % ∃!

�

# !

�

#

�

#
x C n n x x C nx p p C xn

n

n
n

n

n
n

n

n
= 0

or C n n x C n x x C nx p p C xn
n

n
n

n

n
n

n

n
n

n

n
( ) ( ) ( )! ! ! ! % %!

�

#

�

#

�

#

�

#

∃ ∃ ∃ ∃1 1 2 12

2 2 1 0
= 0

or C n n x C n n x C nxn
n

n
n

n

n
n

n

n
%

�

#

�

#

�

#
% % ! ! !∃ ∃ ∃2

0 2 1
2 1 1 2( )( ) ( ) % %∃

�

#
p p C xn

n

n
( )1

0
= 0

or     [2C2 + p(p + 1)C0] + [6C3 – 2C1 + p(p + 1)C1]x + [( )( ) ( ) ( ) ]n n C n n C nC p p C xn n n n
n

n
% % ! ! ! ! %%

�

#

∃ 1 2 1 2 12
2

=  0

or  [2C2 + p(p + 1)C0] + [6C3 + (p2 + p – 2)C1]x + [( )( ) { ( ) ( )} ]n n C n n n p p C xn n
n

n
% % ! ! % ! %%

�

#

∃ 1 2 1 2 12
2

= 0

or   [2C2 + p(p + 1)C0] + [6C3 + (p – 1)(p + 2)C1]x
2 2

2
2

[( 1)( 2) {( ) ( )} ] 0n
n n

n

n n C p n p n C x
#

%
�

% % % % ! % ! �∃

or [2C2+ p(p + 1)C0] + [6C3 + (p – 1)(p + 2)C1]x + [( )( ) ( )( ) ]n n C p n p n C xn n
n

n
% % % ! % %∃ %

�

#
1 2 12

2
= 0. ...(5)

Since (5) is an identity, we equate the coefficients of various powers of x to zero and obtain

2C2 + p(p + 1)C0 = 0 so that C2 = !
%p p C( )
!

1
2 0

...(6)

6C3 + (p – 1)(p + 2)C1 = 0 so that C3 = ! ! %( )( )
!

p p C1 2
3 1 ...(7)

(n + 1)(n + 2)Cn + 2 + (p – n)(p + n + 1)Cn = 0

or Cn + 2 = !
! % %

% %
( )( )

( )( )
p n p n

n n
Cn

1
1 2

,   for   n 0 2. ...(8)

Putting n = 2, 3, .... in (8) and using (6) and (7), we have

C4 = 2 0
( 2)( 3) ( 2)( 1)( 3)

4 3 4!
p p p p p pC C! % ! % %

! �
1

C5 = 3 1
( 3)( 4) ( 1)( 3)( 2)( 4)

5 4 5!
p p p p p pC C! % ! ! % %

! �
1

and so on. Putting the above values of C2, C3, C4, C5, .... in (3), we get

y = C C x p p C x p p C x0 1 0
2

1
31

2
1 2
3

% ! % ! ! %( )
!

( )( )
!

4
0

( 2)( 1)( 3) ....
4!

p p p p C x! % %
% %

or y = C p p x p p p p x0
2 41 1

2
2 1 3

4
!

%
%

! % %
!L

NM
O
QP

( )
!

( )( )( )
!

.... infad.

+ C x p p x p p p p x1
3 51 2

3
1 3 2 4

5
!

! %
%

! ! % %
!L

NM
O
QP

( )( )
!

( )( )( )( )
!

.... infad. ,

which is the required general solution, C0 and C1 being arbitrary constants.
Ex. 4. Solve y( – xy∋ – py = 0, where p is any constant.
Sol. Given y( – xy∋ – py = 0. ...(1)
Comparing (1) with y( + P(x)y∋ + Q(x)y = 0, here P(x) = –x and Q(x) = –p. Since P(x) and

Q(x) are both analytic at x = 0, so x = 0 is an ordinary point. To solve (1), we take

y = C0 + C1x + C2x
2 + C2x

3 + C4x
4 + .... = C xn

n

n �

#
∃

0
. ...(2)
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8.8 Integration In Series

Differentiating (2) twice in succession w.r.t. ‘x’, we get

y∋ = C nxn
n

n

!

�

#
∃ 1

1
    and y( = C n n xn

n

n
( )!∃ !

�

#
1 2

2
. ...(3)

Putting the above values of y, y∋ and y( in (1), we have

2 1

2 1 0

( 1) n n n
n n n

n n n

C n n x x C nx p C x
# # #

! !

� � �

! ! !∃ ∃ ∃ = 0  or  n n C x nC x pC xn
n

n
n

n

n
n

n

n
( )!∃ ! ∃ ! ∃!

�

#

�

#

�

#
1 2

2 1 0
= 0

or ( )( )n n C x nC x pC xn
n

n
n

n

n
n

n

n
% %∃ ! ∃ ! ∃%

�

#

�

#

�

#
2 1 2

0 1 0
= 0

or (2C2 – pC0) + (6C3 – C1 – pC1)x + [( )( ) ]n n C nC pCn n n
n

% % ! !%
�

#
∃ 2 1 2

2
= 0

or (2C2 – pC0) + {6C3 – (p + 1)C1}x + [( )( ) ( ) ]n n C p n Cn n
n

% % ! %%
�

#
∃ 2 1 2

2
= 0. ...(4)

Since (4) is an identity, we equate the coefficients of various powers of x to zero and obtain
2C2 – pC0 = 0 so that C2 = (p/2)C0 ...(5)
6C3 – (p + 1)C1 = 0 so that C3 = [(p + 1)/6]C1    ...(6)

(n + 2)(n + 1)Cn + 2 – (p + n)Cn = 0  so that  Cn + 2 =
p n

n n
Cn

%
% %( )( )1 2

, for all   n 0 2

...(7)
Putting n = 2, 3, 4, .... in (7) and using (5) and (6), we get

C4 = 2 0 0
2 2 ( 2)

3 4 3 4 2 4!
p p p p pC C C% % %

� / �
1 1

, C5 = 3 1 1
3 3 1 ( 1)( 3)

4 5 4 5 2 3 5!
p p p p pC C C% % % % %

� / �
1 1 1

and so on. Putting these values in (3), we obtain

y = C C x p C x p C x p p C x0 1 0
2

1
3

0
4

2
1

6
2

4
% % %

%
%

%( )
!

% % % %( )( )
!

..p p C x1 3
5 1

5

or y = C p x p p x0
2 41

2
2

4
% % % %L
NM

O
QP!

( )
!

...  + C x p x p p x1
3 51

3
1 3
5

% % % % % %L
NM

O
QP!

( )( )
!

...

which is the required solution, C0 and C1 being arbitrary constants.
Ex. 5(a). Find the general solution of y( + (x – 3)y∋ + y = 0 near x = 2.
(b) Obtain power series solution of y( + (x – 1)y∋ + y = 0 in powers of   (x – 2).
Sol. Given y( + (x – 3)y∋ + y = 0. ...(1)
Comparing (1) with y( + P(x)y∋ + Q(x)y = 0, here P(x) = x – 3 and Q(x) = 1. Since both P(x)

and Q(x) are analytic at x = 2, so x = 2 is an ordinary point of (1). To find solution near x = 2, we
shall find series solution in powers of (x – 2). We assume that

y = C C x C x C x C xn
n

n
0 1 2

2
3

3

0
2 2 2 2% ! % ! % ! % � !

�

#
∃( ) ( ) ( ) .... ( ) . ...(2)

Differentiating (2) twice in succession w.r.t. ‘x’, we get

y∋ = nC xn
n

n
( )!∃ !

�

#
2 1

1
        and         y( = n n C xn

n

n
( ) ( )! !∃ !

�

#
1 2 2

2
.  ...(3)

Putting the above values of y, y∋ and y( in (1), we get
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n n C x x nC xn
n

n
n

n

n

( ) ( ) ( ) ( )! ! % ! !!

�

#
!

�

#

∃ ∃1 2 3 22

2

1

1
 + C xn

n

n
( )!∃

�

#
2

0
= 0

or n n C x x nC xn
n

n
n

n

n
( ) ( ) [( ) ] ( )! !∃ % ! ! !∃!

�

# !

�

#
1 2 2 1 22

2

1

1
+ C xn

n

n
( )!∃

�

#
2

0
= 0

or n n C x nC xn
n

n
n

n

n
( ) ( ) ( )! !∃ % !∃!

�

#

�

#
1 2 22

2 1
! !∃ % !∃!

�

#

�

#
nC x C xn

n

n
n

n

n
( ) ( )2 21

1 0
= 0

or   ( )( ) ( ) ( )n n C x nC xn
n

n
n

n

n

% % ! % !%
�

#

�

#

∃ ∃2 1 2 22
0 1

! % !∃ % !∃%
�

#

�

#
( ) ( ) ( )n C x C xn

n

n
n

n

n
1 2 21

0 0
= 0

or ( ) [( )( )2 2 12 1 0 2
2

C C C n n C nCn n
n

! % % % % %∃ %
�

#
! % % !%( ) ]( )n C C xn n

n1 21 = 0. ...(4)

which is an identity. Equating to zero the coefficients of various powers of  (x – 2), we get
2C2 – C1 + C0 = 0 so that C2 = (C1 – C0)/2. ...(5)

     (n + 2)(n + 1)Cn + 2 + (n + 1)Cn – (n + 1)Cn + 1 = 0 for all n 0 1
or Cn + 2 = (Cn + 1 – Cn)/(n + 2), for all n 0 1. ...(6)

Putting n = 1, 2, 3, .... in (6) and using (5) etc., we get

  C3 =
C C C C

C
C C2 1 1 0

1
0 1

3
1
3 2 6

!
�

!
!L

NM
O
QP � !

%
...(7)

C4 =
C C C C C C

C C3 2 0 1 1 0
0 14

1
4 6 2

1
12

1
6

!
� !

%
!

!L
NM

O
QP � ! . ...(8)

and so on. Putting these values in (2), the required solution near x = 2 is

y = C C x
C C

x
C C

x0 1
1 0 2 0 1 32

2
2

6
2% ! %

!F
HG

I
KJ ! !

%F
HG

I
KJ !( ) ( ) ( ) % !FH IK ! %1

12
1
6

20 1
4C C x( ) ....

or y = C0[1 – (1/2) × (x – 2)2 – (1/6) × (x – 2)3 – (1/12) × (x – 2)4 + .... ad. inf.]
+ C1[(x – 2) + (1/2) × (x – 2)2 – (1/6) × (x – 2)3 – (1/6) × (x – 2)4 + .... ad. inf.]

(b) Do as in part (a) yourself.
Ex. 6. Find the power series solution in powers of (x – 1) of the initial value problem

xy( + y∋ + 2y = 0,   y(1) = 1,   y∋(1) = 2. [Purvanchal 2007; CDLU 2004]
Sol. Given equation is y( + (1/x)y∋ + (2/x)y = 0. ...(1)
Comparing (1) with y( + P(x)y∋ + Q(y) = 0, here P(x) = 1/x and Q(x) = 2/x, which are

analytic at x = 1. Hence x = 1 is an ordinary point of (1). To find solution near x = 1, we shall find
series solution in powers of (x – 1).

Let y = C0 + C1(x – 1) + C2(x – 1)2 + C3(x – 1)3 + .... = C xn
n

n
( )!∃

�

#
1

0
. ...(2)

Differentiating (2) twice in succession w.r.t. ‘x’, we get

y∋ = nC xn
n

n
( )!∃ !

�

#
1 1

1
and y( = n n C xn

n

n
( ) ( )! !∃ !

�

#
1 1 2

2
.  ...(3)

Putting these values of y, y∋ and y( in given equation, we get
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8.10 Integration In Series

x n n C x nC x C xn
n

n
n

n

n
n

n

n
( ) ( ) ( ) ( )! !∃ % !∃ % !∃!

�

# !

�

#

�

#
1 1 1 2 12

2

1

1 0
= 0

or [( ) ] ( ) ( ) ( )x n n C x nC xn
n

n
n

n

n
! % ! !∃ % !∃!

�

# !

�

#
1 1 1 1 12

2

1

1 0

2 ( 1)n
n

n

C x
#

�

% !∃ = 0

or    n n C x n n C xn
n

n
n

n

n
( ) ( ) ( ) ( )! !∃ % ! !∃!

�

# !

�

#
1 1 1 11

2

2

2

1

1 0

( 1) 2 ( 1)n n
n n

n n

nC x C x
# #

!

� �

% ! % !∃ ∃ = 0

or    ( ) ( ) ( )( ) ( )n nC x n n C xn
n

n
n

n

n
% !∃ % % % !∃%

�

#

%
�

#
1 1 2 1 11

1
2

0

1
0 0

( 1) ( 1) 2 ( 1)n n
n n

n n

n C x C x
# #

%
� �

% % ! % !∃ ∃ = 0,

which is an identity. Equating to zero the coefficients of various powers of   (x – 1), we get
2C2 + C1 + 2C0 = 0 so that C2 = –(C1 + 2C0)/2.   ...(4)

and (n + 1)nCn + 1 + (n + 2)(n + 1)Cn + 2 + (n + 1) Cn + 1+ 2Cn = 0, for all n 0 1
or (n + 1)(n + 2)Cn + 2 + (n + 1)2Cn + 1 + 2Cn = 0, for all n 0 1

or Cn + 2 = !
% %

% %
%( )

( )( )
n C C

n n
n n1 2

1 2

2
1 , for all n 0 1. ...(5)

Given that y = 1 and y∋ = 2 when x = 1. Hence putting x = 1 in (2) and (3), we have
C0 = 1 and C1 = 2. ...(6)

Using (6), (4) gives C2 = –(2 + 2)/2 = –2. ...(7)
Putting n = 1, 2, 3, ... (5) and using (6) and (7) etc., we get

 C3 =
2

2 12 2 4 ( 2) (2 2) 2
2 3 2 3 3

C C% / ! % /
! � ! �

1 1
, C4 =

2
3 23 2 9 (2 / 3) 2 ( 2) 1
3 4 3 4 6

C C% / % / !
! � ! � !

1 1

C5 =
2

4 34 2 16 ( 1/ 6) 2 (2 / 3) 1
4 5 4 5 15

C C% / ! % /
! � ! �

1 1
.

and so on. Putting these values in (2), we have
y = 1 + 2(x – 1) – 2(x – 1)2 + (2/3) × (x – 1)3 – (1/6) × (x – 1)4 + (1/15) × (x – 1)5 + ....

Note. Ex. 5 and 6 can also be solved by shifting the origin. The following example is given
to provide an alternative method of solving 5 and 6.

Ex. 7. Find the power series solution of the initial value problem (x2 – 1)y( + 3xy∋ + xy = 0,
y(2) = 4, y∋(2) = 6.

Sol. Given equation is (x2 – 1)y( + 3xy∋ + xy = 0. ...(1)
Dividing by (x2 – 1), (1) gives y( + [(3x)/(x2 – 1)]y∋ + [x/(x2 – 1)]y = 0. ...(2)
Comparing (2) with y( + P(x)y∋ + Q(x)y = 0, here P(x) = (3x)/(x2 – 1) and Q(x) = x/(x2 – 1).

Since P(x) and Q(x) are both analytic at x = 2, so x = 2 is an ordinary point of (1).
Since the initial values of (1) are prescribed at x = 2 and x = 2 is an ordinary point, hence we

shall find the required solution near x = 2, i.e., in powers of (x – 2).

Let y = C0 + C1(x – 2) + C2(x – 2)2 + .... = C xn
n

n
( )!∃

�

#
2

0
. ...(3)
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Integration In Series 8.11

We now shift the origin to x = 2 by writing     t = x – 2      so that        x = t + 2      ...(4)

Then     dy
dx

= dy
dt

dt
dx

dy
dt

�         and           d y
dx

2

2 = d
dx

dy
dx

d
dt

dy
dt

d y
dt

F
H
I
K � FH

I
K �

2

2 . ...(5)

Using (4) and (5), (1) reduces to       [(t + 2)2 – 1](d2y/dt2) + 3(t + 2)(dy/dt) + (t + 2)y = 0
or (t2 + 4t + 3)(d2y/dt2) + (3t + 6)(dy/dt) + (t + 2)y = 0. ...(6)

Also, (3) reduces to y = C C t C t C tn
n

n
0 1 2

2

0
% % % � ∃

�

#
.... . ...(7)

Differentiating (7) twice in succession w.r.t. ‘t’, we get

dy/dt = nC tn
n

n

!

�

#
∃ 1

1
and d2y/dt2 = n n C tn

n

n
( )!∃ !

�

#
1 2

2
.   ...(8)

Using (7) and (8), (6) reduces to

( ) ( ) ( )t t n n C t t nC tn
n

n
n

n

n

2 2

2

1

1
4 3 1 3 6% % !∃ % % ∃!

�

# !

�

# % % ∃
�

#
( )t C tn

n

n
2

0
= 0

or n n C t n n C t n n C tn
n

n
n

n

n
n

n

n
( ) ( ) ( )!∃ % !∃ % !∃

�

# !

�

# !

�

#
1 4 1 3 1

2

1

2

2

2
+ 3 6 2

1

1

1

1

0 0
nC t nC t C t C tn

n

n
n

n

n
n

n

n
n

n

n�

# !

�

# %

�

#

�

#
∃ % ∃ % ∃ % ∃ = 0

or n n C t n nC t n n C tn
n

n
n

n

n
n

n

n
( ) ( ) ( )( )!∃ % %∃ % % %∃

�

#

%
�

#

%
�

#
1 4 1 3 2 1

2
1

1
2

0

% ∃ % %∃ % ∃ % ∃
�

#

%
�

#

!
�

#

�

#
3 6 1 2
1

1
0

1
1 0

nC t n C t C t C tn
n

n
n

n

n
n

n

n
n

n

n
( ) = 0

or    (6C2 + 6C1 + 2C0) + (8C2 + 18C3 + 3C1 + 12C2 + C0 + 2C1)t

+ [ ( ) ( ) ( )( )n n C n n C n n C nCn n n n
n

! % % % % % %∃ % %
�

#
1 4 1 3 1 2 31 2

2
+ 6(n + 1)Cn + 1 + Cn – 1 + 2Cn]tn = 0

or 2(3C2 + 3C1 + C0) + (18C3 + 20C2 + 5C1 + C0)t

   + [ ( )( )3 1 2 2
2

n n Cn
n

% % %
�

#
∃ % % % %2 2 3 1 1( )( )n n Cn  + (n2 + 2n + 2)Cn + Cn – 1]t

n = 0 ...(9)

From (3), y∋ = C1 + 2C2(x – 2) + 3C3(x – 2)2 + .... ...(10)
Putting x = 2 in (3) and (10) and using the given initial conditions, namely, y = 4 and y∋ = 6

when x = 2, we get C0 = 4 and C1 = 6. Hence (9) reduces to

2(3C2 + 22) + (18C3 + 20C2 + 34)t + { ( )( )3 1 2 2
2

n n Cn
n

% %∃ %
�

#
+ 2(2n + 3)(n + 1)Cn + 1 + (n2 + 2n + 2)Cn + Cn – 1}tn = 0,

which is an identity in t. Equating to zero the coefficients of various powers of t, we have
2(3C2 + 22) = 0 so that      C2 = –(22/3). ...(11)

18C3 + 20C2 + 34 = 0        or     18C3 – 20 × (22/3) + 34 = 0      or      C3 = 169/27 ...(12)
and           3(n + 1)(n + 2)Cn + 2 + 2(2n + 3)(n + 1)Cn + 1 + (n2 + 2n + 2)Cn + Cn – 1 = 0,    for  all       n 0 2. ...(13)

Putting n = 2 in (13), we get 36C4 + 42C3 + 10C2 + C1 = 0
or 36C4 + 42 × (169/27) + 18 × (–22/3) + 6 = 0 2  C4 = 344/81

Putting the above values in (3), the required solution is
y = 4 + 6(x – 2) – (22/3) × (x – 2)2 + (169/27) × (x – 2)3 + (344/81) × (x – 2)4 + ....

Ex. 8. Solve   y( – 2x2y∋ + 4xy = x2 + 2x + 4 in powers of x.
Sol. Given equation is y( – 2x2y∋ + 4xy = x2 + 2x + 4. ...(1)
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8.12 Integration In Series

Clearly x = 0 is an ordinary point of (1). To solve (1) it, let

y = C0 + C1x + C2x
2 + C3x

3 + .... = C xn
n

n �

#
∃

0
. ...(2)

Differentiating (2) twice in succession w.r.t. ‘x’, we have

y∋ = nC xn
n

n

!

�

#
∃ 1

1
and y( = n n C xn

n

n
( )!∃ !

�

#
1 2

2
. ...(3)

Substituting these values of y, y∋ and y( in (1), we have

      n n C x x nC x x C xn
n

n
n

n

n
n

n

n

( )! ! %!

�

#
!

�

#

�

#

∃ ∃ ∃1 2 42

2

2 1

1 0
= x2 + 2x + 4

or   n n C x nC x C xn
n

n
n

n

n
n

n

n
( )!∃ ! ∃ % ∃!

�

# %

�

# %

�

#
1 2 42

2

1

1

1

0
– x2 – 2x – 4 = 0

or ( )( ) ( )n n C x n C x C xn
n

n
n

n

n
n

n

n
% %∃ ! !∃ % ∃%

�

#

!
�

#

!
�

#
2 1 2 1 42

0
1

2
1

1
 – x2 – 2x – 4 = 0

or   (2C2 – 4) + (6C3 + 4C0 – 2)x + (12C4 + 2C1 – 1)x2 + [( )( ) ( ) }n n C n C C xn n n
n

n
% % ! ! %∃ % ! !

�

#
2 1 2 1 42 1 1

3
= 0. ...(4)

Equating to zero the coefficients of various powers of x in (4), we get
2C2 – 4 = 0 so that C2 = 2, ...(5)
6C3 + 4C0 – 2 = 0 so that C3 = (1/3) – (2C0/3)  ...(6)
12C4 + 2C1 – 1 = 0 so that C4 = (1/12) – (C1/6) ...(7)

and (n + 2)(n + 1)Cn + 2 – 2(n – 1)(Cn – 1 + 4Cn – 1 = 0, for all n 0 3. ...(8)
Putting n = 3, 4, 5, ... in (8) and using (5), (6), (7), etc, we get

20C5 – 4C2 + 4C2 = 0 so that C5 = 0, ...(9)

30C6 = 2C3 so that C6 = 1
15

1
3

2
3

1
45

2
450 0!FH IK � !C C

42C7 = 4C4 so that C7 = 2
21

1
12

1
6

1
125

1
631 1!FH IK � !C C

and so on. Putting these values in (2), the required solution is

y = C0 + C1x + 2x2% !FHG
I
KJ % !FHG

I
KJ

1
3

2
3

1
12 6

0 3 1 4C
x

C
x + 

1
45

2
45

1
126 63

0 6 1 7!FHG
I
KJ % !F
HG

I
KJ %

C
x

C
x ....

or   y = C x x C x x x0
3 6

1
4 71 2

3
2
45

1
6

1
63

! !FH IK % ! !FH IK.... .... + 2 1
3

1
12

1
45

1
126

2 3 4 6 7x x x x x% % % % % ....

Ex. 9. (i) Explain the method of integrating in series for solving a first order differential equation.

(ii) Find a power series solution of the form 
0

n
nn

a x
#

�
3  for the differential equation 2 .y xy∋ �

[Nagpur 2005]
(iii) Solve 2 4 1y x x y∋ � ! % %  satisfying y = 3 when x = 2.

Sol. (i) The Picard’s theorem of Art. 1.6 (refer chapter 1) for a differential equation of the
form dy/dx = f(x, y)   ... (1)
gives a sufficient condition for a solution. In the proof using power series, y is found in the form of
a Taylor series

y = a0 + a1 (x – x0) + a2(x – x0)
2 + ... + an (x – x0)

n + ... ... (2)
where for convenience y0 has been replaced by a0. This series has the following properties:
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Integration In Series 8.13

(a) It satisfies the differential equation (1) (b) It has the value y0 when x = x0.
(c)  It is convergent for all values of x sufficiently near x = x0.
To find the solution of (1) satisfying the condition y = y0 when x = 0, we assume the solution

to be of the form 2
0 1 2 0

... ...n n
n nn

y a a x a x a x a x
#

�
� % % % % % � 3   ... (3)

in which a0 = y0 and the remaining a’s are constant to be determined.
Substitute the assumed series (3) in (1) and proceed to find a1, a2, a3, ... an ... as usual.
Remark. If we are to find the solution of (1) satisfying y = y0 when x = x0, we modify the

above procedure as follows

Make the substitution x – x0 = v, that is, 0 , / /x x dy dx dy d� % �v v  resulting in

/ ( , )dy d F y�v v ... (4)
Use the above procedure to obtain the solution of (4) satisfying y = y0 when v = 0. Finally

make the substitution v = x – x0 in the solution.
(ii) Given 2y xy∋ � ... (1)

Let (1) possess series solution
0

n
nn

y a x
#

�
� 3 ... (2)

From (2), 1

0

n
nn

y na x
#

!

�
∋ � 3 ... (3)

Inserting (2) and (3) into (1), we have
2 3 1

1 2 3 42 3 4 ... ...n
na a x a x a x na x !% % % % % % 4 52 2

0 1 2 22 ... ...n
nx a a x a x a x !

!� % % % % %

Collecting like powers of x yields.
2 3 4

1 2 0 3 1 4 2 5 3(2 2 ) (3 2 ) (4 2 ) (5 3 )a a a x a a x a a x a a x% ! % ! % ! % ! 5 1
6 4 2(6 5 ) ... ( 2 ) ... 0n

n na a x na a x !
!% ! % % ! % �

In order that this series vanish for all values of x in some region surrounding x = 0, it is
necessary and sufficient that coefficients of each power of x vanish. Thus, we obtain
a1 = 0,     2a2 – 2a0 = 0,     3a3 – 2a1 = 0,     4a4 – 2a2 = 0,     5a5 – 2a3 = 0,    6a6 – 2a4 = 0
2 a1 = 0,  a2 = a0,  a3 = (2/3)a1 = 0,  a4 = (1/2)a2 = (1/2)a0 ,  a6 = (1/3)a4 = (1/3) × (a0/2) = a0/3! and so on

In general, a2n + 1 = 0 and a2n = a0/n!,        for all n = 1, 2, 3
Substituting these values into (2), we obtain the required power series solution.

    y = a0 + a2x
2 + a4x

4 + a6x
6 + ... + a2nx2x + ...   or   y = a0 + a0x

2 + (a0/2!) x4 + (a0/3!)x6 + ... + (a0/n!)x2n + ...
or        y = a0 (1 + x2/1! + x4/2! + x6/3! + x2n/n! + ...), a0 being an arbitrary constant

(iii) Given dy/dx = x2 – 4x + y + 1 ... (1)
where y = 3 when x = 2 ... (2)

Let x = v + 2. Then (1) and (2) reduce to
dy/dv = v2 + y – 3 ... (3)

and y = 3      when v = 0 ... (4)
We now proceed with (3) and (4) as in part (ii). We assume the series solution

2 3 4
1 2 3 43 ... ...n

ny a a a a a� % % % % % % %v v v v v ... (5)

From (5), 2 3 1
1 2 3 4/ 2 3 4 ... ...n

ndy d a a a a na !� % % % % % %v v v v v ... (6)

Inserting (5) and (6) into (3), we have, as before

      2 3 1
1 2 1 3 2 4 3 1(2 ) (3 1) (4 ) ... ( ) ... 0n

n na a a a a a a na a !
!% ! % ! ! % ! % % ! % �v v v v
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8.14 Integration In Series

Equating each of the coefficients to zero, we obtain
 a1 = 0, 2a2 – a1 = 0 so that a2 = 0; 3a3 – a2 – 1 = 0 so that a3 = 1/3; 4a4 – a3 = 0 so that a4 = 1/12, and so on.

Again, nan – an–1 = 0 2 an = (1/n)an–1       for all 1n 0
... (7)

Using the recursion formula (7), we have

1 2 3
1 1 1 2 , for all 2

( 1) ( 1) ( 2) 4 !n n na a a a n
n n n n n n n! !� � � 11 1 � � 0

! ! ! 111

Substituting the above values of the coefficients into (5), we have
3 43 /3 /12 ... (2 / !) ...ny n� % % % % %v v v ... (8)

Replacing v by x – 2, (8) gives the required solution
y = 3 + (2/3!) × (x – 2)3 + (2/4!) × (x – 2)4 + ...+ (2/n!) × (x – 2)n + ...

Ex. 10. Solve by power series method : 0.y y∋ ! �  [Sagar 2004]

Sol. Given 0y y∋ ! � ... (1)
Assume that a solution of (1) is given by power series

2
0 1 2 0

... ...n n
n nn

y C C x C x C x C x
#

�
� % % % % % � 3 ... (2)

Differentiating (2) w.r.t. ‘x’, 1
1

n
nn

y n C x
#

!

�
∋ � 3

Substituting the above values of andy y∋  in (1), we get        1

1 0
0n n

n nn n
n C x C x

# #
!

� �
3 ! 3 �

or (C1 + 2C2x + 3C3 x2 + ....) – (C0 + C1x + C2x
2 + ...) = 0

or (C1 – C0) + (2C2 – C1)x + (3C3 – C2) x
2 + ... = 0 ... (3)

Since (3) is an identity, we must have
C1 – C0 = 0, 2C2 – C1 = 0, 3C3 – C2 = 0, .... ... (4)

Solving (4), C1 = C0, C2 = C1/2 = C0/2, C3 = C2/3 = C0/3!, ...
Substituting these values in (2), we obtain
y = C0 (1 + x + x2/2! + x3/3! + ...) or       y = C0e

x,
which is the required solution, C0 being an arbitrary constant.

EXERCISE 8 (B)
Find the series solution of the following equations :
1. (1 – x2)y( + 2xy∋ – y = 0 about x = 0. [Purvanchal 2007; Meerut 2000]

Ans. 2 4 3 5
0 1(1 / 2 / 24 ) ( / 6 /120 )y C x x C x x x� % ! % 111 % ! ! % 111

2. (2 + x2)y( + xy∋ – (1 + x)y = 0 near x = 0. (Delhi Maths (H) 2002)
2 3 4 4

0 1(1 / 4 /12 3 / 96 ) ( / 24 )y C x x x C x x� % % ! % 111 % % % 111Ans.
3. (1 + x2)y( + xy∋ – y = 0 near x = 0. [Delhi Maths (Hons) 1999]

2 4 6
0 1(1 /2 /8 /15 ) .y C x x x C x� % ! % % 111 %Ans.

4. (x2 – 1)y( + xy∋ – y = 0 near x = 0. Ans. y = C0{1 + (x2/2) + (x4/4) + ....} + C1x

5.  (x2 – 1)y( + 4xy∋ + 2y = 0 near x = 0. Ans. y = C0(1 + x2 + x4 + ....) + C1(x + x3 + x5 + ...)

6. (1 – x2)y( + 2xy∋ – y = 0 about x = 0.
Ans. y = C0(1 + x2/2! – x4/4! + ...) + C1 (1 – x3/3! – x5/5! +...)
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7. y( – xy∋ + 2y = 0 near x = 1.
Ans. y = C0[1 – (x – 1)2 – (1/3) × (x – 1)3 – ....] + C1[(x – 1) + (1/2) × (x – 1)2 + ....]

8. (x2 – 1)y( + 3xy∋ + xy = 0, y(0) = 2, y∋(0) = 3.  Ans. y = 2 + 3x + (11/6) × x3 + (1/4) × x4 – ....
9. (i) (1 – x2)y( + 2y = 0 near x = 0. Ans. y = C0(1 – x2) + C1(x – x3/3 – x5/5 – x7/35 – ....

(ii) (1 – x2)y( + 2y = 0, y(0) = 4, y∋(0) = 5.         Ans. y = 4 + 5x – 4x2 – (5/3) × x3 – (1/3) × x5 + ....
10. (x2 + 2x)y( + (x + 1)y∋ – y = 0 near x = –1.

Ans. y = C0[1 – (1/2) × (x + 1)2 – (1/8) × (x + 1)4 – (1/16) × (x + 1)6 + ....] + C1(x + 1)
11. y( – xy∋ = e–x, y(0) = 2, y∋(0) = –3.
[Hint : Use the expansion e–x = 1 – (x/1!) + (x2/2!) – (x3/3!) + ....

Ans. y = 2 – 3x + (1/2) × x2 – (2/3) × x3 + (1/8) × x4 – ....
Ex. 12(a). Solve y( + x2y = 2 + x + x2 about x = 0.
Sol. Proceed as in Ex. 8. of Art. 8.6. Its general solution is given by

y = C x x C x x x
0

4 8

1

5 9
1

12 672 20 1440
! % !
F
HG

I
KJ % ! % !
F
HG

I
KJ.... ....  + x x x x x2

3 4 6 7

6 12 30 252
% % ! ! ! ....

Ex. 12(b). Apply power method to solve y( – y = x.
Sol. Proceed as in Ex. 8. of Art 8.6. Its general solution is given by

y = C x x C x x x x x
0

2 4

1

3 5 3 5
1

2 4 3 5 3 5
% % %
F
HG

I
KJ % % % %
F
HG

I
KJ % % %
F
HG

I
KJ! !

....
! !

....
! !

....

13.  4 0y y∋∋ ! �  near x = 0 [Agra 2007]
8.7. Series solution about regular singular point x = 0. Frobenius Method.

If x = 0 is regular point, we shall use the Frobenius method for finding series solution about
x = 0. However if we wish to find the series solution about regular singular point x = a, then we
first shift the origin to point x = a and later on proceed as before.

If x = 0 is an irregular point of the given equation, then discussion of solution of the equation
is beyond the scope of this book.

We now discuss Frobenius method. Consider the differential equation of the form

y F x
x

y G x
x

y2 1 2% %( ) ( )
= 0,      where       1

dyy
dx

� ,                  
2

2 2
d yy
dx

�       ...(1)

and the functions F(x) and G(x) are analytic at x = 0. Then the following method for solving (1) is
called Frobenius method. We assume a trial solution

y = x c x x c c x c xr
m

m r

m
� % % %∃

�

#
( ...),0 1 2

2

0
 where c0 6 0. ...(2)

Differentiating (2) term by term, we have
y1 = rc0x

r – 1 + (r + 1)c1x
r + .... = xr – 1[rc0 + (r + 1)c1x + ....]

           y2 = r(r – 1)c0x
r – 2 + r(r + 1)c1x

r – 1 + ... = xr – 2[r(r – 1)c0 + (r + 1)rc1x + ...]
Since F(x) and G(x) are analytic at x = 0, we can write
F(x) = a0 + a1x + a2x

2 + .... and G(x) = b0 + b1x + b2x
2 + ....

Putting the values of y, y1, y2, F(x) and G(x) in (1) and then multiplying both sides by x2, gives
            xr[r(r – 1)c0 + ....] + (a0 + a1x + ....)xr(rc0 + ....) + (b0 + b1x + ....)xr (c0 + c1x + c2x

2 + ....) = 0.  ...(3)
Since (3) is an identity, we can equate to zero the coefficients of various powers of x. This

will give us a system of equations involving the unknown coefficients cm. The smallest power is xr,
and the corresponding equation is    [r(r – 1) + a0r + b0]c0 = 0.

Since by assumption c0 6 0, we obtain      r2 + (a0 – 1)r + b0 = 0. ...(4)
This important quadratic equation is known as the indicial equation of (1). We shall see that
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8.16 Integration In Series

this method will give rise to a fundamental system of solutions ; one of these solutions will always
be of the form (2), but for the form of the other solutions there will be three different possibilities
corresponding to the following cases :

Case I. The roots of the indicial equation are distinct and do not differ an integer.
Let r1 and r2 be the roots of (4). We substitute r = r1 in the above mentioned system of

equations and obtain a solution u(x) = x c c xr1
0 1( .... )% % .

Proceeding similarly by using r = r2, we obtain a second solution v(x) = x c c xr2
0 1( ....)∋ % ∋ %

where c∋0, c1∋, .... are the new values of the coefficients corresponding to r = r2. Since r1 – r2 is not
an integer, u/v is never constant. Thus u and v are two independent solutions of (1). Hence the
general solution will be y = au + bv, where a and b are arbitrary constants.

Case II. The indicial equation has equal roots. The indicial equation (4) has double root r if
(a0 – 1)2 – 4b0 = 0 giving r = (1 – a0)/2. ...(5)

We first obtain the coefficients c1, c2.... successively from the system of equations connecting
them. Thus we obtain a first solution u(x) = xr(c0 + c1x + ....),    ...(6)
wherein we write r = (1 – a0)/2 afterwards.

To determine another solution we use the method of variation of parameters, that is, we
replace the constant c in the solution cu by a function w(x) to be determined such that

v(x) =u(x) w(x) ...(7)
is solution of (1). Differentiating (7), we get

v1 = u1w + uw1 and v2 = u2w + 2u1w1 + uw2. ...(8)
Since v(x) is a solution of (1) by assumption, x2 v2 + F(x)  x v1 + G(x) v = 0. ...(9)
Putting the values of v, v1 and v2 from (7) and (8) in (9), we get

x2(u2w + 2u1w1 + uw2) + xF(x)[u1w + uw1] + G(x)uw = 0
or [x2u2 + F(x)xu1 + G(x)u]w + x2(2u1w1 + uw2) + xF(x)uw1 = 0

Since u(x) is a solution of (1), we have        x2u2 + F(x)xu1 + G(x)u = 0.
7 The above equation reduces to          x2(2u1w1 + uw2) + xF(x)uw1 = 0.

Dividing by x2u and putting the value of F(x) gives,   w
u
u

a
x

w2
1 0

12% % %F
HG

I
KJ.... = 0.   ... (10)

In what follows we write dots to represent terms which are constant or involve positive
powers of x. Now from (6), we obtain

u
u
1 =

x rc r c x
x c c x

r
x

r

r

! % % %

% %
� %

1
0 1

0 1

1[ ( ) .... ]
[ .... ]

....

7 (10) becomes        w
r a

x
w2

0
1

2
%

%
%F

HG
I
KJ.... = 0. ...(11)

But from (5), 2r + a0 = 1. Hence the above equation reduces to

w
x

w2 1
1% %FH IK.... = 0 or 

w
w

2

1
= ! %1

x
....

Integrating, log w1 = –log x + .... or w1 = 1
x

e(...)

Expanding the exponential function in powers of x and integrating once more, we obtain the
expression of w always in the following form w = log x + k1x + k2x

2 + ....
Putting this value of w in (7), we obtain the desired another independent solution v(x). Then

the general solution is y = au + bv, a and b being arbitrary constants.
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Case III. The roots of the indicial equation differ by an integer.
Let the roots r1 and r2 of the indicial equation differ by an integer, say r1 = r and r2 = r – p,

where p is a positive integer, then as before one solution will be given by

u(x) = x c c x c xr1
0 1 2

2( ....)% % %

corresponding to the root r1. However, while, dealing with the root r2 it may not be possible to
determine another independent solution v(x) as in case I. In such cases we determine v(x) by using
method outlined in case II. Thus as before we first obtain (11).

From (5),         r1 + r2 = –(a0 – 1), using theory of equations
Since r1 = r, r2 = r – p, this gives 2r + a0 = p + 1. Thus (11) becomes

        
w
w

2

1
= !

%
%F

H
I
K

p
x

1 .... .

Integrating, log w1 = –(p + 1) log x + .... or w1 = x–(p + 1)e(...)

Expanding the exponential function and simplifying, we get

w1 = 1
1

1
1 2x

k
x

k
x

k k xp p
p

p p% % %% % % % % %.... ....

Integrating again, w = ! ! % % %%
1

1px
k x k xp p p.... log ....

Putting this value of w in (7), we obtain another solution v(x) and as usual the general solution
y = au + bv, where a and b are arbitrary constants.
8.8. Working rule for solution by Frobenius method

Consider linear differential equation of order two    f(x)y( + g(x)y∋ + r(x)y = 0.  ...(1)
Step 1. Suppose that a trial solution of (1) be of the form

y = xk(c0 + c1x + c2x
2 + .... + cmxm + .... ) i.e. y = x c xk

m
m

m
.

�

#
∃

0
...(2)

Thus we take y = c xm
m k

m

%

�

#
∃

0
,            where         c0 6 0. ...(3)

Step 2. Differentiate (3) and obtain

y∋ = c m k xm
m k

m
( )%∃ % !

�

# 1

0
       and            y( = c m k m k xm

m k

m
( )( ) .% % !∃ % !

�

#
1 2

0
     ...(4)

Using (3) and (4), (1) reduces to an identity.
Step 3. Equating to zero the coefficient of the smallest power of x in the identity obtained in

step 2 above, we obtain a quadratic equation is k. The quadratic equation so obtained is called the
indicial equation.

Step 4. Solve the indicial equation. The following cases arise :
(i) The roots of indicial equation unequal and not differing by an integer.
(ii) The roots of indicial equation unequal, differing by an integer and making a coefficient of

y indeterminate.
(iii) The roots of indicial equation unequal, differing by an integer and making a coefficient

of y infinite.
(iv) The roots of indicial equation equal.
Step 5. We equate to zero the coefficient of general power (e.g. xk + m, xk + m – 1 etc. whichever

may be the lowest) in the identity obtained in step 2. The equation so obtained will be called the
recurrence relation, because it connects together the coefficients cm, cm – 2 or cm, cm – 1 etc.
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Step 6. If the recurrence relation connects cm and cm – 2, then we, in general, determine c1 by
equating to zero the coefficient of the next higher power (than already used for getting the indicial
equation). On the other hand, if the recurrence relation connects cm and cm – 1, this step may be
omitted.

Step 7. After getting various coefficinets with help of steps 5 and 6 above, solution is obtained
by substituting these in (2) or (3) above. Other necessary working will be shown in details and
necessary modifications in method will be discussed as we proceed with different four cases outlined
in step 4. The readers are advised to study carefully the first example of each case. In each problem
the two series of solution should be linearly independent.
8.9. Examples of Type–1 on Frobenius method. Roots of indicial equation unequal
and not differing by an integer :

In this connection the following rule should be noted carefully.
Rule. Let k1 and k2 be the roots of the indicial equation. It k1 and k2 do not differ by an

integer. Then, in general, two independent solutions u and v are obtained by putting k = k1 and k2
in the series for y. Then the general solution is y = au + bv, where a and b are arbitrary constants.

Ex. 1. Solve in series : 9x(1 – x)y( – 12y∋ + 4y = 0. [Delhi Maths (H) 2007, 08; Meerut
1997]

Sol. Given equation is 9x(1 – x)y( – 12y∋ + 4y = 0. ...(1)
Dividing by 9x(1 – x), (1) can be put in standard form

d y
dx x x

dy
dx x x

y
2

2
4

3 1
4

9 1
!

!
%

!( ) ( )
= 0.

Comparing it with y( + P(x)y∋ + Q(x)y = 0, we have P(x) = –4/[3x(1 – x)] and Q(x)
= 4/[9x(1 – x)]. Since P(x) and Q(x) are not both analytic at x = 0, so x = 0 is not ordinary point of
(1). Again xP(x) = –4/[3(1 – x)] and x2Q(x) =    4x/(1 – x), showing that both P(x) and Q(x) are
analytic at x = 0. So x = 0 is a regular singular point of (1). To find solution of (1), we take

y = c xm
k m

m

%

�

#
∃

0
,  where  c0 6 0. ...(2)

7 y∋ = c k m xm
k m

m
( )%∃ % !

�

# 1

0
   and  y( = c k m k m xm

k m

m
( )( ) .% % !∃ % !

�

#
1 2

0
...(3)

Substituting the series (2) and (3) in (1), we have

9 1 1 122

0

1

0
x x c k m k m x c k m xm

k m

m
m

k m

m
( ) ( )( ) ( )! % % !∃ ! %∃% !

�

# % !

�

#
+ 4

0
c xm

k m

m

%

�

#
∃ = 0

or  9 1 2

0
x c k m k m xm

k m

m
( )( )% % !∃ % !

�

#
! % % !∃ % !

�

#
9 12 2

0
x c k m k m xm

k m

m
( )( ) ! %∃ % ∃% !

�

# %

�

#
12 41

0 0
c k m x c xm

k m

m
m

k m

m
( ) = 0

or    c k m k m k m xm
k m

m
{ ( )( ) ( )}9 1 12 1

0
% % ! ! %∃ % !

�

#

 + c k m k m xm
k m

m
{ ( )( )}4 9 1

0
! % % !∃ %

�

#
= 0. ...(4)

But 9(k + m)(k + m – 1) – 12(k + m) = 3(k + m)(3k + 3m – 7) ...(5)
and 4 – 9(k + m)(k + m – 1) = 4 – 9(k + m)2 + 9(k + m)

= –[9(k + m)2 – 9(k + m) – 4] = –[9(k + m)2 – 12(k + m) + 3(k + m) – 4]
= –[3(k + m){3(k + m) – 4} + 3(k + m) – 4] = –{3(k + m) – 4}{3(k + m) + 1}

Thus,                4 – 9(k + m) (k + m – 1) = – (3k + 3m – 4)(3k + 3m + 1). ...(6)
Using (5) and (6), (4) can be re–written as

         3 3 3 7 1

0
c k m k m xm

k m

m
( )( )% % !∃ % !

�

#
– c k m k m xm

k m

m
( )( )3 4 3 3 1

0
% ! % %∃ %

�

#
= 0, ...(7)
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which is an identity in x. Equating to zero the coefficient of the smallest power of x, namely xk – 1,
(7) gives the indicial equation

3c0k(3k – 7) = 0        or k(3k – 7) = 0 [� c0 6 0]
Thus k = 0        and 7/3, ...(8)

which are unequal and not differing by an integer. To obtain the recurrence relation, we equate to
zero the coefficient of xk + m – 1 and obtain

3cm(k + m)(3k + 3m – 7) – cm – 1[3k + 3(m – 1) – 4] × [3k + 3(m – 1) + 1] = 0

or cm =
3 3 2

3 1
k m

k m
cm

% !
% !( ) . ...(9)

Taking m = 1 in (9) gives c1 = c k
k

0
3

3 1
1

/
%
%

. ...(10)

Next, taking m = 2 in (9) gives    c2 = 3 4
3 2

k
k

%
%( )

c1 =
c k k

k k
0
23

3 1 3 4
1 2

/
% %
% %

( )( )
( )( )

, by (10)

 ...(11)
and so on. Putting these values in (2)   i.e.,           y = xk(c0 + c1x + c2x

2 + ....), gives

y = c x k
k

x k k
k k

xk
0 2

21 1
3

3 1
1

1
3

3 1 3 4
1 2

% %
%

% % %
% %

%L
NM

O
QP

( )( )
( )( )

.... ...(12)

Putting k = 0 and replacing c0 by a in (12),         y = 21 1 41 .... ,
3 3 6

a x x au1) ∗% % % �+ ,1− .
 say

Next, putting k =
7
2

 and replacing C0 by b in (12), y = 7/3 28 8 111 ....
10 10 13

bx x x b1) ∗% % % �+ ,1− .
v , say..

The required solution is given by y = au + bv,   i.e.

y = 2 7 / 3 21 1 4 8 8 111 .... 1 ....
3 3 6 10 10 13

a x x bx x x1 1) ∗ ) ∗% % % % % % %+ , + ,1 1− . − .
.

Ex. 2. Solve the Bessel equation x2y( + xy∋ + (x2 – n2)y = 0 in series, taking 2n as non–
integral. [Delhi 1997; G.N.D.U. Amritsar 2010; Ranchi 2010]

Sol. Given x2y( + xy∋ + (x2 – n2)y = 0. ...(1)
Dividing by x2, y( + (1/x)y∋ + {(x2 – n2)/x2}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = 1/x and Q(x) =    (x2 – n2)/x2 so that

xP(x) = 1 and x2Q(x) = x2 – n2. Thus both P(x) and Q(x) are analytic at x = 0 and so x = 0 is a
regular singular point of (1). Let the series solution of (1) be of the form

y = C xm
k m

m

%

�

#
∃

0
,   where  C0 6 0. ...(2)

7 y∋ = C k m xm
k m

m
( )%∃ % !

�

# 1

0
     and     y( = C k m k m xm

k m

m
( )( ) .% % !∃ % !

�

#
1 2

0
      ...(3)

Substitution for y, y∋, y( in (1), we have

x C k m k m x x C k m xm
k m

m
m

k m

m

2 2

0

1

0
1( )( ) ( )% % !∃ % %∃% !

�

# % !

�

#
 + ( )x n C xm

k m

m

2 2

0
! ∃ %

�

#
= 0

or      C k m k m x C k m xm
k m

m
m

k m

m
( )( ) ( )% % !∃ % %∃%

�

# %

�

#
1

0 0
+ C x n C xm

k m

m
m

k m

m

% %

�

# %

�

#
∃ ! ∃2

0

2

0
= 0
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or       C k m k m k m n x C xm
k m

m
m

k m

m
{( )( ) ( ) }% % ! % % !∃ % ∃%

�

# % %

�

#
1 2

0

2

0
= 0

or C k m n x C xm
k m

m
m

k m

m
{( ) }% !∃ % ∃%

�

# % %

�

#2 2

0

2

0
= 0

or C k m n k m n x C xm
k m

m
m

k m

m
( )( )% % % !∃ % ∃%

�

# % %

�

#

0

2

0
= 0, ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely xk, (4)
gives the indicial equation C0(k + n)(k– n) = 0 or (k + n)(k + n) = 0       [� C0 6 0]
so that k = n and     –n. ...(5)

Since 2n is non–integral (given), the roots given by (5) are unequal and not differing by an
integer. To obtain the recurrence relation, we equate to zero the coefficient of xk + m and obtain

Cm(k + m + n)(k + m – n) + Cm – 2 = 0

giving Cm = – 1
2( )( )k m n k m n Cm% % % ! ! ...(6)

[Since (6) gives relationship between Cm and Cm – 2, we proceed to find C1 as explained in
step 6 in Art. 8.8].

Equating to zero the coefficient of xk + 1 in (4) gives C1(k + 1 + n)(k + 1 – n) = 0
giving C1 = 0 for both k = n and k = –n. Then from (6) and C1 = 0, we have

C1 = C3 = C5 = .... = 0. ...(7)

Further, taking n = 2 in (6) gives               C2 = !
% % % !

1
2 2 0( )( )k n k n C . ...(8)

Next, taking n = 4 in (6) and using (8) gives

C4 = !
% % % !

1
4 4 2( )( )k n k n C = 1

2 2 4 4 0( )( )( )( )k n k n k n k n
C

% % % ! % % % !
...(9)

and so on. Putting these values in (2), i.e., y = xk(C0 + C1x + C2x
2 + C3x

3 + C4x
4 + ....), gives

y = c x x
k n k n

k
0

2
1

2 2
!

% % % !
L
NM ( )( ) + 

x
k n k n k n k n

4

2 2 4 4( )( )( )( )
....

% % % ! % % % !
!
O
QPP . ...(10)

Putting k = n and replacing C0 by a in (10), gives

y =
2 4

1 ....
4( 1) 4 8( 1)( 2)

n x xax au
n n n

8 9
! % ! �: ;% 1 % %< =

, say..

Next, putting k = –n and replacing C0 by b in (10) gives

y =
2 4

1 ....
4(1 ) 4 8(1 )(2 )

n x xbx b
n n n

! 8 9
! % ! �: ;

! 1 ! !< =
v , say..

Required general series solution is given by y = au + bv, where a and b are arbitrary constants.
Ex. 3. Solve the following differential equations in series :
(a) 2x2y( – xy∋ + (1 – x2)y = 0 [Garhwal 2010]
(b) 2x2y( – xy∋ + (1 – x2)y = x2. [Meerut 1996, 98]
Sol. (a) Given 2x2y( – xy∋ + (1 – x2)y = 0 ...(1)
Dividing by x2, (1) takes standard form y( – (1/2x)y∋ + {(1 – x2)/2x2}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = –(1/2x) and Q(x) = {(1 – x2)/2x2} so that

xP(x) = –(1/2) and x2Q(x) = (1 – x2)/2. Thus both P(x) and Q(x) are analytic at x = 0 and so x = 0 is a
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regular singular point. Let the series solution of (1) be of the form

y = C xm
k m

m

%

�

#
∃

0
,  where  C0 6 0. ...(2)

7 y∋ = C k m xm
k m

m
( )%∃ % !

�

# 1

0
   and y( = C k m k m xm

k m

m
( )( ) .% % ! % !

�

#
∃ 1 2

0
    ...(3)

Substitution for y, y∋, y( in (1), we have

2 12 2

0

1

0
x C k m k m x x C k m xm

k m

m
m

k m

m
( )( ) ( )% % ! ! %% !

�

# % !

�

#
∃ ∃  + ( )1 2

0
! ∃ %

�

#
x C xm

k m

m
= 0

or     2 1
0 0
C k m k m x C k m xm

k m

m
m

k m

m
( )( ) ( )% % !∃ ! %∃%

�

# %

�

#
+ C x C xm

k m

m
m

k m

m

%

�

# % %

�

#
∃ ! ∃

0

2

0
= 0

or C k m k m k m x C xm
k m

m
m

k m

m
{ ( )( ) ( ) }2 1 1

0

2

0
% % ! ! % %∃ ! ∃%

�

# % %

�

#
= 0

or C k m k m x C xm
k m

m
m

k m

m
{ ( ) ( ) }2 3 12

0

2

0
% ! % %∃ ! ∃%

�

# % %

�

#
= 0

or C k m k m x C xm
k m

m
m

k m

m
( )( )2 2 1 1

0

2

0
% ! % !∃ ! ∃%

�

# % %

�

#
= 0, ...(4)

    [� 2(k + m)2 – 3(k + m) + 1 = 2(k + m)2 – 2(k + m) – (k + m) + 1= 2(k + m)[(k + m) – 1] – [(k + m) – 1]
  = (k + m – 1)[(2(k + m) – 1] = (k + m – 1)[(2k + 2m – 1)]

(4) is an identity. Equating to zero the coefficient of the smallest power of x namely xk, (4)
gives the indicial equation C0(2k – 1)(k – 1) = 0      or (2k – 1)(k – 1) = 0      [� C0 6 0]
so that       k = 1, and k = 1/2, ...(5)
which are unequal and not differing by an integer. To obtain the recurrence relation, we equate to
zero the coefficient of xk + m and obtain Cm (2k + 2m – 1)(k + m – 1) – Cm – 2 = 0

giving Cm = 1
2 2 1 1 2( )( )k m k m Cm% ! % ! ! . ...(6)

To obtain C1, we now equate to zero the coefficient of xk + 1 and get C1(2k + 1)k = 0 so that
C1 = 0 for both roots k = 1, and k = 1/2 of the indicial equation. Then from (6) and C1 = 0, we have

       C1 = C3 = C5 = .... = 0. ...(7)

Further, taking n = 2 in (6) gives C2 = 1
2 3 1 0( )( )k k

C
% %

. ...(8)

Next, taking n = 4 in (6) and using (8) gives

C4 = 1
2 5 3

1
1 3 2 3 2 52 0( )( ) ( )( )( )( )k k C k k k k C

% %
�

% % % %
and so on. Putting these values in (2), i.e.,  y = xk(C0 + C1x + C1x

2 + C3x
3 + ....), gives

x = C x x
k k

x
k k k k

k
0

2 4
1

1 2 3 1 3 2 3 2 5
%

% %
%

% % % %
%

L
NM

O
QP( )( ) ( )( )( )( )

.... ...(10)

Putting k = 1 and replacing C0 by a in (10) gives

y =
2 4

1 ....
2 5 2 4 5 9
x xax au

8 9
% % % �: ;1 1 1 1< =

, say

Next, putting k = 1/2 and replacing C0 by b in (10) gives
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y =
2 4

1/ 2 1 ....
2 3 2 3 4 7
x xbx b

8 9
% % % �: ;

1 1 1 1< =
v , say

The required series solution is given by y = au + bv where a and b are arbitrary constants.
Part (b) Given 2x2y( – xy∋ + (1 – x2)y = x2. ...(11)
Since R.H.S. is involved in (11), the general solution of (11) is made up of complementary

function (C.F.) and particular integral (P.I.) as usual. To find C.F. of (11), we solve
2x2y( – xy∋ + (1 – x2)y = 0,

which is the same as equation (1) of part (a). So as above, C.F. is au + bv. Next assume that the
particular solution of (11) is of the form [similar to (2)].

y = x A xk
m

m

m �

#
∃

0
, where A0 6 0, ...(12)

Find y∋ and y( and then substitute values of y, y∋ and y( in (11). Since L.H.S. of (11) and (1)
is the same, proceeding as in part (a) we shall get [compare with (4) of part (a)]

A k m k m x A xm
k m

m
m

k m

m
( )( )2 2 1 1

0

2

0
% ! % !∃ ! ∃%

�

# % %

�

#
= x2, ...(13)

which is an identity. Hence the leading term (the term containing the smallest power of x) of L.H.S.
of (13) must be x2 and the coefficients of each of the remaining terms of L.H.S. of (13) must
vanish. These conditions are satisfied by taking

k = 2, A0(k – 1)(2k – 1) = 1 and A1 = 0 ...(14)

and Am =
A

k m k m
m !

% ! % !
2

2 2 1 1( )( )
. ...(15)

Note that (15) is similar to the recurrence relation (6) of part (a). Since k = 2, (14) gives A0
= 1/3. Since A1 = 0, so (15) gives

A1 =  A3 = A5 = .... = 0. ...(16)

Putting m = 2 and k = 2 in (15), we obtain A2 = 0 1
7 3 7 3 3 1
A

�
1 1 1 1

, as A0 =
1

3 11
.   ...(17)

Putting m = 4 and k = 2 in (15) and using (17), we obtain

A4 = 2 1
11 5 11 5 7 3 3 1

A
�

1 1 1 1 1 1
, ...(18)

Putting these values in (12), i.e.,  y = xk(A0 + A1x + A2x
2 + A3x

3 + A4x
4 + ....), we obtain

P.I. =
2 4 6

.... ( )
3 1 7 3 3 1 11 5 7 3 3 1
x x x f x% % % �
1 1 1 1 1 1 1 1 1

, say..

Hence the required solution is given by y = au + bv + f(x), a and b being arbitrary constants.
Ex. 4. Solve xy( + (x + n)y∋ + (n + 1)y = 0, where n is not an integer. [Meerut 1993]
Sol. Given xy( + (x + n)y∋ + (n + 1)y = 0. ...(1)
As usual verify that x = 0 is a regular singular point of (1). To solve (1), take

y = xk(C0 + C1x + C2x
2 + ....) = C xm

k m

m

%

�

#
∃

0
,   where      C0 6 0. ...(2)

7 y∋ =
1

0
( ) k m

m
m

k m C x
#

% !

�

%∃  and    y( = ( )( ) .k m k m C xm
k m

m
% % !∃ % !

�

#
1 2

0
  ...(3)
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Putting the above values of y, y∋ and y( in (1), we have

x k m k m C x x n k m C xm
k m

m
m

k m

m
( )( ) ( ) ( )% % !∃ % % %∃% !

�

# % !

�

#
1 2

0

1

0
% % %

�

#

∃( )n C xm
k m

m

1
0

= 0

or   ( )( ) ( )k m k m C x k mC xm
k m

m
m

k m

m
% % !∃ % %∃% !

�

# %

�

#
1 1

0 0
+ n k m C x n C xm

k m

m
m

k m

m
( ) ( )%∃ % %∃% !

�

# %

�

#1

0 0
1 = 0

or     1

0 0

( )( 1 ) ( 1)k m k m
m m

m m
k m k m n C x k m n C x

# #
% ! %

� �

% % ! % % % % %∃ ∃ = 0. ...(4)

Equating to zero the coefficient of the smallest power of x, namely xk – 1, the above identity
(4) gives the indicial equation

C0k(k – 1 + n) = 0 so that k = 0 and 1 – n,    as C0 6 0.
Given that n is not an integer. So the roots 0 and 1 – n of the indicial are unequal and do not

differ by an integer. Next, we equate to zero the coefficient of xk + m – 1 in the above identity (4) and
obtain the recurrence relation

(k + m)(k + m + n – 1)Cm + (k + m + n)Cm – 1 = 0

so that Cm = !
% %

% % % ! !
k m n

k m k m n
cm( )( )1 1. ...(5)

Putting m = 1, 2, 3, .... in (5), we have          C1 = ! % %
% %
k n

k k n
C1

1 0( )( )
, ...(6)

C2 = 1 0
2 2 1

( 2)( 1) ( 2)( 1) ( 1)( )
k n k n k nC C

k k n k k n k k n
% % % % % %

! � /
% % % % % % % %

, by (6)

or C2 =
k n

k k k n
C% %

% % %
2

1 2 0( )( )( ) , ...(7)

        C3 = 2 0
3 ( 3) ( 2)

( 3)( 2) ( 3)( 2) ( 1)( 2)( )
k n k n k nC C

k k n k k n k k k n
% % % % % %

! � ! /
% % % % % % % % %

, using (7)

or        C3 = !
% %

% % % %
k n

k k k k n
C3

1 2 3 0( )( )( )( )
...(8)

and so on. Putting these values of C1, C2, C3, .... in (2), we have

     y = C x k n
k k n

x k n
k k k n

k
0 1 1

1
2

1 2
!

% %
% %

%
% %

% % %
L
NM ( )( ) ( )( )( )

x2 ! % %
% % % %

% OQP
k n

k k k k n
x3

1 2 3
3

( )( )( )( )
.... ...(9)

Putting k = 0 and replacing C0 by a in (9), we get

y = a n
n

x n
n

x n
n

x au1 1 2
2

3
3

2 3
!

%
%

%
!

%
%

L
NM

O
QP �! !

.... , say

Putting k = 1 – n and replacing C0 by b in (9), we get

y = bx
n

x
n n

xn1 21 2
2

3
2 3

! !
!

%
! !

L
NM ( )( )

34 ....
(2 )(3 )(4 )

x b
n n n

9
! ! �;! ! ! =

v , say

The required solution is y = au + bv, where a and b are arbitrary constants.
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Ex. 5. Verify that the origin is a regular singular point of 2x2y( + xy∋ – (x + 1)y = 0 and find
two independent Frobenius series solutions of it. [Lucknow 1995]

Sol. Given            2x2y( + xy∋ – (x + 1)y = 0. ...(1)
Dividing by 2x2, (1) takes the standard form   y( + (1/2x)y∋ – {(x + 1)/2x2}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = 1/2x and Q(x) = –(x + 1)/2x2 so that

xP(x) = 1/2 and Q(x) = –(x + 1)/2. Since xP(x) and x2Q(x) are both analytic, so x = 0 is a regular
singular point of x. The solve (1), we take

y = xk(C0 + C1x + C2x
2 + ....) = C xm

k m

m

%

�

#
∃

0
,  where  C0 6 0. ...(2)

7 y∋ = ( )k m C xm
k m

m
%∃ % !

�

# 1

0
     and    y( = ( )( )k m k m C xm

k m

m
% % !∃ % !

�

#
1 2

0
. ...(3)

Putting the above values of y, y∋ and y( in (1), we get

2 12 2

0

1

0
x k m k m C x x k m C xm

k m

m
m

k m

m
( )( ) ( )% % !∃ % %∃% !

�

# % !

�

#
! % ∃ %

�

#
( )x C xm

k m

m
1

0
= 0

or 2 1
0 0

( )( ) ( )k m k m C x k m C xm
k m

m
m

k m

m
% % ! % %%

�

# %

�

#
∃ ∃ ! ∃ ! ∃% %

�

# %

�

#
C x C xm

k m

m
m

k m

m

1

0 0
= 0

or { ( )( ) ( ) }2 1 1
0

1

0
k m k m k m C x C xm

k m

m
m

k m

m
% % ! % % !∃ ! ∃%

�

# % %

�

#
= 0

or { ( ) ( ) }2 12

0

1

0
k m k m C x C xm

k m

m
m

k m

m
% ! % !∃ ! ∃%

�

# % %

�

#

= 0

or { ( ) }( )2 1 1
0

1

0
k m k m C x C xm

k m

m
m

k m

m
% % % !∃ ! ∃%

�

# % %

�

#
= 0. ...(4)

Equating to zero the coefficient of the smallest power of x, namely, xk, the above identity (4)
in x gives the indicial equation, namely,

C0(2k + 1)(k – 1) = 0   so that k = 1  and –1/2,   as C0 6 0.
Here the difference of these roots = 1 – (– 1/2) = 3/2 6 not an integer.
Next, we equate to zero the coefficient of xk + m in (4) and obtain the recurrence relation

{2(k + m) + 1}(k + m – 1)Cm – Cm – 1 = 0

so that Cm = 1
2 2 1 1 1( )( )k m k m Cm% % % ! ! . ...(5)

Putting m = 1, 2, 3, .... in (5), we have C1 = {1/k (2k + 3)}C0, ...(6)

C2 = 1
2 5 1

1
2 3 2 5 11 0( )( ) ( )( ) ( )k k C k k k k C

% %
�

% % %
, by (6). ...(7)

and so on. Putting these values in (2), we get

y =
2

0 1 ....
(2 3) (2 3)(2 5) ( 1)

k x xC x
k k k k k k

8 9
% % %: ;% % % %< =

. ...(8)

Putting k = 1 and replacing C0 by a in (8), we get
y = ax[1 + x/5 + x2/70 + ....] = au, say

Next, putting x = –1/2 and replacing C0 by b in (8), we get
y = bx–1/2[1 – x – (x2/2) + ....] = bv, say.

The required solution is y = au + bv, a and b being arbitrary constants.
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Ex. 6. Show that x = 0 is a regular singular point of (2x + x3)y( – y∋ – 6xy = 0 and find its
solution about x = 0. [Delhi Maths (H) 1995, 96; Meerut 1996]

Sol. Given (2x + x3)y( – y∋ – 6xy = 0. ...(1)
Dividing (2x + x3), (1) can be put in standard form  y( – [1/(2x + x3)}y∋ – {6/(2 + x2)}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = –1/(2x + x3) and Q(x) = –6/(2 + x2)

so that xP(x) = –1/(2 + x2) and x2Q(x) = –(6x2)/(2 + x2). Since P(x) and Q(x) are both analytic at
x = 0, so x = 0 is a regular singular point of (1). Let series solution of (1) be

y = xk(C0 + C1x + C2x
2 + ....) = C xm

k m

m

%

�

#
∃

0
,  where          C0 6 0. ...(2)

7 y∋ = 1

0

( ) k m
m

m

k m C x
#

% !

�

%∃     and    y( = ( )( )k m k m C xm
k m

m
% % !∃ % !

�

#
1 2

0
.

...(3)
Putting the above values of y, y∋ and y( in (1), we get

    ( ) ( )( ) ( )2 13 2

0

1

0
x x k m k m C x k m C xm

k m

m
m

k m

m
% % % !∃ ! %∃% !

�

# % !

�

#
! ∃ %

�

#
6

0
x C xm

k m

m
= 0

or  2 1 11

0

1

0
( )( ) ( )( )k m k m C x k m k m C xm

k m

m
m

k m

m
% % !∃ % % % !∃% !

�

# % %

�

#
! %∃ ! ∃% !

�

# % %

�

#
( )k m C x C xm

k m

m
m

k m

m

1

0

1

0
6 = 0

or      { ( )( ) ( )}2 1 1

0
k m k m k m C xm

k m

m
% % ! ! %∃ % !

�

#
% % % ! !∃ % %

�

#
{( )( ) }k m k m C xm

k m

m
1 6 1

0
= 0

or { ( ) ( )}2 32 1

0
k m k m C xm

k m

m
% ! %∃ % !

�

#
% % ! % !∃ % %

�

#
{( ) ( ) }k m k m C xm

k m

m

2 1

0
6 = 0

or   ( )( )k m k m C xm
k m

m
% % !∃ % !

�

#
2 2 3 1

0
% % ! % %∃ % %

�

#
( )( )k m k m C xm

k m

m
3 2 1

0
= 0. ...(4)

Equating to zero the coefficient of the smallest power of x, namely xk – 1, the above identity
(4) gives the indicial equation, namely

C0k(2k – 3) = 0 so that  k = 0  and    3/2, as C0 6 0.
Here the difference of these roots = (3/2) – 0 = 3/2 6 not an integer.
Here the difference of the powers of x in (4) = (k + m + 1) – (k + m – 1) = 2. Hence we

equate to zero the coefficient of xk in the identity (4) and obtain
C1(k + 1)(2k – 1) = 0 so that C1 = 0 for both    k = 0     and      k = 3/2.
Next, equating to zero the coefficient of xk + m – 1 in (4), we get

(k + m)(2k + 2m – 3)Cm + (k + m – 5)(k + m)Cm – 2 = 0

or Cm = !
% !
% ! !

k m
k m

Cm
5

2 2 3 2. ...(5)

Putting m = 3, 5, 7, .... in (5) and noting that C1 = 0, we get
      C1 = C3 = C5 = C7 = .... = 0. ...(6)

Next, putting m = 2, 4, 6, .... in (5), we have

C2 = !
!
%

k
k

C3
2 1 0 ,         C4 = ! !

%
� ! !

% %
k
k

C k k
k k

C1
2 5

1 3
2 1 2 52 0
( )( )

( )( )
, .... ...(7)

Putting these values in (2), we have
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y = 2 4
0

3 ( 1)( 3)1 ....
2 1 (2 1)(2 5)

k k k kC x x x
k k k

8 9! ! !
! % !: ;% % %< =

. ...(8)

Putting k = 0 and replacing C0 by a in (8), y = a[1 + 3x2 + (3/5) × x4 – ....] = au, say
Putting k = 3/2 and replacing C0 by b in (8), y = x3/2[1 + (3/8) × x2 – (3/128) × x4 + ....] = bv, say.
Hence the required solution is y = au + bv, a, b being arbitrary constants.
Ex. 7. Solve the hypergeometric equation x(1 – x)y( + {> – (? + ≅ + 1)x}y∋ – ?≅y = 0 near

x = 0, if > is not an integer.       [Meerut 1999, Kanpur 2006]
Sol. Given x(1 – x)y( + {> – (? + ≅ + 1)x}y∋ – ?≅y = 0. ...(1)

Dividing by x(1 – x), (1) gives                  d y
dx

x
x x

dy
dx x x y

2

2
1

1 1
%

! % %
!

!
!

> ? ≅ ?≅( )
( ) ( )

= 0.

Comparing it with y( + P(x)y∋ + Q(x)y = 0, we have

P(x) = > ? ≅! % %
!

( )
( )

1
1

x
x x

and Q(x) = !
!

?≅
x x( )1

.

Since xP(x) and x2Q(x) are both analytic at x = 0, so x = 0 is a regular singular point of (1).

Let the series solution of (1) be y = c xm
k m

m

%

�

#
∃

0
,  where        c0 6 0    ... (2)

7    y∋ = c k m xm
k m

m
( )%∃ % !

�

# 1

0
     and y( = c k m k m xm

k m

m
( )( )% % !∃ % !

�

#
1 2

0
  ...(3)

Putting the above values of y, y∋, y( in (1) gives

( ) ( )( )x x c k m k m xm
k m

m
! % % !∃ % !

�

#2 2

0
1 % ! % % %∃ ! ∃% !

�

# %

�

#
[ ( ) ] ( )> ? ≅ ?≅1 1

0 0
x c k m x c xm

k m

m
m

k m

m
= 0

or  c k m k m k m xm
k m

m
{( )( ) ( )}% % ! % %∃ % !

�

#
1 1

0
> ! % % ! % % % % %∃ %

�

#
c k m k m k m xm

k m

m
{( )( ) ( )( ) }1 1

0
? ≅ ?≅ = 0

or c k m k m xm
k m

m
( )(% % ! %∃ % !

�

#
1 1

0
>5 ! % % % % %∃ %

�

#
c k m k m xm

k m

m
{( ) ( )( ) }2

0
? ≅ ?≅ = 0

or c k m k m xm
k m

m
( )(% % ! %∃ % !

�

#
1 1

0
>5 ! % % % %∃ %

�

#
c k m k m xm

k m

m
( )( )? ≅

0
= 0. ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely
xk – 1, (4) gives the indicial equation

c0k(k – 1 + >) = 0 or k(k – 1 + >) = 0 [� c0 6 0]
so the roots of the indicial equation are k = 0 1 – >, which are unequal and not differing by an
integer because by assumption > is not an integer.

To obtain the recurrence relation, we equate to zero the coefficient of  xk + m – 1. Then we have
cm(k + m)(k + m – 1 + >) – cm – 1(k + m – 1 + ?)(k + m – 1 + ≅) = 0

or cm =
( )( )

( )( )
k m k m

k m k m
cm

% ! % % ! %
% % ! % !

1 1
1 1

? ≅
>

. ...(5)

Case 1. When k = 0. Putting m = 1, 2, 3, .... succesively in (5), we get

c1 = 01
c?≅

1 >
, c2 = 1 0

( 1)( 1) ( 1) ( 1)
2 ( 1) 1 2 ( 1)

c c? % ≅ % ? ? % ≅ ≅ %
�

1 > % 1 > > %
,

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Integration In Series 8.27

c3 = 2 0
( 2)( 2) ( 1)( 2) ( 1)( 2)

3( 2) 1 2 3 ( 1)( 2)
c c? % ≅ % ? ? % ? % ≅ ≅ % ≅ %

�
> % 1 1 1 > > % > %

 and so on.

Putting these values and k = 0 and replacing c0 by a in (2) gives

y = 2( 1) ( 1)1
1 1 2 ( 1)

a x x
8 ?≅ ? ? % ≅ ≅ %

% %: 1 > 1 > > %<
3( 1)( 2) ( 1)( 2) ....

1 2 3 ( 1)( 2)
x

9? ? % ? % ≅ ≅ % ≅ %
% % ;1 1 1 > > % > % =

...(6)

If we take a = 1 in (6), the series on the right hand side of (6) is called hypergeometric series
and is represented by 2F1(?, ≅ ; > ; x). Thus we see that 2F1(?, ≅ ; > ; x) is a solution of (1).

Case 2. When k = 1 – >. Then (5) reduces to

cm =
( )( )

( )( )
1 1 1 1

1 1 1 1
! % ! % ! % ! %

! % ! % ! % !
> ? > ≅

> > >
m m

m m
cm

or      cm =
( )( )

( )
∋ % ! ∋ % !

∋ % ! !
? ≅

>
m m

m m
cm

1 1
1 1. ...(7)

where ?∋ = 1 – > + ?, ≅∋ = 1 – > + ≅ and  >∋ = 2 – >.             ...(8)
Replacing m by 1, 2, 3, .... successively in (7) gives as before

c1 = 01
c

∋ ∋? ≅
∋1 >

, c2 = 1 02 ( 1 2 (
c c

∋ ∋ ∋ ∋ ∋ ∋4? % Α54≅ % Α5 ? 4? % Α5≅ 4≅ % Α5
�

∋ ∋ ∋1 > % Α5 1 1 > > % Α5
 etc.

Hence putting k = 1 – >, using the above values of c1, c2, .... in (2) and replacing c0 by b gives

y = 1 21 ....
1 1 2 (1

bx x x! > ∋ ∋ ∋ ∋ ∋ ∋8 9? 1≅ ? 4? % Α5≅ 4≅ % Α5
% % %: ;∋ ∋ ∋1 > 1 1 > % > 5< =

...(9)

If we take b = 1 in (9), the series on the R.H.S. of (9) would x> – 1
2F1(?∋, ≅∋; >∋ ; x) i.e.

x> – 1
2F1(1 – > + ?, 1 – > + ≅ ; 2 – > ; x) which is another independent solution of (1). Hence the

general series solution of (1) is
y = a 2F1(?, ≅ ; > ; x) + b x> – 1

2F1(1 – > + ?, 1 – > + ≅ : 2 – > : x),

where a and b are arbitrary constants. 2 1( , ; ; )F x? ≅ >  is called hypergeometric function.

Ex. 8. Find the series solution of 4 2 0xy y y∋∋ ∋% % � .
   [Bilaspur 2004, Purvanchal 2005, Ravishankar 1998, 2004, Vikram 2004]

Sol. Given 4 2 0xy y y∋∋ ∋% % � ...(1)

Re-writing (1), (1/ 2 ) (1/ 4 ) 0y x y x y∋∋ ∋% % � ... (2)

Comparing (2) with ( ) ( ) 0,y P x y Q x y∋∋ ∋% % �  we have

1/ 2P x� and ( ) 1/ 4Q x x� ... (3)
Since P(x) and Q(x) are not with analytic at x = 0, so x = 0 is not ordinary point of (1).
Also, xP(x) = 1/2 and x2Q(x) = x/4,

showing that both P(x) and Q(x) are analytic at x = 0. Hence x = 0 is a regular singular point of
(1). We, therefore, use Frobenium method to solve (1). Let a solution of (1) be of the form

00
, where 0k m

mm
y C x C

#
%

�
� 3 6 ... (4)

7   1

0
( ) k m

mm
y C k m x

#
% !

�
∋ � 3 %   and       2

0
( ) ( 1) k m

mm
y C k m k m x

#
% !

�
∋∋ � 3 % % !  ... (5)
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Substituting the series (4) and (5) in (1), we have

2 1
0 0

4 ( ) ( 1) 2 ( )k m k m
m mm m

x C k m k m x C k m x
# #

% ! % !

� �
3 % % ! % 3 %

0
0k m

mm
C x

#
%

�
% 3 �

or Β Χ 1
0 0

4( ) ( 1) 2( ) 0k m k m
m mm m

C k m k m k m x C x
# #

% ! %

� �
3 % % ! % % % 3 �

or Β Χ 1
0 0

2( ) (2 2 1) 0,k m k m
m mm m

C k m k m x C x
# #

% ! %

� �
3 % % ! % 3 � ... (6)

which is an identity in x. Equating to zero the coefficients of the smallest power of x, namely,
1,kx !  (6) gives the indicial equation

2C0k(2k – 1) = 0 giving k = 0,  1/2 [� 0 0C 6 ]
Here roots of indicial equation are unequal and do not differ by integer. To obtain the

recurrence relation, we equate to zero the coefficient of xk + m – 1 and obtain
2Cm(k + m) (2k + 2m – 1) + Cm–1 = 0

or        1 , 1, 2, 3,...
2( ) (2 2 1)

m
m

C
C m

k m k m
!� ! �

% % !
... (7)

Taking m = 1 in (7),                        0
1 2( 1) (2 1)

C
C

k k
� !

% %
... (8)

Next, Taking m = 2 in (7), we have

01
2 ,

2( 2) (2 3) 4( 1) ( 2) (2 1)(2 3)
CCC

k k k k k k
� ! �

% % % % % %
 by (8) ... (9)

Taking m = 3, in (7) and using (9),  0
3 8( 1) ( 2) ( 3) (2 1) (2 3) (2 5)

C
C

k k k k k k
� !

% % % % % %

Substituting the above values of C1, C2, C3, ... in (4), we get

2

0 1
2( 1) (2 1) 4( 1) ( 2) (2 1) (2 3)

m x xy C x
k k k k k k

∆Ε� ! %Φ % % % % % %ΕΓ

                     
3

....
8( 1) ( 2) ( 3) (2 1) (2 3) (2 5)

x
k k k k k k

ΗΕ! % Ι% % % % % % Εϑ
... (10)

Taking k = 0 and replacing C0 by a in (10), we have

  
2 3 2 4 6

1/ 2( ) ( ) ( )1 ... 1 ... cos
1 2 1 2 3 4 1 2 3 4 5 6 2! 4! 6!

x x x x x xy a a a x
) ∗ ) ∗

� ! % ! % � ! % ! % �+ , + ,+ , + ,1 1 1 1 1 1 1 1 1− . − .

Taking k = 1/2 and replacing C0 by b in (10), we have

2 3 3 5 7
1/ 2 1/ 2( ) ( ) ( )1 ... ... sin

2 3 2 3 4 5 2 3 4 5 6 7 3! 5! 7!
x x x x x xy bx b x b x

) ∗ ) ∗
� ! % ! % � ! % ! % �+ , + ,+ , + ,1 1 1 1 1 1 1 1 1− . − .

Hence the required solution is 1/ 2 1/ 2cos sin ,y a x b x� % a and b being arbitrary constants.
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Ex. 9. Using Frobenius method solve the differential equation d2y/dx2 + (1/4x) × (dy/dx)
+ (1/8x2)y = 0     [Delhi Maths (Hons.)  1993 , 2006]

Sol. Re-writing the given differential equation, 28 2 0x y xy y∋∋ ∋% % � ... (1)

Let a series solution of (1) be of the form 00
, 0k m

mm
y C x C

#
%

�
� 3 6 ... (2)

7
1 2

0 0
( ) and ( ) ( 1)k m k m

m mm m
y C k m x y C k m k m x

# #
% ! % !

� �
∋ ∋∋� 3 % � 3 % % !

Substituting the above values of , andy y y∋ ∋∋  in (1), we get

2 2 1

0 0 0
8 ( ) ( 1) 2 ( ) 0k m k m k m

m m mm m m
x C k m k m x x C k m x C x

# # #
% ! % ! %

� � �
3 % % ! % 3 % % 3 �

or  Β Χ
0

8( ) ( 1) 2( ) 1 0k m
mm

C k m k m k m x
#

%

�
3 % % ! % % % �  or Β Χ2

0
8( ) 6 ( ) 1 0k m

mm
C k m k m x

#
%

�
3 % ! % % �

or Β ΧΒ Χ
0

4 ( ) 1 2( ) 1 0,k m
mm

C k m k m x
#

%

�
3 % ! % ! � ... (3)

which is an identity in x. Equating to zero the coefficient of the smallest power in x, namely, xk, (6)
gives the indicial equation

C0(4k – 1) (2k –1) = 0 giving k = 1/2, 1/4,        as 0 0C 6

which are unequal and do not differ by an integer. To obtain the recurrence relation, we equate to
zero the coefficient of xk+m in (3) and obtain

    Cm {4(k + m) – 1} {2(k + m) – 1} = 0,   for all   1m 0 ... (4)
Relation (4) is satisfied by both values of k = 1/2 and k = 1/4 by choosing Cm = 0 for 1.m 0

Hence for k = 1/2 and k = 1/4, (2) reduces to
y = xk (C0 + C1x + C2x

2 + ...) or  y = C0x
k ... (5)

Putting k = 1/2 and replacing C0 by a in (5), we have  y = ax1/2 ... (6)
Next, putting k = 1/4 and replacing C0 by b in (5), we have  y = bx1/4 ... (7)
The required solution is y = ax1/2 + bx1/4, where a and b are arbitrary constants.

EXERCISE 8 (C)
Find the series solution following equations near x = 0.

1. 2x(1 – x)y( + (1 – x)y∋ + 3y = 0. Ans. 2 1/ 2{1 3 3 /(1 3) ....} (1 )y a x x bx x� ! % 1 ! % !
2. 2xy( + (x + 1)y∋ + 3y = 0. [Delhi Maths (H) 2005]

Ans. y = a (1 – 3x + 2x2 – 2x3/3...) + bx1/2 (1 – 7x/6 + 21x2/40 – 11x3 /80 ....)
3. 2x2y( – xy∋ + (x2 + 1)y = 0. 
4. 3xy( + 2y∋ + x2y = 0.

8.10. Examples of Type 2 on Frobenius method. Roots of indicial equation unequal,
differing by an Integer and making a coefficient of y indeterminate :

In this connection the following rule should be noted.
Rule : If the indicial equation has two roots k1 and k2 (say k1 < k2) and if the one of the

coefficients of y becomes indeterminate when k = k2, the complete solution is given by putting k =
k2 in y, which then contains two arbitrary constants. The result of putting k = k1 in y merely gives
a numerial multiple of one of the series contained in the first solution. Hence we reject the solution
obtained by putting k = k1.
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Ex. 1. Find solution near x = 0   of    x2y( + (x + x2)y∋ + (x – 9)y = 0.
Sol. Given x2y( + (x + x2)y∋ + (x – 9)y = 0. ...(1)
Dividing by x2, (1) can be put in standard form as   y( + {(1 + x)/x}y∋ + {(x – 9)/x2}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = (1 + x)/x and Q(x) = (x – 9)/x2 so that

xP(x) = 1 + x and x2Q(x) = x – 9. Since both xP(x) and x2Q(x) are analytic at x = 0, hence x = 0 is
a regular singular point of (1). Let the series solution of (1) be

          y = xk(C0 + C1x + C2x
2 + .... ad. inf.) = C xm

k m

m

%

�

#
∃

0
, where  C0 6 0. ...(2)

7 y∋ = 1
0
( ) k m

mm
k m C x

#
% !

�
3 %     and y( = ( )( )k m k m C xm

k m

m
% % !∃ % !

�

#
1 2

0
. 

...(3)
Putting the above values of y, y∋ and y( in (1), we have

x k m k m C xm
k m

m

2 2

0
1( )( )% % !∃ % !

�

#
% % %∃ % ! ∃% !

�

# %

�

#
( ) ( ) ( )x x k m C x x C xm

k m

m
m

k m

m

2 1

0 0
9 = 0

or ( )( ) ( )k m k m C x k m C xm
k m

m
m

k m

m
% % !∃ % %∃%

�

# %

�

#
1

0 0
% %∃ % ∃ ! ∃% %

�

# % %

�

# %

�

#
( )k m C x C x C xm

k m

m
m

k m

m
m

k m

m

1

0

1

0 0
9 = 0

or {( )( ) ( ) }k m k m k m C xm
k m

m
% % ! % % !∃ %

�

#
1 9

0
% % %∃ % %

�

#
{( ) }k m C xm

k m

m
1 1

0
= 0

or {( ) } ( )k m C x k m C xm
k m

m
m

k m

m
% !∃ % % %∃%

�

# % %

�

#2 2

0

1

0
3 1 = 0

or ( )( ) ( )k m k m C x k m C xm
k m

m
m

k m

m
% % % !∃ % % %∃%

�

# % %

�

#
3 3 1

0

1

0
= 0. ...(4)

Equating to zero the coefficient of the smallest power of x, namely xk, the above identity (4)
gives the indicial equation

(k + 3)(k – 3)C0 = 0 so that k = 3,  –3 as C0 6 0.
Next, equating to zero the coefficient of xk + m in (4), we get

(k + m + 3)(k + m – 3)Cm + (k + m)Cm – 1 = 0

or Cm = !
%

% % % ! !
( )

( )( )
k m

k m k m
Cm3 3 1. ...(5)

Putting m = 1, 2, 3, .... in (5), we get C1 = !
%

% !
k

k k
C1

4 2 0( )( )
,

C2 = !
%

% !
�

% %
! ! % %

( )
( )( )

( )( )
( )( )( )( )

k
k k

C k k
k k k k

C2
5 1

1 2
1 2 4 51 0 ,

C3 = !
%

%
� !

% % %
! ! % % %

( )
( )

( )( )( )
( )( )( )( )( )

k
k k

C k k k
k k k k k k

C3
6

1 2 3
1 2 4 5 62 0

and so on. Putting these values in (2), we have

y = C x k
k k

x k k
k k k k

xk
0

21 1
2 4

1 2
1 2 4 5

! %
! %

% % %
! ! % %

L
NM

( )
( )( )

( )( )
( )( )( )( ) ! % % %

! ! % % %
% O

QP
( )( )( )

( )( )( )( )( )
.... inf.k k k

k k k k k k
x1 2 3

1 2 4 5 6
3 ad. ...(6)

Putting k = 3 and replacing C0 by a in (6), we have

y = 3 2 34 4 5 4 5 61 ....
2 7 2 1 7 8 3 2 1 7 8 9

ax x x x au1 1 18 9! % % ! �: ;1 1 1 1 1 1 1 1 1< =
, say

Putting k = –3 and replacing C0 by b in (6), we have
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y = bx–3{1 – (2/5)x + (1/20)x2} = bv, say.
The required solution is y = au + bv, where a and b are arbitrary constants.
Important note. When x = 0 is an ordinary point of y( + P(x)y∋ + Q(x)y = 0, we have already

explained the method of solution in Art. 8.5. We have solved many problems based on Art. 8.5. All
those problems can also be solved by Frobenius method as given in Art. 8.10 and explained in
above solved Ex. 1. We now solve the same problems by method of solved Ex. 1 as follows.

Ex. 2. Solve in series (1 – x2)y( – xy∋ + 4y = 0.
Sol. Given (1 – x2)y( – xy∋ + 4y = 0. ...(1)
Clearly x = 0 is an ordinary point of (1). Let the series solution of (1) be of the form

y = C xm
k m

m

%

�

#
∃

0
,       where     C0 6 0. ...(2)

7     y∋ = C k m xm
k m

m
( )%∃ % !

�

# 1

0
and      y( = C k m k m xm

k m

m

( )( )% % ! % !

�

#

∃ 1 2

0

...(3)
Putting the above values of y, y∋, y( in (1) gives

or ( ) ( )( )1 12 2

0
! % % !∃ % !

�

#
x C k m k m xm

k m

m
! %∃ % ∃% !

�

# %

�

#
x C k m x C xm

k m

m
m

k m

m
( ) 1

0 0
4 = 0

or  C k m k m x C k m k m xm
k m

m
m

k m

m
( )( ) ( )( )% % !∃ ! % % !∃% !

�

# %

�

#
1 12

0 0
! %∃ % ∃%

�

# %

�

#
C k m x C xm

k m

m
m

k m

m
( )

0 0
4 = 0

or C k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
! % % ! % % !∃ %

�

#
C k m k m k m xm

k m

m
[( )( ) ( ) ]1 4

0
= 0

or           C k m k m x C k m xm
k m

m
m

k m

m
( )( ) [( ) ]% % !∃ ! % !∃% !

�

# %

�

#
1 42

0

2

0
= 0

or C k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
! % % % !∃ %

�

#
C k m k m xm

k m

m
( )( )2 2

0
= 0, ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely
xk – 2, (4) gives the indicial equation

C0k(k – 1) = 0 or k(k – 1) = 0 [� C0 6 0]
giving k = 1 and k = 0. These are unequal and differ by an integer. To get the recurrence relation,
we equate to zero the coefficient of xk + m – 2. Thus,

Cm(k + m)(k + m – 1) – Cm – 2(k + m)(k + m – 4) = 0

giving Cm =
k m
k m

Cm
% !
% ! !

4
1 2 . ...(5)

Next, we equate to zero the coefficient of xk – 1 and get C1(k + 1)k = 0. ...(6)
If we take k = 0, (6) shows that C1 is indeterminate.With k = 0 and using (5), we can express

C2, C4, C6 .... in terms of C0 and C3, C5, C7 .... in terms of C1 if we assume C1 to be finite. Thus,
 Cm = {(m – 4)/(m – 1)} Cm – 2

so that       C2 = –2C0,            C4 = 0            and hence           C6 = C8 = .... = 0
and        C3 = (–C1)/(2) = –C1/2,     C5 = C3/(4) = –C1/8, C7 = (3C5)/(6) = –C1/16,
and so on. Putting k = 0 and these values in (2), i.e.

y = xk(C0 + C1x + C2x
2 + C3x

3 + C4x
4 + C5x

5 + .... )
i.e. y = x0(C0 + C2x

2 + C4x
4 + ....) + x0(C1x + C3x

3 + C5x
5 + ....), we get

y = C0(1 – 2x2) + C1(x – x3/2 – x5/8 + x7/16 – ....) ...(7)
which is the required series solution, C0 and C1 being two arbitrary constants.
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Remarks. The reader can easily verify that the root k = 1 of the indicial equation gives
another solution as usual (Refer examples of Type 1). But this solution, will be a constant multiple
of one of the series occurring in (7). So we reject it.

Ex. 3. Solve in series the Legendre’s equation            (1 – x2)y( – 2xy∋ + n(n + 1)y = 0
[Delhi Maths (Hons.) 1996, Nagpur 1996, Utkal 2003]

Sol. Given    (1 – x2)y( – 2xy∋ + n(n + 1)y = 0 ...(1)
Here x = 0 is an ordinary point of (1). Let the series solution of (1) be of the form

y = C xm
k m

m

%

�

#
∃

0
,  where  C0 6 0. ...(2)

7  y∋ = C k m xm
k m

m
( )%∃ % !

�

# 1

0
and  y( = C k m k m xm

k m

m
( )( ) .% % !∃ % !

�

#
1 2

0

...(3)
Putting the above values of y, y∋, y( into (1) gives

C k m k m x x C k m k m xm
k m

m
m

k m

m
( )( ) ( )( )% % !∃ ! % % !∃% !

�

# % !

�

#
1 12

0

2 2

0

! % % %% !

�

#
%

�

#

∃ ∃2 11

0 0

x C k m x n n C xm
k m

m
m

k m

m

( ) ( ) = 0

or     C k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
! % % ! % % ! %∃ %

�

#
{( )( ) ( ) ( )}k m k m k m n n xk m

m
1 2 1

0
= 0

or C k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
! % % % ! !∃ %

�

#
C k m k m n n xm

k m

m
{( ) ( ) )}2 2

0
= 0

or      C k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
! % % % ! % % !∃ %

�

#
C k m n k m n k m n xm

k m

m
{( )( ) ( )}

0
= 0

or      C k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
! % ! % % %∃ %

�

#
C k m n k m n xm

k m

m
( )( )1

0
= 0, ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely
xk – 2, (4) gives the identical equation

c0k(k – 1) = 0 or k(k – 1) = 0, [� c0 6 0]
giving k = 1 and k = 0. These are unequal and differ by an integer. To get the recurrence relation,
we equate to zero the coefficient of xk + m – 2. Thus

Cm(k + m)(k + m – 1) – Cm – 2(k + m – 2 – n)(k + m – 2 + n + 1) = 0

so that Cm =
( )( )

( )( )
k m n k m n

k m k m
Cm

% ! ! % ! %
% % ! !
2 1

1 2 . ...(5)

Next, equating to zero the coefficient of xk – 1 gives    C1(k + 1)k = 0. ...(6)
If we take k = 0, (6) shows that C1 is indeterminate. For k = 0, (5) gives

Cm =
( )( )

( )
m n m n

m m
Cm

! ! ! %
! !

2 1
1 2. ...(7)

We now express C2, C4, C6, .... in terms of C0 and C3, C5, C7, .... in terms of C1 by assuming
that C1 is finite. Putting m = 2 in (7) gives
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C2 = 0 0
( 2)( 1) ( 1)

2 1 2!
n n nC C! % %

� !
1

. ...(8)

Putting m = 4 in (7) and using (8) gives

C4 = 2 0
(2 )(3 ) ( 2) ( 1)( 3)

3 2 4!
n n n n n nC C! % ! % %

�
1

. ...(9)

Next, putting m = 3 in (7) gives

C3 = 1 1
(1 )(2 ) ( 1)( 2)

3 2 3!
n n n nC C! % ! %

� !
1

. ...(10)

Again, putting m = 5 in (7) and using (10) gives

C5 = 3 1
(3 )(4 ) ( 3)( 1)( 2)( 4)

5 4 5!
n n n n n nC C! % ! ! % %

�
1

and so on. Now (2) can be re–written as
y = xk(C0 + C1x + C2x

2 + C3x
3 + C4x

4 + ....)
or y = x0(C0 + C2x

2 + C4x
4 + ....) + x0(C1x + C3x

3 + C5x
5 + ....) [� k = 0]

Using the values of C2, C3, C4, C5, .... as given by (8), (9), (10), (11) etc. in the above
equation gives

y = 2 4
0

( 1) ( 2) ( 1)( 3)1 ....
2! 4!

n n n n n nC x x% ! % %8 9! % !: ;< =
% !

! %
%

! ! % %
%L

NM
O
QPC x n n x n n n n x1

3 51 2
3

3 1 2 4
5

( )( )
!

( )( )( )( )
!

....

which is the required general series solution, C0 and C1 being arbitrary constants.
Ex. 4. Find the series solution of x2(d2y/dx2) – x (dy/dx) – (x2 + 5/4)y = 0 about x = 0.

[Kurukshetra 2004]

Sol. Given 2 2( 5 / 4) 0x y xy x y∋∋ ∋! ! % � ...(1)

Re-writing (1), 2(1/ ) (1 5 / 4 ) 0y x y x y∋∋ ∋! ! % � ... (2)

Comparing (2) with ( ) ( ) 0,y P x y Q x y∋∋ ∋% % � we have
P(x) = –(1/x) and Q(x) – (1 + 5/4x2) ... (3)

x = 0 is not an ordinary point of (1) because neither P(x) nor Q(x) is analytic at x. Again, from (3),
x P(x) = –1 and x2Q(x) = – (x2 + 5/4),

which are both analytic at x = 0. So x = 0 is a regular singular point of (1). To find solution of (1),
we choose a series solution of (1) about x = 0 in the form

00
, where 0k m

mm
y C x C

#
%

�
� 3 6 ... (4)

7
1

0
( ) k m

mm
y C k m x

#
% !

�
∋ � 3 %  and 2

0
( ) ( 1) k m

mm
y C k m k m x

#
% !

�
∋∋ � 3 % % !   ... (5)

Substituting the above values of , andy y y∋ ∋∋  in (1), we get

         2 2 1 2

0 0 0
( ) ( 1) ( ) ( 5 / 4) 0k m k m k m

m m mm m m
x C k m k m x x C k m x x C x

# # #
% ! % ! %

� � �
3 % % ! ! 3 % ! % 3 �

or    2

0 0 0 0

5( ) ( 1) ( ) 0
4

k m k m k m k m
m m m mm m m m

C k m k m x C k m x C x C x
# # # #

% % % % %

� � � �
3 % % ! ! 3 % ! 3 ! 3 �
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or Β Χ 2
0 0

( ) ( 1) ( ) 5 / 4 0k m k m
m mm m

C k m k m k m x C x
# #

% % %

� �
3 % % ! ! % ! ! 3 �

or Β Χ 2
0 0

( ) ( 2) 5 / 4 0,k m k m
m mm m

C k m k m x C x
# #

% % %

� �
3 % % ! ! ! 3 � ... (6)

which is an identity in x. Equating to zero the coefficient of the smallest power of x, namely, xk, (6)
gives the indicial equation

C0{k(k – 2) – 5/4} = 0   or   4k2 – 8k – 5 = 0   or   (2k – 5) (2k + 1) = 0,    as 0 0C 6

Hence k = 5/2, –1/2 are roots of the indicial equation. These are distinct roots and differ by
an integer.

We begin with determination of the solution corresponding to the smallest root k = –1/2.
Here the exponents in xk + m and xk + m + 2 differ by 2 in identity (6). So we first equote to zero

the coefficient of xk + 1, and obtain 9{(k + 1) (k – 1) – (5/4)} = 0 2 C1 = 0, since the second factor
does not vanish for both k = –1/2 and k = 5/2.

For recurrence relation, equating to zero the coefficient of xk + m, (6) yields
Cm {(k + m) (k + m – 2) – 5/4} Cm – Cm–2 = 0, for all 2m 0 ... (7)

Putting m = 3 and k = –1/2 in (7),  O × C3 – C1 = 0  or  O × C3 = 0, as  C1 = 0
Hence, C3 can be chosen as any arbitrary constant. Putting k = – 1/2 in (7), we have

{(m – 1/2) (m – 5/2) – 5/4} Cm – Cm – 2 = 0,  for all 2m 0

Thus, 2
1 ,

( 3)m mC C
m m !�

!
for all 2m 0  and 3m 6 ... (8)

Putting m = 2 in (8),  C2 = – (1/2) C0
Putting m = 4 in (8),  C4 = (1/4) × C2 = – (1/8) × C0, by (9)

Similarly, 5 3 6 0 7 3(1/10) , (1/144) , (1/ 280) , ....C C C C C C� / � ! / � /

Substituting the above values in (4) and taking k = –1/2, we get

   Β1/2 2 3 4 5 6
0 0 3 0 3 0(1/2) (1/8) (1/10) (1/144)y x C C x C x C x C x C x!� ! % ! % ! 7 8

3 0(1/280) (1/5760) ...)C x C x% ! %

or  1/ 2 2 4 6 8
0 (1 / 2 /8 /144 / 5760) ...)y C x x x x x!� ! ! ! ! % 5/2 2 4

3 (1 /10 / 280 ...),C x x x% % % % ... (10)

which is the required solution containing a0 and a3 as arbitrary constants.
Remark. The reader can easily verify that the roots k = 5/2 of the indicial equation gives

another solution C0x
5/2 (1 + x2/10 + x4/280 + ...), which already occurs in (10). So we need not

consider k = 5/2.

EXERCISE 8 (D)
Find the series solution of the following equations near x = 0.
1. (x2 + 1)y( + xy∋ – xy = 0 about x = 0. [Delhi Maths (Hons.) 1993]

Ans. y = C0{1 + (1/6)x3 – (3/40)x5 + ....} + C1{x – (1/6)x3 + (1/12)x4 + ....}
2. y( + xy∋ + x2y = 0 near x = 0. [Delhi Maths (Hons.) 1996]

Ans. y = C0{1 – (1/12)x4 + (1/90)x6 – ....} + C1{x – (1/6)x3 – (1/40)x5 – ...}
3. y( – xy∋ – py = 0, where p is any constant, near x = 0.

2 4
0

( 2)1 ...
2! 4!
p p py C x x%∆ Η� % % %Φ Ι

Γ ϑ
Ans. 3 5

1
1 ( 1)( 3) ...

3! 5!
p p pC x x x% % %∆ Η% % % %Φ Ι

Γ ϑ
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4. (1 – x2)y( + 2xy∋ – y = 0 about x = 0.
Ans. y = C0{(1 + (1/2)x2 – (1/24)x4 – ....} + C1{x – (1/6)x3 – (1/120)x5 – ....}

5. (2 + x2)y( + xy∋ – (1 + x)y = 0 near x = 0.
Ans. y = C0{1 + (1/4)x2 + (1/12)x3 – ....} + C1{x + (1/24)x4 + ....}

6. (1 + x2)y( + xy∋ – y = 0 near x = 0.         Ans. y = C0{1 + (1/2)x2 – (1/8)x4 + ....} + C1x
7. (x2 – 1)y( + 4xy∋ + 2y = 0 near x = 0. Ans. y = C0(1 + x2 + x4 + ....) + C1(x + x3 + x5 + ....)
8. y( + x2y = 0.

Ans. 4 81 11 ....
3 4 3 4 7 8

y a x x) ∗� ! % !+ ,1 1 1 1− .
+ 5 91 1 ....

4 5 4 5 8 9
b x x x) ∗! % !+ ,1 1 1 1− .

.

9. (1 – x2)y( + 2xy∋ + y = 0. [Guwahati 2007; Meerut 1997]
Ans. y = a[1 – (1/2)x2 + (1/8)x4 + (1/80)x6 + ....] + b[x – (1/2)x3 + (1/40)x5 + ....

10. Find two independent Frobenius series solutions of the equation xy( + 2y∋ + xy = 0.
[Delhi B.Sc. (Hons) II 2011]                                          Ans. (cos x)/x  and  (sin x)/x

8.11. Examples of Type 3 on Frobenius method. Roots of indicial equation, unequal,
differing by an integer and making a coefficient of y infinite.

In this connection the following rule should be noted carefully.
Rule. If the indicial equation has two unequal roots k1 and k2 (say k1 > k2) differing by an

integer, and if some of the coefficients of y become infinite when k = k2, we modify the form of y by
replacing c0 by do (k – k2). We then obtain two independent solutions by putting k = k2 in the
modified form of y and Κy/Κk. The result of putting k = k1 in y gives a numerical multiple of that
obtained by putting k = k2 and hence we reject the solution obtained by putting k = k1 in y.

Ex. 1. Solve in series x(1 – x)y( – 3xy∋ – y = 0 near x = 0.    [Delhi Maths (H)
2009]

Sol. Given  x(1 – x)y( – 3xy∋ – y = 0. ...(1)

Dividing by x(1 – x), (1) yields d y
dx x

dy
dx x x

y
2

2
3

1
1

1
!

!
!

!( )
= 0.

Comparing it with y( + P(x)y∋ + Q(x)y = 0, hence P(x) = –3/(1 – x) and Q(x) = –1/{x(1 – x)}
so that xP(x) = –3x/(1 – x) and x2Q(x) = –x/(1 – x). Since xP(x) and x2Q(x) are both analytic at
x = 0, so x = 0 is a regular singular point of (1). Let the series solution of (1) be

y = c xm
k m

m

%

�

#
∃

0
,  where  c0 6 0. ...(2)

7 y∋ = c k m xm
k m

m
( )%∃ % !

�

# 1

0
and          y( = c k m k m xm

k m

m
( )( ) .% % ! % !

�

#
∃ 1 2

0
  ...(3)

Putting the above values of y, y∋, y( into (1) gives

( ) ( )( )x x c k m k m xm
k m

m
! % % !∃ % !

�

#2 2

0
1 ! %∃ ! ∃% !

�

# %

�

#
3 1

0 0
x c k m x c xm

k m

m
m

k m

m
( ) = 0

or   c k m k m x c k m k m xm
k m

m
m

k m

m
( )( ) ( )( )% % !∃ ! % % !∃% !

�

# %

�

#
1 11

0 0
! %∃ ! ∃%

�

# %

�

#
3

0 0
c k m x c xm

k m

m
m

k m

m
( ) = 0

or   c k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 1

0
! % % ! % % %∃ %

�

#
C k m k m k m xm

k m

m
{( )( ) ( ) }1 3 1

0
= 0

or c k m k m xm
k m

m
( )( )% % !∃ % !

�

#
1 1

0
! % % % % %

�

#
∃ c k m k m xm

k m

m
{( ) ( ) }2

0
2 1 = 0
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or c k m k m x c k m xm
k m

m
m

k m

m
( )( ) ( )% % !∃ ! % %∃% !

�

# %

�

#
1 11

0

2

0
= 0. ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely
xk – 1, (4) gives the indicial equation

c0k(k – 1) = 0 or k(k – 1) = 0. [� c0 6 0]
which gives k = 0 and k = 1. These are unequal and differ by an integer. Next, to find the recurrence
relation we equate to zero the coefficient of xk + m – 1 and obtain

cm(k + m)(k + m – 1) – cm – 1(k + m)2 = 0     or      cm =  k m
k m

cm
%

% ! !1 1 . ...(5)

Putting m = 1 in (5) gives c1 = {(k + 1)/k}C0. ...(6)

Putting m = 2 in (5) and using (6) gives c2 =
k
k

c k
k

c%
%

�
%2

1
2

1 0 . ...(7)

Putting m = 3 in (5) and using (7) gives c3 = k
k

c k
k

c%
%

�
%3

2
3

2 0 . ...(8)

Putting these values in (2), i.e., y = xk(c0 + c1x + c2x
2 + ....), gives

y = c x k
k

x k
k

x k
k

xk
0

2 31 1 2 3
%

%
%

%
%

%
%L

NM
O
QP.... . ...(9)

If we put k = 0 in (9), we find that due to presence of the factor k in their denominators, the
coefficients becomes infinite. To remove this difficulty, we write c0 = k do in (9). Then (9) becomes

y = do xk[k + (k + 1)x + (k + 2)x2 + (k + 3)k3 + ....] ...(10)
Putting k = 0 and replacing do by a in (10) gives

y = a(x + 2x2 + 3x3 + ....) = au, say ...(11)
To obtain a second solution, if we put k = 1 in (9) we obtain

y = c0(x + 2x + 3x2 + ....) ...(12)
which is not distinct (i.e. not linearly independent because ratio of the two series in (11) and (12)
is a constant) from (11). Hence (12) will not serve the purpose of a second solution. In such a case
the second independent solution is given by (Κy/Κk)k = 0. Differentiating (10) partially w.r.t. ‘k’

Κy/Κk = do xk log x [k + (k + 1)x + (k + 2)x2 + ....] + do xk [1 + x + x2 + ....]. ...(13)
Putting k = 0 and replacing do by b (13), gives

(Κy/Κk)k = 0 = b log x (x + 2x2 + 3x3 + ....) + b(1 + x + x2 + ....)
or (Κy/Κk)k = 0 = b[u log x + (1 + x + x2 + ....)] = bv, by (11) ...(14)

The required solution is y = au + bv, where a and b are arbitrary constants.
Ex. 2. Solve in series the Bessel’s equation of order 2, near x = 0, x2y( + xy∋ + (x2 – 4)y = 0.

[Delhi Maths (Hons.) 1995, Meerut 1995]
Sol. Given x2y( + xy∋ + (x2 – 4)y = 0. ...(1)
Dividing by x2, y( + (1/x)y∋ + [(x2 – 4)/x2]y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = 1/x and Q(x) = (x2 – 4)/x2 so that

xP(x) = 1 and x2Q(x) = x2 – 4. Since xP(x) and x2Q(x) are both analytic at x = 0, hence x = 0 is a
regular singular point of (1). Let the series solution of (1) be

y = c xm
k m

m

%

�

#
∃

0
,  where  c0 6 0. ...(2)

7 y∋ = c k m xm
k m

m
( )%∃ % !

�

# 1

0
       and         y( = c k m k m xm

k m

m
( )( )% % !∃ % !

�

#
1 2

0
 ...(3)
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Putting the above values of y, y∋, y( into (1) gives

x c k m k m x x c k m xm
k m

m
m

k m

m

2 2

0

1

0
1( )( ) ( )% % !∃ % %∃% !

�

# % !

�

#
% ∃ ! ∃%

�

# %

�

#
x c x c xm

k m

m
m

k m

m

2

0 0
4 = 0

or c k m k m k m x c xm
k m

m
m

k m

m
{( )( ) ( ) }% % ! % % !∃ % ∃%

�

# % %

�

#
1 4

0

2

0
= 0 or c k m x c xm

k m

m
m

k m

m
{( ) }% !∃ % ∃%

�

# % %

�

#2

0

2

0
4 = 0

or c k m k m x c xm
k m

m
m

k m

m
( )( )% % % !∃ % ∃%

�

# % %

�

#
2 2

0

2

0
= 0, ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely xk, gives the
indicial equation c0(k + 2)(k – 2) = 0 or (k + 2)(k – 2) = 0           [� c0 6 0]

This gives k = 2 and k = –2. These are unequal and differ by an integer. For the recurrence
relation, we equate to zero the coefficient of xk + m and get

cm(k + m + 2)(k + m – 2) + cm – 2 = 0 so cm = !
% % % ! !

1
2 2 2( )( )k m k m cm . ...(5)

To determine c1, we equate to zero the coefficient of xk + 1 and get c1(k + 3)(k – 1) = 0 giving
c1 = 0 for both the roots k = 2 and k = –2 of the indicial equation. Now using c1 = 0 and (5), we get

c1 = c3 = c5 = c7 = .... = 0. ...(6)
Next, putting m = 2, 4, 6, .... in (5) and simplifying, we have

c2 = – c0/k(k + 4), c4 = –c2/(k + 2)(k + 6) = c0/k(k + 2)(k + 4)(k + 6),
c6 = – c4/(k + 4)(k + 8) = – c0/k(k + 2)(k + 4)2(k + 6)(k + 8)

and so on. Putting these values in (2), i.e.,
y = xk(c0 + c1x + c2x

2 + c3x
3 + c4x

4 + c5x
5 + c6x

6 + c7x
7 + ....), we get

  y = c x x
k k

x
k k k k

k
0

2 4
1

4 2 4 6
!

%
%

% % %
RST ( ) ( )( )( )

!
% % % %

%
UVW

x
k k k k k

6

22 4 6 8( )( ) ( )( )
.... ...(7)

Putting k = 2 in (7) yields  y =
2 4 6

2
0 021 ....

2 6 2 4 8 6 2 4 6 8 10
x x xc x c

∆ ΗΕ Ε! % ! % � ΛΦ Ι1 1 1 1 1 1 1 1Ε ΕΓ ϑ
, say   ...(8)

Next, if we put k = –2 in (7), the coefficients of x4, x6, ... become infinite. To get rid of this
difficulty, we put c0 = do(k + 2) in (7) and obtain modified solution as

         y = do x k k x
k k

x
k k k

k ( ) ( )
( ) ( )( )

% ! %
%

!
% %

RST
2 2

4 4 6

2 4
!

% % %
%
UVW

x
k k k k

6

24 6 8( ) ( )( )
.... ...(9)

Putting k = –2 and replacing do by a in (9) gives

y =
4 6

2 2
20 0. ....

( 2)(2)(4) ( 2)(2) (4)(6)
x xax x! ∆ ΗΕ Ε! % ! %Φ Ι! !Ε ΕΓ ϑ

  or  y =
2 2 4

1 ....
16 2 6 2 4 8 6
ax x x au

∆ Η! Ε Ε! % ! �Φ Ι
1 1 1 1Ε ΕΓ ϑ

, say  ...(10)

Now, (8) and (10) 2   u =
2 2 4

1 ....
16 2 6 2 4 8 6 16
x x x∆ Η ΛΕ Ε! ! % ! � !Φ Ι1 1 1 1Ε ΕΓ ϑ

,

showing that w and u are dependent solutions. Hence we must find one more independent solution
in order to obtain the required general solution.

To get another independent solution, substituting (9) into the L.H.S. of (1) and simplifying,
we find x2y( + xy∋ + (x2 – 4)y = d0(k – 2)(k + 2)2xk.               ... (11)
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Differentiating both sides of (11) partially w.r.t. k, we get

Κ
Κ

% % !
L
NM

O
QPk

x d y
dx

x dy
dx

x y2
2

2
2 4( ) = 2

0 [( 2) ( 2)]kd k x k
k
Κ

% 1 !
Κ

or
2

2 2 2
0 02 ( 4) 2 ( 2) ( 2) ( 2) [ log ( 2) 1]k k kd d yx x x d k x k d k x x k x

dx kdx
8 9 Κ

% % ! � % 1 ! % % 1 ! % 1: ; Κ< =
...(12)

The presence of the factor (k + 2) in each term on R.H.S. of (12) shows that a second solution
is (Κy/Κk)k = –2, where y is given by (9). Differentiating (9) partially w.r.t. ‘k’ we get

Κ
Κ

y
k

= d x x k k x
k k

x
k k k

k
0

2 4
2 2

4 4 6
log ( ) ( )

( ) ( )( )
% ! %

%
%

% %
RST

!
% % %

%
UVW

x
k k k k

6

24 6 8( ) ( )( )
....

% ! %
% %

! !
%

F
HG

I
KJ

RST
d x k x

k k k k k
k

0

2
1 2

4
1

2
1 1

4
( )

( ) %
% %

x
k k k

4

4 6( )( )
1 1 1

4 6k k k
) ∗

! ! !+ ,% %− .

6

2( 4) ( 6)( 8)
x

k k k k
!

% % %
/ ! !

%
!

%
!

%
F
HG

I
KJ %
UVW

1 2
4

1
6

1
8k k k k

....  ... (13)

To find we proceed as follows :d
dk

k
k k

%
%

RST
UVW

L
NM

2
4( )

, Take z = k
k k

%
%

2
4( )

 so that log z = log
( )
k

k k
%
%

L
NM

O
QP

4
4

or log z = log (k + 4) – log k – log (k + 4).
Differentiating it w.r.t. ‘k’, we get

1
z

dz
dk = 1

4
1 1

4k k k%
! !

%
2

2 2
( 4) ( 4)

d k k
dk k k k k

∆ Η% %
�Φ Ι

% %Γ ϑ

1 1 1
4 4k k k

) ∗
! !+ ,% %− .

 etc.

Other terms can be similarly differentiated easily]
Putting k = –2 and replacing do by b in (13) gives

Κ
Κ
F
HG
I
KJ � !

y
k k 2

=
4 6 2 4

2 2 2
2 2 2

1log 0 0. .... 1
( 2)(2)(4) 4( 2)(2) (4)(6) 2 2 4

x x x xbx x x bx! !∆ Η ∆Ε Ε Ε ) ∗! % ! % % % %Φ Ι Φ + ,! ! 1 − .Ε Ε ΕΓ ϑ Γ

6

3
1 1 11 ....
2 4 62 4 6

x ΗΕ) ∗% ! % ! % Ι+ ,
1 1 − . Εϑ

=
2 4

2
2 2 2log 1 ....

2 2 4
x xb u x x b!8 9∆ ΗΕ Ε% % % ! �: ;Φ Ι

1Ε Ε: ;Γ ϑ< =
v , by (10)

The required solution is y = au + bv, where a and b are arbitrary constants.
Ex. 3. Solve Bessel’s equation of first order, x2y( + xy∋ + (x2 – 1)y = 0 in series near x = 0.

[Delhi Maths (H) 2007; Ravishankar 2005; Meerut 1994; Agra 2006]
Sol. Given x2y( + xy∋ + (x2 – 1)y = 0. ...(1)
As in Ex. 2, show that x = 0 is a regular singular point of (1). Let the series solution of (1) be

of the form y = xk(C0 + C1x + C2x
2 + ....) = C xm

k m

m

%

�

#
∃

0
, C0 6 0.    ...(2)

7 y∋ = 1

0
( ) k m

m
m

k m C x
#

% !

�
%∃ and   y( = ( )( )k m k m C xm

k m

m
% % !∃ % !

�

#
1 2

0
. ...(3)

Putting the above values of y, y∋ and y( in (1), we have
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x k m k m C x x k m C xm
k m

m
m

k m

m

2 2

0

1

0
1( )( ) ( )% % !∃ % %∃% !

�

# % !

�

# % ! ∃ %

�

#
( )x C xm

k m

m

2

0
1 = 0

or       ( )( ) ( )k m k m C x k m C xm
k m

m
m

k m

m
% % !∃ % %∃%

�

# %

�

#
1

0 0
% ∃ ! ∃% %

�

# %

�

#
C x C xm

k m

m
m

k m

m

2

0 0
= 0

or [( )( ) ( ) ]k m k m k m C x C xm
k m

m
m

k m

m
% % ! % % !∃ % ∃%

�

# % %

�

#
1 1

0

2

0
= 0

or     [( ) ]k m C x C xm
k m

m
m

k m

m
% !∃ % ∃%

�

# % %

�

#2

0

2

0
1 = 0

or     ( )( )k m k m C x C xm
k m

m
m

k m

m
% ! % %∃ % ∃%

�

# % %

�

#
1 1

0

2

0
= 0. ...(4)

(4) is an identity. Equating to zero the coefficient of the smallest power of x, namely xk, we
obtain the indicial equation. C0(k – 1)(k + 1) = 0 so that k = 1 and k = –1 as C0 6 0. These are
unequal and differ by an integer. Here the difference in powers of x in (4) is 2. Hence we equate to
zero the coefficient of xk + 1 in identity (4) and obtain.

k(k + 2)C1 = 0 giving C1 = 0 for both the roots       k = 1 and k = –1.
Next, equating to zero the coefficient of xk + m in (4), (k + m – 1)(k + m + 1)Cm + Cm – 2 = 0

or Cm = !
% % % % !

1
1 1 2( )( )k m k m Cm . ...(5)

Putting m = 3, 5, 7, .... in (5) and noting that   C1 = 0,            C1 = C3 = C5 = C7 = .... = 0.
...(6)

Next, putting m = 2, 4, 6, .... in (5), we get   C2 = !
% %

1
1 3 0( )( )k k C , ...(7)

C4 = !
% %

�
% % %

1
3 5

1
1 3 52 2 0( )( ) ( )( ) ( )k k

C
k k k

C , by (7)

and so on. Putting these values in (2), we have

y =
2 4

0 21 ....
( 1)( 3) ( 1)( 3) ( 5)

k x xC x
k x k k k

∆ ΗΕ Ε! % %Φ Ι
% % % % %Ε ΕΓ ϑ

...(8)

Now if we take k = –1 in the above series, the coefficients become infinite because of the
factor (k + 1) in the denominator. To get rid of this difficulty, we put C0 = d0 (k + 1) in (8) and get
the modified solution as

y =
2 4

0 2( 1) ....
3 ( 3) ( 5)

k x xd x k
k k x

∆ ΗΕ Ε% ! % %Φ Ι% % %Ε ΕΓ ϑ
. ...(9)

Differentiating (9) partially w.r.t. ‘k’, we have

Κ
Κ

y
k

=
2 4

0 2log ( 1) ....
3 ( 3) ( 5)

k x xd x x k
k k x

∆ ΗΕ Ε% ! % %Φ Ι% % %Ε ΕΓ ϑ

2
4

0 2 3 2
2 1

1 ....
( 3) ( 3) ( 5) ( 3)( 5)

k xd x x
k k k k k

8 9∆ ΗΕ Ε% % ! % %: ;Φ Ι
% % % % %Ε Ε: ;Γ ϑ< =

...(10)

Putting k = –1 and replacing do by a, (9) gives

y =
2 4 6

1
2 2 20 ....

2 2 4 2 4 6
x x xax au! ∆ ΗΕ Ε! % % % �Φ Ι

1 1 1Ε ΕΓ ϑ
, say.. ...(11)
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Putting k = –1 and replacing do by b, (10) gives

1k

y
k �!

Κ) ∗
+ ,Κ− . =

2 4 6
1

2 2 2log 0 ....
2 2 4 2 4 6
x x xbx x! ∆ ΗΕ Ε! % % %Φ Ι

1 1 1Ε ΕΓ ϑ

2
1 4

2 2
1 2 11 ...

2 42 2 4
xbx x! ∆ ΗΕ Ε) ∗% % ! % %Φ Ι+ ,1 − .Ε ΕΓ ϑ

or   
1k

y
k �!

Κ) ∗
+ ,Κ− . =

2
1 4

2 2
1 2 1log 1 ....

2 42 2 4
xbu x bx x b! ∆ ΗΕ Ε) ∗% % ! % % �Φ Ι+ ,1 − .Ε ΕΓ ϑ

v , say.  [using (11)]  ...(12)

Putting k = 1 in (9), we get

y = 
2 4

22 ...
4 4 6
x xdo x

8 9
! % %: ;

1< =
      or     y =

2 4 6
2 1

2 2 22 ...
2 2 4 2 4 6
x x xdo x! 8 9

! ! % ! %: ;
1 1 1< =

.  ...(13)

From (11) and (13), we find that these are linearly dependent solutions. Thus out of three
solutions (11), (12) and (13) only two are linearly independent. From (11) and (12) the required
general solution is y = au + bv, a and b being arbitrary constants.

Ex. 4. Find the series solution near x = 0 of (x + x2 + x3)y( + 3x2y∋ – 2y = 0.
Sol. Given (x + x2 + x3)y( + 3x2y∋ – 2y = 0. ...(1)
Dividing by (x + x2 + x3), (1) can be put in standard form

    y( + {3x/(1 + x + x2)}y∋ – {2/(x + x2 + x3)}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = 3x/(1 + x + x2) and Q(x)

= –2/(x + x2 + x3). Since P(x) and Q(x) are both analytic at x = 0, hence x = 0 is a regular singular
point of (1). Let series solution of (1) be of the form

y = xk(C0 + C1x + C2x
2 + ....) = C xm

k m

m

%

�

#
∃

0
,    where   C0 6 0. ...(2)

7   y∋ = 1
0
( ) k m

mm
k m C x

#
% !

�
3 %      and   y( = ( )( )k m k m C xm

k m

m
% % !∃ % !

�

#
1 2

0
. ...(3)

Putting the above values of y, y∋ and y( in (1), we have

( ) ( )( )x x x k m k m C xm
k m

m
% % % % !∃ % !

�

#2 3 2

0
1 % %∃ ! ∃% !

�

# %

�

#
3 22 1

0 0
x k m C x C xm

k m

m
m

k m

m
( ) = 0

or      ( )( ) ( )( )k m k m C x k m k m C xm
k m

m
m

k m

m
% % !∃ % % % !∃% !

�

# %

�

#
1 11

0 0

% % % %∃ % %∃% %

�

# % %

�

#
( )( ) ( )k m k m C x k m C xm

k m

m
m

k m

m
1 31

0

1

0
! ∃ %

�

#
2
0

C xm
k m

m
= 0

or ( )( ) [( )( ) ]k m k m C x k m k m C xm
k m

m
m

k m

m
% % !∃ % % % ! !∃% !

�

# %

�

#
1 1 21

0 0
% % % % % %∃ % %

�

#
[( )( ) ( )]k m k m k m C xm

k m

m
1 3 1

0
= 0

or ( )( ) [( ) ( ) ]k m k m C x k m k m C xm
k m

m
m

k m

m
% % !∃ % % ! % !∃% !

�

# %

�

#
1 21

0

2

0
% % % %∃ % %

�

#
( )( )k m k m C xm

k m

m
2 1

0
= 0

or ( )( ) ( )( )k m k m C x k m k m C xm
k m

m
m

k m

m
% % !∃ % % ! % %∃% !

�

# %

�

#
1 2 11

0 0
% % % %∃ % %

�

#
( )( )k m k m C xm

k m

m
2 1

0
= 0. ...(4)

Equating to zero the coefficient of the smallest power of x, namely xk – 1, in identity (4), the
indicial equation is given by C0k(k – 1) = 0 giving k = 0 and k = 1 as C0 6 0. These roots are
unequal and differ by an integer. Next, equating to zero the coefficient of xk in (4), we get
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(k + 1)kC1 + (k – 2)(k + 1)C0 = 0 so that C1 = –[(k – 2)/k]C0. ...(5)
Finally, equating to zero the coefficient of xk + m – 1 in (4), we get

(k + m)(k + m – 1)Cm + (k + m – 3)(k + m)Cm – 1 + (k + m – 2)(k + m)Cm – 2 = 0, for all m 0 2
or    (k + m – 1)Cm + (k + m – 3)Cm – 1 + (k + m – 2)Cm – 2 = 0       for all        m 0 2.

[Note that (k + m) 6 0 for k = 0 and 1 and for all m 0 2]

or Cm = !
% !

1
1k m [(k + m – 3)Cm – 1 + (k + m – 2)Cm – 2],     for all        m 0 2 ...(6)

Putting m = 2 in (6), we have

C2 = !
%

! % � !
%

! ! ! %L
NM

O
QP

1
1

1 1
1

1 2
1 0 0 0k k C kC k

k k
k C kC[( ) ] ( )( ) , by (5)

or C2 = !
%

! ! ! � ! !
%

C
k k

k k k k
k k

C0 2
01

1 2 3 2
1( )

[ ( )( )]
( )

. ...(7)

Putting m = 3 in (6), we have

C3 = !
%

% % � !
%

!
!
%

!
% !L

NM
O
QP

1
2

1 1
2

3 2
1

1 1
2 1

0
0k

kC k C
k

k k C
k k

k k
k

C[ ( ) ]
( )

( )
( )( )

or C3 =
C

k
k
k

k
k

k k k
k k k

0
2 3 2

2
3 2

1
1 3 5 2

1 2%
!
%

% !L
NM

O
QP

� % ! !
% %( )( )

and so on putting the above values in (2), we have

y =
3 2

2 3
0

2 3 2 3 5 21 ..
( 1) ( 1)( 2)

k k k k k kC x x x x
k k k k k k

8 9! ! % ! !
! ! % %: ;

% % %< =
...(8)

Now if we put k = 0 in the above series, the coefficients become infinite because of the factor
k in the denominator. To get rid of this difficulty, we put C0 = d0k in (8) and get the modified

solution as                   y =
3 2

2 3
0

3 2 3 5 2( 2) .....
1 ( 1)( 2)

k k k k kd x k k x x x
k k k

8 9! % ! !
! ! ! % %: ;

% % %< =
...(9)

Differentiating (9) partially w.r.t. ‘k’, we get

Κ
Κ

y
k

=
3 2

2 3
0 0

3 2 3 5 2log ( 2) ..... [1
1 ( 1)( 2)

k kk k k kd x x k k x x x d x x
k k k

8 9! % ! !
! ! ! % % % !: ;% % %< =

     
2

2
2

3 (3 2) 3 6 5
1 ( 1)( 2)( 1)

k k kx
k k kk

∆∆ Η! % !Ε Ε Ε! ! %Φ Ι Φ% % %%Ε Ε ΕΓ ϑ Γ
!

% ! !
% %

!
% ! !
% %

UVW
%
O
Q
PP

k k k
k k

k k k
k k

x
3 2

2

3 2

2
33 5 2

1 2
3 5 2
1 2( ) ( ) ( )( )

....

...(10)
Putting k = 0 and replacing do by a in (9), we get

y = a(2x + 2x2 – x3 + ....) = au, say. ...(11)
Putting k = 0 and replacing do by b in (10), we get

 Κy/Κk)k = 0 = b log x (2x + 2x2 – x3 + ....) + b(1 – x – 5x2 – x3 + ....)
or (Κy/Κk)k = 0 = b[log x (2x + 2x2 – x3 + ....) + (1 – x – 5x2 – x3 + ...)] = bv, say. ...(12)

Putting k = 1 in (9), we get
y = d0x[1 + x – x2/2 – x3/3 + ....] = (d0/2) × [2x + 2x2 – x3 + ....] ...(13)
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From (11) and (13), we find that these are linearly dependent solutions. Thus out of three
solutions (11), (12) and (13) only two are linearly independent. From (11) and (12), the required
general solution is y = au + bv, a and b being arbitrary constants.

Ex. 5. Solve (a) 2( ) 3 2 0x x y y y∋∋ ∋! % ! �  near x = 0.

(b) 2 2( ) 3 2 (3/ )x x y y y x x∋∋ ∋! % ! � %  near x = 0.

Sol. (a) Given 2( ) 3 2 0x x y y y∋∋ ∋! % ! � ... (1)

Re-writing (1),       2 2{3/( )} {2 /( )} 0y x x y x x y∋∋ ∋% ! ! ! �

Comparing it with ( ) ( ) 0,y P x y Q x y∋∋ ∋% % � 2( ) 3/( )P x x x� !  and 2( ) {2 /( )},Q x x x� ! !

showing that P(x) and Q(x) are undefined at x = 0 and so P(x) and Q(x) are not analytic at
x = 0. Thus, x = 0 is not an ordinary point and therefore x = 0 is a singular point.

Also, (x – 0) P(x) = 3/(x – 1) and (x – 0)2Q(x) = – {2x / (x – 1)}, showing that both
(x – 0) P(x) and (x – 0)2 Q(x) are both analytic at x = 0. so x = 0 is a regular singular point.

To solve (1), we assume a series solution of the form

00
, where 0k m

mm
y C x C

#
%

�
� 3 6 ... (2)

(2) 2 1

0
( ) k m

mm
y C k m x

#
% !

�
∋ � 3 %        and         2( ) ( 1) k m

my C k m k m x % !∋∋ � 3 % % !

Substituting the above values of , andy y y∋ ∋∋  in (1), we get

2 1 1
0 0 0

( ) ( ) ( 1) 3 ( ) 2 0k m k m k m
m m mm m m

x x C k m k m x C k m x C x
# # #

% ! % ! %

� � �
! 3 % % ! % 3 % ! 3 �

or 1
0 0

( ) ( 1) ( ) ( 1)k m k m
m mm m

C k m k m x C k m k m x
# #

% % !

� �
3 % % ! ! 3 % % ! 1

0 0
3 ( ) 2 0k m k m

m mm m
C k m x C x

# #
% ! %

� �
% 3 % ! 3 �

or 1
0 0

{( ) ( 1) 2} {( ) ( 1) 3( )} 0k m k m
m mm m

C k m k m x C k m k m k m x
# #

% % !

� �
3 % % ! ! ! 3 % % ! ! % �

or 1

0 0
( 2) ( 1) ( ) ( 4) 0k m k m

m mm m
C k m k m x C k m k m x

# #
% % !

� �
3 % ! % % ! 3 % % ! �

or   1
0 0 1( 4) {( 2) ( 1) ( 3) ( 1) }k kk k C x k k C k k C x!! ! % ! % ! ! % 1

1 2{( 1) ( 2) ( 2) ( 2) } ....kk k C k k C x %% ! % ! ! % %

...... 1
1{( 3) ( ) ( 4) ( ) ... 0k m

m mk m k m C k m k m C x % !
!% % ! % ! % ! % % � ... (3)

(3) is identity in x. Equating to zero the coefficient of the lowest power of x, namely xk + 1, the
indicial equation is  – k (k – 4) C0 = 0 giving          k = 0, 4       as       0 0C 6

Equating to zero the coefficient of xk + m – 1, the recurrence relation is given by

1
3
4m m

k mC C
k m %

% !
�

% !
,   for all 1m 0 ... (4)

Putting m = 1, 2, 3, ... in (4), we have

1 0 2 1 0 0
2 1 1 2 1, ,
3 2 2 3 3

k k k k kC C C C C C
k k k k k

! ! ! ! !
� � � / �

! ! ! ! !

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Integration In Series 8.43

3 2 0 0
1 ,

1 1 3 3
k k k kC C C C

k k k k
!

� � / �
! ! ! ! 4 3 0 0

1 1 1
3 3

k k k kC C C C
k k k k
% % %

� � / �
! !

and so on. Substituting these values of C1, C2, C3, ... in (2), we get

2 3 4
0

2 1 11 ... ,
3 3 3 3

k k k k ky C x x x x x
k k k k

! ! %∆ Η� % % % % %Φ Ι
! ! ! !Γ ϑ

... (5)

The roots k = 0, 4 of the indicial equation differ by an integer. However, when k = 0 the
expected vanishing of the denominator in the coefficent of x4 does not occur since the factor k
appears in both numerator and denominator (refer calculation of C4) and thus cancels out. Observe
that the coefficient C3 of x3 is zero when k = 0.

Putting k = 0 and replacing C0 by a, (5) gives
y = a (1 + 2x/3 + x2/3 – x4/3 – 2x5/3 – x6 ...) = au, say,

Putting k = 4 and replacing C0 by b, (5) gives
y = bx4 (1 + 2x + 3x2 + 4x3 + 5x4 + ...) = bv, say

Clearly, u = (1 + 2x/3 + x2/3) – v/3 ... (6)

The required general solution is y au b� % v , that is,

2(1 2 /3 /3) ( / 3) ,y a x x b a� % % % ! v  using (6)
or y =A (x2 + 2x + 3) + Bx4 (1 + 2x + 3x2 + 4x3 + ...), taking A = a/3 and B = b – a/3
or y = A(x2 + 2x + 3) + Bx4 (1 – x)–2, A and B being arbitrary constants. ... (7)

(b) Given 2 2( ) 3 2 3/x x y y y x x∋∋ ∋! % ! � % ... (i)
Here x = 0 is rgular singular point of (i). To solve (i), we assume a series solution of the form

00
, where 0k m

mm
y C x C

#
%

�
� 3 6 ... (ii)

7     1 2
0 0

( ) ( ) ( 1)k m k m
m mm m

y C k m x y C k m k m x
# #

% ! % !

� �
∋ ∋∋� 3 % � 3 % % !

Substituting the above values of , andy y y∋ ∋∋  in (1) and proceeding as in part (a) gives

1 1
0 0 1 1 2( 4) {( 2) ( 1) ( 3)( 1) } {( 1) ( 2) ( 2) ( 2) }k k kk k C x k k C k k C x k k C k k C x! %! ! % ! % ! ! % % ! % ! ! %

           1
1... {( 3) ( ) ( 4) ( ) } k m

m mk m k m C k m k m C x % !
!% % % ! % ! % ! % 2... 3/x x% � %  ... (iii)

To determine complementary function of (i) : Setting the left member of (iii) equal to zero,
– k(k – 4) C0x

k – 1 + {(k – 2) (k + 1) C0 – (k – 3) (k + 1) C1} xk + ...
       + {(k + m – 3) (k + m) Cm–1 – (k + m – 4) (k + m) Cm} xk + m – 1 + ... = 0 ... (iv)

Starting with (iv), we now proceed as in part (a) upto equation (6) of part (a). Thus, as in part
(a) we obtain  Cm = {(k + m – 3)/(k + m – 4)} Cm–1 for all 1m 0   ... (v)

and
2 3 4

0
2 1 11 ...
3 3 3 3

k k k k ky C x x x x x
k k k k

! ! %) ∗� ! % % % %+ ,! ! ! !− .
... (vi)

which satisfies 2 1
0( ) 3 2 ( 4) kx x y y y k k C x !∋∋ ∋! % ! � ! ! ... (vii)

The required complementary function (C.F.) of (i)
= au + bv = a (1 + 2x/3 + x3/3) + (b – a/3)v
= A(x2 + 2x + 3) + Bx4 (1 + 2x + 3x2 + 4x3 + ...), setting A = a/3 and B = b – a/3
= A (x2 + 2x + 3) + Bx4 (1 – x)–2
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To determine particular integral (P.I.). of (i) : To this end we shall consider each of the
terms of the right member of the given equation (i).

Setting the right member of (vii) equal to x, that is,          –k(k – 4) C0x
k – 1 = x,

identically,
we have k = 2 and C0 = 1/4. Then recurrence relation (v) takes the form

Cm = {(m – 1)/(m – 2)} Cm – 1, for all    1m 0 ... (viii)
Putting m = 1, 2, 3, .. in (viii) yields C1 = C2 = C3 = .... = 0.
Putting k = 2, C0 = 1/4 and using the fact that Cm = 0 for all 1,m 0  from (ii), we have

P.I. corresponding to the term x is x2/4.

Again, setting the right member of (vii) equal to 3/x2, i.e., 1 2
0( 4) 3/kk k C x x!! ! � , identically,,

we have k = –1 and C0 = –3/5. Then recurrence relation (v) takes the form
Cm = {(m – 4)/(m – 5)} Cm–1,      for all    1m 0 ... (ix)

Putting m = 1, 2, 3, ... in (ix), we have C1 = 3C0/4, C2 = C0/2, C3 = C0/4, C4 = C5 = C8 = ... = 0.
Putting these values in (ii) and taking k = –1, C0 = –3/5, we have

7      Particular integral corresponding to the term 3/x2 is – (3/5) × x–1 (1 + 3x/4 + x2/2 + x3/4)
Hence the complete integral of (1) is y = C.F. + total P.I.

or y = A(x2 + 2x + 3) + Bx4 (1 – x)–2 + x2/4 – 3/5x – 9/20 – 3x/10 – 3x2/20
or y = A(x2 + 2x + 3) + Bx4 (1 – x)–2 + x2/4 – 3/5x – (3/20) × (x2 + 2x + 3)
or y = C(x2 + 2x + 3) + Bx4 (1 – x)–2 – (3/5x) + (x2/4),
where C = (A – 3/20). Here C and B are arbitrary constants.

EXERCISE 8 (E)
Find the series solution of the following equations near x = 0.

1. x(1 – x)y( – (1 + 3x)y∋ – y = 0. Ans. 2 3 4(1 2 2 3 3 4 ...)y a x x x� 1 % 1 % 1 %

2 3 4 2 3{log (1 2 2 3 3 4 ....) ( 1 3 5 ...)}b x x x x x x x% 1 % 1 % 1 % % ! % % % %

2. x2y( – 3xy∋ + (3 + 4x)y = 0. [Meerut 1997]
3. x2y( + xy∋ – (1 + x2)y = 0.

8.12. Examples of Type 4 on Frobenius method. Roots of indicial equation equal.
In this connection the following rule should be noted carefully.
Rule. If the indicial equation has two equal roots k = k∋, we obtain two independent solutions

by substituting this value of k in y and Κ y/Κ k.
Ex. 1. Solve the Bessel’s equation of order zero xy( + y∋ + xy = 0 in series.

[Delhi Maths (H) 2009; Meerut 1996, G.N.D.U. Amritsar 1997, Garhwal 2005]
Sol. Given xy( + y∋ + xy = 0. ...(1)
Dividing by x, y( + (1/x)y∋ + y = 0. Comparing it with y( + P(x)y∋ + Q(x)y = 0, here

P(x) = 1/x and Q(x) = 1, so that xP(x) = 1and x2Q(x) = x2, which are analytic at x = 0. So x = 0 is
a regular singular point. Let the series solution of (1) be of the form

y = C xm
k m

m

%

�

#
∃

0
,       where C0 6 0. ...(2)

7 y∋ = C k m xm
k m

m
( )%∃ % !

�

# 1

0
    and    y( = C k m k m xm

k m

m
( )( ) .% % !∃ % !

�

#
1 2

0
  ...(3)

Putting the above values of y, y∋, y( into (1) gives
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C k m k m x C k m xm
k m

m
m

k m

m
( )( ) ( )% % !∃ % %∃% !

�

# % !

�

#
1 1

0

1

0
% ∃ % %

�

#
C xm

k m

m

1

0
= 0

or C k m k m k m x C xm
k m

m
m

k m

m
{( )( ) ( )}% % ! % %∃ % ∃% !

�

# % %

�

#
1 1

0

1

0
= 0

or C k m x C xm
k m

m
m

k m

m
( )%∃ % ∃% !

�

# % %

�

#2 1

0

1

0
= 0, ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely xk – 1, (4)
gives the indicial equation    C0k

2 = 0    or    k2 = 0     (� C0 6 0).     So k = 0, 0 (equal roots.)
For recurrence relation, equating to zero the coefficient of xk + m – 1 in (4) gives

Cm(k + m)2 + Cm – 2 = 0        or Cm = !
%

!C
k m

m 2
2( )

. ...(5)

To compute C1, equating to zero the coefficient of xk gives C1(k + 1)2 = 0 so that C1 = 0 (for
k = 0 is root of indicial equation). Using C1 = 0 and (5), we get

C1 = C3 = C5 = C7 = .... = 0. ...(6)
Putting m = 2, 4, 6, .... in turn in (5) and simplifying, we get

C2 = –C0/(k + 2)2, C4 = –C2/(k + 4)2 = C0/(k + 2)2(k + 4)2,
C6 = –C4/(k + 6)2 = –C0/(k + 2)2(k + 4)2(k + 6)2,

and so on. Putting these values in (2), i.e. y = xk(C0 + C1x + C2x
2 + C3x

3 + ....),

y = C x x
x

x
k k

k
0

2

2

4

2 21
2 2 4

!
%

%
% %

RST ( ) ( ) ( )
!

% % %
%
UVW

x
k k k

6

2 2 22 4 6( ) ( ) ( )
... ...(7)

Putting k = 0 and replacing C0 by a in (7) gives

y =
2 4 6

2 2 2 2 4 21 ....
2 2 4 2 4 6
x x xa au

) ∗
! % ! % �+ ,+ ,1 1 1− .

 say ...(8)

To get another independent solution, substituting, (7) into the L.H.S. of (1) and simplifying,
we find x2y( + y∋ + xy = C0k

2.xk – 1.                ...(9)
Differentiating both sides of (9) partially w.r.t. ‘k’ gives

Κ
Κ

% %
L
NM

O
QPk

x d y
dx

dy
dx

xy2
2

2 =
C
x k

k xk0 2Κ
Κ

( )   or  x d
dx

d
dx

x y
k

2
2

2 % %
L
NMM

O
QPP

Κ
Κ

=
20 [2 log ]k kC kx k x x

x
% 1 . ...(10)

The presence of the factor k in each term on R.H.S. of (10) shows that a second solution is
(Κy/Κk)k = 0, where y is given by (7). Differentiating partially w.r.t. ‘k’ (7) gives

Κ Κy k/ = C x xk
0 1log k

     !
%

%
% %

x
k

x
k k

2

2

4

2 22 2 4( ) ( ) ( )
!

% % %
%
UVW

x
k k k

6

2 2 22 4 6( ) ( ) ( )
....

2

0 2
( 2)

2( 2)
k xc x

kk
∆ !

% ! /Φ %%Γ
4

2 2
2 2

2 4( 2) ( 4)
x

k kk k
8 9

% ! !: ;% %% % < =
!

% % %
!

%
!

%
!

%
L
NM

O
QP %
UVW

x
k k k k k k

6

2 2 22 4 6
2

2
2

4
2

6( ) ( ) ( )
.... ...(11)1)

[To find d
dx k k k

1
2 4 62 2 2( ) ( ) ( )% % %

L
NM

O
QP
, we have proceeded as follows. Suppose that
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z = 1/[(k + 2)2 (k + 4)2 (k + 6)2]           so  that        log z = –2 log (k + 2) – 2 log (k + 4) – 2 log (k + 6).
Differentiating w.r.t. ‘k’, we have

1
z

dz
dk = !

%
!

%
!

%
2

2
2

4
2

6k k k   or       dz
dk = z

k k k
!

%
!

%
!

%
F
HG

I
KJ

2
2

2
4

2
6

,

where z = 1/{(k + 2)2 (k + 4)2 (k + 6)2}; etc. Other terms can be similarly differentiated easily]
Putting k = 0 and replacing c0 by b in (11) gives

0( / )ky k �Κ Κ =
2 4 6

2 2 2 2 2 2log 1 ....
2 2 4 2 4 6
x x xb x

) ∗
! % ! %+ ,+ ,1 1 1− .

2 2 2

2 2 2 2 2 2
1 1 11 1 ....
2 2 32 2 4 2 4 6

x x xb
∆ ΗΕ Ε) ∗ ) ∗% ! % % % % %Φ Ι+ , + ,1 1 1− . − .Ε ΕΓ ϑ

=
2 2

2 2 2
1log 1 ....
22 2 4

x xb u x b
8 9∆ ΗΕ Ε) ∗% ! % % �: ;Φ Ι+ ,1 − .Ε Ε: ;Γ ϑ< =

v , (say) [using (8)]

The required solution is y = au + bv, where a and b are arbitrary constants.
Ex. 2. Solve in series (x – x2)y( + (1 – 5x)y∋ – 4y = 0.

[Agra 2009; Delhi Maths (H) 2005; Nagpur 1996, Meerut 1995, 96]
Sol. Given (x – x2)y( + (1 – 5x)y∋ – 4y = 0. ...(1)
Dividing by (x – x2), (1) gives y( + {(1 – 5x)/(x – x2)}y∋ – {4/(x – x2)}y = 0.
Comparing it with y( + P(x)y∋ + Q(x)y = 0, here P(x) = (1 – 5x)/(x – x2) and Q(x)

= –4/(x – x2) so that xP(x) = (1 – 5x)/(1 – x) and x2Q(x) = –4x/(1 – x). Since xP(x) and x2Q(x) are
analytic at x = 0, hence x = 0 is a regular singular point of (1).

Let the series solution of (1) be of the form

y = C xm
k m

m

%

�

#
∃

0
, where          C0 6 0. ...(2)

7 y∋ = C k m xm
k m

m
( )%∃ % !

�

# 1

0
     and      y( = C k m k m xm

k m

m
( )( ) .% % !∃ % !

�

#
1 2

0
  ...(3)

Putting the above values of y, y∋ y( into (1) gives

    ( ) ( )( )x x C k m k m xm
k m

m
! % % !∃ % !

�

#2 2

0
1 % ! %∃ ! ∃% !

�

# %

�

#
( ) ( )1 5 41

0 0
x C k m x C xm

k m

m
m

k m

m
= 0

or     C k m k m k m xm
k m

m
{( )( ) ( )}% % ! % %∃ % !

�

#
1 1

0
! % % ! % % %∃ %

�

#
C k m k m k m xm

k m

m
{( )( ) ( ) }1 5 4

0
= 0

or C k m x C k m k m xm
k m

m
m

k m

m
( ) {( ) ( ) }%∃ ! % % % %∃% !

�

# %

�

#2 1

0

2

0
4 4 = 0

or C k m x C k m xm
k m

m
m

k m

m
( ) ( )%∃ ! % %∃% !

�

# %

�

#2 1

0

2

0
2 = 0, ...(4)

which is an identity. Equating to zero the coefficient of the smallest power of x, namely
xk – 1, (4) gives the indicial equation

C0k
2 = 0     or k2 = 0,     as       C0 6 0. Thus k = 0, 0 (equal roots).

Finally, equating to zero the coefficient of xk + m – 1 in (4), we get

Cm(k + m)2 – Cm – 1(k + m + 1)2 = 0   or           Cm =
( )

( )
k m

k m
Cm

% %
% !

1 2

2 1 ...(5)

Putting m = 1, 2, 3, .... in turn in (5) and simplifying             C1 = [(k + 2)2/(k + 1)2]C0,
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C2 = ( )
( )

( )
( )

( )
( )

( )
( )

k
k

C k
k

k
k

C k
k

C%
%

�
%
%

/
%
%

�
%
%

3
2

3
2

2
1

3
1

2

2 1

2

2

2

2 0

2

2 0,  C3 = ( )
( )

( )
( )

( )
( )

( )
( )

k
k

C k
k

k
k

C k
k

C%
%

�
%
%

/
%
%

�
%
%

4
3

4
3

3
1

4
1

2

2 2

2

2

2

2 0

2

2 0

and so on. Putting these in (2), i.e., y = xk(C0 + C1x + C2x
2 + C3x

3 + ....), gives

y = x C k
k

x k
k

x k
k

xk
0

2

2

2

2
2

2

2
31 2

1
3
1

4
1

% %
%

% %
%

% %
%

%
RST

UVW
( )
( )

( )
( )

( )
( )

.... . ...(6)

Putting k = 0 and replacing C0 by a in (6) gives
y = a(1 + 22x + 32x2 + 42x3 + ....) = au, say ...(7)

Differentiating partially w.r.t. ‘k’, (6) gives

Κ
Κ

y
k

= C x x k
k

x k
k

x k
k

xk
0

2

2

2

2
2

2

2
31 2

1
3
1

4
1

log ( )
( )

( )
( )

( )
( )

....% %
%

% %
%

% %
%

%
RST

UVW

% %
% %

!
%

L
NM

O
QP %

%
% %

!
%

L
NM

O
QP %

RST
UVW

C x k
k

x
k k

k
k

x
k k

k
0

2

2

2

2
22

1
2

2
2

1
3
1

2
3

2
1

( )
( )

( )
( )

....

Putting k = 0 and replacing C0 by b gives

(Κy/Κk)k = 0 = b log x(1 + 22x + 32x2 + 42x3 + ....) 2 2 2{2 (1 2) 3 2(2 / 3 2) ....}b x x% ! % 1 1 ! %

2[ log 2(1 2 2 3 ...)] ,b u x x x bv� ! 1 % 1 % �  say [using (7)]

The required solution is y = au + bv, where a and b are arbitrary constants.
Ex. 3. Find the series solution of (x – x2)y( + (1 – x)y∋ – y = 0 near x = 0.

[Delhi Maths (Hons.) 1998, 2008; Ravishenker 2010]
Sol. Given           (x – x2)y( + (1 – x)y∋ – y = 0. ...(1)
As usual, x = 0 is a regular singular point of (1). Let its series solution be

y = xk(C0 + C1x + C2x
2 + ....) = C xm

k m

m

%

�

#
∃

0
, where C0 6 0. ...(2)

7 y∋ =
1

0
( ) k m

m
m

k m C x
#

% !

�
%∃     and    y( = ( )( ) .k m k m C xm

k m

m
% % !∃ % !

�

#
1 2

0
 ...(3)

Putting the above values of y, y∋ and y( in (1), we get

( ) ( )( )x x k m k m C xm
k m

m
! % % !∃ % !

�

#2 2

0
1 % ! %∃ ! ∃% !

�

# %

�

#
( ) ( )1 1

0 0
x k m C x C xm

k m

m
m

k m

m
= 0

or    ( )( ) ( )( )k m k m C x k m k m C xm
k m

m
m

k m

m
% % !∃ ! % % !∃% !

�

# %

�

#
1 11

0 0

% %∃ ! %∃ ! ∃% !

�

# %

�

# %

�

#
( ) ( )k m C x k m C x C xm

k m

m
m

k m

m
m

k m

m

1

0 0 0
= 0

or   [( )( ) ( )]k m k m k m C xm
k m

m
% % ! % %∃ % !

�

#
1 1

0
! % % ! % % %∃ %

�

#
[( )( ) ( ) ]k m k m k m C xm

k m

m
1 1

0
= 0

or             ( ) [( ) ]k m C x k m C xm
k m

m
m

k m

m
%∃ ! % %∃% !

�

# %

�

#2 1

0

2

0
1 = 0, ...(4)

which is an identity is x. Equating to zero the coefficient of the smallest power of x, namely xk – 1

in (4), the indicial equation is
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C0k
2 = 0 so that k = 0, 0 as  C0 6 0.

Equating to zero the coefficient of xk + m – 1 in (4), we get
(k + m)2Cm – {(k + m – 1)2 + 1}Cm – 1 = 0,   for all    m 0 1

or Cm =
( )

( )
k m

k m
Cm

% ! %
% !

1 12

2 1,      for all      m 0 1 ...(5)

Putting m = 1, 2, 3, .... in (5), we have C1 = 2 2
0{( 1) /( 1) } ,k k C% %  ...(6)

C2 =
( )

( )
( ){( ) }

( ) ( )
k

k
C k k

k k
C% %

%
�

% % %
% %

1 1
2

1 1 1
1 2

2

2 1

2 2

2 2 0 , by (6) ...(7)

C3 = ( )
( )

( ){( ) }{( ) }
( ) ( ) ( )

k
k

C k k k
k k k

C% %
%

�
% % % % %

% % %
2 1

3
1 1 1 2 1

1 2

2

2 2

2 2 2

2 2 2 03

and so on. Putting these values in (2), we have

y = C x k
k

x k k
k k

xk
0

2

2

2 2

2 2
21 1

1
1 1 1

1 2
%

%
%

%
% % %

% %

L
NM ( )

( ){( ) }
( ) ( )

%
% % % % %

% % %
%
O
QP

( ){( ) }{( ) }
( ) ( ) ( )

....k k k
k k k

x
2 2 2

2 2 2
31 1 1 2 1

1 2 3
...(8)

Differentiating (8) partially w.r.t. ‘k’, we have

     Κ
Κ

y
k

= C x x k
k

x k k
k k

xk
0

2

2

2 2

2 2
21 1

1
1 1 1
1 2

log
( )

( )[( ) ]
( ) ( )

%
%

%
%

% % %
% %

RST
%

% % % % %
% % %

%
UVW

( ){( ) }{( ) }
( ) ( ) ( )

....k k k
k k k

x
2 2 2

2 2 2
31 1 1 2 1

1 2 3

%
%

! %
%

L
NM

O
QP

RS|T|
% % % % % %

% %

L
NM

C x k
k

k
k

x k k k k
k k

k
0 2

2

3

2 2

2 2
2

1
2 1

1
2 1 1 2 1 1

1 2( )
( )

( )
{( ) } ( )( )

( ) ( )

! % % %
% %

! % % %
% %

O
QP

%
UV|W|

2 1 1 1
1 2

2 1 1 1
1 2

2 2

3 2

2 2

2 3
2( ){( ) }

( ) ( )
( ){( ) }

( ) ( )
. ...k k

k k
k k

k k
x ...(9)

Putting k = 0 and replacing C0 by a in (8),  y = 2 32 2 51 ....
4 4 9

a x x x au1) ∗% % % % �+ ,1− .
, say..

Putting k = 0 and replacing C0 by b in (9), we get

0k

y
k �

Κ) ∗
+ ,Κ− . = 2 3 22 2 5log 1 .... ( 2 ....)

4 4 9
b x x x x b x x1) ∗% % % % % ! ! !+ ,1− .

or
0k

y
k �

Κ) ∗
+ ,Κ− . = 2 3 22 2 5log 1 .... ( 2 ....)

4 4 9
b x x x x x x∆ 1 Η) ∗% % % % % ! ! !Φ Ι+ ,1− .Γ ϑ

= bv, say

The required solution is y = au + bv, a, b being arbitrary constants.
Ex. 4. Solve in series the following differential equations :

(a) ( 1) (3 1) 0.x x y x y y∋∋ ∋! % ! % � [Delhi Physics (H) 2001]

(b) ( 1) (3 1) 4x x y x y y x∋∋ ∋! % ! % � [Jabalpur 2004]

Sol. (a) Given 2( ) (3 1) 0x x y x y y∋∋ ∋! % ! % � ... (1)

As usual show that x = 0 is regular singular point. To solve (1), we assume a series solution
of the form

    00
, where 0k m

mm
y C x C

#
%

�
� 3 6 ... (2)
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7 1

0
( ) k m

mm
y C k m x

#
% !

�
∋ � 3 %      and      2

0
( ) ( 1) k m

mm
y C k m k m x

#
% !

�
∋∋ � 3 % % !

Substituting the above values of , andy y y∋ ∋∋  in (1), we get

2 2 1

0 0 0
( ) ( ) ( 1) (3 1) ( ) 0k m k m k m

m m mm m m
x x C k m k m x x C k m x C x

# # #
% ! % ! %

� � �
! 3 % % ! % ! 3 ! % 3 �

or      Β Χ
0

( ) ( 1) 3( ) 1 k m
m

m
C k m k m k m x

#
%

�
3 % % ! % % % Β Χ 1

0
( ) ( 1) ( ) 0k m

mm
C k m k m k m x

#
% !

�
! 3 % % ! % % �

or 2 2 1

0 0
( 1) ( ) 0k m k m

m mm m
C k m x C k m x

# #
% % !

� �
3 % % ! 3 % �

or 2 1 2
0 0 1( )( 1)k kC k x C C k x!! % ! % + ..... 2 1

1( )( ) ... 0k m
m mC C k m x % !

!% ! % % � ... (3)

(3) is identity in x. Equating to zero the coefficient of the lowest power of x, namely, xk–1, the

identical equation is       2
0 0C k! �      giving        k = 0, 0 (equal roots),       as 0 0C 6

Equating to zero the coefficient of xk + m – 1, the recurrence relation is given by
2 2

1( ) ( ) 0,m mC k m C k m! % ! % � giving Cm = Cm – 1 for all 1m 0 ... (4)

Putting m = 1, 2, 3, ... in (4), we have
C1 = C0, C2 = C1 = C0, C3 = C2 = C0 and so on. Substituting these values in (2), we have
y = C0x

k + C1x
k + 1+ C2 xk + 2 + ... or y = C0x

k (1 + x + x2 + ...)
or y = C0x

k (1 – x)–1. ... (5)
Putting k = 0 and replacing C0 by a in (5), we get         y = a (1 – x)–1 ... (6)
Since the indicial equation has equal roots, so the second independent solution of (1) is given

by 0( / )ky k �Κ Κ  (refer Art. 8.12).

Differentiating (5) partially w.r.t. ‘k’, yields         1
0/ (1 ) logky k x C x x!Κ Κ � ! ... (7)

Putting k = 0 and replacing C0 by b in (7), we get 1
0( / ) (1 ) logky k b x x!

�Κ Κ � ! ... (8)
From (6) and (8), the required solution of (1) is

1 1 1(1 ) (1 ) log ( log ) (1 ) ,y a x b x x a b x x! ! !� ! % ! � % !                 ... (9)
where a and b are arbitrary constants.

(b) Given 2( ) (3 1) 4x x y x y y x∋∋ ∋! % ! % � ... (i)
Here x = 0 is regular singular point of (i). To solve (1), assume a series solution of the form

00
, where 0k m

mm
y C x C

#
%

�
� 3 6 ... (ii)

7
1

0
( ) k m

mm
y C k m x

#
% !

�
∋ � 3 % and        1

0
( ) ( 1) k m

mm
y C k m k m x

#
% !

�
∋∋ � 3 % % !

Substituting the above values of , andy y y∋ ∋∋  in (i) and proceeding exactly as in part (a), we get
–C0k

2 xk–1 + (C0 – C1) (k + 1)2 xk + ... + (Cm–1 – Cm) (k + m)2 xk + m – 1 + ... = 4x ... (iii)
To determine complementary function of (i) Setting the left number of (iii) equal to zero,

–C0k
2 xk–1 + (C0 – C1) (k + 1)2 xk + ... + (Cm–1 – Cm) (k + m)2 xk + m – 1 + ... = 0   ... (iv)

Starting with (iv), we now proceed as in part (a) upto equation (8) of part (a). Thus, we get
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8.50 Integration In Series

1,m mC C !�      for all 1m 0 ... (v)

and     1
0 (1 )ky C x x !� ! ... (vi)

which satisfies         2 2 1
0( ) (3 1) kx x y x y y C k x !∋∋ ∋! % ! % � ! ... (vii)

The required complementary function (C.F.) is given by
C.F. (i) = a(1 – x)–1 + b(1 – x)–1 log x = (a + b log x) (1 – x)–1

To determine particular integral of (i) To this end we shall consider the term of the right
member of the given equation (i). Thus, setting the right member of (vii) equal to 4x, that is,

–C0k
2 xk – 1 = 4x,      identically,      we have      k = 2      and     C0 = –1.

The recurrence relation (v) yields C1 = C2 = C3 = .... = C0, as before
Putting k = 2, C0 = –1 and C1 = C2 = C3 = .... = C0 in (ii), we have

P. I. of (i) 2 2 2
0 1 2

0
( ...)m

m
m

C x x C C x C x
#

%

�
� 3 � % % % = x2 C0 (1 + x + x2 + ...) = – x2 (1 – x)–1

Hence the required complete integral of (i) is y = C.F. + P.I.,  i.e.,
y = (a + b log x) (1 – x)–1 – x2 (1 – x)–1, a, b being arbitrary constants.

EXERCISE 8 (F)
Find the series solutions of the following equations near x = 0.
1. xy( + (1 + x)y∋ + 2y = 0. [Garhwal 2005]
Ans. y = a(1 – 2x + (3/2!)x2 – (4/3!)x3 + ....) + b[log x{1 – 2x  + (3/2!) × x2 – (4/3!) × x3 + ....}

+ 2(2 – 1/2)x – (3/2!) × (–1/3 + 2 + 1/2)x2 + ....}
2. x2y( – x(1 + x)y∋ + y = 0. [Delhi Maths (Hons.) 1998]

Ans. y = ax[1 + x + (1/2) × x2 + (1/2 3)1 × x3 + ....] + b[log x {1 + x +  (1/2) × x2

+ (1/2 3)1 × x3 + ....} + x2 {–1 – (3/4) × x + ....}]
3. 4(x4 – x2)y( + x3y∋ – y = 0.

Ans. 1/ 2 2 4
2 2 2

1 3 1 3 5 71 ...
4 4 8

y ax x x1 1 1) ∗� % % %+ ,
1− .

1 1/ 2 2 4
2 2 2

1 3 1 3 5 7log 1 ...
4 4 8

b x x x x8 1 1 1 1) ∗% % % %+ ,: 1− .<

1/ 2 2
2

1 3 1 12 1
3 24

x x∆ 1 ) ∗% % !Φ + ,
− .Γ

4
2 2

1 3 5 7 1 1 1 1 11 ....
3 2 5 7 44 8

x
91 1 1 Η) ∗% % ! % % ! % Ι;+ ,1 − . ϑ=

4. xy( + (p – x)y∋ – y = 0 when (i) p = 1 (ii) p is not an integer.
2 3 2 3

( ) 1 .... log 1 ....
1! 2! 3! 1! 2! 3!
x x x x x xi y a b x

8) ∗ ) ∗
� % % % % % % % % %:+ , + ,+ , + ,:− . − .<

Ans.

2 3
....

1 1 21 1
1 2 2 1 2 3 2 3
x xx % %

∆ ΗΕ Ε) ∗ ) ∗! % % % %Φ Ι+ , + ,1 1 1− . − .Ε ΕΓ ϑ

( )
( )

.... log
( )

....ii y a x
p

x
p p

b x x
p

x
p p

� % %
%

%
F
HG

I
KJ % % %

%
%

F
HG

I
KJ

RS|T|
1

1
1

1

2 2

4 51 21 /1! / 2! ....px x x!% % % %

5. xy( + y∋ + x2y = 0.       [Delhi Maths (Hons.) 2001] Ans. y = au + bv, where

u =
3 6 9

2 4 2 6 21 ....
3 3 (2!) 3 (3!)
x x x

! % ! %  and  v = u log x + 2
3

1
3 2

1 1
2

3

3 5 2
6x x! %FH IK %

L
NM

O
QP( !)

....
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6. xy( + y∋ – y = 0. [G.N.D.U. Amritsar 2010]
7. xy( + y∋ + y = 0 [Meerut 1992]
8. x(1 – x2)y( + (1 – 3x2)y∋ – xy = 0. [Meerut 1994]

8.13. Series solution about regular singular point at infinity.
Suppose the given equation is y( + P(x) y∋ + Q(x) y = 0. ...(1)
We propose to find the solution of (1) for large values of the independent variable, i.e., about

x = #. For this purpose we change the independent variable from x to t with help of the following
transformation : x = 1/t i.e. t = 1/x.    ...(2)

Clearly large values of x correspond to small values of t. Using (2), we re–write (1) and
obtain the transformed equation near t = 0, say

d2y/dt2 + P1(t) (dy/dt) + Q1(t) y = 0. ...(3)
Then the given equation (1) is said to have regular singular point at x = # if the transformed

equation (3) has regular singular at t = 0.
Working rule for solving (1) near x = #. Assume transformation (2). With help of (2), we

obtain the transformed equation (3). We verify that t = 0 is regular singular point of (3). Solve (3)
by Frobenius method (refer Art. 8.8). Finally putting t = 1/x in the solution, we obtain the required
general solution of (1) near x = #.
8.14. Solved examples based on Art. 8.13

Ex. 1. Show that x = # is a regular singular point of x2y( + 4xy∋ + 2y = 0.
Sol. Given    x2y( + 4xy∋ + 2y = 0. ...(1)
Let x = 1/t or t = 1/x    so that      dt/dx = –1/x2. ...(2)

Now,             y∋ = dy
dx

dy
dt

dt
dx

dy
dt x

t dy
dt

� � !FHG
I
KJ � !1

2
2 , by (2) ...(3)

and y( =
2

2
2 2

1d y d dy d dy dt d dyt
dx dx dt dx dx dt dtdx x

) ∗ ) ∗ ) ∗ ) ∗� � � ! / !+ , + , + , + ,
− . − . − . − .

, by (2) and (3)

or y( = ! !
F
HG

I
KJ ! � %t d y

dt
t dy

dt
t t d y

dt
t dy

dt
2

2

2
2 4

2

2
32 2( ) . ...(4)

Using (2), (3) and (4), (1) transforms to     1 2 4 22
4

2

2
3 2

t
t d y

dt
t dy

dt t
t dy

dt
y%

F
HG

I
KJ % !FH

I
K % = 0

or (d2y/dt2) – (2/t)(dy/dt) + (2/t2)y = 0. ...(5)
Comparing (5) with (d2y/dt2) + P(t)(dy/dt) + Q(t)y = 0, here P(t) = –2/t and Q(t) = 2/t2 so that

tP(t) = –2 and t2Q(t) = 2. Since tP(t) and t2Q(t) are the both analytic at t = 0, so t = 0 is a regular
singular point of (5). In view of (2), x = # is a regular singular point of (1).

Ex. 2. Find the power series solution of (1 – x2)(d2y/dt2) – 2x(dy/dx) + 6y = 0 about x = #.
[Delhi Maths (Hons.) 1997]

Sol. Given (1 – x2)(d2y/dx2) – 2x(dy/dx) + 6y = 0. ...(1)
Let x = 1/t or t = 1/x so that dt/dx = –1/x2. ...(2)

Now, dy
dx

=
2

2
1dy dt dy dyt

dt dx dt dtx
) ∗� ! � !+ ,
− .

, by (2). ...(3)

and d y
dx

2

2 =
2

2
1d dy d dy dt d dyt

dx dx dt dx dx dt dt x
) ∗ ) ∗ ) ∗ ) ∗� � ! / !+ , + , + , + ,
− . − . − . − .

, by (2) and (3).
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or d y
dx

2

2 = t d
dt

t dy
dt

t t dy
dt

t d y
dt

2 2 2 2
2

22F
HG
I
KJ � %
F
HG

I
KJ . ...(4)

Using (2), (3) and (4), (1) is transformed to

1 1 2 2 62
3 4

2

2
2!FHG

I
KJ %
F
HG

I
KJ ! !FH

I
K %

t
t dy

dt
t d y

dt t
t dy

dt
y = 0

or t2(t2 – 1)(d2y/dt2) + 2t3(dy/dt) + 6y = 0. ...(5)
Dividing by t2(t2 – 1), d2y/dt2 + {2t/(t2 – 1)}(dy/dt) + [6/{t2(t2 – 1)}]y = 0.
Comparing it with (d2y/dt2) + P(t) (dy/dt) + Q(t)y = 0, here P(t) = 2t/(t2 – 1) and Q(t)

= 6/[t2(t2 – 1)] so that tP(t) = 2t2/(t2 – 1) and t2Q(t) = 6/(t2 – 1). Since tP(t) and t2Q(t) are both
analytic at t = 0, so t = 0 is a regular singular point of (5). To solve (5), let its series solution be

y = tk(C0 + C1t + C2t
2 + ....) = C tm

k m

m

%

�

#
∃

0
,   where       C0 6 0. ...(6)

7 dy/dt =
1

0
( ) k m

mm
k m C t

#
% !

�
3 % and d2y/dt2 = ( )( )k m k m C tm

k m

m
% % !∃ % !

�

#
1 2

0
.

Putting these values of y, dy/dt and d2y/dt2 in (5), we get

      ( ) ( )( )t t k m k m C tm
k m

m

4 2 2

0
1! % % !∃ % !

�

#
% %∃ % ∃% !

�

# %

�

#
2 63 1

0 0
t k m C t C tm

k m

m
m

k m

m
( ) = 0

or  ( )( ) ( )( )k m k m C t k m k m C tm
k m

m
m

k m

m
% % !∃ ! % % !∃% !

�

# %

�

#
1 12

0 0
% %∃ % ∃% %

�

# %

�

#
2 62

0 0
( )k m C t C tm

k m

m
m

k m

m
= 0

or  ! % % ! !∃ %

�

#
{( )( ) }k m k m C tm

k m

m
1 6

0
% % % ! % %∃ % %

�

#
{( )( ) ( )}k m k m k m C tm

k m

m
1 2 2

0
= 0

or {( ) ( ) }k m k m C tm
k m

m

% ! % ! %

�

#

∃ 2

0

6 ! % % %∃ % %

�

#
{( ) ( )}k m k m C tm

k m

m

2 2

0
= 0

or ( )( )k m k m C tm
k m

m
% ! % %∃ %

�

#
3 2

0
! % % %∃ % %

�

#
( )( )k m k m C tm

k m

m
1 2

0
= 0, ...(7)

which is an identity. Equating to zero the coefficient of the smallest power of t, namely tk, (7) gives
the indicial equation C0(k – 3)(k + 2) = 0 so that k = 3 and k = –2 as C0 6 0. The roots of indicial
equation are unequal and differ by an integer.

Next equating to zero the coefficient of tk + 1 in (7), we get (k – 2)(k + 3)C1 = 0 giving
C1 = 0 for both k = 3 and k = –2. Finally, equating to zero the coefficient of tk + m in (4), we get

(k + m – 3)(k + m + 2)Cm – (k + m – 2)(k + m – 1)Cm – 2 = 0

or           Cm = 2
2)( 1)

( 3)( 2) m
k m k m C
k m k m !

4 % ! % !
% ! % %

for all m 0 2. ...(8)

Putting m = 3, 5, 6, .... in (8) and noting that C1 = 0, we get
C1 = C3 = C5 = C7 = .... = 0. ...(9)

Next, putting m = 2, 4, 6, .... in (8), we have      C2 =
k k

k k
C( )

( )( )
%

! %
1

1 4 0 ,

C4 = ( )( )
( )( )

( )( )( )
( )( )( )( )

k k
k k

C k k k k
k k k k

C% %
% %

�
% % %

! % % %
2 3
1 6

1 2 3
1 1 4 62 0 , using (10)
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or C4 =
k k k

k k k
C( )( )

( )( )( )
% %

! % %
2 3

1 4 6 0 , since (k + 1) 6 0.

and so on. Putting these values in (6), we have

y = t C k k
k k

x k k k
k k k

xk
0

2 41 1
1 4

2 3
1 4 6

% %
! %

% % %
! % %

%L
NM

O
QP

( )
( )( )

( )( )
( )( )( )

.... . ...(11)

Putting k = 3 in (11) and replacing C0 by a, we get

y = 3 2 43 4 3 5 61 ....
2 7 2 7 9

at t t au1 1 18 9% % % �: ;1 1 1< =
, say ...(12)

Putting k = –2 in (11) and replacing C0 by b, we get y = bt–2[1 – t2/3] = bv, say.    ...(13)
The required solution is y = au + bv, i.e.

y =
2

3 2 4
2

3 4 3 5 61 .... 1
2 7 2 7 9 3

b tat t t
t

) ∗1 1 1) ∗% % % % !+ ,+ , + ,1 1 1− . − .

i.e., y = 2
3 2 4 2

3 4 1 3 5 6 1 1 11 .... 1 , as,
2 7 2 7 9 3

a bx t
xx x x x

1 1 1) ∗ ) ∗% % % % ! �+ , + ,1 1 1− . − .
.

Ex. 3. Find the power series solution of (1 – x2)(d2y/dx2) – 2x(dy/dx) + 12y = 0 at x = #.
[Delhi Maths (Hons.) 1998]

Hint. Proceed just like Ex. 2. Its general solution is

y = 3 2 4 2 4(1 3/5 ) ( / ) (1 10/9 35/33 ...)ax x b x x x! % / % % % .

Ex. 4. Solve in series the equation x3y( + x(1 – x)y∋ + y = 0 near x = #.
Sol. Given x3(d2y/dx2) + x(1 – x)(dy/dx) + y = 0. ...(1)
Let x = 1/t or t = 1/x so that dt/dx = –1/x2.   ...(2)

Now, dy
dx

=
dy
dt

dt
dx

dy
dt x

t dy
dt

� !FHG
I
KJ � !1

2
2 , by (2). ...(3)

and d y
dx

2

2 =
2

2
1d dy d dy dt d dyt

dx dx dt dx dx dt dt x
) ∗ ) ∗ ) ∗ ) ∗� � ! / !+ , + , + , + ,
− . − . − . − .

, by (2) and (3)

or d y
dx

2

2 = t d
dt

t dy
dt

t t dy
dt

t d y
dt

2 2 2 2
2

22F
H
I
K � %
F
HG

I
KJ . ...(4)

Using (2), (3) and (4), (1) is transformed to

1 2 1 1 1
3

3 4
2

2
2

t
t dy

dt
t d y

dt t t
t dy

dt
y%

F
HG

I
KJ % !FH IK !FH IK % = 0

t(d2y/dt2) + 2(dy/dt) – (t – 1) (dy/dt) + y = 0 or   t(d2y/dt2) + (3 – t)(dy/dt) + y = 0.  ...(5)
We now solve (5) in series about t = 0 which is a regular singular point of (5). (Prove

yourself as in solved Ex. 2). Let a series solution of (5) be

y = tk(C0 + C1t + C2t
2 + ....) = C tm

k m

m

%

�

#
∃

0
, where  C0 6 0. ...(6)

7    dy/dt = 1

0
( ) k m

m
m

k m C t
#

% !

�
%∃ and d2y/dt2 = ( )( )k m k m C tm

k m

m
% % !∃ % !

�

#
1 2

0
.
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Putting these values of y, dy/dt and d2y/dt2 in (5), we get

t k m k m C tm
k m

m
( )( )% % !∃ % !

�

#
1 2

0
% ! %∃ % ∃% !

�

# %

�

#
( ) ( )3 1

0 0
t k m C t C tm

k m

m
m

k m

m
= 0

or  ( )( ) ( )k m k m C t k m C tm
k m

m
m

k m

m
% % !∃ % %∃% !

�

# % !

�

#
1 31

0

1

0
! %∃ % ∃%

�

# %

�

#
( )k m C t C tm

k m

m
m

k m

m0 0
= 0

or {( )( ) ( )}k m k m k m C tm
k m

m
% % ! % %∃ % !

�

#
1 3 1

0
! % !∃ %

�

#
{( ) }k m C tm

k m

m
1

0
= 0

or ( )( ) ( )k m k m C t k m C tm
k m

m
m

k m

m
% % %∃ ! % !∃% !

�

# %

�

#
2 11

0 0
= 0, ...(7)

which is an identity. Equating to zero the coefficients of the smallest power of t, namely
tk – 1, (7) gives the indicial equation     C0k(k + 2) = 0        so that       k = 0, –2     as     C0 6 2.

Equating to zero the coefficients of tk + m – 1 in (7), we get
(k + m)(k + m + 2)Cm – (k + m – 2)Cm – 1 = 0

so that    Cm =
k m

k m k m
Cm

% !
% % % !

2
2 1( )( )

,   for all      m 0 1. ...(8)

Putting m = 1, 2, 3, 4, .... in (8) we get                 C1 =
k

k k
C!

% %
1

1 3 0( )( )
, ...(9)

      C2 = k
k k

C k k
k k k k

C
( )( )

( )
( )( )( )( )% %

�
!

% % % %2 4
1

1 2 3 41 0 , using (9) ...(10)

      C3 =
k

k k
C k k

k k k k
C%

% %
�

!
% % % %

1
3 5

1
2 3 4 52 2 0( )( )

( )
( )( ) ( )( )

, using (10) ...(11)

C4 =
k

k k
C k k

k k k k
C%

% %
�

!
% % % %

2
4 6

1
3 4 5 63 2 2 0( )( )

( )
( ) ( ) ( )( )

, using (11)

and so on. Putting these values in (6), we have

y = C t k
k k

t k k
k k k k

tk
0

21 1
1 3

1
1 2 3 4

% !
% %

% !
% % % %

L
NM ( )( )

( )
( )( )( )( )

     % !
% % % %

% !
% % % %

%
O
QP

k k
k k k k

t k k
k k k k

t( )
( )( ) ( )( )

( )
( ) ( ) ( )( )

...1
2 3 4 5

1
3 4 5 62

3
2 2

4  ...(12)

If we put k = –2 in (12), then the coefficients of t2 and t3 become infinite. To get rid of this
difficulty, we put C0 = d0(k + 2) in (12) and obtain the modified solution

y = d t k k k
k k

t k k
k k k

tk
0

22 1 2
1 3

1
1 3 4

( ) ( )( )
( )( )

( )
( )( )( )

% %
! %
% %

%
!

% % %
L
NM

   % !
% % %

% ! %
% % % %

%
O
QP

k k
k k k

t k k k
k k k k

t( )
( ) ( )( )

( )( )
( ) ( ) ( )( )

....1
3 4 5

1 2
3 4 5 62

3
2 2

4 . ...(13)

Differentiating (13) partially w.r.t. ‘k’, we get

Κ
Κ

y
k = d t t k k k

k k
t k k

k k k
tk

0
22 1 2

1 3
1

1 3 4
log ( ) ( )( )

( )( )
( )

( )( )( )
% %

! %
% %

%
!

% % %
L
NM

3
2

( 1)
( 3) ( 4)( 5)

k k t
k k k

!
%

% % %
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4
2 2

( 1)( 2) ....
( 3) ( 4) ( 5)( 6)

k k k t
k k k k

9! %
% % ;% % % % =

% %
%

% %
!

! %
% %

!
! %
% %

RST
UVW

L
N
MMd t k

k k
k k
k k

k k
k k

tk
0 2 21 2 1

1 3
1 2
1 3

1 2
1 3( )( )

( )( )
( ) ( )

( )( )
( )( )

2 2
2 1 ( 1) ( 1)

( 1)( 3)( 4) ( 1) ( 3)( 4) ( 1)( 3) ( 4)
k k k k k

k k k k k k k k k
∆ ! ! !Ε% ! !Φ % % % % % % % % %ΕΓ

2
2

( 1)
( 1)( 3)( 4)

k k t
k k k

Η!
! Ι

% % % ϑ

2
2 1

( 3) ( 4)( 5)
k

k k k
∆ !

%Φ
% % %Γ

! !
% % %

2 1
3 4 53

k k
k k k

( )
( ) ( )( )

! !
% % %

! !
% % %

UVW
%
O
Q
PP

k k
k k k

k k
k k k

t( )
( ) ( ) ( )

( )
( ) ( )( )

....1
3 4 5

1
3 4 52 2 2 2

3
   ...(14)

Putting k = –2 in (13) and replacing do by a,   y = at–2(–3t2 + t3) = au, say ...(15)
Putting k = –2 in (14) and replacing do by b, we get

2( / )ty t �!Κ Κ = bt–2 (–3t2 + t3) log t + bt–2[1 + 3t + 4t2 – (11/3)t3 + ....]

or 2( / )ty t �!Κ Κ = bt–2[(–3t2 + t3) log t + 1 + 3t + 4t2 – (11/3)t3 + ....) = bv, say.. ...(16)
Finally putting k = 0 in (13), y = d0 [2 – (2/3)t] = (–2/3)d0 t–2(–3t2 + t3). ...(17)
From (15) and (17), we see that these solutions are not independent. So out of three solutions (15),

(16) and (17) only two are linearly independent, namely (15) and (16). So the required solution is
    y = au + bv,   i.e.   y = at–2(–3t2 + t3) + bt–2[(–3t2 + t3) log t + 1 + 3t + 4t2 – (11/3)t3 + ....]

or y = ax
x x

bx
x x x x x x

2
3

2
3 2 3

3 1 3 1 1 1 3 4 11
3

! %F
HG

I
KJ % ! %F
HG

I
KJ % % % ! %

L
NM

O
QPlog ... ,     as    1t

x
�

Ex. 5. Find the solution in series of the equation (1 – x2)(d2y/dx2) + 2x(dy/dx) – y = 0 about
x = #.          [Delhi Maths (Hons.) 1995]
8.15. Series solution in descending powers of independent variable.

So far we obtained series solutions in ascending powers of the independent variable. However,
the following cases may arise :

(i) There exists no solution of the form C xm
k m

m

%

�

#
∃

0
(ii) The usual Frobenius method may break down.
(iii) The series solution obtained by earlier methods does not converge within a particular

range of values of independent variable.
In such cases we obtain series solution in descending powers of independent variable.

Sometimes the series solutions in descending powers are desirable and are more useful in practice.
Working Rule. For details see Art. 8.8. However, the following changes should be noted carefully.

(i) We assume a trial solution of the form      y = xk(c0 + c1x
–1 + c2x

–2 + ....) = c xm
k m

m

!

�

#
∃

0
, c0 6 0

(ii) For indicial equation the coefficient of the highest power of x in the identity is equated to zero.
(iii) For recurrence relation the coefficient of the higher power, in the identity is equated to zero.

Another Working Rule. In order to get a series solution in descending powers of x of the
differential equation           f(x)(d2y/dx2) + g(x)(dy/dx) + h(x)y = 0,    ...(1)
we change the variable from x to t by putting x = 1/t so that

dy/dx = (dy/dt)(dt/dx) = (dy/dt)(–1/x2) = –t2 (dy/dt) ...(2)
From (2), d/dx Μ –t2(d/dt). ...(3)

7
d y
dx

2

2 = d
dx

dy
dx

t d
dt

t dy
dt

F
H
I
K � ! !FH

I
K

2 2 , using (2) and (3)
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or
2 2 2

2 2 4 3
2 2 22 2d y dy d y d y dyt t t t t

dt dtdx dt dt
8 9

� ! ! ! � %: ;
< =

. ...(4)

Using x = 1/t, (2) and (4), (1) transforms in the form
F(t)(d2y/dt2) + G(t)(dy/dt) + H(t)y = 0. ...(5)

We now solve (5) by assuming series solution in the form       y = c tm
k m

m

%

�

#
∃

0

Proceed as explained in Art. 8.8. After getting solution replace t by 1/x to get the desired
series in descending powers of x.
8.16. Solved examples based on Art. 8.15

Ex. 1. Integrate in descending series the Legendre’s equation.
Sol. The differential equation of the form (1 – x2)y( – 2xy∋ + n(n + 1)y = 0 ...(1)

is called Legendre’s equation, where n is a positive integer.

Let the series solution of (1) be of the form   y = c xm
k m

m

!

�

#
∃

0
,   where c0 6 0. ...(2)

7 y∋ = 1

0
( ) k m

m
m

c k m x
#

! !

�
!∃     and   y( = c k m k m xm

k m

m
( )( ) .! ! !∃ ! !

�

#
1 2

0
 ...(3)

Putting the above values of y, y∋, y( in (1) gives

   ( ) ( )( )1 12 2

0
! ! ! !∃ ! !

�

#
x c k m k m xm

k m

m
! !∃ % % ∃! !

�

# !

�

#
2 11

0 0
x c k m x n n c xm

k m

m
m

k m

m
( ) ( ) = 0

or   c k m k m xm
k m

m
( )( )! ! !∃ ! !

�

#
1 2

0
! ! ! ! % ! ! %∃ !

�

#
{( )( ) ( ) ( )}k m k m k m n n x k m

m
1 2 1

0
= 0

or   c k m k m xm
k m

m
( )( )! ! !∃ ! !

�

#
1 2

0
! ! ! % ! !∃ !

�

#
c k m n k m n xm

k m

m
{( ) ( ) }2 2

0
= 0

or c k m k m xm
k m

m
( )( )! ! !∃ !

�

#
1

0
! ! ! ! % % �!

�

#

∃c k m n k m n xm
k m

m

( )( )1 0
0

...(4)

which is an identity. Equating to zero the coefficient of the highest power of x, namely xk, (4) gives
the indicial equation    c0(k – n)(k + n + 1) = 0       or  (k – n)(k + n + 1) = 0    [� c0 6 0]
giving k = n, –(n + 1). For recurrence relation, we equate to zero the coefficient of xk – m and obtain

cm – 2[k – (m – 1)][k – (m – 2) – 1] – cm(k – m – n)(k – m + n + 1) = 0
or cm – 2(k – m + 2)(k – m + 1) + cm(n – k + m)(n + k – m + 1) = 0

or cm = !
! % ! %

! % % ! % !
( )( )

( )( )
k m k m

n k m n k m
cm

2 1
1 2 . ...(5)

Equating to zero the coefficient of xk – 1 in (4) gives c1(k – 1 – n)(k + n) = 0 so that c1 = 0 for
both k = n and k = –(n + 1). Using c1 = 0 and (5), we note that

c1 = c3 = c5 = c7 = .... = 0 ...(6)

Putting m = 2 in (5) gives c2 = !
!

! % % !
k k

n k n k
c( )

( )( )
1

2 1 0 ...(7)
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Putting m = 4 in (5) and using (7) gives

          c4= ! ! !
! % % !
( )( )

( )( )
k k

n k n k
c2 3

4 3 2 =
k k k k

n k n k n k n k
c( )( )( )

( )( )( )( )
! ! !

! % % ! ! % % !
1 2 3

2 1 4 3 0

and so on. Putting these values in (2), i.e.  y = c0x
k + c1x

k – 1 + c2x
k – 2 + c3x

k – 3 + c4x
k – 4 + ...., gives

y = c0 

2( 1)
( 2)( 1)

k
k k k xx

n k n k

!8 !
!:

! % % !<
% ! ! !

! % % ! ! % % !
%
O
QP

!k k k k x
n k n k n k n k

k( )( )( )
( )( )( )( )

...1 2 3
2 1 4 3

4

Putting k =n and –(n + 1) in turn and replacing c0 by a and b respectively, the above equation gives

y = 2 4( 1) ( 1)( 2)( 3)
2(2 1) 2 4(2 1)(2 3)

n n nn n n n n na x x x
n n n

! !8 9! ! ! !
! % ! 11 1: ;! 1 ! !< =

= au, say ...(8)

1 3 5( 1)( 2) ( 1)( 2)( 3)( 4) ... ,
2(2 3) 2 4(2 3)(2 5)

n n nn n n n n ny b x x x b
n n n

! ! ! ! ! !8 9% % % % % %
� % % % �: ;% 1 % %< =

v  say   ...(9)

The required solution is y = au + bv, a, b being arbitrary constants.
Ex. 2. Find a series solution in descending powers of x of 4x3y( + 6x2y∋ + y = 0.
Sol. Let t be another independent variable such that x = 1/t. Then we have (See Art. 8.15)

4 2 6
3

4
2

2
3

2
2

t
t d y

dt
t dy

dt t
t dy

dt
y%

F
HG

I
KJ % !FH

I
K % = 0 or    4 2

2

2t d y
dt

dy
dt

y% % = 0.

Let solution of (2) be the form y = c tm
k m

m

%

�

#
∃

0
,       where        c0 6 0.

Now, proceed as explained in Art. 8.8 and obtain the required solution
y = a(1 – t/2! + t2/4! + ....) + bt1/2(1 – t/3! + t2/5! – ....), where t = 1/x.

8.17. Method of differentiation. In this connection, remember the following two results.

(i) Maclaurin’s theorem.       y = (y)0 + x y x y x y
1 2 31 0

2

2 0

3

3 0!
( )

!
( )

!
( ) ...% % %

(ii) Leibnitz theorem. If u and v be two functions, then
 Dn(uv) = un  v + nc1  un – 1 v1 + nc2  un – 2  v2 + .... + u  vn, where un = dnu/dxn and vn = dnv/dxn.

Ex. 1. Solve (1 – x2)y2 – xy1 + m2y = 0 where x = 0, y = 0, dy/dx = m. [Meerut 1995]
Sol. Given that (1 – x2)y2 – xy1 + m2y = 0. ...(1)
Differentiating (1) n times by Leibnitz’s theorem w.r.t. ‘x’, we have

yn + 2(1 – x2) + nC1  yn + 1(–2x) + nC2  yn(–2) – [yn + 1 x + nC1  yn.1] + m2 yn = 0

or 2 2
2 1 1

( 1)(1 ) 2 2
2n n n n n n

n nx y n x y y xy ny m y% % %
!

! ! ! / ! ! % = 0

or (1 – x2)yn + 2 – (2n + 1)xyn + 1 + (m2 – n2)yn = 0. ...(2)
Given that (y)0 = 0       and            (y1)0 = m. ...(3)
Putting x = 0 in (1), (y2)0 = –m2(y)0 = 0, by (3). ...(4)
Putting x = 0 in (2), (yn + 2)0 = (n2 – m2)(yn)0. ...(5)
Putting n = 2, 4, 6, .... in (5) and noting that (y2)0 = 0, we get

    (y2)0 = (y4)0 = (y6)0 = .... = 0. ...(6)
Putting n = 1, 3, 5, .... in (5), we get

(y3)0 = (12 – m2)(y1)0 = (12 – m2)m, by (3) ...(7)
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(y5)0 = (32 – m2)(y3)0 = (32 – m2)(12 – m2)m, by (7)

and so on. Now, from Maclaurin’s theorem,          y = ( )
!
( )

!
( )

!
( ) ....y x y x y x y0 1 0

2

2 0

3

3 01 2 3
% % % %

or y = mx + (12 – m2)m(x3/3!) + (32 – m2)(12 – m2)m(x5/5!) + ....
Ex. 2. Solve (1 – x2)y2 – xy1 – a2y = 0, where x = 0, y = 1 and dy/dx = 0.
Hint. Do as in Ex. 1. Ans. y = 1 + ax + (a2/2!)x2 + a(a2 + 12)(x3/3!) + ....
Ex. 3. Solve (1 + x2)y2 + 2xy1 = 0 where x = 0, y1 = 1, y = 0.
Hint. Do as in Ex. 1. Ans. y = x – (x3/3) + (x5/5) – (x7/7) + ....
Ex. 4. Solve xy2 + y1 + my = 0 given that y = 1 when x = 0. [Meerut 1994, 95]
Sol. Put x = 0, y = 1 in given equation, we get y1 = 0. Now do as it Ex. 1.     Ans. y = e–mx

MISCELLANEOUS PROBLEMS IN CHAPTER 8.
Ex. 1. Find the series solutions of the following equation about x = 0.

(i) 2 22 ( 1) 0x y xy x y∋∋ ∋% % ! � [MDU Rohtak 2004]

Ans. y = ax (1 – x2/14 + x4/616 + ...) + bx–1/2 (1 – x2/2 + x4/40 + ...)

(ii) 2 2( 8 /9) 0x y xy x y∋∋ ∋! % % �

Ans. y = ax4/3 (1 – 3x2/16 + 9x4/896 + ...) + bx2/3(1 – 3x2/8 + 9x4/320 + ...)

(iii) 0xy y y∋∋ ∋% ! � [MDU Rohtak 2005]
Ans. y = (a + b log x) (1 + x + x2/ (2!)2 + ...) – 2b{x + (x2/(2!)2) × (1 + 1/2) + ....}

(iv) 2 0y x y∋∋ % � Ans.
4 8 5 9

1 ... ...
4 3 8 7 4 3 5 4 9 8 5 4
x x x xy a b x

) ∗ ) ∗
� ! % % % ! %+ , + ,+ , + ,1 1 1 1 1 1 1 1− . − .

Ex. 2. Find the power series solution of 2 0xy y y∋∋ ∋% % �  about x = 1, i.e., in power of
(x – 1).   [KU Kurukshetra 2005]

Ans. Β Χ2 3 41 ( 1) (2/3) ( 1) (1/3) ( 1) ...y a x x x� ! ! % / ! ! / ! % Β Χ2 4( 1) (1 / 2) ( 1) (1 / 12) ( 1) ...b x x x% ! ! / ! % / ! %

Ex. 3. Find the general solution of the differential equation 2( 1) ( 1) 4 0x y x y y∋∋ ∋! % ! ! � in
powers of x using the Frobenius method.      [GATE 2002]

Ex. 4. Find the general solution of 4 521 2 2 0x y xy y∋∋ ∋% % ! �  in terms of power series in x.

[Nagpur 2005]

Ex. 5. Show that the differential equation 2 3 (4 4) 0x y xy x y∋∋ ∋! % % �  has only one Frobenius
series solution and find it.    [Nagpur 2005]

OBJECTIVE PROBLEMS ON CHAPTER 8.
Write (a), (b), (c) or (d), whichever is correct.
1. Singular points are (a) regular (b) irregular (c) regular or irregular (d) none of these
Sol. Ans. (c). Refer Art. 8.3. [Agra 2005, 06, 08]

2. For the differential equatin 2 2 2( 1) ( / ) (cot ) ( / ) (cosec ) 0,x d y dx x dy dx x y! % Ν % Ν �
which of the following statement is true ? (a) 0 is regular and 1 is irregular (b) 0 is irregular and
1 is regular (c) Both 0 and 1 are regular (d) Both 0 and 1 are irregular.        [Gate 2006]
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Sol. Ans. (a) Re-writing the given equation,
2 2

2
cot cosec 0,

1 1
d y x dy x y

x dx xdx
Ν Ν

% % �
! !

  ... (1)

Comparing (1) with standard equation ( ) ( ) 0,y P x y Q x y∋∋ ∋% % �  here

( ) (cot ) /( 1)P x x x� Ν ! and 2( ) (cosec ) /( 1)Q x x x� Ν ! ... (2)

Since both P(x) and Q(x) are undefined at x = 0, so x = 0 is not an ordinary point. Also,

(cot ) cos( 0) ( )
1 ( 1) sin

x x x xx P x
x x x

Ν Ν Ν
! � � /

! Ν ! Ν
          2 0

1lim( 0) ( )
x

x P x
&

! � !
Ν

and 
22 2

2
2

cosec 1( 0) ( )
1 sin ( 1)

x x xx Q x
x x x

) ∗Ν Ν
! � � /+ ,! Ν Ν !− .

2
2

20

1lim( 0) ( )
x

x Q x
&

! � !
Ν

Thus, (x – 0) P(x) and (x – 0)2 Q(x) are both analytic at x = 0 and hence x = 0 is a regular point.
Again, from (2), we see that both P(x) and Q(x) are undefined at x = 1, so x = 1 is not an ordinary
point. Also, we have

( 1) ( ) cotx P x x! � Ν and 2 2( 1) ( ) ( 1) cosecx Q x x x! � ! Ν

Clearly, (x – 1) P(x) is not analytic at x = 1. Hence x = 1 is irregular point.

3. Let y1(x) and y2(x) be two linearly independent solutions of 2 0,xy y x y∋∋ ∋% % �  in the
neighbourhood of x = 0. If y1(x) is a power series around x = 0, then (a) y2(x) is bounded around
x = 0 (b) y2(x) is unbounded around x = 0. (c) y2(x) has a power series solution (d) y2(x) has

solution of the form 
0

n r
nn

b x
#

%

�
3 where 0r 6  and 0 0b 6 .      [GATE 2003]

4. For the differential equation 2 (1 ) 0x x y xy y∋∋ ∋! % % �

(a)  x = 1 is an ordinary point  (b) x = 1 is a regular singular point
(c) x = 0 is an irregular singular point. (d) x = 0 is an ordinary point.

[GATE 2005]
Sol. Ans. (b) Proceed as in Ex. 1 of Art. 8.4.

5. It is required to find the solution of 2 (2 ) 2(3 ) 0x x y x y xy∋∋ ∋% ! % % �  around x = 0. The
roots of the indicial equation are

(a) 0, 1/2 (b) 0, 2 (c) 1/2, 1/2 (d) 0, –1/2 [GATE 2005]
Sol. Ans. (b) See working rule of Art. 8.8.

6. If 
0

m
mm

y a x
#

�
� 3  is a solution of 3 0,y xy y∋∋ ∋% % �  then am/am + 2 equals :

(a)  ( 1) ( 2)
3

m m
m

% %
%

  (b) ( 1) ( 2)
3

m m
m

% %
!

%
   (c) ( 1)

3
m m

m
!

!
%

   (d) ( 1)
3

m m
m

!
%

   [GATE 2004]
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Sol. Ans. (b).    
0

m
mm

y a x
#

�
� 3    2    1

1
,m

mm
y ma x

#
!

�
∋ � 3    2

2
( 1) m

mm
y m m a x

#
!

�
∋∋ � 3 !

Substituting these values in the given equation, we obtain

2 1
2 1 0

( 1) 3 0m m m
m m mm m m

m m a x x ma x a x
# # #

! !

� � �
3 ! % 3 % 3 � or   2

2 1 0
( 1) 3 0m m m

m m mm m m
m m a x ma x a x

# # #
!

� � �
3 ! % 3 % 3 �  ... (1)

Equating coefficient of xm to zero in the above identity, we get

(m + 2) (m + 1)am + 2 + mam + 3am = 0 2
2

( 2) ( 1)
3

m

m

a m m
a m%

% %
� !

%

7. The indicial equation for 2 2(1 ) (cos ) (1 3 ) 0x x y x y x x y∋∋ ∋% % % ! % � is

(a) r2 – r = 0 (b) r2 + r = 0 (c) r2 = 0 (d) r2 – 1 = 0 [GATE 2004]
Sol. Ans. (c). Use working rule of Art. 8.8.

8. For the equation ( 1) (sin ) 2 ( 1) 0,x x y x y x x y∋∋ ∋! % % ! � consider the following statements.
 A: x = 0 is a regular singular point; B: x = 1 is a regular singular points. Then (a) both A and B are
true (b) A is false but B is true (c) A is true but B is false (d) both A and B are false.[Gate 2008]

Sol. Ans. (d). Proceed as in solved Ex.1, page 8.4

9. In the equation 3 3( 1) 2( 1) 3 0∋∋ ∋! % ! % �x x y x y y the singular point is

 (a) x = 1           (b) x = –1   (c) x = 0  (d) None of these [Agra 2009]
Sol. (c) Proved as in Ex-1, page 8.2
10. Solve the differential equation y∋∋ + xΟ y∋ + 2xy = 0 by the power series method.

[Lucknow 2010]
11. Write the different forms of the series solutions of the differential equation P0 (x) y∋∋ +

P1 (x) y∋ + P2 (x) y = 0 when
 (i) x = a is an ordinary point and (ii) when x = a in a regular sigularity. [Ranchi 2010]
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9
Legendre Polynomials

PART I : LEGENDRE FUNCTION OF THE FIRST KIND
9.1. Legendre’s equation and its solution. [Bilaspur 1996; Meerut 1994]

The differential equation of the form       (1 – x2)y! – 2xy� + n(n + 1)y = 0  ...(1)
is called Legendre’s equation, where n is a positive interger. We now solve (1) in series of descending
powers of x. Let the series solution of (1) be

       
0

,k m
mm

y c x
#

∃

%
% &     where     0 0c ∋ . ...(2)

Differnetiating (2) and then putting the values of y, dy/dx and d2y/dx2 into (1), we have

(1 – x2) cmm%

#
(

0
(k – m) (k – m – 1) xk – m – 2–2x cmm%

#
(

0
(k – m) xk – m – 1 + n(n + 1) cmm%

#
(

0
xk – m = 0

or  cmm%

#
(

0
(k – m) (k – m – 1)xk – m – 2 – cmm%

#
(

0
{(k – m) (k – m – 1)+ 2(k – m) – n(n + 1)}xk – m = 0 ....(3)

Now,  (k – m) (k – m – 1) + 2 (k – m) – n(n + 1)
= (k – m)2 – (k – m) + 2(k – m) – n(n + 1) = (k – m)2 – n2 + (k – m) – n
= (k – m + n) (k – m – n) + (k – m – n) = (k – m – n) (k – m + n + 1).

Hence (3) may be re–written as

cmm%

#
(

0
(k – m) (k – m – 1)xk – m – 2 – cmm%

#
(

0
(k – m – n) (k – m + n + 1)xk – m = 0. ...(4)

(4) is an identity. To get the indicial equation, we equate to zero the coefficient of the highest
power of x, namely xk in (4) and obtain

c0(k – n) (k + n + 1) = 0       or                (k – n) (k + n + 1) = 0,   as   c0 ∋ 0.
...(5)

So the roots of (5) are k = n, –(n + 1). They are unequal and differ by an integer. The next
lower power of x is k – 1. So we equate to zero the coefficient of xk – 1 in (4) and obtain

c1(k – 1 – n) (k + n) = 0. ...(6)
For k = n and –(n + 1), neither (k – 1 – n) nor (k + n) is zero. So from (6), c1 = 0. Finally,

equating to zero the coefficient of xk – m in (4), we have
cm – 2(k – m + 2) (k – m + 1) – cm(k – m – n) (k – m + n + 1) = 0

cm = ( ) ( )
( ) ( )

k m k m
k m n k m n

cm
∃ ) ∃ )

∃ ∃ ∃ ) ) ∃
2 1

1 2 . ...(7)

Putting m = 3, 5, 7, ... in (7) and noting that c1 = 0, we have
c1 = c3 = c5 = c7 = ..... = 0, ...(8)

which hold good for both k = n and k = –(n + 1).
To obtain c2, c4, c6 .... etc., we consider two cases.

9.1
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Case I. When k = n. Then, (7) becomes    cm = – ( ) ( )
( )

n m n m
m n m

cm
∃ ) ∃ )

∃ ) ∃
2 1

2 1 2 . ...(9)

Putting m = 2, 4, 6 .... in (9), we have

c2 = – n n
n

c( )
( )

∃
∃
1

2 2 1 0 , c4 = ∃ ∃ ∃
∃

( ) ( )
( )

n n
n

2 3
4 2 3  c2 = 0

( 1) ( 2) ( 3)
2 4 (2 1)(2 3)
n n n n c

n n
∃ ∃ ∃

∗ ∗ ∃ ∃

and so on. Re–writting (2), we have for k = n
y = c0x

n + c1x
n – 1 + c2x

n – 2 + c3x
n – 3 + c4x

n – 4 + ...... ...(10)
Using (8) and the above values of c2, c4, c6. etc., (10) becomes (after replacing c0 by a)

y = 2 4( 1) ( 1) ( 2) ( 3) ....
2(2 1) 2 4 (2 1) (2 3)

n n nn n n n n na x x x
n n n

∃ ∃+ ,∃ ∃ ∃ ∃
∃ ) ∃− .∃ ∗ ∗ ∃ ∃/ 0

. ...(11)

Case II. When k = –(n + 1). Then, (7) becomes   cm = ( ) ( )
( )

n m n m
m n m

cm
) ∃ )

) ) ∃
1

2 1 2 . ... (12)

Putting m = 2, 4, 6, ... in (12), we have

c2 =
( ) ( )

( )
n n

n
c) )

)
1 2

2 2 3 0 , c4 = 
( ) ( )

( )
n n

n
) )

)
3 4

4 2 5
c2 = 0

( 1) ( 2) ( 3) ( 4)
2 4 (2 3) (2 5)

n n n n c
n n

) ) ) )
∗ ∗ ) )

and so on. For k = – (n + 1), (2) gives
      y = c0 x

–n – 1 + c1 x
–n – 2 + c2 x

–n – 3 + c3 x
–n – 4 + c4 x

– n – 5 + ... ...(13)
Using (8) and the above values of c2, c4, c6....etc., (13) becomes (after replacing c0 by b)

y = b x n n
n

xn n∃ ∃ ∃ ∃) ) )
)

L
NM

1 31 2
2 2 3

( ) ( )
( )

5( 1) ( 2) ( 3) ( 4) ...
2 4 (2 3) (2 5)

nn n n n x
n n

∃ ∃ ,) ) ) )
) ) .∗ ∗ ) ) 0

. ...(14)

Thus, two independent solutions of (1) are given by (11) and (14). If we take
[1 3 5...(2 1)] !,/a n n% ∗ ∗ ∃  the solution (11) is denoted by Pn(x) and is called Legendre’s function of

the first kind or Legendre’s polynomial of degree n. Notice that (11) is a terminating series and so
it gives rise to a polynomial of degree n. Thus Pn(x) is a solution of (1), Again, if we take

/[1 3 5...(2 1)]b n n% ∗ ∗ )  the solution (14) is denoted by Qn(x) and is called Legendre’s function of
the second kind. Since n is a positive integer, (14) is an infinite or non–terminating series and
hence Qn(x) is not a polynomial. Thus Pn(x) and Qn(x) are two linearly independent solutions of
(1). Hence the general solution of (1) is

y = A Pn(x) + B Qn(x), where A and B are arbitrary constants. ...(15)
Remark 1. When there is no confusion regarding the variable x, we shall use a shorter

notation Pn for Pn(x) and Pn� for dPn(x)/dx, Qn for Qn(x) and nQ�  for dQn(x)/dx etc.
Another form of Legendre’s polynomial Pn(x)
Legendre’s polynomial of degree n is denoted and defined by

    Pn(x) = 21 3 ( 1)
! 2 (2 1)

5....(2 1) n nn nx x
n n

n ∃+∗ ∃
∃− ∗ ∃/

∗ ∃ 4( 1) ( 2) ( 3) ....
2 4(2 1) (2 3)

nn n n n x
n n

∃ ,∃ ∃ ∃
) ∃ .∗ ∃ ∃ 0

  ...(1)

We now re–write (1) in a compact form. The general term of polynomial (1) is given by

           
21 3 5...(2 1) ( 1)...( 2 1). ( 1) .

2 4 2 (2 1) (2 3) ...(2 2 1)
r n rn n n n r x

n r n n n r
∃∗ ∗ ∃ ∃ ∃ )

∃
∗ ∗ ∃ ∃ ∃ ) ...(2)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Legendre Polynomials 9.3

Now, 1 3 5...(2 1),n∗ ∗ ∃

 = 
1 2 3 4 5 6...(2 1) . 2

2 4 6 ... 2
n n
n

∗ ∗ ∗ ∗ ∗ ∃
∗ ∗

=
(2 )!

(2 1) (2 2) (2 3) ...(2 )
n

n∗ ∗ ∗ ∗
= 

(2 )!
2 1 2 3 ...n

n
n∗ ∗ ∗

=
(2 )!
2 !n

n
n∗

.  ...(3)

Also, n(n – 1) ...(n – 2r + 1)

= 
( 1) ( 2 1) ( 2 ) ( 2 1) ... 3 2 1

( 2 ) ( 2 1) ...3 2 1
n n n r n r n r

n r n r
∃ ∃ ) ∃ ∃ ∃ ∗ ∗

∃ ∃ ∃ ∗ ∗
= n

n r
!

( ) !∃ 2 ...(4)

and 2 4 6 ... 2 (2 1) (2 2) (2 3) ... (2 ) 2 !.rr r r∗ ∗ % ∗ ∗ ∗ ∗ % ∗ ...(5)
Finally,  (2n – 1) (2n – 3) ...(2n – r + 1)

= ( ) ( ) ( ) ( ) ... ( ) ( )
( ) ( ) ( ) ...( )

2 2 1 2 2 2 3 2 2 2 2 2 1
2 2 2 2 4 2 2 2

n n n n n r n r
n n n n r

∃ ∃ ∃ ∃ ) ∃ )
∃ ∃ ∃ )

1 ∃
∃

( ) !
( ) !
2 2
2 2

n r
n r

=
(2 ) (2 1) (2 2) ... (2 2 1) (2 2 ) (2 2 1) ... 3 2 1

2 2( 1) 2( 2) ...2 ( 1) . (2 2 ) !
n n n n r n r n r

n n n n r n r
∃ ∃ ∃ ) ∃ ∃ ∃ ∗ ∗

∗ ∗ ∃ ∗ ∃ ∃ ) ∃

=
(2 ) !

2 ( 1) ( 2) ...( 1) (2 2 ) !n
n

n n n n r n r∗ ∃ ∃ ∃ ) ∃

=
(2 ) ! ( ) ( 1) ... 3 2 1

( 1) ( 2) ... ( 1) ( ) ( 1) ... 3 2 12 (2 2 ) !n
n n r n r

n n n n r n r n rn r
∃ ∃ ∃ ∗ ∗

1
∃ ∃ ∃ ) ∃ ∃ ∃ ∗ ∗∃

= ( )!
( )!

( )!
!

.2
2 2 2

n
n r

n r
nn ∃

1 ∃ ... (6)

Using (3), (4), (5) and (6), the general term (2) becomes

2(2 ) ! ! 1 2 (2 2 ) ! !( 1)
( 2 ) ! (2 ) ! ( ) !2 2! !

n
r n r

n r
n n n r n x

n r n n rn r
∃∃

∃ 1 1
∃ ∃

i.e. ( ) ( ) !
! ( ) ! ( ) !

∃ ∃
∃ ∃

∃1 2 2
2 2

2r
n

n rn r
r n r n r

x . ...(7)

Since (1) is polynomial of degree n, r must be chosen so that  n – 2r 2 0,  i.e.,  r 3 n/2.
Thus, if n is even, r goes from 0 to 1

2 n , while if n is odd, r goes from 0 to 1
2 1( )n ∃ ; that is,

for the complete polynomial (1), r goes from 0 to 1
2 n , where

1
2 n = n n

n n
/ ,

( ) / ,
2

1 2
if is even

if is odd∃{
Hence the Legendre polynomial of degree n is given by

Pn(x) =
4 5/ 2

2

0

(2 2 ) !( 1)
2 ! ( ) ! ( 2 ) !

n
r n r

r
r

n r x
r n r n r

∃

%

∃
∃

∃ ∃( . ...(8)

9.2. Legendre’s function of the first kind or Legendre’s polynomial of degree n.
[Kanpur 2011, Ranchi 2010]

Definition. Legendre’s polynomial of degree n is denoted and defined by

Pn(x) = 21 3 ( 1)
! 2(2 1)

5 ...(2 1) n nn nx x
n n

n ∃+∗ ∃
∃− ∃/

∗ ∃ 4( 1) ( 2) ( 3) ...
2 4 (2 1) (2 3)

nn n n n x
n n

∃ ,∃ ∃ ∃
) ∃ .∗ ∗ ∃ ∃ 0

 ...(1)
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9.4 Legendre Polynomials

or Pn(x) = ( ) ( ) !
! ( ) ! ( ) !

/

∃ ∃
∃ ∃

∃

%
( 1 2 2

2 2
2

0

2
r

n
n r

r

n n r
r n r n r

x , ...(2)

where [n/2] = n n
n n
/ ,

( ) / ,
2

1 2
if is even

if is odd∃{ ...(3)

Legendre’s function of the second kind. Definition. This is denoted and defined by
Qn(x) =

( 1) ( 3)! ( 1) ( 2)
1 3 5 ... (2 1) 2(2 3)

n nn n nx x
n n

∃ ) ∃ )+ ) )
)−∗ ∗ ) )/

( 5)( 1) ( 2) ( 3) ( 4) ...
2 4 (2 3) (2 5)

nn n n n x
n n

∃ ) ,) ) ) )
) ) .∗ ∗ ) ) 0

. ...(4)

Determination of first few Legendre’s polynomials.
Putting n = 0, 1, 2, 3, 4, 5, ..... in result (1), we have

P0(x) = 1
0

0
!

x = 1, P1(x) = 1
1

1
!

x = x, P2(x) = 2 0 21 3 2 1 1 (3 1),
2 ! 2 3 2

x x x
+ ,∗ ∗

∃ % ∃− .∗/ 0
[Bhopal 2010]

P3(x) = 3 1 31 3 5 3 2 1 (5 3 ),
3! 2 5 2

x x x x
+ ,∗ ∗ ∗

∃ % ∃− .∗/ 0

P4(x) = 4 2 0 4 21 3 5 7 4 3 4 3 2 1 1 (35 30 3),
4 ! 2 7 2 4 7 5 8

x x x x x
+ ,∗ ∗ ∗ ∗ ∗ ∗ ∗

∃ ) % ∃ )− .∗ ∗ ∗ ∗/ 0

P5(x) = 5 3 1 5 31 3 5 7 9 5 4 5 4 3 2 1 (63 70 15 )
5 ! 2 9 2 4 9 7 8

x x x x x x
+ ,∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∃ ) % ∃ )− .∗ ∗ ∗ ∗/ 0
[Kanpur 2004]

Ex. 1. Express 2 – 3x + 4x2 in terms of Legendre polynomials. [Bangalore 1995]
Sol. We have 1 = P0(x),  x = P1(x),      (3x2 – 1)/2 = P2(x)  6 x2 = [2P2(x) + 1]/3   ...(1)

Now,   2 – 3x + 4x2 = 2P0(x) – 3P1(x) + (4/3) × [2P2(x) + 1], by (1)
= 2P0(x) – 3P1(x) + (8/3) × P2(x) + (4/3) × P0(x) = (10/3) × P0(x) – 3P1(x) + (8/3) × P2(x).
Ex. 2. Show that P0(x) = 1, P1(x) = x, P2(x) = (3x2 – 1)/2, P3(x) = (5x3 – 3)/2 and also expand

x4 + 2x3 + 2x2 – x – 3 in terms of Legendre’s polynomials. [Bhopal 2004, Kakitiya 1997]
Ex. 3. Show that x3 = (2/5) × P3(x) + (3/5) × P2(x). [Nagpur 1996]

9.3. Generating function for Legendre polynomials. [Nagpur 2005]
Theorem. To show (1 – 2xz + z2)–1/2 = z P x x zn

n
n

( ), | | , | |3 7
%

#
( 1 1

0
[M.D.U. Rohtak 2006,

Delhi Physics (H) 2000; Kanpur 2005; Banaglore 1994; Nagpur 2003; Meerut 1994, 96]
Or To show that Pn(x) is the coefficient of zn in the exapansion of (1 – 2xz + z2)–1/2 in assending
powers of z.                 [Garhwal 2004; Meerut 1998, Ravishankar 2010; Ranchi 2010]

[Note : (1 – 2xz + z2)–1/2 is called the generating function for Legendre polynomial Pn(x)].
Proof. (a) since | z | < 1 and | x | 3 1, we have

(1 – 2xz + z2)–1/2 = [1 – z(2x – z)]–1/2

= 1 + 1
2  z(2x – z) + 

1
2 4

3
∗
∗

 z2(2x – z)2 + .... + 11 3 ...(2 3)
2 4 ...(2 2)

nn z
n

∃∗ ∃
∗ ∃

(2x – z)n – 1

               + 
1 3 ... (2 1)

2 4 ...(2 )
n

n
∗ ∃

∗
 zn(2x – z)n +... ...(1)
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Legendre Polynomials 9.5

Now, the coefficient of zn in 
1 3 ... (2 1)

2 4 ...(2 )
n

n
∗ ∃

∗
zn(2x – z)n

=
1 3... (2 1) (2 )
2 4 6...(2 )

nn x
n

∗ ∃
∗ ∗

= 1 3 5 ...(2 1) 2
(2 1) (2 2) (2 3) ...(2 )

n nn x
n

∗ ∗ ∃ ∗ ∗
∗ ∗ ∗ ∗

=
1 2

2 !
3 5...(2 1) n n

n x
n

n
∗

∗
∗ ∗ ∃

= 1 3 5 ...(2 1)
!

nn x
n

∗ ∗ ∃ .   ...(2)

Again, the coefficient of zn in 11 3 ...(2 3)
2 4 ...(2 2)

nn z
n

∃∗ ∃
∗ ∃

(2x – z)n – 1

= 21 3 ...(2 3) { ( 1) (2 ) }
(2 1) (2 2) ...2( 1)

nn n x
n

∃∗ ∃
∃ ∃

∗ ∗ ∃

= – 2 2
1

1 3 ...(2 3) 2 1 [( 1) 2 ]
2 12 1 2 3...( 1)

n n
n

n n n n x
n nn

∃ ∃
∃

∗ ∃ ∃
∗ ∗ ∃ 1 1

∃∗ ∗ ∃
, on multiplying and dividing by (2n – 1)/n

= – 21 3 ...(2 1) ( 1)
! 2 (2 1)

nn n n
n n

x ∃∗ ∃ ∃
∃

∗ ...(3)

and so on. Using (2), (3), ... we see that the coefficient of zn in the expansion of (1 – 2xz + z2)–1/2,

namely (1) is given by  21 3 ...(2 1) ( 1)
! 2(2 1)

n nn n nx x
n n

∃+∗ ∃ ∃
∃− ∃/

4( 1) ( 2) ( 3) ...
2 4 (2 1)(2 3)

nn n n n x
n n

∃ ,∃ ∃ ∃
) ∃ .∗ ∗ ∃ ∃ 0

i.e., Pn(x), by definition of Legendre polynomial.
We find that P1(x), P2(x), ... will be the coefficients of z, z2,.... in the expansion of

(1 – 2xz + z2)–1/2. Thus, we may write

(1 – 2xz + z2)–1/2 = 1 + zP1(x) + z2P2(x) + ... + znPn(x) + ...   or   (1 – 2xz + z2)–1/2 = z P xn
nn
( ).

%

#
(

0

9.4. Solved examples based on Art. 9.2 and 9.3.
Ex. 1. Prove that (a) : 1 + 1

2 P1(cos 8) + 1
3 P2(cos 8) + ...= log[(1 + sin 1

2 8)/sin 1
2 8].

(b)
0

(cos ) log{1 cosec ( / 2)}
1

n
n

P
n

#

%

8
& % ) 8

)
[Ravishankar 2004]

Sol. (a) From the generating function,    z P xn
n n%

#
(

0
( ) = (1 – 2xz + z2)–1/2. ...(1)

Integrating (1) w.r.t. z from 0 to 1, z P x dzn
n

n
( )

0

1

0
z(

%

#

= dz
xz z( )1 2 20

1

∃ )z . ...(2)

Replacing x by cos 8 on both sides, (2) gives

P z dzn
n

n(cos )8
%

#

( z
0 0

1
= dz

z z( cos )1 2 20

1

∃ )z 8
   or P z

nn
n

n
(cos )8

%

# )

( )
L
NM

O
QP0

1

0

1

1
= dz

z[( cos sin ]∃ )z 89 8: 20

1

or P
n

n

n

(cos )8
)%

#

( 10
= log ( cos ) [( cos ) sin ]z z∃ ) ∃ )L

NM
O
QP8 8 82 2

0

1

{ }

  = log ( cos ) [( cos ) sin ] log( cos )1 1 12 2∃ ) ∃ ) ∃ ∃8 8 8 8{ } = log ( cos ) [ ( cos )] log( cos )1 21 1∃ ) ∃ ∃ ∃8 8 8n s
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9.6 Legendre Polynomials

  = log
( cos ) ( cos )

cos
1 2 1

1
∃ ) ∃

∃
8 8

8 = log
( cos ) ( cos ) ( cos )

( cos ) ( cos )
1 1 2 1

1 1
∃ ∃ ) ∃

∃ ∃
8 8 8

8 8

  = log
( cos )

( cos )
1 2

1
∃ )

∃
8

8
= log

( sin )

( sin )
log sin

sin
2 2

2

12 1
2

2 1
2

1
2

1
2

8

8

8
8

)
%

)

;
P

P P0 1
2 1

1
3 21

(cos )
(cos ) (cos ) ...

8
8 8) ) ) = log sin

sin
1 1

2
1
2

) 8
8

or 1 + 1
2 P1(cos 8) + 1

3 P2(cos 8) + ... = log sin
sin

1 1
2

1
2

) 8
8

, as P0(cos 8) = 1 ... (3)

(b) Proceed as in part (a) upto equation (3). Re-writing (3), we have

0

(cos )
log{1 cosec ( / 2)}.

1
n

n

P
n

#

%

8
& % ) 8

)

Ex. 2. Prove that (i) Pn(1) = 1 [Agra 2010; Purvanchal 2005, Meerut 2007, 11;
Bhopal 2010; Lucknow 2010; Nagpur 2010]

(ii) Pn(–1) = (–1)n [Agra 2009; Kanpur 2007]

(iii) Pn�(1) = 1
2 n(n + 1). [Delhi Physics (H) 2001]

(iv) P�n (–1) = (–1)n – 1 × 1
2 n(n + 1). [Agra 2009; Gulbarge 2005]

(v) Pn(–x) = (–1)n Pn(x). Deduce Pn(–1) = (–1)n.       [Lucknow 2010, Nagpur 2010
Agra 2010; Kanpur 2005, 06; Kakitiya 1997; Meerut 2005; Purvanchal 2005]

Sol. The generating function formula is (1 – 2xz + z2)–1/2 = z P x z xn
n

n

( ), | | , | |7 3
%

#

( 1 1
0

.   ...(1)

Part (i). Putting x = 1 in (1), we have

(1 – 2z + z2)–1/2 = z Pn
n

n

( )1
0%

#

( or (1 – z)–1 = z Pn
n

n

( )1
0%

#

( .

Since | z | < 1, the binomial theorem can be used for expansion of (1 – z)–1.

;          1 + z + z2 + .... + zn + ... = z Pn
n

n

( )1
0%

#

( . ...(2)

Equating the coefficient of zn from both sides, (2) gives Pn(1) = 1
Part (ii). Putting x = –1 in (1), we have as before

(1 + 2z + z2)–1/2 = z Pn
n

n
( )∃

%

#

( 1
0

or (1 + z)–1 = z Pn
n

n
( )∃

%

#

( 1
0

or           1 – z + z2 ... + (–1)nzn + .... = z Pn
n

n
( )∃

%

#

( 1
0

. ...(3)

Equation the coefficients of zn from both sides, (3) gives           Pn(–1) = (–1)n.
Part (iii). Since Pn(x) satisfies Legendre’s equation (1 – x2)y! – 2xy� + n(n + 1)y = 0,

we get  (1 – x2) P!n(x) – 2xPn�(x) + n(n + 1)Pn(x) = 0. ...(4)
Putting x = 1 in (4) and using Pn(1) = 1, we get

0 – 2P�n(1) + n(n + 1) = 0 or P�n(1) = 1
2 n(n + 1).
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Legendre Polynomials 9.7

Part (iv). Putting x = –1 in (4) and using Pn(–1) = (–1)n, we get

0 + 2P�n(–1) + n(n + 1) (–1)n = 0 or   P�n(–1) = – (–1)n × 1
2 n(n + 1).

or Pn�(–1) = (–1)n – 1 × 1
2 n(n + 1) [� – (–1)n = – (–1)n – 1 (–1) = (–1)n – 1]

Part (v). Replacing x by –x in (1), (1 + 2xz + z2)–1/2 = z P xn
n

n
( )∃

%

#

(
0

. ...(5)

Next, replacing z by –z in (1),       (1 + 2xz + z)–1/2 = ( ) ( )∃
%

#

( z P xn
n

n 0
. ...(6)

From (5) and (6),         z P x z P xn
n

n

n n
n

n
( ) ( ) ( )∃ % ∃

%

#

%

#

( (
0 0

1 . ...(7)

Equating the coefficients of zn from both sides of (8), we get
   Pn(–x) = (–1)n Pn(x). ...(8)

Deduction. Replacing x by 1 and noting that Pn(1) = 1, (8) gives    Pn(–1) = (–1)n.
Note. When n is odd, (–1)n = –1 and so (8) becomes Pn(–x) = –Pn(x). Thus, Pn(x) is an odd

function of x when n is odd. Similarly, Pn(x) is an even function of x when n is even.

Ex. 3. Prove that (i) P2m + 1(0) = 0 (ii) P2m(0) = (–1)m ( ) !
( !)

2
22 2

m
mm    [Kanpur

2008]
i.e. P2m(0) = { (–1) m ....1 3 5∗ ∗ ∗ (2m – 1)}/2m m! [Nagpur 1995, 2002]

(iii) Pn(0) = 0, if n is odd. [Kanpur 2007; Agra 2006; Meerut 1996]

and (iv) Pn(0) = ( ) !
( / ) !

/∃1
2 2

2

2

n

n
n

nl q , if n is even. [Kanpur 2007; Meeerut, 1994, 95, 96]

Sol. We have z P xn
n

n
( )

%

#

(
0

= (1 – 2xz + z2)–1/2,  | z | < 1,  | x | 3 1. ...(1)

Putting x = 0 in (1),           z Pn
n

n
( )0

0%

#

( = (1 + z2)–1/2,          i.e.,

z Pn
n

n
( )0

0%

#

( =
∃ ∃ ∃ ∃ ∃ )

%

#

(
1
2

1
2

1
2 2

0

1 1b g b g b g....
!

( )
n

n
z n

n
   or z Pn

n
n

( )0
0%

#

( = 2

0

1 3 5 ...(2 1)( 1) .
2 !

n n
n

n

n z
n

#

%

∗ ∗ ∃
∃(

...(2)
Part (i). Note that the R.H.S. of (2) consists of even powers of z alone. So equating the

coefficients of z2m + 1 from both sides of (2), we have    P2m + 1(0) = 0.    ...(3)
Part (ii). Equating the coefficients of z2m from both sides of (2), we get

P2m(0) =
1 3 5 ...(2 1)( 1)

2 !
m

m
m

m
∗ ∗ ∃

∃ =
1 2 3 4 5 6...(2 1) (2 )( 1)

2 ! 2 4 6 ...(2 )
m

m
m m

m m
∗ ∗ ∗ ∗ ∗ ∃

∃
∗ ∗

=
(2 ) !( 1)

2 ! (2 1) (2 2) (2 3) ...(2 )
m

m
m

m m
∃

∗ ∗ ∗ ∗
= 2 2

(2 ) ! 1 (2 ) !( 1) ( 1)
2 ! 2 ! 2 ( !)

m m
m m m
m m
m m m

∃ ∗ % ∃ ...(4)

Part (iii). Proceed as in part (i). Here 2m + 1 = n = odd. So from (3) Pn(0) = 0, if n is odd.
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9.8 Legendre Polynomials

Part (iv). Proceed as in part (ii) upto (4). Here 2m = n = even so that m = n/2. Putting m = n/

2 in (4), we have   Pn(0) = ( ) !
{( / ) !}

/∃1
2 2

2
2

n
n

n
n

.

Ex. 4. Express x4 + 2x3 + 2x2 – x – 3 in terms of Legendre’s polynomials.
Sol. We have  P0(x) = 1,  P1(x) = x,  P2(x) = (3x2 – 1)/2,        P3(x) = (5x3 – 3x)/2,

and   P4(x) = (35x4 – 30x2 + 3)/8.
These 6 x4 = (8/35)P4(x) + (6/7)x2 – (3/35), ...(1)

x3 = (2/5)P3(x) + (3/5)x, x2 = (2/3)P2(x) + (1/3), ...(2)
x = P1(x) and 1 = P0(x) ...(3)

Now, x4 + 2x3 + 2x2 – x – 3 = (8/35)P4(x) + (6/7)x2 – (3/35) + 2[(2/5)P3(x) + (3/5)x] + 2x2 – x – 3
[Putting values of x4 and x3 with help of (1) and (2)]

= (8/35)P4(x) + (4/5)P3(x) + (20/7)x2 + (1/5)x – (108/35)

= 8
35

4
5

20
7

2
3

1
3

1
5

108
354 3 2 1P x P x P x P x( ) ( ) ( ) ( )) ) )L

NM
O
QP ) ∃ , using (2) and (3)

= (8/35)P4(x) + (4/5)P3(x) + (40/21)P2(x) + (1/5)P1(x) – (224/105)P0 (x), using (3)

Ex. 5. Prove that Pn ∃ 1
2c h = P0 ∃ 1

2c hP2n
1
2c h  + P1 ∃ 1

2c hP2n – 1
1
2c h  + .... P2n ∃ 1

2c hP0
1
2c h .

Sol. We have (1 – 2xz + z2)–1/2 = z P xn
n

n
( )

%

#

(
0

. ... (1)

Replacing x by 1/2 and –1/2 successively, (1) gives

(1 – z + z2)–1/2 = z Pn
n

n

1
2

0
c h

%

#

( ...(2)

and (1 + z + z2)–1/2 = z Pn
n

n
∃

%

#

( 1
2

0
c h. ...(3)

Next, replacing z by z2 in (3), (1 + z2 + z4)–1/2 = z Pn
n

n

2 1
2

0
∃

%

#

( c h . ...(4)

But 1 + z2 + z4 = (1 + z2)2 – z2 = (1 + z2 + z) (1 + z2 – z)
; (1 + z2 + z4)–1/2 = (1 + z + z2)–1/2 . (1 – z + z2)–1/2

or            z Pn
n

n

2 1
2

0
∃

%

#

( c h = z P z Pn
n

n

n
n

n
∃

%

#

%

#

( (1
2

0

1
2

0
c h c h. , by (2), (3) and (4)

or z Pn
n

n

2 1
2

0
∃

%

#

( c h = P z P z Pn
n0

1
2 1

1
2

2 1
2 1

1
2∃ ) ∃ ) ) ∃∃

∃c h c h c h..... ) ∃ ) 1 ) )z P P zPn
n

2
2

1
2 0

1
2 1

1
2c h c h c h... ...

) ) )∃
∃z P z Pn

n
n

n
2 1

2 1
1
2

2
2

1
2c h c h ...

Equating the coefficients of z2n from both sides of the above equation, we get the desired result.

Ex. 6. Prove that 1
1 2

2 1
2

2 3 2
0

∃
∃ )

% )
%

#

(z
xz z

n z Pn
n

n( )
( ) ./

[Kanpur 2005; Purvanchal 2007; Meerut 2010]
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Legendre Polynomials 9.9

Sol. We have (1 – 2xz + z2)–1/2 = z Pn
n

n%

#

(
0

. ...(1)

Differentiating both sides of (1) w.r.t. ‘z’,  – 1
2 (1 – 2xz + z2)–3/2 (–2x + 2z) = n z Pn

n
n

∃

%

#

( 1

0

or (x – z) (1 – 2xz + z2)–3/2 = n z Pn
n

n

∃

%

#

( 1

0
. ...(2)

Multiplying both sides of (2) by 2z,       2z(x – z) (1 – 2xz + z2)–3/2 = 2
0

n z Pn
n

n%

#

( . ...(3)

Adding (1) and (3),        1
1 2

2
1 22 1 2 2 3 2( )

( )
( )/ /∃ )

) ∃
∃ )xz z

z x z
xz z

= z P nz Pn
n

n

n
n

n%

#

%

#

( ()
0 0

2

or 1 2 2
1 2

2

2 3 2
∃ ) ) ∃

∃ )
xz z z x z

xz z
( )

( ) / = ( )2 1
0

n z Pn
n

n
)

%

#

(    or     1
1 2

2

2 3 2
∃

∃ )
z

xz z( ) / = ( )2 1
0

n z Pn
n

n
)

%

#

( .

Ex. 7. Prove that    1

1 2
1

2

)

∃ )
∃z

z xz z z( )
= ( )P P zn n

n

n
) )

%

#

( 1
0

.

Sol. We have, (1 – 2xz + z2)–1/2 = z Pn
n

n%

#

(
0

. ...(1)

; L.H.S. of the required result = (1/z) × (1 – 2xz + z2)–1/2 + (1 – 2xz + z2)–1/2 – (1/z)

  = 1 1

0 0
z

z P z P
z

n
n

n

n
n

n%

#

%

#

( () ∃ , by (1) ...(2)

But  z Pn
n

n%

#

(
0

= P1 +  zP1 + z2P2 + .... +  znPn +  zn + 1Pn + 1  + ...= 1 + z(P1 + zP2 + ... + znPn + 1 + ...),  as  P0 = 1

Thus,
0

n
n

n
z P

#

%
(  = 1 + z z Pn

n
n

)
%

#

( 1
0

. ...(3)

Using (3) in (2), the L.H.S. of the required result

       = 1 1 1
0

z
z z Pn

n
n

)
L
N
MM

O
Q
PP)

%

#

(  + z Pn
nn%

#
(

0
– 1

z
= z P z Pn

nn
n

nn)%

#

%

#
( ) (10 0

= ( )P P zn nn
n)( )%

#

10

 = R.H.S. of the required result.

Ex. 8. Prove that (1 – 2xz + z2)–1/2 is a solution of the equation z zv
z x

x dv
dx

<
<

) <
<

∃L
NM

O
QP

2

2
21( ) ( ) = 0.

Sol. Let       v = (1 – 2xz + z2)–1/2 = z Pn
n

n%

#

(
0

. ...(1)

; zv = z z P z Pn
n

n

n
n

n%

#
)

%

#

( (%
0

1

0
.
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9.10 Legendre Polynomials

;   <
<

% <
<

L
N
MM

O
Q
PP

)

%

#

(
2

2

2

2
1

0

( )zv
z z

z Pn
n

n

= n n z Pn
n

n
( )) ∃

%

#

( 1 1

0
.

; z zv
z

z n n z Pn
n

n

<
<

% ) ∃

%

#

(
2

2
1

1

1( ) ( ) = n n z Pn
n

n

( ))
%

#

( 1
1

. ...(2)

From (1),             <
<
v
x = <

<
%

%

#

%

#

( (x
z P z P'n

n
n

n
n

n

( )
0 0

. ...(3)

; <
<

% <
<

<
<

FH IK % <
<

%
%

#

%

#

( (
2

2
0 0

v v
x x x x

z P' z P"n
n

n

n
n

n
. ...(4)

But <
<

∃ <
<

L
NM

O
QPx

x v
x

( )1 2 = ( )1 22
2

2∃ <
<

∃ <
<

x v
x

x v
x

; <
<

∃ <
<

L
NM

O
QPx

x v
x

( )1 2 = (1 – x2)
0 0

2 ,n n
n n

n n

z P" x z P'
# #

% %

∃( (  using (3) and (4) ...(5)

Adding the corresponding sides of (2) and (5), we have

z zv
v x

x v
x

<
<

) <
<

∃ <
<

RST
UVW

2

2
21( ) ( ) = n n z P x z P" z x Pn

n
n

n
n

n
n

nn

( ) ( ) . ( )) ) ∃ ∃ �
%

#

%

#

%

#

( ((1 1 2
0

2

00

= z x P" x P n n Pn
n n

n
n[( ) ( ) ]1 2 12

0

∃ ∃ � ) )
%

#

( = 0,

as Pn is a solution of Legendre equation 2(1 ) 2 ( 1) 0.x y xy n n y�� �∃ ∃ ) ) %

9.5. Trigonometrical series for Pn(x).
To show that         Pn(cos 8)

= 4n
n n

n
∗ ∗

8
∗– 1

1 3 5 . ..(2 – 1)
cos +

2 !

n n
n

,∗ ∗ ∗
8 8 .∗ 0∗ ∗

1 1 3 n(n – 1)
cos( – 2) + cos(n – 4) + ...

1 (2 – 1) 1 2 (2n – 1) (2n – 3)

Sol. Since z P xn
n

n
( )

%

#

(
0

= (1 – 2xz + z2)–1/2, we have

z Pn
n

n
(cos )8

%

#

(
0

= (1 – 2z cos 8 + z2)–1/2 = [1 – z(ei8 + e–i8) + z2]–1/2

= [1 – zei8 – ze–i8 + zei8 . ze–i8]–1/2 = (1 – zei8)–1/2 (1 – ze–i8)–1/2

= 2 21
2

1 3 1 5...(2 1)1 ...
2 4 2 4 6 ... (2 )

3i i n ninze z e z e
n

8 8 8+ ,∗ ∗ ∃
) ) ) ) ) ∗∗ ∗− .∗ ∗ ∗/ 0

∗

2 21
2

1 3 1 5...(2 1)1 ...
2 4 2 4 6 ... (2 )

3i i n ninze z e z e
n

∃ 8 ∃ 8 ∃ 8+ ,∗ ∗ ∃
1 ) ) ) ) ) ∗∗∗− .∗ ∗ ∗/ 0

∗
.

Equating the coefficients of zn from both sides, we get

1 5...(2 1)(cos ) ( )
2 4 6 ... (2 )
3 ni ni

n
nP e e

n
8 ∃ 8∗ ∃

8 % )
∗ ∗
∗

 + ( 2) ( 2)1 5...(2 3) .1 [ ]
2 4 6 ... (2 2) . 2

3 n i n in e e
n

∃ 8 ∃ ∃ 8∗ ∃
)

∗ ∗ ∃
∗
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( 4) ( 4)1 5...(2 5) 1 3 [ ]
2 4 6 ... (2 2) 2 4

3 n i n in e e
n

∃ 8 ∃ ∃ 8∗ ∃ ∗ ∗
) )

∗ ∗ ∃ ∗ ∗
∗

+ ···

=
1 5...(2 1) 2 12 cos 2 cos ( 2)

2 4 6 ... (2 ) 2 1 2
3 n nn n

n n
+∗ ∃

8 ) ∗ ∗ ∃ 8−∗ ∗ ∃/

∗

2 . (2 2) 1 3. 2 cos( 4) .
(2 1) (2 3) 2 4

n n n
n n

,∃ ∗
) ∗ ∃ 8 ) ∗∗ ∗ .∃ ∃ ∗ 0

   ...(A)

= 1
1 5...(2 1) 1.cos cos ( 4)

1 (2 1)2 !
3

n
n nn n

nn∃

+∗ ∃
8 ) ∃ 8− ∗ ∃∗ /

∗ 1 3 ( 1) cos( 4)
1 2 (2 1) (2 3)

n n n
n n

,∗ ∗ ∃
) ∃ 8 ) ∗∗∗.∗ ∗ ∃ ∃ 0

SOLVED EXAMPLE BASED ON ART 9.5

Example. Prove that        
0

1 3 5 ...(2 1)(cos ) cos
2 4 6 ...(2 )n

nP n d
n

= ∗ ∗ ∃
8 8 8 % ∗ =

∗ ∗> = B n ) 1
2

1
2,c h .

Sol. From equation (A) of Art 9.5, we have

Pn(cos 8) = 1 5...(2 1) 2 1
2cos 2cos ( 2)

2 4 6...(2 ) 2 1 2
3 n n

n n
n n

+∗ ∃
8) ∗ ∗ ∃ 8−∗ ∗ ∃/

∗ 2 (2 2) 1 3 2 cos( 4)
(2 1) (2 3) 2 4

n n n
n n

,∗ ∃
) ∗ ∃ 8 ) ∗ ∗ ∗.∃ ∃ ∗ 0

∗∗

; P n dn (cos ) cos8 8 8
=

0z = 21 5...(2 1) 2 cos
2 4 6 ... (2 )
3 n n d

n

=

?

∗ ∃ + 8 8−∗ ∗ /

∗
> +

2 1 2 cos ( 2) cos
2 1 2

n n n d
n

=

?

,
∗ ∗ ∃ 8 8 8 ) ∗ ∗ ∗.∃ 0>

      =
1 5...(2 1) (1 cos 2

2 4 6 ... (2 )
3 n n d

n

=

?

∗ ∃
) 89 8

∗ ∗
∗

> , since for ,m n∋  we have

1
20 0 0

1 sin ( ) sin ( )cos cos [cos ( ) cos ( ) ] 0
2

m n x m n xmx nx dx m n x m n x dx
m n m n

=
= = + ,) ∃

% ) ) ∃ % ) %− .) ∃/ 0> >

;     P n dn (cos ) cos8 8 8
=

0z =
1 3 5 2 1

2 4 6 2
. . ...( )

. . ...( )
n

n
∃ = =

2 1
2

2 3
2

1 2 3

3
2

1
2

n n

n

∃ ∃. ... .

. . ...

.= =

=
≅ ≅

≅
≅ ≅
≅

2 1
2

1

1
2 1

2
1
2

1
2

1
2

n

n
n
n

)FH IK
)

%
)
) )

b g b g b g
b g( ) = B n ) 1

2
1
2,c h �B m n m n

m n
( , ) ( ) ( )

( )
%

)
L
NM

O
QP

≅ ≅
≅

EXERCISE 9 (A)
1. Show that Legendre’s polynomial Pn(x) satisfies the Legendre’s equation

(1 – x2) (d2y/dx2) – 2x(dy/dx) + n(n + 1)y = 0.
2. Show that the general solution of Legendre’s equation (1 – x2)y! – 2xy� + n(n + 1)y = 0,

where n is a positive integer is y = APn(x) + BQn(x), where Pn(x) and Qn(x) have their usual
meanings.

3. Express the following expressions in terms of Legendre’s polynomial to show that
(i) x2 = (1/3) × P0(x) + (2/3) × P2(x). (ii) x3 = (2/5) × P3(x) + (3/5) × P1(x).
(iii) x4 = (8/35) × P4(x) + (4/7) × P2(x) + (1/5) × P0(x). (Nagpur 2003, Bilaspur 2004)
(iv) x4 – 3x2 + x = –(4/5) × P0(x) + P1(x) – (10/7) × P2(x) + (8/35) × P4(x).
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9.12 Legendre Polynomials

9.6. Laplace’s definite integrels for Pn(x)
(I) Laplace’s first integral Pn(x). When is n is a positive integer, then

Pn(x) = 2 1/ 2
0

1 [ ( 1) cos ]nx x d= Α ∃ Β Β
= > . (Agra 2010; Meerut 2005, 06)

Proof. From integral calculus,           d
a b

Β
Β

=

Αz cos0
= 2 2 1/ 2( )a b

=
∃

, when a2 > b2. ...(1)

Let a = 1 – zx and b = 2 1/ 2( 1)z x ∃ . Then a2 – b2 = (1 – zx)2 – z2(x2 – 1) = 1 – 2xz + z2.

Using these values of a, b and a2 – b2, (1) becomes

=(1 – 2zx + z2)–1/2 =
1

2 1/ 2

0
1 ( 1) coszx z x d

∃=
+ ,∃ Α ∃ Β Β/ 0>

or          = z P xn
n

n

( )
%

#

(
0

= 1 2 1/ 2

0
(1 ) , if ( 1) coszt d t x x

=
∃∃ Β % Α ∃ Β>

           = ( . .. )1 2 2

0
) ) )z zt z t dΒ

=
= ( )zt d z t dn

n

n

n

nΒ % Β
= =

%

#

%

#

( (z z
0 00 0

.

;       = z P xn
n

n
( )

%

#

(
0

= z x x dn

n

n

%

#

( z Α ∃
0

2

0
1[ ( ) cos ] .Β Β

=
...(2)

Equating coefficients of zn from both sides, (2) gives

=Pn(x) = 2 1/ 2
0 [ ( 1) cos ]nx x d= Α ∃ Β Β> or Pn(x) = 2 1/ 2

0
1 [ ( 1) cos ]nx x d= Α ∃ Β Β
= >  ...(3)

Deductions : Show that (i) Pn(cos 8) = 1
0=

8 8 Β Β
=

(cos sin cos ))z i dn

(ii) P1(x) = 2 1/ 2
0

1 { ( 1) cos }x x d= ) ∃ 8 8
= >

Proof. (i) Let x = cos 8. Then, we have
2 1/ 2( 1)x ∃ = (cos )2 18 ∃ = {( )( cos )}∃ ∃1 1 2 8 = {( sin )}i2 2 8 = i sin 8

With these value and +ve sign, (3) gives     Pn(cos 8) = 1
0=

8 8 Β Β
=

(cos sin cos ))z i dn .

Part (ii). Take n = 1 and +ve sign in (3). Thus, we obtain the required result.
(II) Laplace’s second integral for Pn(x). When n is a positive integer,

Pn(x) =
0 2 1/ 2 1

1
[ ( 1) cos ]n

d
x x

=
)

Β
= Α ∃ Β

> . [Kanpur 2007; Meerut 2007]

Proof. From integral calculus, 2 2 1/ 20 cos ( )
d

a b a b

= Β =
%

Α Β ∃> , where a2 > b2. ...(1)

Let a = zx – 1 and b = 2 1/ 2( 1)x ∃ . Then, a2 – b2 = (zx – 1)2 – z2(x2 – 1) = 1 – 2zx + z2

Using these values of a, b and a2 – b2, (1) gives

=(1 – 2zx + z2)–1/2 =
1

2 1/ 2

0
1 ( 1) coszx z x d

∃=
+ ,∃ ) Α ∃ Β Β/ 0>
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or =
z

x
z z

1 2 1 1
2

1 2

∃ )F
H

I
K

∃ /
= 2 1/ 2 1

0
[ 1 { ( 1) cos ]z x x d

= ∃∃ ) Α ∃ ΒΧ Β∆>
...(2)

Let t = 2 1/ 2( 1) cosx xΑ ∃ Β∆ ...(3)

We know that (1 – 2xz + z2)–1/2 = z P xn
n

n
( )

%

#

(
0

. ...(4)

Replacing z by 
1
z

 in (4), we have
1/ 2

2
1 11 2x
z z

∃
Ε Φ∃ 1 )Γ Η
Ι ϑ

= 1
0 z

P xn n
n

( )
%

#

( . ...(5)

Using (3) and (5), we have

=
z z

P xn n
n

1
0

( )
%

#

( = ( ) ( )∃ ) % ∃FH IK∃ ∃
∃z z1 1 11

0

1
1

0
zt d zt

zt
dΒ Β

= =
=  1 1

0 0zt zt
d

n

n

=
Βz ( FH IK

%

#

= 1
1 100 z

d
tn n

n
) )

%

# z( Β=
.

; =
z

P xn n
n

)
%

#

( 1
0

( ) = 1 2 1/ 2 10
0

.
{ ( 1) cos }n n

n

d
z x x

# =

) )
%

Κ Β
Α ∃ Β( > ...(6)

Equating the coefficients of 1/zn + 1 from sides, (6) gives

=Pn(x) =
2 1/ 2 10 { ( 1) cos }n

d
x x

=

)
Β

Α ∃ Β>         or      Pn(x) = 2 1/ 2 10

1
{ ( 1) cos }n

d
x x

=

)
Β

= Α ∃ Β>  ...(7)

Deduction. Replacing n by –(n + 1) in (7), we have

P–(n + 1) (x) = 2 1/ 20

1
{ ( 1) cos } n

d
x x

=

∃
Β

= Α ∃ Β> = 2 1/ 2

0

1 { ( 1) cos }nx x d
=

Α ∃ Β Β
=>

   = Pn(x), by form I of Laplace’s integral
Thus, Pn(x) = P–(n + 1)(x).

9.7. Some bounds on Pn(x). If –1 < x < 1 and n is any positive integer, then
(i) | Pn(x)| < 1 (ii) | Pn(x) | < {=/2n(1 – x2)}1/2.
Proof. If   –1 < x < 1,   we have
| x + (x2 – 1)1/2 cos Β | = | x + i(1 – x2)1/2 cos Β | = [x2 + (1 – x2) cos2Β]1/2

  = [cos2Β + x2(1 – cos2Β]1/2 = [1 – sin2Β + x2 sin2Β]1/2.
Thus,         | x + (x2 – 1)1/2 cos Β | = [1 – (1 – x2) sin2Β]1/2. ...(1)
(i) If Β ∋ 0 or Β ∋ =, (1) 6  | x + (x2 – 1)1/2 cos Β | < 1. ...(2)

Now, | Pn(x) | = 1 12 1 2

0=
4 Β Β

=
x x dn) ∃z ( ) cos ]/ , using Laplace’s first integral for Pn(x)

6 2 1/ 2

0

1( ) ( 1) cos |nnP x x x d
=

3 Λ ) ∃ Β Β
= >  < 1 1

0=
Β

=
. dz , using (2)

Thus, | Pn(x) | < 1, if –1 < x < 1.

(ii) We have, | Pn(x) | = 1 12 1 2

0=
Β Β

=
[ ( ) cos ]/x x dn) ∃z   3 1 12

0=
Β Β

=
| ( ) cos |x x dn) ∃z
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9.14 Legendre Polynomials

or | Pn(x) | 3 1 1 1 2 2

0

2

=
Β Β

=
[ ( ) sin ] /∃ ∃z x dn , using (1)

or | Pn(x) | 3 2 2 / 2

0

2 [1 (1 ) sin ]nx d
=Μ:

∃ ∃ Β Β∆
= > ...(3)

But, we know that, if 0 < Β < =, then sin Β > 2Β/=.
This  6 1 – (1 – x2) sin2Β < 1 – (1 – x2) × (2Β/=)2   6   1 – (1 – x2) sin2Β < exp[–4Β2 (1 – x2)/=2]

[Here 4Β2 (1 – x2)/=2 < 1 and exp a = ea]

Then,          (3)  6   | Pn(x) | < 2 2 2

0

2 exp[ 2 (1 ) / ]n x d
=Μ:

∃ Β ∃ = Β
= >

Thus,  |Pn(x)| < 2 2 2

0

2 exp[ 2 (1 ) / ]n x d
#

∃ Β ∃ = Β
= > . ...(4)

Putting [2nΒ2    (1 – x2)/=2]1/2 = t     so that      dΒ = [=/{2n(1 – x2)}1/2]dt,    (4) becomes

 | Pn(x) | < 
2

2 1/ 2 0

2 .
{2 (1 )}

te dt
n x

#
∃=

= ∃ >  = 2 1/ 2
2

2{2 (1 )}n x
=

1
∃

  6    |Pn(x)| < 
1/ 2

22 (1 )n x

+ ,=
− .

∃/ 0
.

9.8. Orthogonal properties of Legendre’s polynomials

Prove that (i) P x P x dxm n( ) ( )
∃z 1

Κ
= 0 if m ∋ n.

[Agra 2006, 08, 09, 10; Kanpur 2006, 08; Meerut 2010, 11]

(ii) [ ( )]P x dx
nn

2

1

2
2 1∃z %

)

Κ
. [Agra 2009, 10; Meerut 1992, 93]

(iii) P x P x dxm n( ) ( )
∃z 1

Κ
=

0 if,
2 /(2 1), if .

m n
n m n

∋Ν
Ο ) %Π
[Agra 2005, Bilaspur 1998; Ravishankar 1996; Nagpur 2005]

or P x P x dx
nm n mn( ) ( )

∃z %
)1

2
2 1

Κ
Θ , where Θmn =

0
1

if
if

m n
m n

∋
% .{ .

Here Θmn is called Kronecker delta. It is also denoted by m
nΘ or or .mn

mnΘ Θ
[Kanpur 2006; Delhi Physics (H) 2000]

Proof (i). When m ∋ n. Since Pm(x) and Pn(x) satisfy Legendre’s equation we have
 (1 – x2)Pm! – 2xPm� – m(m + 1)Pm = 0 ...(1)

and    (1 – x2)Pn! – 2xPn� + n(n + 1)Pn = 0. ...(2)
Multiplying (1) by Pn and (2) by Pm and then subtracting the resulting equations, we have
(1 – x2) (Pn mP � – Pm nP � ) – 2x(Pn mP � – nP � Pm )  + [m(m + 1) – n(n + 1)]PmPn = 0

or (1 – x2) d
dx

 (Pn mP � – nP � Pm) – 2x(Pn mP � – PmP�n) = (n2 – m2 + n – m) PmPn

or         d
dx

 {(1 – x2) (Pn mP � – nP � Pm)} = (n – m) (n + m + 1)PmPn.

Integrating both sides w.r.t. ‘x’ from –1 to 1, we get

(n – m) (n + m + 1) P x P x dxm n( ) ( )
∃z 1

Κ
= ( ) ( )1 2

1

1
∃ � ∃ �

% ∃

%
x P P P Pn m n m x

x

; P x P x dxm n( ) ( )
∃z 1

Κ
= 0,   as   m ∋ n. ...(3)
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(ii). When m = n. Then the required result takes the form  [ ( )]P x dxn
2

1∃zΚ
= 2/(2n + 1).

To prove this, start with generating function     (1 – 2xz + z2)–1/2 = z P xn
n

n
( )

%

#

(
0

. ...(4)

Also, (4) may be re-written as (1 – 2xz + z2)–1/2 = z P xm
m

m
( )

%

#

(
0

...(5)

Multiplying the corresponding sides of (4) and (5), we get

0 0

( ) ( ) m n
m n

m n

P x P x z
# #

)

% %
( ( = (1 – 2xz + z2)–1

Integrating both sides of the above equation w.r.t. ‘x’ we get

1

1
0 0

( ) ( ) m n
m n

m n

P x P x dx z
# #

)

∃
% %

Ν Ρ
Ο Σ
Π Τ( ( > = ( )1 2 2 1

1
∃ ) ∃

∃z xz z dx
Κ

...(6)

Making use of (3), (6) reduces to

{ ( )}P x dx zn
n

n

2

1

1 2

0 ∃%

# z(L
NM

O
QP = dx

z xz1 221 ) ∃∃zΚ
=

log ( )1 2
2

2

1

1
) ∃
∃

L
NM

O
QP∃

z zx
z = ∃ 1

2z
[log (1 – z)2 – log(1 + z)2]

= – (1/2z) × [2 log (1 – z) – 2 log (1 + z)] = (1/z) × [ log (1 + z) – log (1 – z)]

= 1
2 3 2 3
2 3 2 2

z
z z z z z z∃ ) ∃F

HG
I
KJ ∃ ∃ ∃ ∃ ∃F

HG
I
KJ

L
NM

O
QP

..... ..... = 2
3 5

2
2 1

3 5 2 1

0z
z z z

z
z
n

n

n
∃ ) )F

HG
I
KJ %

)

)

%

#

(..... .

; { ( )}P x dxn
n

2

1

1

0 ∃%

# z( L
NM

O
QP = 2

2 1
2

0 n
z n

n )%

#

( . ...(7)

Equating coefficients of z2n from both sides, (7) gives [ ( )]P x dxn
2

1∃zΚ
= 2/(2n + 1).   ... (8)

(iii) Combining results (3) and (8), we have
1 1

1 1

0, if 2( ) ( ) or ( ) ( ) ,
2 /(2 1), if 2 1m n m n mn

m n
P x P x dx P x P x dx

n m n n∃ ∃

%Ν
% % ΘΟ ) % )Π> >

where
0, if

Kronecker delta
1, ifmn

m n
m n

∋Ν
Θ % % Ο %Π

9.9. Recurrence relations (formulae). To show that
I. nPn = (2n – 1) xPn – 1 –(n – 1)Pn – 2., n 2 2 [Delhi Physics (H) 2000; Agra 2005;

Bilaspur 1998, Purvanchal 2005, Kanpur 2006, 09]
or (n + 1)Pn + 1 = (2n + 1) xPn – nPn – 1, n 2 1  [Nagpur 2005; Kakitiya 1997; Agra 2005, 06;

KU Kurukshetra 2006; Meerut 2006; Ravishankar 2004; Vikram 2004]

or xPn(x) = n
n

P x n
n

P xn n
)
)

)
)) ∃

1
2 1 2 11 1( ) ( ). [Utkar 2003; Agra 1998]

II. nPn = xP�n – P�n – 1. [Purvanchal 2004; Kanpur 2011;
Vikram 2000; Bangalore 1995; Meerut 1996]

III. (2n + 1)Pn = P�n + 1 – P�n – 1. [Bilaspur 1993; Bangalore 1992, 93]
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9.16 Legendre Polynomials

IV. (n + 1)Pn = P�n + 1 – xP�n.     or      Pn� – xP�n – 1 = nPn – 1. [Kanpur 2007]
V.  (1 – x2)Pn� = n(Pn – 1 – xPn)     or  (x2 – 1)P�n = n x Pn – nPn – 1.

[Delhi Physics (H) 2001]
VI. (1 – x2) P�n = (n + 1) (xPn – Pn + 1). [Meerut 1997]

Proof I. From generating function, we have           (1 – 2xz + z2)–1/2 = z P xn
n

n
( )

%

#

(
0

. ...(1)

Differentiating both sides of (1) w.r.t. ‘z’, we get

        – 1
2 (1 – 2xz + z2)–3/2 (–2x + 2z) = n z P xn

n
n

∃

%

#

( 1

0
( ) . ...(2)

Multiplying both sides by 1 – 2xz + z2, (2) gives

(x – z) (1 – 2xz + z2)–1/2 = (1 – 2xz + z2) n z P xn
n

n

∃

%

#

( 1

0
( )

or (x – z) z P xn
n

n
( )

%

#

(
0

= (1 – 2xz + z2) n z P xn
n

n

∃

%

#

( 1

0
( ) , by (1)

or x z P z P xn
n

n

n
n

n

∃
%

#
)

%

#

( (
0

1

0

( ) = n z P x n z P n z Pn
n

n

n
n

n
n

nn

∃

%

#
)

%

#

%

#

∃ )( ((1

0

1

00

2 .

Equating coefficients of zn from both sides, we get
xPn – Pn – 1 = (n + 1)Pn + 1 – 2xnPn + (n – 1)Pn – 1

or (n + 1)Pn + 1 = (2n + 1) xPn – nPn – 1. ...(3)
Replacing n by n – 1 in (3), we get        nPn = (2n – 1) x Pn – 1 – (n – 1)Pn – 2.  ...(4)

Again (3) can be re–arranged to give another form       xPn = n
n

P n
n

Pn n
)
)

)
)) ∃

1
2 1 2 11 1.

II. We have (1 – 2xz + z2)–1/2 = z P xn
n

n
( )

%

#

(
0

. ...(1)

Differentiating (1) w.r.t. ‘z’, we get – 1
2 (1 – 2xz + z2)–3/2 (–2x + 2z) = n z Pn

n
n

∃

%

#

( 1

0

or (x – z) (1 – 2xz + z2)–3/2 = n z Pn
n

n

∃

%

#

( 1

0
. ...(2)

Again, differentating (1) w.r.t. ‘x’ and simplifying, we get

z(1 – 2xz + z2)–3/2 = z P'n
n

n%

#

(
0

. or z(x – z) (1 – 2xz + z2)–3/2 = (x – z) z P'n
n

n%

#

(
0

or z n z Pn
n

n

∃

%

#

( 1

0
= (x – z) z P'n

n
n%

#

(
0

, by (2) or   n z Pn
n

n%

#

(
0

= x z P' z P'n
n

n
n

nn

∃ )

%

#

%

#

(( 1

00

.

Equating coefficient of zn on both sides we get           nPn = xP�n – P�n – 1.
III. From recurrence relation I, (2n + 1) xPn = (n + 1)Pn + 1 + nPn – 1.
Differentiating it w.r.t. ‘x’,      (2n + 1) xP �n + (2n + 1)Pn = (n + 1)P �n + 1 + nP�n – 1

or (2n + 1) (nPn + P �n – 1) + (2n + 1)Pn = (n + 1)P�n + 1 – nP�n – 1
[� from recurrence II, xP �n = nPn + P�n – 1]
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or                (2n + 1) (n + 1)Pn = (n + 1)P �n + 1 – (n + 1)P �n – 1
or (2n + 1)Pn = P�n + 1 – P�n – 1. ...(1)

Replacing n by n – 1 in (1), we have (2n – 1)Pn – 1 = P�n – P�n – 2

or
dP x

dx
n( )

=
dP x

dx
n ∃ 2( )

 + (2n – 1)Pn – 1(x) ...(2)

(1) and (2) are the required forms of the results.
IV. From recurrence relations II and III, we get

nPn = xPn� – P�n – 1 ...(1)
and (2n + 1)Pn = P�n + 1 – P�n – 1 ...(2)

Subtracting (1) from (2),            (n + 1)Pn = P�n + 1 – xP�n
V. From recurrence relations II and IV, we get

nPn = xP�n – P�n – 1 ...(1)
and     (n + 1)Pn = P�n + 1 – xP�n. ...(2)

Replacing n by n – 1 in (2), nPn – 1 = P�n – xP�n – 1. ...(3)
Multiplying both sides of (1) by x, xnPn = x2P�n – xP�n – 1. ...(4)
Subtracting (4) from (3), we have
n(Pn – 1 – xPn) = (1 – x2)P�n      or     (x2 – 1)P�n = nxPn – nPn – 1.
VI. From recurrence relations I and V, we have

(2x + 1)xPn = (n + 1)Pn + 1 + nPn – 1 ...(1)
and (1 – x2)P�n = n(Pn – 1 – xPn). ...(2)

Re–writting (1), [(n + 1) + n]xPn = (n + 1)Pn + 1 + nPn – 1
or (n + 1) (xPn – Pn + 1) = n(Pn – 1 – xPn). ...(3)

Now, from (2) and (3), (1 – x2)P�n = (n + 1) (xPn – Pn + 1).
9.10. Beltrami’s result.

Prove that          (2n + 1) (x2 – 1) �Pn = n(n + 1)(Pn + 1 – Pn – 1).      [Ravishankar 1998]
Sol. Recurrence relations V and VI are

(1 – x2)P�n = n(Pn – 1 – xPn) ...(1)
and    (1 – x2)P�n = (n + 1) (xPn – Pn + 1) ...(2)

Multiplying (1) by n + 1 and (2) by n and adding, we get
(n + 1) (1 – x2)P�n + n(1 – x2)Pn� = n(n + 1)Pn – 1 – n(n + 1)Pn + 1

or (2n + 1) (1 – x2)P�n = n(n + 1) (Pn – 1 – Pn + 1)
or (2n + 1) (x2 – 1)P�n = n(n + 1) (Pn + 1 – Pn – 1),
which is known as Beltrami’s result.
9.11. Christoffel’s summation formula.

 Prove that ( ) ( ) ( )2 1
0

k P x P yk k
k

l

)
%

( =
l
x y

)
∃

1 {Pl + 1(x) Pl(y) – Pl(x) Pl + 1(y)}.

[Bilaspur 1997, Jodhpur 2004; Ravishankar 2000; Garhwal 2005]

Deduce that       ( ) ( ) { ( ) ( )}.2 1 1
1

0
1k P x l

x
P x P xk

k

l

l l) % )
∃

∃
%

)(
Sol. From recurrence relation I, we have

(2k + 1) xPk(x) = (k + 1)Pk + 1(x) + kPk – 1(x) ...(1)
and (2k + 1) yPk(y) = (k + 1)Pk + 1(y) + kPk – 1(y). ...(2)
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Multiplying (1) by Pk(y) and (2) by Pk(x) and then substracting, we get
(2k + 1) (x – y)Pk(x)Pk(y)
           = (k + 1) [Pk + 1(x)Pk(y) –Pk + 1(y) Pk(x)] – k[Pk – 1(x) Pk(y) – Pk – 1(y) Pk(x)]. ...(3)
Replacing k by 0, 1, 2, 3, ...., l – 1, l successively in (3) and adding the resulting equations, we

have (x – y) ( ) ( ) ( )2 1
0

k P x P yk k
k

l

)
%

( = (l + 1) [Pl + 1(x) Pl(y) –Pl + 1(y) Pl(x)]

or         ( ) ( ) ( )2 1
0

k P x P yk k
k

l

)
%

( =
l
x y

P x P y P y P xl l l l
)
∃

∃) )
1

1 1[ ( ) ( ) ( ) ( )] . ...(4)

Deduction. Replace y by 1 in (4) and use Pl(1) = Pl + 1(1) = Pk(1) = 1 to get the required result.
9.12. Christoffel’s expansion. To show that       P�n = (2n – 1)Pn – 1 – (2n – 5)Pn – 3
+ (2n – 9)Pn – 5 + ...., the last terms of the series being 3P1 or P0 according as n is even or odd.

or Pn�(x) = ( ) ( ),
( )

2 4 1 2 1
0

11
2

n r P xn r
r

n

∃ ∃ ∃ ∃
%

∃

(      where 1
2 1( )n ∃ =

( ) / ,
( ) / ,
n n
n n

∃
∃

1 2
2 2

if is even
if is odd{

Sol. Replacing n by n – 1 in recurrence relation 1 1(2 1) ,n n nn P P P) ∃� �) % ∃ we have
P�n = (2n – 1)Pn – 1 + P�n – 2

. ...(1)
Case I. Let n be even, Replacing n by n, n – 2, n – 4, ..., 4, 2, successively in (1) and using the

fact that P0 = 1 and P�0 = 0, we get
       P�n = (2n – 1)Pn – 1 + P�n – 2,

P�n – 2 = (2n – 5)Pn – 3 + P�n – 4,
P�n – 1 = (2n – 9) Pn – 5 + P�n – 6,
.... ....   ....   ....
      P�4 = 7P3 + P�2

and       P�2 = 3P1 + P�0
Adding these and simplifying,      P�n = (2n – 1)Pn – 1 + (2n – 5)Pn – 3 + ... + 3P1. ...(2)
Case II. Let n is odd. Replacing n by n, n – 2, n – 4, ..., 5, 3 successively in (1) and using the

fact that P1(x) = x, P0 = 1 so that P�1 = 1 = P0, we get
   P�n = (2n – 1)Pn – 1 + P�n – 2
P�n – 2 = (2n – 5)Pn – 3 + P�n – 4
P�n – 4 = (2n – 9)Pn – 5 + P�n – 6
... .... .... ....
... .... .... ....
P5� = 9P4 + P�3

and P3� = 5P2 + P�1 = 5P2 + P0.
Adding these and simplifying, we get         P�n = (2n – 1)Pn – 1 + (2n– 5)Pn – 3 + ... + 5P2 + P0. ...(3)

Combining (2) and (3), we have P�n(x) = ( ) ( )
( )

2 4 1 2 1
0

11
2

n r P xn r
r

n

∃ ∃ ∃ ∃
%

∃

( .

9.13. Solved examples based on Art. 9.8 and 9.9
Ex. 1. If Pn(x) is a Legendre polynomial of degree n and Υ is such that Pn(Υ) = 0. Show that

Pn – 1(Υ) and Pn + 1(Υ) are of opposite signs.          [Purvanchal 2006]
Sol. From recurrence relation I,    (2n + 1) xPn(x) = (n + 1)Pn + 1(x) + nPn – 1(x).     ...(1)
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Given that Pn(Υ) = 0. ... (2)
Putting x = Υ in (1) and using (2), (2n + 1) Υ . 0 = (n + 1)Pn + 1(Υ) + nPn – 1(Υ)

or P
P

n
n

n

n

)

∃
% ∃

)
1

1 1
( )
( )
Υ
Υ

. ...(3)

Since n is a positive integer, so R.H.S. of (3) is negative. Hence (3) shows that Pn + 1(Υ) and
Pn – 1(Υ) must be of opposite signs.

Ex. 2. Prove that P�n + 1 + P�n = P0 + 3P1 + ... + (2n + 1)Pn.

or ( ) ( )2 1
0

r P xr
r

n

)
%
( = P�n + 1(x) + P�n(x). [Meerut 1993]

Sol. From recurrence relation III, we have         (2n + 1)Pn = P�n + 1 – P�n – 1. ...(1)
Replacing n by 1, 2, ...n – 1, n successively in (!), we get

 3P1 = P�2 – P�0,
 5P2 = P�3 – P�1,
 7P3 = P�4 – P�2,
... .... ....
... ... ...

(2n – 1)Pn – 1 = P�n – P�n – 2
and    (2n + 1)Pn  = P�n + 1 – P�n – 1.

Adding these and noting that in the sum of right hand sides all the terms cancel except the
first two of the second column and the last two of the first column, we get

3P1 + 5P2 + 7P3 + ... + (2n + 1)Pn = –P0� – P1� + Pn� + P�n + 1. ...(2)
Since P0 = 1 and P1 = x, we have P0� = 0 and P1� = 1 = P0. Using these results in (2), we have

3P1 + 5P2 + 7P3 + ... + (2n + 1)Pn = 0 – P0 + Pn� + P�n + 1
or    P0 + 3P1 + 5P2 + ...+ (2n + 1)Pn = P�n + P�n + 1

or     ( ) ( )2 1
0

r P xr
r

n

)
%
( = P�n(x) + P�n + 1(x).

Ex. 3. Prove that (i) c + P dxnz = (Pn + 1 – Pn – 1) /(2n + 1).

(ii) P dxnx

1z = (Pn – 1 – Pn + 1) /(2n + 1).

Sol. From recurrence relations III, we have

(2n + 1)Pn = P�n + 1 – P�n – 1 or        Pn = 1
2 1n

d
dx)

(Pn + 1 – Pn – 1).  ...(1)

(i) Integrating (1), c + P dxnz = (Pn + 1 – Pn – 1)/(2n + 1), c being an arbitrary constant

(ii) Integrating both sides of (1) w.r.t. ‘x’ between limits of x to 1, we get

   P x dxn
x

( )
1z  = 1

2 1 1 1
1

n
P x P xn n x)

∃) ∃( ) ( ) = 1
2 1n )

[Pn + 1(1) – Pn – 1(1) – {Pn + 1(x) – Pn – 1(x)}]

       = {Pn – 1(x) – Pn + 1(x)}/(2n + 1), as Pn + 1(1) = Pn – 1(1) = 1.
Ex. 4. Prove that P0

2 + 3P2
1 + 5P2

2 + ..... + (2n + 1)Pn
2

 = (n + 1)[Pn(x) P�n + 1(x) – Pn + 1 (x) P�n(x)] = (n + 1)2 [{Pn(x)}2 + (1 – x2) {P�n(x)}2.
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Sol. From Christoffel’s summation formula (Refer Art 9.11), we have

(x – y) ( ) ( ) ( )2 1
0

r P x P yr r
r

n

)
%
( = (n + 1)[Pn + 1(x) Pn(y) – Pn + 1(y) Pn(x)]. ...(1)

Putting y = x + h, where h is a small quantity in (1), we obtain

– h ( ) ( ) ( )2 1
0

r P x P x hr r
r

n

) )
%
( = (n + 1)[Pn + 1(x) Pn(x + h) – Pn + 1(x + h) Pn(x)].

Expanding by Taylor’s theorem on both sides, we have

– h ( ) ( ) { ( ) ( ) . .. .}2 1
0

r P x P x h P xr
r

n

r r) ) � )
%

(

= (n + 1)[Pn + 1(x) {Pn(x) + hP�n(x) + h
2

2 ! P!n(x) + ....}–Pn(x) {Pn + 1(x) + hP�n + 1(x) + h
2

2 ! P!n + 1(x) + ....}]

= –h(n + 1) [{Pn(x) P�n + 1(x) – P�n(x) Pn + 1(x)} + terms containing h]

or   ( ) ( ){ ( ) ( ) ....}2 1
0

r P x P x h P xr
r

n

r r) ) � )
%
( = (n + 1) [Pn(x) P�n + 1(x) – P�n(x) Pn + 1(x)} + terms containing h].

Taking limit on both sides as h ς 0, we obtain

( ) [ ( )]2 1 2

0
r P xr

r
)

%

#

( = (n + 1) [Pn(x)P�n + 1(x) – P�n(x) Pn + 1(x)]

or  P0
2(x) + 3P1

2(x) + 5P2
2(x) + ..... + (2n + 1) P2

n(x)= (n + 1) [Pn(x) P�n + 1(x) – P�n(x) Pn + 1(x)] ...(2)
Now, (n + 1)2 {Pn(x)}2 + (1 – x2) {P�n(x)}2

= (n + 1)Pn(x) [(n + 1)Pn(x)] + P�n(x) {(1 – x2) P�n(x)}
= (n + 1)Pn(x) [P�n + 1(x) – xP�n(x)] + P�n(x) [(n + 1) {xPn(x) – Pn + 1(x)}]

(Using recurrence formulas IV and VI)
Thus, (n + 1)2 {Pn(x)}2 + (1 – x2) {P�n(x)}2 = (n + 1) [Pn(x)P�n + 1(x) – Pn + 1(x)P�n(x)] ...(3)
From (2) and (3), we have

P0
2(x) + 3P1

2(x) + ... + (2n + 1) Pn
2(x) = (n +1)2 {Pn(x)}2 + (1 – x2) {P�n(x)}2.

Ex. 5. Evaluate : (i) P x dx nn( ) ,
0

1z when is odd. [Jiwaji 2004]

(ii) P x dx n venn( ) ,
0

1z when is e . [Gulbarga 2005]

Sol. (i) From recurrence relation III, we have (2n + 1)Pn = P�n + 1 – P�n – 1

or Pn(x) = 1
2 1 1 1n

d
dx

P x P xn n)
∃) ∃[ ( ) ( )].

Integrating both sides w.r.t. ‘x’ from 0 to 1, we get

P x dxn( )
0

1z = 1
2 1 1 1 0

1

n
P x P xn n)

∃) ∃( ) ( ) = 1
2 1

1 1 0 01 1 1 1n
P P P Pn n n n)

∃ ∃ )) ∃ ) ∃( ) ( ) ( ) ( ) ....(1)

But Pn + 1(1) = 1, Pn – 1(1) = 1 and P2l (0) = ( ) ( ) !
( !)

∃1
2

2
2 2

l

l
l

l
. ...(2)

Since n is odd, n – 1 and n + 1 are both even. Taking 2l = n – 1, i.e.,  l = (n – 1)/2 in (2),
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we have Pn – 1(0) = ( ) ( ) !
[{ ( )}!]

( )/∃ ∃
∃

∃

∃
1
2

1
1

1 2

1 1
2

2

n

n
n
n

. ...(3)

Next, taking 2l = n + 1 i.e. l = (n +1)/2 in (2), we have

Pn + 1(0) = ( ) ( ) !
[{ ( )}!]

( )/∃ )
)

)

)
1
2

1
1

1 2

1 1
2

2

n

n
n
n

=
( 1) / 2

2
2 1

( 1) ( 1) ( 1) !

1 12 2
2 2 2

!

n

n

n n n

n n n

∃

∃

∃ ) ∃
∃

+ ) ∃ ,Ε Φ∗ ∗ Γ Η− .Ι ϑ/ 0
∗

. ...(4)

Using (2), (3) and (4) in (1), we have

P x dxn( )
0

1z = 1
2 1

1
2

1
1

2
1

1
1 2

1 2n
n
n

n
n

n

n)
1 ∃ 1 ∃

∃FH IK
L
NM

O
QP

∃
)L

NM
O
QP

∃

∃
( ) ( )!

!

( )/

= 
( 1) / 2( 1) ( 1)!

1 1 12 ! !
2 2 2 2 2 2

n

n

n
n n n

∃∃ ∃
Ε Φ Ε Φ Ε Φ) ∃ ∃Γ Η Γ Η Γ ΗΙ ϑ Ι ϑ Ι ϑ

=
( 1) / 2( 1) ( 1)!

1 12 ! !
2 2 2 2

n

n

n
n n

∃∃ ∃
Ε Φ Ε Φ) ∃Γ Η Γ ΗΙ ϑ Ι ϑ

 [� (p + 1) p ! = (p + 1)!]

Part (ii). Proceed upto equation (1) as in part (i). Since n is even, n – 1 and n + 1 are both

odd and so   1 1 1 1(0) 0, (0) 0, (1) 0 and (1) 0n n n nP P P P∃ ) ) ∃% % % %      ...(5)

Making use of (5), (1) reduces to P x dxn( )
0

1z = 0, when n is even.

Ex. 6. Prove that x P x P x dxn n( ) ( )
∃

∃z 1

1

1 = 2
4 12

n
n ∃

.

[Purvanchal 2007; Gulbarga 2005; Sagar 2004; Kanpur 2007]

Sol. From recurrence relation I,    xPn(x) = n
n

P x n
n

P xn n
)
)

)
)) ∃

1
2 1 2 11 1( ) ( ). ...(1)

Multiplying both sides of (1) by Pn – 1(x) and then integrating w.r.t. x from –1 to 1, we get

x P x P x dxn n( ) ( )
∃

∃z 1

1

1 = n
n

P x P x dxn n
)
) )

∃
∃z1

2 1 1
1

1
1( ) ( ) )

) ∃
∃zn

n
P x dxn2 1 1

2

1

1
[ ( )] . ...(2)

But, P x P x dx if m n
n if m nm n( ) ( ) ,

/ ( ),∃z % ∋
) %1

1 0
2 2 1{ ...(3)

Making use of (3), (2) becomes

xP x P x dxn n( ) ( )∃
∃z 1

1

1
= 0

2 1
2

2 1 1
)

)
1

∃ )
n

n n( )
= 2

2 2or .
(2 1)(2 1) 4 1

n n
n n n) ∃ ∃

Ex. 7. Prove that ( ) .1 2

1

1
∃

∃z x P' P ' dxl m   =
0
2 1
2 1

,
( ) ,
if l m

l l
l

if l m
∋

)
)

%
R
S|
T|

Or Prove that 
1 2

1

2 ( 1)(1 )
2 1l m lm
l lx P' P' dx

l∃

)
∃ % Θ

)> ,     where     Θlm =
0
1

,
,

if l m
if l m

∋
%{

[Indore 2004; Purvanchal 2004; Ravishakar 2005]
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Sol. Case I. Let l ∋ m. Then integrating by parts, we have

[( ) ]1 2

1

1
∃

∃z x P' P ' dxl m = ( ) .1 2
1

1
∃

∃
x P' Pl m –

1 2

1
[(1 ) 2 ]l l mx P x P P

∃
�� �∃ ∃> dx =  – [( ) ]1 22

1

1
∃ ∃

∃z x P" x P' P dxl l m . ...(1)

    Since Pl satisfies Legendre’s equation (1 – x2)y! – 2xy� + l(l + 1)y = 0, hence
2(1 ) 2 ( 1) 0l l lx P xP l l P�� �∃ ∃ ) ) %              or          2(1 ) 2 ( 1)l l lx P xP l l P�� �∃ ∃ % ∃ ) .      ...(2)

But P P dxl m
∃z 1

1
= 0, if l ∋ m ...(3)

Using (2), (1) reduces to

( )1 2

1

1
∃

∃z x P' P ' dxl m = l(l + 1) P P dxl m
∃z 1

1
= 0, using (3). ...(4)

Case II. Let l = m. Then the required result takes the form

( ) ( ) ( )1 2 1
2 1

2 2

1

1
∃ % )

)∃z x P' dx l l
ll

.  [Agra 2010] ...(5)

We have, by using integration by parts,

( ) ( )1 2 2

1

1
∃

∃z x P' dxl = [( ) ] .1 2

1

1
∃

∃z x P' P' dxl l

     = ( ) ( )1 1 22
1

1 2

1

1
∃ ∃ ∃ ∃

∃ ∃zx P' P x P" xP' P dxl l l l l = 0 + l(l + 1) ( )P dxl
2

1

1

∃z , using (2)

     = l(l + 1) . 2
2 1l )

=
2 1
2 1
l l
l
( ))

)
.

Combining (4) and (5) and using symbol Θlm, we get ( )1 2

1

1
∃ � �

∃z x P P dxl m = 2 1
2 1
l l
l
( ))

)
Θlm.

Ex. 8. Prove that (2n + 1) (x2 – 1)P�n = n(n + 1) (Pn + 1 – Pn – 1)

and hence prove that ( )x P P dxn n
2

1
1

1
1∃ �)

∃z =
2 1

2 1 2 3
n n

n n
( )

( ) ( )
)

) )
       [Agra 2009; Nagpur 2010]

Sol. Refer Art. 9.10 to show that  (2n + 1) (x2 – 1) = n(n + 1) (Pn + 1 – Pn – 1). ...(1)

From (1),        (x2 – 1)P�n =
n n

n
P Pn n

( ) ( ))
)

∃) ∃
1

2 1 1 1 . ...(2)

Multiplying both sides of (2) by Pn + 1 and then integrating w.r.t. x from   –1 to 1, we have

   ( )x P P' dxn n
2

11

1
1∃ )

∃z =
n n

n
P P P dxn n n

( ) ( ))
)

∃)
∃

) ∃z1
2 1 1

1

1
1 1 = n n

n
P dx P P dxn n n

( ))
)

∃L
NM

O
QP) )

∃
∃

∃ zz1
2 1 1

2
1

1

1

1
1

1
...(3)

But P P dx if m n
n n if m nm n % ∋

) %∃z 1

1 0
2 1

,
/ ( ),{ ...(4)

Using (4), (3) reduces to

      ( )x P P' dxn n
2

11

1
1∃ )

∃z =
n n

n n
( )

( )
)
) ) )

∃L
NM

O
QP

1
2 1

2
2 1 1

0 =
2 1

2 1 2 3
n n

n n
( )

( ) ( )
)

) )

Ex. 9. (a). Show that x P x P x dxn n
2

1 1
1

1

) )
∃z ( ) ( ) =

2 1
2 1 2 1 2 3

n n
n n n

( )
( ) ( ) ( )

)
∃ ) )

[Kanpur 2007, 08]
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(b) Deduce the value of x P x P x dxn n
2

1 1
0

1

) )z ( ) ( ) . i.e., prove that x P x P x dxn n
2

1 10

1

) )z ( ) ( ) = n n
n n

( )
( ) ( )

)
∃ )

1
4 1 2 32 .

Sol. (a) From recurrence relation I, (2n – 1)xPn – 1 = nPn + (n – 1)Pn – 2. ...(1)
Replacing n by n + 2 in (1),            (2n + 3)xPn + 1 = (n + 2)Pn + 2 + (n + 1)Pn. ...(2)
Multiplying the corresponding sides of (1) and (2), we get

(2n – 1) (2n + 3)x2 Pn – 1Pn + 1 = n(n + 1)Pn
2 + n(n + 2)Pn + 2 Pn

+ (n – 1) (n + 2)Pn – 2 Pn + 2 + (n – 1) (n + 1)Pn – 2 Pn.   ...(3)

Also, P P dxm n
∃z 1

1
=

0
2 2 1
,
/ ( ),
if

if
m n
n m n

∋
) %{ ...(4)

Integrating (3) w.r.t. ‘x’ from –1 to 1 and using (4), we get

(2n – 1) (2n + 3) x P x P dxn n
2

1 1
1

1

∃ )
∃z ( ) = n n

n
( ) .)

)
) )1 2

2 1
0 0

or x P x P dx n n
n n nn n

2
1 11

1 2 1
2 3 2 1 2 1∃ )

∃z % )
) ∃ )

( ) ( ).
( ) ( ) ( )

...(5)

Part (b). Deduction. Since Pn(x) is a polynomial of degree n, so x2Pn – 1(x) Pn + 1(x) is a
polynomial of degree 2 + (n – 1) + (n + 1) i.e. 2(n + 1). Since 2(n + 1) is even, we see that
x2Pn – 1 Pn + 1 is an even function of x and hence

x P x P dxn n
2

1 1
1

1

∃ )
∃z ( ) = 2 2

1 1
0

1
x P P dxn n∃ )z

or x P x P dxn n
2

1 1
0

1

∃ )z ( ) = 1
2

2
1 1

1

1
x P P dxn n∃ )

∃z = n n
n n

( )
( ) ( )

,)
) ∃

1
2 3 4 12  by (5).

Ex. 10. Prove that x P dxn
2 2

1

1

∃z = 1
8 2 1

3
4 2 1

1
8 2 3( ) ( ) ( )

.
n n n∃

)
)

)
)

Sol. From recurence relation I, (2n + 1)xPn = (n + 1)Pn + 1 + nPn – 1.
Squaring both sides, we have

       (2n + 1)2 x2Pn
2 = (n + 1)2P2

n + 1 + n2P2
n – 1 + 2n(n + 1)Pn + 1Pn – 1.   ...(1)

Also,       P P dxm n
∃z 1

1
= 0

2 2 1
,
/ ( ),
if

if
m n
n m n

∋
) %{ ...(2)

Integrating both sides of (1) w.r.t. ‘x’ between the limits –1 to 1 and using (2), we have

( )2 1 2 2 2

1

1
n x P dxn)

∃z = ( )
( ) ( )

n
n

n
n

)
) )

)
∃ )

)1 2
2 1 1

2
2 1 1

02 2

; x P dxn
2 2

1

1

∃z =
2

2 1
1

2 3 2 12

2

( )
( )

n
n
n

n
n)

)
)

)
∃

L
NM

O
QP

:

=
1 3 1

8(2 1) 4(2 1) 8(2 3)n n n
) )

∃ ) )
(on resolving into partial fractions)

Ex. 11. Prove that xPn� = nPn + (2n – 3)Pn – 2 + (2n – 7)Pn – 4 + ... and hence or otherwise

show that (a) x P P' dxn n
∃z 1

1
= (2n)/(2n + 1).

(b) x P P ' dxn m
∃z 1

1
= either  0  or  2  or  (2n)/(2n + 1).

Sol. From recurrence relation II, we have
xP�n = nPn + P�n – 1    or          xP�n – P�n – 1 = nPn.   ...(1)
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Again from recurrence relation III, we have
P�n + 1 = (2n + 1)Pn + P�n – 1    or           P�n + 1 – P�n – 1 = (2n + 1)Pn  ...(2)
Replacing n by n – 2, n – 4, n – 6, ... successively in (2), we get

P�n – 1 – P�n – 3 = (2n – 3)Pn – 2
P�n – 3 – P�n – 5 = (2n – 7)Pn – 4
.... .... .... ... ...(3)
... .... .... ...

Adding (1) and (3) and simplifying, we get
xP�n = nPn + (2n – 3)Pn – 2 + (2n – 7)Pn – 4 + .... ...(4)

Part (a). Multiplying both sides of (4) by Pn, we get
xPnP�n = nPn

2 + (2n – 3)Pn – 2Pn + (2n – 5)Pn – 4Pn + ... ...(5)

Also x P P dxm n
∃z 1

1
=

0
2 2 1
,
/ ( ),
if

if
m n
n m n

∋
) %{ . ...(6)

Integrating both sides of (5) w.r.t. x from –1 to 1 and using (6), we have

x P P' dxn n
∃z 1

1
= n

n
n

n
. ... .2

2 1
0 0 2

2 1)
) ) ) %

)
...(7)

Part (b). Replaing n by m in (4), we get
xP�m = mPm + (2m – 3)Pm – 2 + (2m – 7)Pm – 4 + ... ...(8)

Multiplying both sides of (8) by Pn, we get
xPnP�m = mPmPn + (2m – 3)Pm – 2Pn + (2m – 7)Pm – 4Pn + ... ...(9)

Integrating both sides of (9) w.r.t. ‘x’ from –1 to 1 and using (6), three cases arise:
Case I. When n is different from m, m – 2, m – 4, ... and so on. Then

x P P ' dxn m
∃z 1

1
= 0 + 0 + 0 + ... = 0.

Case II. When n = m. Then,      x P P' dxn n
∃z 1

1
=

2 20 0 ... .
2 1 2 1

nn
n n

∗ ) ) ) %
) )

Case III. When n = m – 2. Then n ∋ m, n ∋ (m – 4), n ∋ (m – 6), ... and so on. So we obtain

1

1

2 20 (2 3) [2( 2) 3]
2 1 2 1n mx P P ' dx m n

n n∃
% ) ∃ 1 % ) ∃ 1

) )>
2
2

n m
m n

% ∃+ ,
− .6 % )/ 0

�

         = (2n + 1) × 2
2 1n )

= 2.

Similarly we can prove that        x P P ' dxn m
∃z 1

1
= 2, when n = m – 4 or n = m – 6 etc.

Thus x P P ' dxn m
∃z 1

1
= 0 or 2      or 2

2 1
n

n )
.

Ex. 12. Prove that ( )P ' dxn
2

1

1

∃z = n(n + 1).

Sol. From Christoffel’s expansion, we get
P�n = (2n – 1)Pn – 1 + (2n – 5)Pn – 3 + (2n – 9)Pn – 5 + ... ...(1)

The last term on R.H.S. of (1) is 3P1 or P0 according as n is even or odd.
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But               (a + b + c + d + ....)2 = (a2 + b2 + c2 + ...) + 2&ab. ...(2)
Squaring both sides of (1) and using (2), we have
P�n

2 = (2n – 1)2P2
n – 1 + (2n – 5)2 P2

n – 3 + (2n – 9)2P2
n – 5 + ... + 32P1

2

+ 2&(2n – 1) (2n – 5)Pn – 1Pn – 3, if n is even ...(3A)
or  P�n

2= (2n – 1)2P2
n – 1 + (2n – 5)2P2

n – 3 + ... + P0
2

+ 2&(2n – 1) (2n – 5)Pn – 1Pn – 3, if n is odd ...(3B)

Also, P P dxm n
∃z 1

1
=

0
2 2 1
,
/ ( ),
if

if
m n
n m n

∋
) %{ . ...(4)

We consider two cases :
Case I. When n is even. Integrating both sides of (3A) w.r.t. ‘x’ from  –1 to 1 and using (4),

   ( )P ' dxn
2

1

1

∃z = 2 22 2(2 1) (2 5) ...
2( 1) 1 2( 3) 1

n n
n n

∃ ∗ ) ∃ ∗ )
∃ ) ∃ )

2 23 0 0 ...
2 1 1

) ) ) )
∗ )

  = 2[(2n – 1) + (2n – 5) + ... + 3]. ...(5)
Let m be the number of terms in A.P. on R.H.S. of (5). Then, we have

3 = (2n – 1) + (m – 1) × (–4) so that m = n/2.

But sum of A.P. = number of terms
2 (first term + last term)

; (2n – 1) + (2n – 5) + ... + 3 =
( / 2)

2
n

 (2n – 1 + 3) = 1
2 n(n + 1).

Hence (5) reduces to P' dxn
2

1

1

∃z = 2 × 1
2 n(n + 1) = n(n + 1).

Case II. When n is odd. Integrating both sides of (3B) w.r.t. ‘x’ from –1 to 1 ans using (4),

P' dxn
2

1

1

∃z =
2 22 2(2 1) (2 5)

2( 1) 1 2( 3) 1
n n

n n
∃ ∗ ) ∃ ∗ )

∃ ) ∃ )
2...

2 0 1
)

∗ )

= 2[(2n – 1) + (2n – 5) + .... + 1]. ...(6)
Let p be the number of terms in A.P. on R.H.S. of (6). Then, we have

1 = (2n – 1) + (p – 1) × (–4) so that p = (n + 1)/2.

As before,  (2n – 1) + (2n – 5) + .... + 1 =
{( 1) / 2}

2
n )

 (2n – 1 + 1) = 1
2 n(n + 1).

Hence (6) reduces to �
∃z P dxn

2
1

1
= 2 × 1

2 n (n + 1) = n(n + 1).

Thus for all values of n, we have         P' dxn
2

1

1

∃z = n(n + 1).

Ex. 13. Show that, when | z | < 1   and    | x | 3 1,

P x zx z dxn( ) ( ) /1 2 2 1 2

1

1
∃ ) ∃

∃z = (2zn)/(2n + 1). [Meerut 2005]

Sol. We know that    (1 – 2zx + z2)–1/2 = z P xn
n

n
( )

%

#

(
0

.

Multiplying both sides by Pn(x), we have

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



9.26 Legendre Polynomials

Pn(x). (1 – 2zx + z2)–1/2 = Pn(x) [P0(x) + zP1(x) + ... + znPn(x) + ...].
Integrating both sides w.r.t. ‘x’ between –1 to 1, we get

1 2 1/ 2

1
( ) (1 2 )nP x zx z dx∃

∃
∃ )> =

1 1
0 1

1 1
( ) ( ) ( ) ( ) ...n nP x P x dx z P x P x dx

∃ ∃
) )> >

+ 
1 12 1

1
1 1
[ ( )] ( ) ( ) ...n n

n n nz P x dx z P x P x dx)
)

∃ ∃
) )> > ...(1)

But    
1

1
( ) ( ) 0, ifm nP x P x dx m n

∃
% ∋> and 

1 2

1

2[ ( )] .
2 1nP x dx

n∃
%

)>  ...(2)

Using (2), (1) reduces to P x zx z dxn( ) ( ) /1 2 2 1 2

1

1
∃ ) ∃

∃z = 2
2 1

z
n

n

)
.

Ex. 14. Evaluate P x dx3
2

1

1
( )

∃z . [Nagpur 1995, 96]

Sol. Since
1 2

1
( )nP x dx

∃> = 2/(2n + 1), so P x dx3
2

1

1
( )

∃z = 2/(6 + 1) = 2/7.

EXERCISE 9 (B)

1. Evaluate (i) x P x dxn
2

1

1
( )

∃z       (ii) x P x P x dxn n( ) ( ))
∃z 1

1

1
       (iii) x P x dx3

4
1

1
( )

∃z .

Ans. (i) 0   (ii) 2(n + 1)/[(2n + 1) (2n + 3)]  (iii) 0.

2. Prove that ( )1 2

1

1
∃

∃z x P ' P ' dxm n = 0, if m ∋ n.

3. If un = x P x P x dxn n
∃

∃
∃z 1

1
1

1
( ) ( ) , show that nun + (n – 1)un – 1 = 2 and hence evaluate un.

Ans. un = 2/n, if n is even; un = 0 if n is odd

4. Prove that x P x P ' x dxn n( ) ( )
∃z 1

1
= 2

2 1
n

n )
.

5. Obtain the relation : 1( ) ( ) ( 1) ( )n n nxP x P x n P x)% ∃ )� � [Guwahati 2007]

9.14. Rodrigue’s formula. To show that Pn(x) = 1
2

12
n

n

n
n

n
d
dx

x
!

( )∃

[Punjab 2005; Purvanchal 2006; Gulbarga 2005; Ultak 2003; Nagpur 1996;
Meerut 2007, 11; Garhwal 2004; Bilaspur 1998; Bhopal 2004, 10; KU Kurukshetra 2005;

           Agra 2010; MDU Rohtak 2005; Kanpur 2008, 11; Ranchi 2010; Lucknow 2010]
Proof. By the definition of Legendre polynomial, we get

Pn(x) = ( ) ( ) !
! ( ) ! ( ) !

[ / ]

∃ ∃
∃ ∃

∃

%
( 1 2 2

2 2

2

0

2
r

n r

n
n

n n r x
r n r n r

. ...(1)

where     1
2 n =

n n
n n
/ ,

( ) / ,
2

1 2
if is even

if is odd∃{ ...(2)

Now, by binomial theorem,        (x2 – 1)n = n
r

n r r

r

n
n

r
r n r

r

n

C x C x( ) ( ) ( )2

0

2 2

0

1 1∃

%

∃

%

∃ % ∃( ( .
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;
21 ( 1)

2 !

n
n

n n
d x

n dx
∃ = 2 2

0

1 ( 1)
2 !

n n
n r n r

rn n
r

dC x
n dx

∃

%

∃
1 ( . ...(3)

But d
dx

x
n

n
m = 0 if m < n     and       d

dx
x

n

n
m = m

m n
x m nm n!

( ) !
,

∃
2∃ if ...(4)

; d
dx

x
n

n
n r2 2∃ = 0, if 2n – 2r < n,   i.e.,   r > n

2 . ...(5)

Making use of (5) in (3), we see that we must replace by if
r

n

r

n

% %
( (

0 0

2/
n is even and by if

r

n

%

∃
(

0

1 2( )/

n is odd. i.e. we must replace by .
r

n

r

n

% %
( (

0 0

2[ / ]
 Hence (3) reduces to

1
2

12
n

n

nn
d
dx

x
!

( )∃ =
[ / 2]

2 2

0

1 ( 1)
2 !

n n
n r n r

rn n
r

d
C x

n dx
∃

%

∃( =

[ /2]
2 2

0

1 (2 2 ) !( 1) ,
(2 2 ) !2 !

n
n r n r n

rn
r

n rC x
n r nn

∃ ∃

%

∃
∃

∃ ∃(  by (4)

=

[ / 2]
2

0

1 !( 1) (2 2 ) !.
! ( ) ! ( 2 ) !2 !

n r
n r

n
r

n n r x
r n r n rn

∃

%

∃ ∃
∃ ∃( = Pn(x), using (1).

9.15. Solved examples based on Art. 9.14.
Ex. 1. Using Rodrigue’s furmula, find values of P0(x), P1(x), P2(x) and P3(x).

[MDU Rohtak 2004; Bangalore 1995]

Sol. Rodrigue’s formula is given by Pn(x) = 21 ( 1) .
2 !

n
n

n n
d x

n dx
∃ ... (1)

Putting n = 0 in (1), P0(x) = 1
2 0

10
2 0

!
( )x ∃ = 1.

Putting n = 1 in (1), P1(x) = 1
2 1

11
2

. !
( )d

dx
x ∃ =

1
2 (2x) = x.

Putting n = 2 in (1), we have

P2(x) =
2

2 2
2 2

1 ( 1)
2 2!

d x
dx

∃
1

= 1
8

12 2d
dx

d
dx

x( )∃L
NM

O
QP = 21 2( 1) 2

8
d x x
dx

+ ,∃ 1/ 0 = 1
2

1
2

3 13 2d
dx

x x x( ) ( ).∃ % ∃

Putting n = 3 in (1), we have

P3(x) = 
3

2 3
3 3

1 ( 1)
2 3!

d x
dx

∃
1

= 1
48

1
2

2
2 3d

dx
d
dx

x( )∃L
NM

O
QP =

2
2 2

2
1 3( 1)
48

2d x
dx

x+ ,∃/ 01

=
2 21 ( 1)

8
d d x x
dx dx

+ ,∃− ./ 0
=

2 2 21 ( 1) 2( 1) 2
8

d x x x x
dx

+ ,∃ ) 1 ∃ 1/ 0 =
4 21 (5 6 1)

8
d x x
dx

1 ∃ )

=(1/8)× (20x3 – 12x) = (1/2) × (5x3 – 3x).
Ex. 2. If x > 1, show that Pn(x) < Pn + 1(x). [Garhwal 2005; Ravishankar 2000]
Sol. We are to prove Pn(x) < Pn + 1(x). ...(1)
Since x > 1, from Rodrigues’s formula, we find that Pn(x) > 0 for each value of n. We now

use the mathematical induction to prove (1).
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9.28 Legendre Polynomials

Now x > 1   6 1 < x   6 P0(x) < P1(x) [� P0(x) = 1 and P1(x) = x]
This implies that (1) is true for n = 0. Let (1) be true for n – 1. Then, we have

Pn – 1 < Pn so that Pn – 1/Pn < 1. ...(2)
From recurrence relation I, (2n + 1)xPn = (n + 1)Pn + 1 + nPn – 1

or ( )2 1
1

n x
n

)
)

=
P
P

n
n

P
P

n

n

n

n

) ∃)
)

1 1

1
        or    

P
P
n

n

) 1 = ( )2 1
1 1

1n x
n

n
n

P
P
n

n

)
)

∃
)

∃

or
P
P
n

n

) 1   >  2 1
1 1

n
n

n
n

)
)

∃
)

, using (2) and noting that x > 1

; Pn + 1/Pn > 1, so that Pn < Pn + 1 [� Pn > 0 for each n.]
This shows that (1) is true for n whenever (1) is true for n – 1. Hence (1) is true for each n

by induction.

Ex. 3. Prove that (i) P x dxn
∃z 1

1
( ) = 2, if n = 0 [Guwahati 2007]

     (ii) P x dxn
∃z 1

1
( ) = 0, if n 2 1.

Sol. (i) When n = 0,   Pn(x) = P0(x) = 1. Hence   P x dxn
∃z 1

1
( ) = dx

∃z 1

1
= 2.

Part (ii) Using Rodrigues’ formula, we have

   
1

1
( )nP x dx

∃> =
1 2

1

1 ( 1)
2 . !

n n
n D x dx

n ∃
∃> , where Dn Ω dn/dxn

               = 
11 2

1

1 ( 1)
2 !

n n
n D x
n

∃

∃
+ ,∃/ 0   =

11
1

1 {( 1) ( 1) }
2 !

n n n
n D x x

n
∃

∃
+ ,∃ )/ 0

= 1 1 2
1

1 ( 1) ( 1) ( 1) ( 1)
2 !

n n n n n n n
n D x x C D x D x

n
∃ ∃ ∃+ ∃ ∗ ) ) ∃ )/

11
1

... ( 1) ( 1)n n nx D x∃

∃
,) ) ∃ ∗ ) 0

[� By Leibnitz Theorem, Dn(uv) = Dnu . v + nC1D
n – 1 u. Dv + ... + u . Dnv]

= 1
2

1 1 1 1
1

1
n

n n

n
n x x n x x

. !
! ( ) ( ) ... ! ( ) ( )∃ ) ) ) ) ∃

∃

= 0 �D ax b a m
m n

ax bn m n m n( ) !
( ) !

( )) %
∃

)L
NM

O
QP

∃

Ex. 4. If m > n – 1 and n is a positive integer, prove that

x P x dxm
n( )

0

1z =
m m m m n

m n m n m n
( ) ( ) ... ( )

( ) ( ) ... ( )
∃ ∃ ∃ )

) ) ) ∃ ∃ )
1 2 2

1 1 3
Sol. Using Rodrigues’ formula, we have

x P x dxm
n( )

0

1z =
1 2

0

1 ( 1)
2 !

m n n
n x D x dx

n
∃> , where Dn Ω dn/dxn

= Ξ Χ 111 2 1 1 2
0 0

1 ( 1) ( 1)
2 !

m n n m n n
n x D x m x D x dx

n
∃ ∃ ∃+ ,∃ ∃ ∃− ./ 0> ...(1)

=
1 1 1 1 2

0

( 1) ( 1)
2 !

m n n
n

m x D x dx
n

∃ ∃∃
∃>

[� the first term in (1) vanishes on using Leibnitz theorem as shown in Ex. 3.]
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 = Ξ Χ
1 11 2 2

0

( 1) ( 1)
2 !

m n n
n

m x D x
n

∃ ∃∃ + ∃−/
– (m – 1) x D x dxm n n∃ ∃ ∃ O

QPz 2 2 2

0

1
1( )

 =
2 1 2 2 2

0

( 1) ( 1) ( 1)
2 !

m n n
n
m m x D x dx

n
∃ ∃∃ ∃

∃> ...(2)

[�  the first term is again zero as shown in Ex. 3.]

=
1 2

0

( 1) ( 1) ... ( 1) ( 1)
2 !

n
m n n

n
m m m n x x dx

n
∃∃ ∃ ∃ )

∃> , on continuing the similar steps n – 2 times more

=
1 2

0

( 1) ( 1) ... ( 1) ( 1) (1 )
2 !

n
m n n n

n
m m m n x x dx

n
∃∃ ∃ ∃ )

∃ ∃>

=
1 1/ 2

1/ 20

( 1) ... ( 1) ( ) (1 )
2 ! 2

m n n
n

m m m n dtt t
n t

∃∃ ∃ )
∃> , taking 2

1/ 2so that
2 2
dt dtx t dx
x t

% % %

=
1
2

1 ( 1)
1 0

( 1) ... ( 1) (1 )
2 !

m n n
n

m m m n t t dt
n

∃ ∃

)
∃ ∃ )

∃> =
1
2

1 ( 1) 1 ( 1) 1
1 0

( 1) ... ( 1) (1 )
2 !

m n n
n

m m m n t t dt
n

∃ ) ∃ ) ∃
)

∃ ∃ )
∃>

=
1

1 ( 1)
( 1) ... ( 1) 2

12 ! 1
2

n

m n n
m m m n

m nn n
)

∃ )Ε Φ≅ ≅ )Γ Η∃ ∃ ) Ι ϑ
∃ )Ε Φ≅ ) )Γ Η

Ι ϑ

    � t t dt B p q p q
p q

p q∃ ∃∃ % %
)

F
HG

I
KJz 1 1

0

1
1( ) ( , ) ( ) ( )

( )
≅ ≅
≅

= 1

1 . !
( 1) ... ( 1) 2

32 !
2

n

m n n
m m m n

m nn)

∃ )Ε Φ≅Γ Η∃ ∃ ) Ι ϑ
) )Ε Φ≅Γ Η

Ι ϑ

=
1

1( 1) ... ( 1)
2

1 1 1 12 . ...
2 2 2 2

n

m nm m m n

m n m n m n m n)

∃ )Ε Φ∃ ∃ ) ≅Γ Η
Ι ϑ

) ) ) ∃ ∃ ) ∃ )Ε Φ1 ≅Γ Η
Ι ϑ

[� ≅(p + 1) = p≅(p)]

=
m m m n

m n m n m n
( ) ... ( )

( ) ( ) ... ( )
∃ ∃ )

) ) ) ∃ ∃ )
1 1

1 1 1

Ex. 5. (i) If m < n, show that x P x dxm
n( )

∃z 1

1
= 0.

[Ranchi 2010, Ravishankar 2010, Kanpur 2011]
Deduce that  

1 4
6

1
( ) 0x P x dx

∃
%> [Meerut 2006]

(ii) Prove that
1

1
( )n

nx P x dx
∃> =

≅ ≅
≅

( / ) ( )
( / )

( !)
( ) !

1 2 1
2 3 2

2
2 1

1 2n
n

n
nn

n)
)

%
)

)
. [Kanpur 2006, 10]

Sol. (i) Using Rodrigues’ formula, we have
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x P x dxm
n ( )

∃z 1

1
=  

1 2

1

1 ( 1)
2 !

m n n
n x D x dx

n ∃
∃

∗ > , where Dn Ω dn/dxn

2 1 2 2 2

1

( 1) ( 1) ( 1) ,
2 !

m n n
n
m m x D x dx

n
∃ ∃

∃

∃ ∃
% ∃

∗ >  doing upto equation (2) as in Ex. 4

=
1 2

1

( 1) ( 1)....3 2 1 ( 1)
2 !

m
m m n m n

n
m m x D x dx

n
∃ ∃

∃

∃ ∃ ∗ ∗
1 ∃

∗ > ...(A)

(On continuing the similar steps m – 2 times more and noting that m < n)

=
11 2
11

( 1) ! ( 1)
2 !

m n m
n

n n m
m d d x dx

dxn dx

∃ ∃

∃ ∃∃

Ν Ρ∃ Ψ Ψ∃Ο Σ
∗ Ψ ΨΠ Τ

>

=
11

2
1

1

( 1) ! ( 1)
2 !

m n m
n

n n m
m d x
n dx

∃ ∃

∃ ∃
∃

+ ,∃
∃− .

∗ / 0
=

11
1

( 1) ! {( 1) ( 1) }
2 !

m
n m n n

n
m D x x

n
∃ ∃

∃

∃ + ,∃ ∗ )/ 0∗
= 0

[By using Leibnitiz theorem and simplifying as before]
Deduction : Taking m = 4 and n = 6 in the above result, we get the required result because

4 < 6 satisfies condition m < n.
Part (ii). Here m = n. So proceeding as above upto (A), we obtain

x P x dxn
n( )

∃z 1

1
=

1 2

1

( 1) ! ( 1)
2 !

n
n n n n n

n
n x D x dx

n
∃ ∃

∃

∃
∃> = ( ) ( )∃ ∃

∃z1
2

12

1

1n

n
nx dx =

( ) ( ) ( )∃ ∃ ∃
∃z1

2
1 1 2

1

1n

n
n nx dx

= 
1 2

0

1 (1 )
2

2 n
n x dx∃1 > =

1
2 1

2 1

0

2

n
n d∃

)z cos
/

8 8
=

, putting sin and cosx dx d% 8 % 8 8

= 
Ζ 91

2
1

( 1)1
2 32 2

2

n

n
n∃

≅ ) ≅
1

)Ε Φ≅Γ Η
Ι ϑ

,      as cos sin
/ p q d

p q

p q
8 8 8

≅ ≅

≅

=
%

)F
HG

I
KJ

)F
HG

I
KJ

) )F
HG

I
KJ

z
1

2
1

2

2 2
2

0

2

=
1 !

2 1 2 1 3 12 ...... .
2 2 2 2

n
n

n n
=

1
) ∃

∗ ∗ =
=

1! 2
(2 1) (2 1) ... 3 12

n

n
n

n n

)

1
) ∃ ∗

(� ≅(n + 1) = n !)

=
(2 ) (2 2) ... 4 22( !)

(2 1) (2 ) (2 1) (2 2) ... 4 3 2 1
n nn

n n n n
∃ ∗

1
) ∃ ∃ ∗ ∗ ∗

= 
(2 ) [2 ( 1)] ... (2 2) (2 1)2( !)

(2 1) !
n nn

n
∗ ∗ ∗ ∃ ∗ ∗ ∗

1
)

=
1 22 ! 2 ( !)2( !)

(2 1) ! (2 1) !

n nn nn
n n

)

1 %
) )

.

Ex. 6. Deduce from Rodrigue’s formula f x P x dxn( ) ( )
∃z 1

1
= ( )

!
( ) ( )( )∃ ∃

∃z1
2

12

1

1n

n
n n

n
x f x dx .

Sol. Using Rodrigue’s formula, we have
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f x P x dxn( ) ( )
∃z 1

1
= 1

2
12

1

1

n
n n n n n

n
f x D x D d dx

!
( ) ( ) , /∃ Ω

∃z where

= 1
2

11 2
1

1
n

n n

n
f x D x

!
( ) ( )∃

∃
∃L

NMn s ∃ � ∃ O
QP

∃

∃z f x D x dxn n( ) ( )1 2

1

1
1 ...(1)

(On integration by parts)

= ( )
!

( ) ( )∃ � ∃∃

∃z1
2

1
1

1 2

1

1

n
n n

n
f x D x dx

(the first term in (1) vanishes on using Leibnitz theorem as explained in Ex. 3)

= ( )
!

( ) ( )∃ � ∃L
NM

∃
∃

1
2

1
1

2 2
1

1
n

n n

n
f x D xn s ∃ �� ∃ O

QP
∃

∃z f x D x dxn n( ) ( )2 2

1

1
1  , on integration by parts again

= ( )
!

( ) ( )∃ �� ∃∃

∃z1
2

1
2

2 2

1

1

n
n n

n
f x D x dx (� the first term vanishes as shown in Ex. 3)

=
( )

!
( ) ( )( )∃ ∃∃

∃z1
2

12

1

1n

n
n n n n

n
f x D x dx , on continuing the similar steps n – 2 times more

= ( )
!

( ) ( )( )∃ ∃
∃z1

2
12

1

1n

n
n n

n
x f x dx .

Ex.7. Using Rodrigue’s formula, show that Pn(x) satisfies

2(1 ) ( ) ( 1) ( ) 0n n
d dx P x n n P x
dx dx

Ν Ρ∃ ) ) %Ο Σ
Π Τ

 [CDLU 2004]

Sol. Rodrigue’s formula is 21( ) ( 1)
2 !

% ∃
n

n
n n n

dP x x
n dx

... (1)

Let y = (x2 – 1)n ... (2)
Differentiating (2) w.r.t. ‘x’,   y1 = 2nx(x2 – 1)n–1   so that (x2 – 1)y1 = 2nx (x2 – 1)n

or (x2 – 1) y1 = 2nxy, using  (2) ... (3)
Differentiating (3) w.r.t. ‘x’, (x2 – 1)y2 + 2xy1 = 2n (xy1 + y)

or (x2 – 1) y2 + 2(1 – n)xy1 – 2ny = 0 ... (4)
Differentiating both sides of (4) w.r.t. ‘x’ n times, we have

Dn{(x2 – 1)y2} + 2(1 – n) Dn(xy1) – 2nDn (y) = 0, where /n n nD d dxΩ ... (5)
Using Leibnitz’ theorem, (5) yields

yn + 2 (x
2 – 1) + nC1 yn + 1(2x) + nC2 yn

. 2 + 2(1 – n) (yn + 1x  + nC1 1ny ∗ ) – 2nyn = 0
or (x2 – 1) yn + 2 + 2x yn + 1 + {n(n – 1) + 2n(1 – n) – 2n} yn = 0
or       (1 – x2) yn + 2 – 2x yn + 1 + n(n + 1) yn = 0

or Ξ Χ2
1(1 ) ( 1) 0n n

d x y n n y
dx )∃ ) ) %       or 2(1 ) ( 1) 0n

n
dyd x n n y

dx dx
Ν ΡΕ Φ∃ 1 ) ) %Ο ΣΓ Η

Ι ϑΠ Τ

or 2 2 2(1 ) ( 1) ( 1) ( 1) 0,
n n

n n
n n

d d d dx x n n x
dx dx dx dx

Ν ΡΕ ΦΨ Ψ∃ ∃ ) ) ∃ %Γ ΗΟ ΣΓ ΗΨ ΨΙ ϑΠ Τ
 using (2)

Dividing by 2nn! and using (1), we get 2{(1 ) ( )} ( 1) ( ) 0n n
d dx P x n n P x
dx dx

∃ ) ) %
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Ex. 8. Using Rodrigue’s formula, prove that

(i) Ζ 92

0

1(1 )
1

n n k
n kk

tt P c t
t

#

%

)Ε Φ∃ % &Γ Η∃Ι ϑ
(Ravishankar 1993)

(ii) (cosh ) 1nP u 2 (ii) | ( ) | 1nP x 2 , if   | | 1.x 2 (Bilaspur 1994)

Sol. (i) Rodrigues formula is given by 21( ) ( 1)
2 !

n
n

n n n
dP x x

n dx
% ∃ ... (1)

Let D Ω d/dx. Then (1) can be re-written as

Ξ Χ21 1( ) ( 1) ( 1) ( –1)
2 ! 2 !

n n n n n
n n nP x D x D x x

n n
% ∃ % )

or
0

1( ) ( 1) ( 1) ,
2 !

n
n n k n k n

n kn k
P x C D x D x

n
∃

%
% & ) ∃  by Leibnitz’s rule ... (2)

From Differential calcules, we know that        1!( ) ( )
( )!

n m m nmD ax b ax b a
m n

∃) % )
∃

... (3)

Using (3),            ( )! !( 1) ( 1) ( 1)
[ ( )]! !

n k n n n k kn nD x x x
n n k k

∃ ∃ ∃) % ) % )
∃ ∃

... (4)

and !( 1) ( 1)
( )!

k n n knD x x
n k

∃∃ % ∃
∃

... (5)

Using (4) and (5), (3) reduces to

0

1 ! !( ) ( 1) ( 1)
! ( )!2 !

n
n k n k

n kn k

n nP x C x x
k n kn

∃

%
% & ) ∃

∃   or     2

0

1 1( ) ( )
2 2

n k k
n

n k
k

x xP x C
∃#

%

∃ )Ε Φ Ε Φ% & Γ Η Γ Η
Ι ϑ Ι ϑ

... (6)

Put 1
1

tx
t

)
%

∃
     so that      21

1
tx
t

∃ %
∃

and         21
1

x
t

) %
∃

... (7)

Using (7), (6) reduces to

2

0

1 1( )
1 1 (1 )

n k
n

n k kk

t tP C
t t t

∃#

%

)Ε Φ Ε Φ% &Γ Η Γ Η∃ ∃ ∃Ι ϑ Ι ϑ
      or     2

0

1(1 ) ( )
1

n n k
n kk

tt P C t
t

#

%

)Ε Φ∃ % &Γ Η∃Ι ϑ
 ... (8)

(ii) Let 2tanh ,
2
ut % then 0t 2  and 1 cosh 1.

1
t u
t

)
% 2

∃

Hence (8) reduces to 2
0

(cosh ) (1 ) ( )
n

n n k
n kk

P u t C t∃

%
% ) & ... (9)

Since the first term on R.H.S. of (9) is 1 and all the subsequent terms are positive, hence (9)
yields (cosh ) 1,nP u 2 as required

(iii) Left as an exercise.
Ex. 9. Show that all the roots of Pn(x) = 0 are real and lie between –1 and 1.   (Bilaspur 1998)
Sol. Let      f(x) = (x2 – 1)n = (x – 1)n (x + 1)n. ...(1)
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From (1), we notice that f(x) vanishes for x =1 and x = –1, hence by *Rolle’s theorem, f �(x)
must vanish at least once for some value Υ of x lying between –1 and 1. Now, from (1), we have

f �(x) = n(x – 1)n – 1(x + 1)n + n(x – 1)n (x + 1)n – 1. ...(2)
(2) shows that f �(x) vanishes at x = 1 and x = –1. But we have just proved that f �(x) vanishes

at x = Υ, where –1 < Υ < 1. Hence applying Rolle’s theorem to function f � two times, we conclude
that f !(x) must vanish at x = [ such that –1 < [ < Υ and also at x = ∴ such that Υ < ∴ < 1.
Proceeding likewise we conclude that f (n)(x) = 0 must have n real roots lying between –1 and 1.

Using (1), Rodrigue’s formula gives

Pn(x) = 2 ( )1 1( 1) ( )
2 ! 2 !

n
n n

n n n
d x f n

n dx n
∃ % ∗

∗ ∗
. ...(3)

; f (n)(x) = 0 6 Pn(x) = 0,    by (3). ...(4)
Since f n(x) = 0 has n real roots lying between –1 and 1, so (4) shows that Pn(x) = 0 has n real

roots between –1 and 1.
Remarks. The roots of Pn(x) = 0 are also known as zeros of Pn(x).
Ex. 10. Prove that all the roots of Pn(x) are distinct.
Sol. If possible, let the roots of Pn(x) = 0 be not all different. Then at least two roots must be

equal. Let Υ be the repeated root, then from the theory of equations, we have
Pn(Υ) = 0 and P�n(Υ) = 0. ...(1)

Since Pn(x) satisfies Legendre’s equation,    (1 – x2)P!n – 2xP�n + n(n + 1)Pn = 0. ...(2)
Differentiating r times and using Leibnitz theorem, (2) gives

2 1
2

1 22 1(1 ) ( ) ( 2 ) ( ) ( 2) ( )
r r r

r r
n n nr r r

d d dx P x C x P x C P x
dx dx dx

) )

) )
∃ ) 1 ∃ 1 ) 1 ∃ 1

1

112 ( ) 1 ( ) ( 1) ( ) 0
r r r

r
n n nr r r

d d dx P x C P x n n P x
dx dx dx

)

)

+ ,
∃ ) 1 1 ) ) %− .

/ 0

or   ( ) ( ) ( ) ( )1 2 12
2

2 1

1

1∃ ∃ )
)

)

)

)
x d

dx
P x x C d

dx
P x

r

r n
r

r

r n –{2 × rC2 + 2 × rC1 – n(n + 1)} 
r

r
d
dx

Pn(x) = 0

....(3)
Putting r = 0 and x = Υ in (3) and using (1), we get

(1 – Υ2)P!n(Υ) – 0 – 0 = 0 or                   P!n(Υ) = 0.              ...(4)
Next, putting r = 1 and x = Υ in (3) and using (1) and (4), we get

(1 – Υ2)Pr!�(Υ) – 0 – 0 = 0 or P!�n(Υ) = 0.  ...(5)
Putting r = 2, 3, ...., n – 3, n – 2 in (3) and doing as above stepwise, we finally arrive at

Pn
(n)(Υ) = 0 i.e.       d

dx
P x

n

n n
x

( )L
NM

O
QP % Υ

= 0. ...(6)

But Pn(x) = 21 ( 1) ...
! 2(2 1)

3 5 ...(2 1) n nn nx x
n n

n ∃+ ,∃
∃ )− .∃/ 0

∗ ∗ ∃

; d
dx

P x
n

n n( ) =
1 3 5 ...(2 1) !

!
n n

n
∗ ∗ ∃

1 6   d
dx

P x
n

n n
x

( )
L
NMM

O
QPP % Υ

∋ 0. ...(7)

*Rolle’s theorem: If f(x) vanishes for x = a and x = b, then f �(x) vanishes at least once for
some value of x between a and b.
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Since (6) and (7) are contradictory results, it follows that our assumption about not distinct
roots of Pn(x) is absurd. Hence all the roots of Pn(x) = 0 must be distinct.

EXERCISE 9 (C)

1. Define Legendre’s differential equation and show that y = d
dx

n

n (x2 – 1)n satisfies it.

2. Using Rodrigue’s formula, prove that P�n + 1 – P�n – 1 = (2n + 1)Pn.

3. Show that Pn(x) = 1
2n

n

nn
d
dx!

(x2 – 1)n is a solution of the Legendre’s equation (1 – x2)y2

– 2xy1 + n(n + 1)y = 0, where n is +ve integer. Hence or otherwise show that
(i)  xP�n(x) – P�n – 1(x) = nPn(x). (ii) (2n + 1)xPn(x) = (n + 1)Pn + 1(x) + nPn – 1 (x).

4. Use Rodrigue’s formula to derive the orthogonal property for Pn(x) and show that

P x dxn
2

1

1
( )

∃z =
2

2 1n ) .

5. Prove that the function y = d
dx

n

n (x2 – 1)n satisfies the Legendre’s differential equation

(1 – x2)y! – 2xy� + n(n + 1)y = 0. Hence obtain Rodrigue’s formula for Legendre–polynomial Pn(x).

Using this formula prove that x P x dxm
n( )

∃z 1

1
= 0  for  m < n.

9.16. Legendre series for f(x) when f(x) is a polynomial.

Theorem (a). If f(x) is a polynomial of degree n, then f(x) = C P xr r
r

n

( ),
%
(

0
...(i)

where cr = Ζ 9
1

1
1/ 2 ( ) ( ) .rr f x P x dx

∃
) > ...(ii)

(b) If f(x) is even (or odd), only those Cr with even (or odd) suffixes are non–zero.
Proof (a). Since f(x) is a polynomial of degree n, we write

f(x) = anxn + an – 1x
n – 1 + .... + a1x + a0. ...(i)

Again, we know that Pn(x) is a polynomial of degree n of the form
Pn(x) = knxn + kn – 1x

n – 1 + ... + k1x + k0. ...(1)
Consider f(x) – (an/kn) Pn(x). Two cases may arise :
Case (i). f(x) – (an/kn)Pn(x) = 0 so that f(x) = (an/kn) Pn(x), which proves the required result (i).
Case (ii). f(x) – (an/kn) P(x) = gn – 1(x), gn – 1(x) being a polynomial of degree n – 1. Taking

cn = an/kn, we may write f(x) = cnPn(x) + gn – 1(x).    ...(3)
Taking gn – 1(x) in place of f(x) and proceeding as above, we have

gn – 1(x) = cn – 1Pn – 1(x) + gn – 2(x). ...(4)
Making use of (4), (3) may be re–written as   f(x) = cnP(x) + cn – 1Pn – 1(x) + gn – 2(x).    ...(5)
Making use of similar method for gn – 2(x) etc., we finally obtain (noting that P0(x) = 1).

f(x) = cnPn(x) + cn – 1Pn – 1(x) + ... + c1P1(x) + c0P0(x)

or f(x) = c P xr r
r

( )
%

#

(
0

. ...(6)

Since c P xr r
r

( )
%

#

(
0

= c P xs s
s

( )
%

#

(
0

, (6) gives          f(x) = c P xs s
s

( )
%

#

(
0

. ...(7)
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Multiplying both sides of (7) by Pr(x) and then integrating w.r.t. ‘x’ from –1 to 1, we have

f x P x dxr( ) ( )
∃z 1

1
= c P x P x dxs s r

s

n

( ) ( )
∃%
z( RST

UVW1

1

0
. ...(8)

But
1

1

0, if
( ) ( )

2 /(2 1), ifs r
r s

P x P x dx
r r s∃

∋Ν
% Ο ) %Π> ...(9)

Using (9), (8) reduces to f x P x dxr( ) ( )
∃z 1

1
=

2
2 1rc

r
1

)

so that cr = r f x P x dxr)
∃z1

2 1

1c h ( ) ( ) . ...(10)

Part (b). We now prove that if f(x) is even, only those cr with even suffixes are non–zero. We
know that Pr(x) is even when r is even, and odd when r is odd. Thus f(x) Pr(x) is even when r is

even and odd when r is odd. But, it is known that F x dx( )
∃z 1

1
= 0, if F(x) is odd. Hence (10) show

that cr = 0 if r is odd. Thus if r is even, only those cr with even suffixes are non–zero.
Similarly, we can prove that if f(x) is odd, only those cr with odd suffixes are non–zero.

9.17. Solved examples based on Art 9.16

Ex. 1. If f(x) is a polynomial of degree less than l, prove that      
1

1
( ) ( )lf x P x dx

∃> = 0.

Sol. Let f(x) be a polynomial of degree n such that n < l. Then we have (Do upto equation (6)

as explained in Art 9.16) f(x) = c P xr r
r

n

( )
%
(

0
Multiplying both sides by Pl(x) and then integrating from –1 to 1, we have

1

1
( ) ( )lf x P x dx

∃> =  c P x P x dxr r l
r

n

( ) ( )
∃%
z( RST

UVW1

1

0
. ...(A)

Since n < l, for each r = 0, 1, 2, ..., n we find that r ∋ l. But we know that

P x P x dxr l( ) ( )
∃z1

1
= 0   if    r ∋ l.

Hence (A) reduces to f x P x dxl( ) ( )
∃z 1

1
= 0.

Ex. 2. Expand f(x) = x2 in a series of the form &cr Pr(x)
Sol. Since x2 is a polynomial of degree two, from Legendre series, we have

x2 =
2

0

( )r r
r

c P x
%

( = c0P0(x) + c1P1(x) + c2P2(x), ...(1)

where cr = r x P x dxr)
∃z1

2
2

1

1c h ( ) . ...(2)

But P0(x) = 1,            P1(x) = x            and P2(x) = 1
2 (3x2 – 1).

...(3)
Putting r = 0, 1, 2 successively in (2) and using (3), we have

c0 = 1
2

2

1

1
1
2

3

1

1

3
1
3

x dx x
∃

∃
z %

L
NMM

O
QPP

% , c1 = 3
2

3

1

1
x dx

∃z = 0, c2 =
15 31 2 2 5

41
1

1 5 2
(3 1) 3 .

2 2 5 3 3
x x

x x dx
∃

∃

+ ,
1 ∃ % 1 ∃ %− .

/ 0
>

With the above values of c0, c1 and c2, (1) gives x3 = (1/3) × P0(x) + (2/3)× P2(x).
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Ex. 3. Expand x4 – 3x2 + x in a series of form &cr Pr(x).
Ans. x4 – 3x2 + x = –(4/5) × P0(x) + P1(x) – (10/7) × P2(x) + (8/35) × P4(x).

9.18. Expansion of function f(x) in a series of Legendre Polynomials.
Supposing the expansion of f(x) in a series of Legendre polynomials to be possible, we write

f(x) = c P xr r
r

( )
%

#

(
0

. ...(1)

But (1) may also be expressed as f(x) = c P xs s
s

( )
%

#

(
0

...(2)

where c0, c1, c2, ..... cr, ... are constants. Multiplying both sides of (2) by Pr(x) and then integrating
it w.r.t. ‘x’ from –1 to 1, we have

f x P x dxr( ) ( )
∃z 1

1
= c P x P x dxs r s

s

( ) ( )
∃

%

# z(RST
UVW1

1

0
. ...(3)

But
1

1

0, if
( ) ( )

2 /(2 1), ifr s
r s

P x P x dx
r r s∃

∋Ν
% Ο ) %Π> ...(4)

Using (4), (3) reduces to f x P x dxr( ) ( )
∃z 1

1
=

2
2 1rc

r
1

)
  6   cr = r f x P x dxr)FH IK ∃z1

2 1

1
( ) ( ) .

Remark 1. Fourier–Legendre expansion of f(x). If f(x) be defined from x = –1 to x = 1,
then

f(x) = c P xr r
r

( )
%

#

(
0

, where cr = r f x P x dxr)
∃z1

2 1

1c h ( ) ( ) .

Remark 2. Suppose that function f is continuous and has continuous derivatives in [–1, 1],
then we prove that series (1) converges uniformly in [–1, 1] and the series expansion (1) is unique.

Ex. 1. Expand f(x) in the form c P xr r
r

( )
%

#

(
0

,     wheree f(x) = 0 1 0
1 0 1

,
, .

where
where

∃ 7 7
7 7

x
x{

Sol.  Given that                           
0, if 1 0

( )
1, if 0 1

x
f x

x
∃ 7 7Ν

% Ο 7 7Π
... (1)

We know that f(x) = c P xr r
r

( )
%

#

(
0

, where ...(2)

cr = r f x P x dxr)
∃z1

2 1

1c h ( ) ( ) = 2 1
2 1

0

0

1r f x P x dx f x P x dxr r
) )L

NM
O
QP∃z z( ) ( ) ( ) ( )

;           cr =
2 1

2 0

1r P x dxr
) z ( ) , by (1) ...(3)

Putting r = 0, 1, 2, ... successively in (3), we get

c0 =
1
2

1
2

1 1
20

0

1

0

1
P x dx dx( ) ( )z z% % , c1 =

3
2

3
2

3
41

0

1

0

1
P x dx x dx( )z z% % ,
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c2 = 5
2

3 1
2

02
0

1 2

0

1
P x dx x dx( )z z% ∃ % ,      c3 = 7

2
7
2

5 2
2

7
163

0

1 2

0

1
P x dx x x dx( )z z% ∃ % ∃

and so on. Using these values in (2), we get
f(x) = (1/2) × P0(x) + (3/4) × P1(x) – (7/16) × P3(x) + ..... + crPr(x) + ...., where cr is given by (3)

EXERCISE 9 (D)
1. Expand f(x) in a series of Legendre polynomials, if

(i) f(x) = x, 0 < x < 1; f(x) = 0, –1 < x < 0. (ii)  f(x) = 0, –1 3 x < Υ; f(x) = 1, Υ < x 3 1.

(iii) f(x) = 1
2 , 0 < x < 1; f(x) =– 1

2 , –1 < x < 0.  (iv) f(x) = 2x + 1, 0 < x, 3 1; f(x) = 0, –1 3x < 0.
(v) Given f(x) = | x | for –1 3 x 3 1.

2. If f(x) = C P xr r
r

( )
%

#

(
0

, obtain Parseval’s identity             [ ( )]f x dx2

1

1

∃z =
C
r

r

r

2

0 2 1)%

#

(
and illustrate it by making use of f(x) = x4 – 3x2 + x.

3. Obtain the first three terms in the expansion of the following function f in terms of

Legendre’s polynomial:          f(x) = 0 1 0
0 1

,
, .
if
if

∃ 7 7
7 7

x
x x{

4 (a).  Express P(x) = x4 + 2x3 + 5x2 – x – 2 in terms of Legendre’s polynomials.
  (b).  Prove that x4 + 3x3 – x2 + 5x – 2 = – (31/15) × P0(x) + (34/5) × P1(x) – (2/21) × P2(x)

   – (6/5) × P3(x) + (8/35) × P4(x).
5. Prove that, for all x, (a) x2 = (1/3) × P0(x) + (2/3) × P2(x).

(b) x3 = (3/5) × P1(x) + (2/5) × P3(x).
(c) x4 = (1/5) × P0(x) + (4/7) × P2(x) + (8/35) × P4(x).
(d) x5 = (3/7) × P1(x) + (4/9) × P3(x) + (8/63) × P5(x).

6. Express f(x) = 4x3 + 6x2 + 7x + 2 in terms of Legendre’s polynomials. [Kanpur 2005]
7. Express f(x) = x4 + 2x3 – 2x2 – x – 3 in terms of Legendre’s polynomials.[Kanpur 2011]

ANSWERS

1.  (i) f(x) = (1/4) + (1/2) × P1(x) + (5/16) × P2(x) + ... + CrPr(x) + ... where Cr = r x P x dxr)FH IKz1
2 0

1
( ) .

(ii) f(x) = 1
2 (1 – Υ) – [ ( ) ( )] ( )P P P xr r r

r
) ∃

%

#

∃( 1 1
0

Υ Υ .

(iii) Cr = 0 if r is even, and Cr = ( )
( ) !

{( ) / }!{( ) / }!
/ `∃

) ∃

) ∃
∃1

1

2 1 2 1 2
1 2

1
2r

r
r r

r r

c h , if r is odd

(iv) f(x) = P0(x) + (7/4) × P1(x) + (5/8) × P2(x) – (7/16)P2(x) + ...

(v) f(x) = ( ) ( ) ( ) !
( ) ! ( ) !

( )∃ ) ∃
) ∃

)

%

#

( 1 4 1 2 2
2 1 1

1

2 2
0

n

n n
n

n n
n n

P x .

3. f(x) = – (1/4) × P0(x) + (1/6) × P1(x) + (1/16) × P2(x).
4 (a). P(x) = (8/35) × P4(x) + (4/5) × P3 (x) + (82/21) × P2(x) + (1/5) × P1(x) – (2/15) × P0(x).
6. f(x) = (8/5) × P3(x) + (32/5) × P2(x) + 7 P1(x) + 4P0(x).

9.19. Even and odd fuctions. An important observation.
(i) Even function. f is called an even function of x if f(–x) = f(x). Suppose an even function

f can be sum of a series of functions f1, f2, ..., fn, .... such that
f(x) = f1(x) + f2(x) + ... + fn(x) + ..... ....(1)
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Then all functions f1, f2, ..., fn must be even functions of x because if any of the above
function is not even, then f(–x) ∋ f(x) and so f ceases to be an even function.

(ii) Odd function. f is called an odd functions of x if f(–x) = –f(x). Suppose an odd function
f can be sum of a series as (1).

Then all the functions f1, f2, ..., fn must be odd functions of x because if any of the above
function is not odd, then f(–x) ∋ –f(x) and so f ceases to be an odd function.
9.20. Expansion of xn in Legendre’s polynomials. (Bilaspur 1994, 96)

Let xn = Cn Pn(x) + Cn – 2 Pn – 2 (x) + Cn – 4 Pn – 4(x)+ ... + Cr Pr(x) + ..., ...(1)
where Pn(x), Pn – 2(x), ... are all even or odd functions of x according as xn is an even or odd
function (Refer Art 9.19 for more details). Again Pn – 1(x), Pn – 3(x), ... cannot occur in the proposed
series (1) because they are odd or even functions of x according as xn is even or odd function x
respectively. Since Pn(x) contains terms of degree n and lower, hence the expansion (1) cannot
contain any P with suffix higher than n.

Multiplying both sides of (1) by Pm(x) and integrating between the limits –1 and 1, we have

x P x dx C P x dxn
m m m( ) [ ( )] ,

∃ ∃z z%
1

1 2

1

1
    as P x P x dxn m( ) ( )

∃z 1

1
=  

0, if,
2 /(2 1), if

m n
m m n

∋Ν
Ο ) %Π

or x P x dxn
m( )

∃z 1

1
=

2
2 1mC

m )
∗ or   Cm =

( ) ( )2 1
2 1

1m x P x dxn
m

)
∃z ...(2)

(2) 6 Cm = ( )
!

( )2 1
2

1
2

12

1

1m x
m

d
dx

x dxn
m

m

m
m) ∃

L
NMM

O
QPP∃z , by Rodrigue’s formula

= ( )
!

( )2 1
2

11
2

1

1m
m

x d
dx

x dxm
n

m

m
m) ∃L

NM
O
QP) ∃z = ( )

!
( ) ( )2 1

2
1 11

1

1
2

1

1
1

1

1
2

1

1m
m

x d
dx

x n x d
dx

x dxm
n

m

m
m n

m

m
m) ∃RST

UVW ∃ ∃
L
N
MM

O
Q
PP)

∃

∃
∃

∃
∃

∃∃z
(Integrating by parts taking xn as first function)

= ( ) ( )
!

( )∃ ) ∃RST
UVW)

∃
∃

∃∃z1 2 1
2

11
1

1

1
2

1

1m n
m

x d
dx

x dxm
n

m

m
m = ( ) ( )

!
( ) ( )∃ ) ∃ ∃RST

UVW)
∃

∃

∃∃z1 2 1
2

1 12
1

1
1

1
2

1

1m
m

n n x d
dx

x dxm
n

m

m
m

[Again Integrating by parts taking xn – 1 as first function and simplifying as before]

= ( ) ( )
!

( ) ... ( ) ( )∃ ) ∃ ∃ ) ∃)
∃

∃z1 2 1
2

1 1 11
2

1

1m
m

n m mm
m

n n n m x x dx

[Repeating the above process of integration by parts m – 2 times more]

= ( ) ( )
!

( ) ... ( ) ( ) ( )∃ ) ∃ ∃ ) ∃ ∃)
∃

∃z1 2 1
2

1 1 1 11
2

1

1m
m

m n m mm
m

n n n m x x dx

; Cm =
( )

!
( ) ( ) ... ( ) ( )2 1

2
1 2 1 11

2

1

1m
m

n n n n m x x dxm
n m m) ∃ ∃ ∃ ) ∃)

∃

∃z . ...(3)

In our discussion m can be one of integers n, n – 2, n – 4, ... only and hence (n – m) can be
one of the integers 0, 2, 4, 6, ... etc only. Hence xn – m (1 – x2)m is an even function of x.

; x x dxn m m∃

∃
∃z ( )1 2

1

1
= 2 1 2

0

1
x x dxn m m∃ ∃z ( ) . ...(4)

Using (4), (3) reduces to
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 Cm =
1 2

1 0

(2 1) ! . 2 (1 )
( ) !2 !

n m m
m
m n x x dx

n mm
∃

)
)

∗ ∃
∃ > = 

1 1 2
1 0

(2 1) ! (1 ) 2
( ) !2 !

n m m
m
m n x x xdx

n mm
∃ ∃

)
)

∗ ∃ ∗
∃ >

=
1 ( 1) / 2

1 0

(2 1) ! (1 )
( ) !2 !

n m m
m
m n t t dt

n mm
∃ ∃

)
)

∗ ∗ ∃
∃ > [Putting x2 = t and 2xdx = dt]

=
1 ( 1) / 2 1 ( 1) 1

1 0

(2 1) ! (1 )
( ) !2 !

n m m
m
m n t t dt

n mm
∃ ) ∃ ) ∃

)

)
∗ ∗ ∃ ∗

∃ >

= 1
(2 1) ! [( 1) / 2] ( )

( ) ! [( 1) / 2 ]2 !m
m n n m m

n m n m mm)

) ≅ ∃ ) ≅
∗ ∗

∃ ≅ ∃ ) )
  � B p t t dt p q

p q
q p q( , ( ) ( ) ( )

( )
) % ∃ ∃∃ %

)
L
NM

O
QPz 1 1

0

1
1 ≅ ≅

≅

= ( ) !
( ) !

2 1
2 1

m n
n mm
)

∃)
{( 1) / 2}

1 1 3 1 1....
2 2 2 2 2

n m
n m n m n m n m n m

≅ ∃ )
1

) ) ) ∃ ) ∃ ∃ ) ∃ )Ε Φ∗ ∗ ≅Γ Η
Ι ϑ

=
(2 1) ( 1) ( 2) ... ( 2) ( 1) ( ) !
( ) ! ( 1) ( 1) .... ( 3) ( 1)

m n n n n m n m n m
n m n m n m n m n m

) ∃ ∃ ∃ ) ∃ ) ∃
∗

∃ ) ) ) ∃ ∃ ) ∃ )
.

Thus, Cm =
n n n n m

n m n m n m
m( ) ( ) ... ( )

( ) ( ) .... ( )
( ).∃ ∃ ∃ )

) ) ) ∃ ∃ )
)1 2 2

1 1 3
2 1 ...(5)

Putting m = n, (n – 2), (n – 4), ... in (5), we obtain

   Cn =
( 1) ( 2) ... 3 2 !(2 1) (2 1)

(2 1) (2 1) . . 5 3 3 5 (2 1) (2 1)
n n n nn n

n n n n
∃ ∃ ∗

) % )
) ∃ ∗ ∗ ∗ ∃ )

,

Cn – 2 =
( 1) ... 5 4 ! (2 1)(2 3) (2 3)

(2 1) (2 3) . . 7 5 3 5 7 (2 1) (2 1) 2
n n n nn n

n n n n
∃ ∗ )

∃ % ∃
∃ ∃ ∗ ∗ ∗ ∗ ∃ )

,

Cn – 4 =
( 1) ... 7 6 6 7 . .. ( 1)(2 7) (2 7)

(2 3) (2 5) . . 9 7 7 9 ... (2 5) (2 3)
n n n nn n

n n n n
∃ ∗ ∗ ∃

∃ % ∃
∃ ∃ ∗ ∗ ∃ ∃

= 
2 3 4 5 6 7 ... ( 1) (2 1) (2 1) (2 7)
3 5 7 ... (2 1) (2 1) 2 . 4

n n n n n
n n

∗ ∗ ∗ ∗ ∗ ) ) ∃
∗ ∃

∗ ∗ ∃ )
= 

! (2 1) (2 1). (2 7)
3 5 7 ... (2 1) 2 . 4

n n n n
n

) ∃
∃

∗ ∗ )

and so on. Putting these values in (1), we have

xn = 2 4
! (2 1) (2 1)(2 1)(2 1) ( ) (2 3) ( ) (2 7) ( )

3 5 ... (2 1) 2 2 4n n n
n n n nn P x n P x n P x

n ∃ ∃
) ) ∃+ ) ) ∃ ∗ ) ∃−∗ ) ∗/

0
1... ( )

( 1)
P x

n
,

) ) .) 0
, if n is even ... 6(A)

and        
Ζ 9

2
2 1! (2 1) ( ) (2 3) ( )

3 5...(2 1) 2
n

n n
nnx n P x n P x

n ∃
)+

% ) ) ∃ ∗−∗ ) /

                             1
4

3 ( )(2 1) (2 1)(2 7) ( ) ... ,
2 4 ( 2)n

P xn n
n P x

n∃
,) ∃

) ∃ ) ) .∗ ) 0
 if n is odd ... 6 (B)
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To compute C0 and C1 it is convenient to use (2) as shown below. From (2), we have

C0 =
1
2

1
20

1

1

1

1
x P x dx x dxn n( )

∃ ∃z z% =
1

0

1 2
2

nx dx∗ > = n
n n

n )

)
L
NM

O
QP %

)

1

0

1

1
1

1.

[using the facts that P0 (x) = 1 and n is even for C0]

and        C1 =
1 1

1
1 1

3 2( )
2 3

n nx P x dx x x dx
∃ ∃

% ∗> > , as P1(x) = x

=
1 1

0

3 2
2

nx dx)∗ > , as n is odd so (n + 1) is even for C1

= 3
2

3
2

2

0

1
x
n n

n )

)
L
NM

O
QP %

)
.

Remark. The result of this article can also put in compact form

xn =
n n k P x

kn
n k

n kk

n! ( ) ( )
! ( / )

[ / ]

2
2 4 1

3 2
2

0

2 ∃ )
( ∃

∃%
, where            [n/2] = n n

n n
/ ,

( ) / ,
2
1 2

if is even
if is odd.∃{

and the symbol (Υ)n is defined as below (Υ)0 = 1,   (Υ)n = Υ(Υ + 1) (Υ + 2) ... (Υ + n – 1).
Corollary. Let f(x) = a0 + a1x + a2x

2 + .... + anxn + ....., where a0, a1, ..., an, ... are constants.
Then f(x) can be expanded in Legendre’s polynomials in the form

f(x) = C P xn nn
( ),

%

#
(

0
   where

Cn = 2
! ( 1) ( 2)

3 5 ...(2 1) 2(2 3)n n
n n na a

n n )
+ ) )

)−∗ ) )/
4

( 1) ( 2) ( 3) ( 4) ...
2 4 (2 3) (2 5) n

n n n n a
n n )

,) ) ) )
) ) .∗ 0∗ ) )

Proof. Given            f(x) = a0 + a1x + a2x
2 + ... + anxn + an + 1x

n + 1 + ... ...(7)

Assume that   f(x) = C P xn nn
( ).

%

#
(

0
...(8)

With help of formula (4), we replace every power of x in (7) by its expansion in terms of
Legendre’s polynomials and then we collect the terms involving Pn(x).

Clearly when xn, xn + 2, xn + 4, ... are expanded in terms of Legendre’s polynomials, each one
of them involves a term containing Pn(x). Again Pn(x) will not be involved in any expansion
containing power of x less than n. Thus, we see that only anxn, an + 2x

n + 2, an + 4x
n + 4, ... etc in (7)

will contain Pn(x). Now, using (6), we have

anxn = 4 5! (2 1) ( ) .......
3 5 ...(2 1)n n

na n P x
n

) )
∗ )

an + 2x
n + 2 = 2 2

( 2) ! (2 5)(2 5) ( ) (2 1) ( ) ...
3 5 ...(2 5) 2n n n

n na n P x n P x
n) )

) )+ ,) ) ) )− .) / 0∗

an + 4x
n + 4 = 4 4

( 4) ! (2 9) ( )
3 5 ...(2 9)n n

na n P x
n) )

) + )/∗ )

) ) )
)( ) ( ) ( )2 5 2 9

2 2n n P xn
(2 9) (2 7)(2 1) . ( ) ....

2 4 n
n nn P x

,) )
) ) ) .∗ 0
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Putting the above values in (7) and equating the coefficients of Pn(x) from (7) and (8),

Cn = 2
! ( 2) ! (2 1) (2 5)(2 1)

3 5 ...(2 1) 3 5 .. (2 5) 2n n
n n n nn a a

n n )
) ) )+ ,) ) − .∗ ) ∗ ) / 0

4
( 4) ! (2 9) (2 7)(2 1) ...

3 5 ...(2 9) 2 . 4 n
n n nn a

n )
+ ,) ) )

) ) ) )− .∗ ) / 0

or     Cn = 2
! ( 1) ( 2)

3 5 ...(2 1) 2(2 3)n n
n n na a

n n )
+ ) )

)−∗ ∃ )/
4

( 1) ( 2) ( 3) ( 4) ...
2 4 (2 3) (2 5) n

n n n n a
n n )

,) ) ) )
) ) .∗ ∗ ) ) 0

9.21. Solved examples based on Art 9.20
Ex. 1. Prove that for all x  (a) x4 = (8/35) × P4(x) + (4/7) × P2(x) + (1/5) × P0(x).

(b) x5 = (8/63) × P5(x) + (4/9) × P3(x) + (3/7) × P1(x).

Sol. We have, xn = 2
! (2 1)(2 1) ( ) (2 3) ( )

3 5 ... (2 1) 2n n
n nn P x n P x

n ∃
)+ ) ) ∃−∗ ) /

4
(2 1) (2 1)(2 7) ( ) ...

2 4 n
n nn P x∃

,) ∃
) ∃ ) .∗ 0

 ...(1)

(a) Putting n = 4 in (1), we have

x4 = 4 2 0 4 2 0
4 ! 9 9 7 8 4 19 ( ) 5 ( ) 1 ( ) ( ) ( ) ( )

3 5 7 9 2 2 4 35 7 5
P x P x P x P x P x P x∗+ ,) 1 ) 1 % ) )− .∗ ∗ ∗ ∗/ 0

(b) Putting n = 5 in (1), we have

x5 = 5 3 1 5 3 1
5 ! 11 11 9 8 4 311 7 ( ) 3 ( ) ( ) ( ) ( )

3 5 7 9 11 2 2 4 63 9 7
P P x P x P x P x P x

+ ,∗
) 1 ) 1 % ) )− .∗ ∗ ∗ ∗ ∗/ 0

Ex. 2. Prove (a) x2 = (1/3) × P0(x) + (2/3) × P1(x).       (b) x3 = (3/5) × P1(x) + (2/5) ×
P3(x).

Ex. 3. Express f(x) = x4 + 3x2 – x2 + 5x – 2 in terms of Legendre’s polynomials.
Sol. As in Ex. 1 and 2, prove yourself that
x4 = (8/35)P4(x) + (4/7)P2(x) + (1/5)P0(x), x3 = (3/5)P1(x) + (2/5)P3(x),
x2 = (1/3)P0(x) + (2/3)P1(x),      x = P1(x)     and         1 = P0(x).

;   f(x) = (8/35)P4(x)  +  (4/7)P2(x) +  (1/5)P0(x)  +  3[(3/5)P1(x)  +  (2/5)P3(x)]  –  [(1/3)P0(x)
                              + (2/3)P1(x)] + 5P1(x) – 2P0(x), on putting values of x4, x3, x2 , x and 1

= (8/35)P4(x) + (6/5)P3(x) + [(4/7) – (2/3)]P2(x) + (9/5 + 5)P1(x) + [(1/5) – (1/3) – 2]P0(x)
= (8/35)P4(x) + (6/5)P3(x) – (2/21)P2(x) + (34/5)P1(x) – (32/15)P0(x).

EXERCISE
Express the following polynomials in terms of Legendre polynomials :
1. x3 + 2x2 – x – 3 (KU Kurukshetra 2004)
2. 4x3 – 2x2 – 3x + 8 (KU Kurukshtra 2005)
3. x4 + 3x3 – x2 + 5x – 2
4. x4 + 2x3 – 5x2 – x – 2
5. 1 + x – x2 (Gulbarga 2005, Purvanchal 2004)
6.  5x3 + x [Agra 2007]
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9.42 Legendre Polynomials

ANSWERS
1. (2/5) × P3(x) + (4/3) × P2(x) – (2/5) × P1 (x) – (7/3) × P0(x)
2. (8/5) × P3(x) – (4/3) × P2(x) – (3/5) × P1(x) + (22/3) × P0(x)
3. (8/35) × P4(x) + (6/5) × P3(x) – (2/21) × P2(x) + (34/5) × P1(x) – (32/25) × P0(x)
4. (8/35) × P4(x) + (4/5) × P3(x) + (82/21) × P2(x) + (1/5) × P1(x) – (2/15) × P0(x)
5. (2/3) × P0(x) + (1/3) × P0(x)  6. 2P3(x) + 4 P1 (x)

MISCELLANEOUS EXAMPLES ON CHAPTER 9
1. Verify that the Legendre polynomise P4(x) = (35x3 – 30x2 + 3)/8 satisfies the Legendre

equation when the parameter n is equal to 4.

[Sol. The Legendre equation 2(1 ) 2 ( 1) 0x y xy n n y�� �∃ ∃ ) ) %  for n = 4 becomes

2(1 ) 2 20 0x y xy y�� �∃ ∃ ) % ... (1)

Let y = P4(x) = (35x4 – 30x2 + 3)/8 ... (2)

From (2), 3(35 15 ) / 2y x x� % ∃ and              2(105 15) / 2y x�� % ∃

Substituting the above value of ,y y�  and y��  in (1), we get
(1 – x2) × (1/2) × (105x2 – 15) – (2x) × (1/2) × (35x3 – 15x) + 20 × (1/8) × (35x4 – 15x2 + 3) = 0
or (–105/2 – 35 + 175/2)x4 + (105/2 + 15/2 + 15 – 75) x2 + (–15/2 + 15/2) = 0
or 0 = 0, which is true. Hence P4(x) is a solution of (1).]

2. Prove that 
0

(cos ) cos( 2 ) ,
p

n
n r

r
P C n r

%
8 % & ∃ 8  where p = n/2 or (n – 1)/2 according as n is

even or odd. Deduc that | (cos ) | 1nP 8 3

3. Prove that 
1

1

0, if
! ( / 2 / 2 1/ 2)( ) , if ( 0) is even

2 ( )! ( / 2 / 2 3 / 2)
0, if ( 0) is odd

m
n n

m n
m m nx P x dx m n
m n m n
m n

∃

Ν 7
Ψ

≅ ∃ )Ψ% ∃ 2Ο
∃ ≅ ) )Ψ

Ψ ∃ ]Π

>

4. If 
1

11
( ) ( ) ,n n n

dxU P x P x
x∃

∃
% >  show that (n + 1) Un + 1 + n Un = 2. Hence evaluate Un.

5. If R denotes the operator

2(1 ) ,d dx
dx dx

Ν Ρ∃Ο Σ
Π Τ

 then show that Ξ Χ
1 1

1 1
( ) ( ) ( 1) ( ) ( )n nP x R f x dx n n P x f x dx

∃ ∃
% ∃ )> >

provided that f(x) and ( )f x�  are finite at 1.x % Α  Deduce that 
1

1

2log(1 ) ( ) .
( 1)nx P x dx

n n∃
∃ % ∃

)>

6. If n is a positive integer, show that  
1 2 1/ 2

1

2( )(1 2 )
2 1

n

n
zP x xz z dx

n
∃

∃
∃ ) %

)>
and hence making use of Rodrigue’s formula, deduce that

2 1 21 2 2 1/ 2

1

2 ( !)(1 ) (1 2 )
(2 1)!

n
n n nx xz z dx

n

)
∃ ∃

∃
∃ ∃ ) %

)>
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From this result, deduce
1

1/ 21

( ) 2 2
2 1(1 )

nP x dx
nx∃

%
)∃>

7. Using Rodrigue’s formula show that
(i) Pn(–x) = (–1)n Pn(x)  (ii) Pn(1) = 1 (Bangalore 2005)

OBJECTIVE PROBLEMS IN CHAPTER 9
Ex 1. The value of (1/2nn!) × {d n(x2 – 1)n/dxn} is (a) 0 (b) 1 (c) Pn(x) (d) None of these.
Sol. Ans. (c) Refer Art. 9.14. [Agra 2005, 06]

Ex. 2. Let Pn(x) be the Legendre polynomial of degree 0.n 2  If 
10

10
0

1 ( ),n nn
x C P x

%
) % &  then

C5 equals : (a) 0 (b) 2/11 (c) 1 (d) 11/2 [GATE 2004]
Sol. Ans. (a) Refer theorem 9.16. Here f(x) = 1 + x10 is a polynomial of degree 10, which is

even. Hence, only those Cn with even suffuses are non-zero.

Ex. 3. Let ( )y x% ⊥  be a bounded solution for the equation 2(1 ) 2 30 0.x y xy y�� �∃ ∃ ) %

Then (a) 
1 3

1
( ) 0x x dx

∃
⊥ ∋>      (b) 

1 3 4

1
(1 ) ( ) 0x x x

∃
) ) ⊥ ∋>

    (c) 
1 3

1
( ) 0x x dx

∃
⊥ %> (d) 

1 2

1
( ) 0nx x dx

∃
⊥ %>  for all n_ N [GATE 2003]

Sol. Ans. (d) Re-writing given equation, 2(1 ) 2 5(5 1) 0x y xy y�� �∃ ∃ ) ) % ... (1)

Comparing (1) with 2(1 ) 2 ( 1) 0,x y xy n n y�� �∃ ∃ ) ) %  we find that (1) is Legendre equation

with n = 5. Since ( )x⊥  is a bounded solution of (1), we have 2 3
5( ) ( ) (63 70 15 ) / 8,x P x x x x⊥ % % ∃ )

by Art. 9.2. Since 2 ( )nx x⊥  is an odd function, conclusion (d) is true.
Ex. 4. Let Pn(x) denote the Legendre polynmial of degree n. If

, 1 0
( ) ,

0, 0 1
x x

f x
x

∃ 3 3Ν
% Ο 3 3Π

and f(x) = a0P0(x) + a1P1(x) + a2P2(x) + ..., then

(a) a0 = –1/4, a1 = –1/2       (b) a0 = –1/4, a1 = 1/2
(c) a0 = 1/2, a1 = –1/4      (d) a0 = –1/2, a1 = –1/4     (GATE

2005)

Sol. Ans. (b). Here 
0

( ) r r
r

f x a P
#

%
% & . Proceed exactly as in Ex. 1 of Art. 9.18 to get a0, a1.

PART II : ASSOCIATED LEGENDRE FUNCTIONS.
9.22. Associated Legendre Functions

Theorem. If z is a solution of Legendre equation    (1 – x2)y! – 2xy� + n(n + 1)y = 0     ...(1)

then to show that (1 – x2)m/2 d z
dx

m

m  is a solution of the equation

(1 – x2)y! – 2xy� + n n m
x

y( )) ∃
∃

RST
UVW %1

1
0

2

2 . ...(2)
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Proof. Since z is a solution of (1), we get ( ) ( )1 2 12
2

2∃ ∃ ) )x d z
dx

x dz
dx

n n z = 0.  ...(3)

Differentiation (3) m times with help of Leibnitz’ theorem, we have

d
dx

d z
dx

x d
dx

dz
dx

x n n d z
dx

m

m

m

m

m

m

2

2
21 2 1. ( ) ( ) ( )∃

L
NM

O
QP ) ∃L

NM
O
QP ) ) = 0

or   d z
dx

x C d z
dx

x C d z
dx

m

m
m

m

m
m

m

m

)

)

)

)∃ ) ∃ ) ∃
2

2
2

1

1

1 21 2 2( ) ( ) ( ) ) ∃ ) ∃ ) )
)

)
d z
dx

x C d z
dx

n n d z
dx

m

m
m

m

m

m

m

1

1 12 2 1( ) ( ) ( ) = 0

or ( ) ( )1 2 12
2

2

1

1∃ ∃ )
)

)

)

)x d z
dx

x m d z
dx

m

m

m

m  + {n(n + 1) – m(m – 1) – 2m} d z
dx

m

m = 0

or      ( ) ( ) { ( ) ( )}1 2 1 1 12
2

2

1

1∃ ∃ ) ) ) ∃ )
)

)

)

)x d z
dx

x m d z
dx

n n m m d z
dx

m

m

m

m

m

m = 0 ...(4)

Let u = dmz/dxm. ...(5)
Then (4) reduces to

  (1 – x2)u! – 2x(m + 1)u! + [n(n + 1) – m(m + 1)}u = 0. ...(6)
Let v = (1 – x2)m/2u ...(7)

so that u = (1 – x2)–m/2 v. ...(8)
From (8), u� = (1 – x2)–m/2 v� + (–m/2) × (1 – x2)–(m/2) – 1(–2x) v.

or u� = (1– x2)–m/2 v� + mvx(1 – x2)–(m/2) – 1.
From (9), u! = (1 – x2)–m/2 v! + (–m/2) × (1 – x2)(m/2) – 1 × (–2x) × v�

+ mvx{–(m/2) – 1} (1 – x2) –(m/2) – 1(–2x) + m(1 – x2)–(m/2) – 1(xv� + v). ...(10)
Substituting the values of u, u� and u! given by (8), (9) and (10) into (6), we have

(1 – x2)–(m/2) + 1v! + mx(1 – x2)–m/2 v� + mx2v(m + 2)(1 – x2)–(m/2) – 1 + mx(1 – x2)–m/2 v� + mv(1 – x2)–m/2

– 2(m + 1)x (1 – x2)–m/2v� –2m(m + 1) x2v(1 – x2)–m/2 – 1 + {n(n + 1) – m2 + m} (1 – x2)–m/2v = 0.
Dividing throughout by (1 – x2)–(m/2), the above equation becomes

2 2 2 2
2 2

2 ( 1) ( 2)(1 ) 2 ( 1) 0
1 1
m m m mx x n n m m x m x

x x
) )+ ,�� ��∃ ∃ ) ∃ ∃ ∃ ) ) %− .∃ ∃/ 0

v v v .

or 2 2 2(1 ) 2 { ( 1) /(1 )} 0x x n n m x�� �∃ ∃ ) ) ∃ ∃ %v v v ... (11)

Thus, using (11), (7) and (5), we get v = (1 – x2)m/2 u = (1 – x2)m/2 d z
dx

m

m

is a solution of (11) and hence it is solution of (2).
Remark 1. Equation (2) is called the associated Legendre equation. Since Pn(x) and Qn(x)

are solutions of (3), we conclude that

Pn
m(x) = (1 – x2)m/2 d

dx

m

m Pn(x) and Qn
m(x) = (1 – x2)m/2 d

dx

m

m Qn(x)

are solutions of (2). Pn
m(x) and Qn

m(x) are called the associated Legendre’s functions of degree n
and order m of the first and second kind respectively. Since these are independent solutions of (2),
the general solutions of (2) is y = APn

m(x) + BQn
m(x), where A and B are arbitrary constants.

Note that if m > n, Pn
m(x) = 0. The functions Qn

m(x) are unbounded for x = ±1.

Remark 2. For 0,m 2  we define 2 / 2( ) (1 ) ( ).
m

m m
n nm

dP x x P x
dx

% ∃
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Using Rodeigue’s formula this gives 2 / 2 21( ) (1 ) ( 1) , .
2 !

m n
m m n

n n m n
dP x x x

n dx

)

)
% ∃ ∃

where R.H.S.is well defined for negative values of m such that 0m n) 2 i.e., .m n2 ∃

Thus, we define

2 / 2

2 / 2 2

(1 ) ( ), for 0
( )

1(1 ) ( 1) , for .
2 !

m
m

nm
m

n m n
m n

n m n

dx P x m
dxP x

dx x m n
n dx

)

)

Ν
∃ 2Ψ

Ψ% Ο
Ψ ∃ ∃ 2ΨΠ

Corollary. To find the general solutions of the following equations:

(a) 2 2cot . { ( 1) / sin }n n m�� �� ) 8 � ) ) ∃ 8 �. ...(12)

(b) d
d

d
d

n n
8

8
8

8sin ( ) sin� �FH IK ) ) 1 = 0 ...(13A)

or        �! + cot 8. �� + n(n + 1)� = 0. ...(13B)

Proof. (a) Put cos 8 = α. Then, �� = d
d

d
d

d
d

d
d

�
8

�
α

α
8

8 �
α

% % ∃ sin . ...(14)

; d
d8 Ω ∃ sin .8

α
d

d
...(15)

Now using (14), �! = d
d

d
d

d
d

d
d8

�
8 8

8 �
α

FH IK % ∃ F
HG

I
KJsin = ∃ ∃ F

HG
I
KJcos sin8 �

α
8

8
�
α

d
d

d
d

d
d

= ∃ ∃ 1 F
HG

I
KJcos sin8 �

α
8 Ζ∃ 8

α
�
α

d
d

d
d

d
d

sin ) , by (15)

= ∃ )cos sin8 �
α

8 �
α

d
d

d
d

2
2

2 = ∃ ) ∃α �
8

α �
α

d
d

d
d

( )1 2
2

2 , as sin28 = 1 – cos28 = 1 – α2

Using these values of �� and �! in (12), we have

∃ ) ∃ ) ∃FHG
I
KJα �

α
α �

α
8
8

8 �
α

d
d

d
d

d
d

( ) cos
sin

sin1 2
2

2 ) ) ∃
∃

RST
UVWn n m( )

cos
1

1

2

2 8
� = 0

or ( ) ( )1 2 1
1

2
2

2

2

2∃ ∃ ) ) ∃
∃

RST
UVWα �

α
α �

α α
�d

d
d
d

n n m = 0, as cosα % 8

...(16)
which is same as (2). Hence the general solution of (16) is          � = APn

m(α) + BQn
m(α)

or � = APn
m(cos 8) + BQn

m(cos 8),       as           µ = cos 8. ...(17)
Part (a). Putting cos 8 = α and doing as before, (13A) or (13B) gives

( ) ( )1 2 12
2

2∃ ∃ ) )α �
α

α �
α

�d
d

d
d

n n = 0, ...(18)

which is Legendre equation and so solution of (13A) or (13B) is
� = APn(α) + BQn(α) or � = APn(cos 8) + BQn(cos 8).

9.23. Properties of the Associated Legendre Functions.

(i) 0 ( ) ( )n nP x P x% (ii) ( ) 0m
nP x %  if m > n.

Proof. We have 2 / 2( ) (1 ) ( ).
m

m m
n nm

dP x x P x
dx

% ∃ ... (1)
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9.46 Legendre Polynomials

(i) Putting m = 0 in (1), 0 ( ) ( ).n nP x P x%

(ii) Since Pn(x) a polynomial of degree n, so when m > n, (1) gives 2 / 2( ) (1 ) 0 0.m m
nP x x% ∃ 1 %

9.24. Orthogonality relation for m
nP (x). To show that

1

1

2( )!( ) ( ) ,
(2 1) ( )!

m m
n l nl

n mP x P x dx
n n m∃

)
% Θ

) ∃>  where     
0, if
1, ifnl

n l
n l

∋Ν
Θ % Ο %Π

Proof. Case I. Let .l n∋  Since ( )m
nP x  satisfy the corresponding associated equation

2 2
2

2 2(1 ) 2 ( 1) 0.
1

d y dy mx x n n y
dxdx x

Ν ΡΨ Ψ∃ ∃ ) ) ∃ %Ο Σ
∃Ψ ΨΠ Τ

  i.e.,  
2

2
2(1 ) ( 1) 0.

1
d dy mx n n y
dx dx x

Ν ΡΨ ΨΝ Ρ∃ ) ) ∃ %Ο Σ Ο Σ
∃Π Τ Ψ ΨΠ Τ

;            
2

2
2(1 ) ( ) ( 1) ( ) 0.

1
m m

n n
d d mx P x n n P x
dx dx x

Ν ΡΨ ΨΝ Ρ∃ ) ) ∃ %Ο Σ Ο Σ
∃Π Τ Ψ ΨΠ Τ

... (1)

Similarly, for ( ),m
lP x

2
2

2(1 ) ( ) ( 1) ( ) 0.
1

m m
l l

d d mx P x l l P x
dx dx x

Ν ΡΨ ΨΝ Ρ∃ ) ) ∃ %Ο Σ Ο Σ
∃Π Τ Ψ ΨΠ Τ

... (2)

Multiplying (1) by ( )m
lP x  and (2) by ( )m

nP x  and subtracting the resulting equations gives

  2 2(1 ) ( ) ( ) (1 ) ( )m m m m
l n n l

d d d dP x P x P x x P x
dx dx dx dx

Ν Ρ Ν Ρ∃ ∃ ∃Ο Σ Ο Σ
Π Τ Π Τ

[ ( 1) ( 1)] ( ) ( ) 0.m m
n ln n l l P x P x) ) ∃ ) %

Integrating between limits –1 to 1, we get
1 12 2

1 1
( ) (1 ) ( ) ( ) (1 ) ( )m m m m

l n n l
d d d d

P x x P x dx P x x P x dx
dx dx dx dx∃ ∃

Ν Ρ Ν Ρ∃ ∃ ∃Ο Σ Ο Σ
Π Τ Π Τ> >

1

1
[ ( 1) ( 1)] ( ) ( ) 0.m m

n ln n l l P x P x dx
∃

) ) ∃ ) %>
Integrating by parts, we now obtain

1 12 2

11
( )(1 ) ( ) (1 ) ( )m m m m

l n l n
d d dP x x P x P x P x dx
dx dx dx∃∃

+ ,∃ ∃ ∃− ./ 0 >
1

2

1
( )(1 ) ( )m m

n l
dP x x P x
dx ∃

+ ,∃ ∃− ./ 0

1 2

1
(1 ) ( )m m

n l
d dP x P x dx
dx dx∃

) ∃>
12 2

1
[( ) ( )] ( ) ( ) 0m m

n ln l n l P x P x dx
∃

) ∃ ) ∃ %>
or

1

1
( 1) ( 1) ( ) ( ) 0m m

n ln n l P x P x dx
∃

∃ ) ) %>      or      
1

1
( ) ( ) 0,m m

n lP n P x dx
∃

%>  if 1n ∋   ... (3)

Case II. Let l = n, If m > 0, we have 2 / 2( ) (1 ) ( ).
m

m m
n nm

dP x x P x
dx

% ∃ ... (4)

;
1

1
( ) ( )m m

n lP x P x dx
∃>

1 2

1
{ ( )}m

nP x dx
∃

% >
1 2

1
(1 ) ( ) ( ) ,

m m
m

n nm m
d dx P x P x dx
dx dx∃

+ ,
% ∃− .

/ 0
>  using (4)

         

11
2

1
1

(1 ) ( ) ( )
m m

m
n lm m

d dx P x P x
dx dx

∃

∃
∃

+ ,Ν Ρ Ν ΡΨ Ψ Ψ Ψ% ∃− .Ο Σ Ο Σ
Ψ Ψ Ψ Ψ− .Π Τ Π Τ/ 0

11 2
11

( ) (1 ) ( )
m m

m
n nm m

d d dP x x P x dx
dxdx dx

∃

∃∃

Ν Ρ Ν ΡΨ Ψ Ψ Ψ∃ ∃Ο Σ Ο Σ
Ψ Ψ Ψ ΨΠ Τ Π Τ

>
[On integrating by parts]
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;
11 12 2
11 1

{ ( )} ( ) (1 ) ( )
m m

m m
n n nm m

d d dP x dx P x x P x dx
dxdx dx

∃

∃∃ ∃

Ν Ρ Ν ΡΨ Ψ Ψ Ψ% ∃ ∃Ο Σ Ο Σ
Ψ Ψ Ψ ΨΠ Τ Π Τ

> > ... (5)

Since Pn(x) satisfies the Legendre equations 2(1 ) 2 ( 1) 0.x y xy n n y�� �∃ ∃ ) ) %

;
2

2
2
( ) ( )(1 ) 2 ( 1) ( ) 0n n

n
d P x dP xx x n n P x

dxdx
∃ ∃ ) ) % ... (6)

Differentiating both sides of (6) w.r.t. ‘x’ (m – 1) times with help of Leibnitz’s theorems gives

1 1
2

1 1(1 ) ( ) 2 ( ) [ ( 1) ( 1)] ( ) 0
m m m

n n nm m m
d d dx P x mx P x n n m m P x
dx dx dx

) ∃

) ∃
∃ ∃ ) ) ∃ ∃ %

Multiplying by (1 – x2)m – 1, we get

1
2

1(1 ) ( )
m

m
nm

dx P x
dx

)

)
∃ 2 12 (1 ) ( )

n
m

nm
dxm x P x
dx

∃∃ ∃
1

2 1
1[ ( 1) ( 1)](1 ) ( ) 0

m
m

nm
dn n m m x P x
dx

∃
∃

∃
) ) ∃ ∃ ∃ %

or       
2(1 ) ( )

m
m

nm
d dx P x
dx dx

Ν ΡΨ Ψ∃Ο Σ
Ψ ΨΠ Τ

1
2 1

1( ) ( 1) (1 ) ( )
m

m
nm

dn m n m x P x
dx

∃
∃

∃
% ∃ ) ∃ ) ∃ ... (7)

Using (7), (5) reduces to

1 2

1
{ ( )}m

nP x dx
∃>

1 11 2 1
1 11

( ) ( ) ( 1) (1 ) ( )
m m

m
n nm m

d dP x n m n m x P x dx
dx dx

∃ ∃
∃

∃ ∃∃

Ν ΡΨ Ψ% ) ∃ ) ∃Ο Σ
Ψ ΨΠ Τ

>
211 2 ( 1) / 2

11
( ) ( 1) (1 ) ( )

m
m

nm
dn m n m x P x dx
dx

∃
∃

∃∃

Ν ΡΨ Ψ% ) ∃ ) ∃Ο Σ
Ψ ΨΠ Τ

>

Ξ Χ1 21

1
( ) ( 1) ( ) ,m

nn m n m P x dx∃

∃
% ) ∃ ) >  using definition (4) for ( )m

nP x

= {(n + m) (n – m + 1)} {(n + m – 1) (n – m + 2)} ...
1 0 2

1
...{( 1) } { ( )}nn n P x dx

∃
) >

[on repeating the similar method (m – 1) times more]

= (n + m) (n + m – 1) .... (n + 1) n (n – 1) ....
1 2

1
...( 2) ( 1) { ( )} ,nn m n m P x dx

∃
∃ ) ∃ ) >

( )! 2
( )! 2 1
n m
n m n

)
% 1

∃ )
, using Art. 9.8. [�  From Art 9.23 (i), 0 ( ) ( )n nP x P x% ]

Finally, let m < 0. Then if k > 0, we write m = –k. Then, we know that

( )!( ) ( 1) ( )
( )!

k k k
n n

n kP x P x
n k

∃ ∃
% ∃

) ... (9)
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;
1 2

1
{ ( )}m

nP x dx
∃>

1 2

1
{ ( )}k

nP x dx∃

∃
% >

2 12 2

1

( )!( 1) { ( )} ,
( )!

k k
n

n k P x dx
n k ∃

+ ,∃
% ∃ − .)/ 0 > using (9)

2
( )! ( )! 2 ,
( )! ( )! 2 1
n k n k
n k n k n

+ ,∃ )
% 1 1− .) ∃ )/ 0

( )! 2 ( )! 2
( )! 2 1 ( )! 2 1
n k n m
n k n n m n

∃ )
% ∗ % 1

) ) ∃ )
, using (8) and k = –m

From (8) and (10), we find
1 2

1

( )! 2{ ( )}
( )! 2 1

m
n

n mP x dx
n m n∃

)
% 1

∃ )> ... (11)

; (3) and (11) 6       
1

1
1

2( )!( ) ( ) ,
(2 1)!( )!

m m
n nl

n mP x P x dx
n n m∃

)
% Θ

) ∃>
9.24. Recurrence relations (Formulae) for m

nP (x). Prove that

(i) 1 1
2 1/ 2

2( ) ( ) { ( 1) ( 1)} ( ) 0.
(1 )

m m m
n n n

mxP x P x n n m m P x
x

) ∃∃ ) ) ∃ ∃ %
∃

(ii) 1 1(2 1) ( ) ( ) ( ) ( 1) ( ).m m m
n n nn xP x n m P x n m P x∃ )) % ) ) ∃ ∃

(iii) 2 1/ 2 1 1
1 1

1(1 ) ( ) { ( ) ( )}.
2 1

m m m
n n nx P x P x P x

n
) )

) ∃∃ % ∃
)

(iv) 2 1/ 2 1
1

1(1 ) ( ) {( ) ( 1) ( )
2 1

m m
n nx P x n m n m P x

n
∃

∃∃ % ) ) ∃
)

1
1( 1) ( 2) ( )}.m

nn m n m P x∃
)∃ ∃ ) ∃ )

Proof. (i) Since Pn(x) is a solution of Legendre’s equation, 2(1 ) 2 ( 1) 0,x y xy n n y�� �∃ ∃ ) ) %

hence
2

2
2(1 ) ( ) 2 ( ) ( 1) ( ) 0.n n n

d dx P x x P x n n P x
dxdx

∃ ∃ ) ) % ... (1)

Differentiating both sides of (1) w.r.t. ‘x’ (m – 1) times with help of Leibnitz’s theorem, gives

1 1
2

1 1
( 1) ( 2)(1 ) ( ) 2 ( 1) ( ) 2 ( )

2!

m m m

n n nm m m
d d m m dx P x x m P x P x
dx dx dx

) ∃

) ∃

Ν Ρ∃ ∃Ψ Ψ∃ ∃ ∃ ∃ ∗Ο Σ
Ψ ΨΠ Τ

1 1

1 12 ( ) ( 1) 1 ( ) ( 1) ( ) 0.
m m m

n n nm m m
d d dx P x m P x n n P x
dx dx dx

∃ ∃

∃ ∃

Ν ΡΨ Ψ∃ ) ∃ ∗ ∗ ) ) %Ο Σ
Ψ ΨΠ Τ

or
1

2
1(1 ) ( ) 2 ( )

m m

n nm m
d dx P x xm P x
dx dx

)

)
∃ ∃

1

1[ ( 1) ( 1)] ( ) 0.
m

nm
dn n m m P x
dx

∃

∃
) ) ∃ ∃ %

Multiplying both sides by (1 – x2)(m – 1)/2, we get

1
2 ( 1) / 2 2 1/ 2 2 / 2

1(1 ) ( ) 2 (1 ) (1 ) ( )
m m

m m
n nm m

d dx P x xm x x P x
dx dx

)
) ∃

)
∃ ∃ ∃ ∃

1
2 ( 1) / 2

1[ ( 1) ( 1)](1 ) ( ) 0
m

m
nm

dn n m m x P x
dx

∃
∃

∃
) ) ∃ ∃ ∃ %
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Using the definition 2 / 2( ) (1 ) ( ),
m

m m
n nm

dP x x P x
dx

% ∃  the above result becomes

1 1
2 1/ 2

2( ) ( ) [ ( 1) ( 1)] ( ) 0.
(1 )

m m m
n n n

mxP x P x n n m m P x
x

) ∃∃ ) ) ∃ ∃ %
∃

(ii) From recurrence relations for Lengendre polynomial (Refer recurrence relations I and II
of Art. 9.8), we have

(2n + 1) x Pn(x) = (n + 1) Pn + 1(x) + n Pn – 1(x) ... (1)

and 1 1(2 1) ( ) ( ) ( )n n n
d dn P x P x P x
dx dx) ∃) % ∃ ... (2)

Differentiating both sides of (1) w.r.t. ‘x’ m times with help of Leibnitz theorem, we get
1

1(2 1) ( ) 1 ( )
m m

n nm m
d dn x P x m P x
dx dx

∃

∃

Ν ΡΨ Ψ) ) ∗ ∗Ο Σ
Ψ ΨΠ Τ

1 1( 1) ( ) ( )
m m

n nm m
d dn P x n P x
dx dx) ∃% ) ) ... (3)

Now, differentiating (2) w.r.t ‘x’ (m – 1) times, we get
1

1 11(2 1) ( ) ( ) ( ).
m m m

n n nm m m
d d dn P x P x P x
dx dx dx

∃

) ∃∃
) % ∃ ... (4)

Putting the value of 
1

1(2 1) ( )
m

nm
dn P x
dx

∃

∃
)  given by (4) in (3), we get

1 1(2 1) ( ) ( ) ( )
m m m

n n nm m m
d d dn x P x m P x P x
dx dx dx) ∃

Ν ΡΨ Ψ) ) ∃Ο Σ
Ψ ΨΠ Τ

1( 1) ( ) ( )
m m

n nm m
d dn P x n P x
dx dx ∃% ) )

or 1 1(2 1) ( ) ( ) ( ) ( 1) ( )
m m m

m n nm m m
d d dn x P x n m P x n m P x
dx dx dx∃ )) % ) ) ∃ )

Multiplying both sides by (1 – x2)m/2, we get

2 / 2 2 / 2
1(2 1) (1 ) ( ) ( )(1 ) ( )

m m
m m

n nm m
d dn x x P x n m x P x
dx dx ∃) ∃ % ) ∃ 2 / 2

1( 1) (1 ) ( ).
m

m
nm

dn m x P x
dx )) ∃ ) ∃

Using the definition 2 / 2( ) (1 ) ( ),
m

m m
n nm

dP x x P x
dx

% ∃ the above result becomes

1 1(2 1) ( ) ( ) ( ) ( 1) ( ).m m m
n n nn x P x n m P x n m P x∃ )) % ) ) ∃ )

(iii). From recurrence relation for Legendre polynomial (Refer relation III of Art. 9.9), we
have

1 1(2 1) ( ) ( ) ( ).n n n
d dn P x P x P x
dx dx) ∃) % ∃ ... (1)

Differentiating (1) m times w.r.t. ‘x’, we get
1 1

1 11 1(2 1) ( ) ( ) ( ).
m m m

n n nm m m
d d dn P x P x P x
dx x dx

) )

) ∃) )
) % ∃

Multiplying both sides by (1 – x2)(m + 1)/2, we get

2 / 2 2 1/ 2(2 1)(1 ) (1 ) ( )
m

m
nm

dn x x P x
dx

) ∃ ∃
1 1

2 ( 1) / 2 2 ( 1) / 2
111 1(1 ) ( ) (1 ) ( )

m m
m m

n nm m
d dx P x x P x
dx dx

) )
) )

∃)) )
% ∃ ∃ ∃

Using the definition 2 / 2( ) (1 ) ( ),
m

m m
n nm

dP x x P x
dx

% ∃  the above result becomes

2 1/ 2 1 1
1 1(2 1)(1 ) ( ) ( ) ( )m m m

n n nn x P x P x P x) )
) ∃) ∃ % ∃   or   Ξ Χ2 1/ 2 1 1

1 1
1(1 ) ( ) ( ) ( ) .

2 1
m m m

n n nx P x P x P x
n

) )
) ∃∃ % ∃

)
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(iv). From recurrence relation (ii), 1 1
1( ) {( ) ( ) ( 1) ( )}

2 1
m m m

n n nxP x n m P x n m P x
n ∃ )% ) ) ∃ )

)

Putting this values of ( )m
nxP x  in recurrence relation (i), we get

1
1 12 1/2

2 1( ) {( ) ( ) ( 1) ( )}
2 1(1 )

m m m
n n n

mP x n m P x n m P x
nx

)
∃ )∃ ∗ ) ) ∃ )

)∃
1{ ( 1) ( 1)} ( ) 0m

nn n mm P x∃) ) ∃ ∃ %   ... (1)

Replacing m by (m – 1) in recurrence relation (iii), we get

Ζ 92 1/ 2 1
1 1

1(1 ) ( ) ( ) ( )
2 1

m m m
n n nx P x P x P x

n
∃

) ∃∃ % ∃
)

 or  1
1 12 1/ 2

1( ) { ( ) ( )}.
(2 1)(1 )

m m m
n n nP x P x P x

n x
∃

) ∃% ∃
) ∃

Putting this value of 1( )m
nP x∃  in (1), we get

1
1 12 1/ 2 2 1/ 2

2 1( ) {( ) ( ) ( 1) ( )} { ( 1)
(2 1)(1 ) (2 1)(1 )

m m m
n n n

mP x n m P x n m P x n n
n x n x

)
∃ )∃ ) ) ∃ ) ) )

) ∃ ) ∃

1 1( 1)} ( ) ( )} 0m m
n nm m P x P x) ∃∃ ∃ ∃ %

or 2 1/ 2 1
1

1(1 ) ( ) [{2 ( ) ( 1) ( 1)] ( )
2 1

m m
n nx P x m n m n n m m P x

n
)

∃∃ % ) ) ∃ ∃ ∃
)

1{2 ( 1) ( 1) ( 1) ( )]m
nm n m n n m m P x)) ∃ ) ∃ ) ) ∃

or           2 1/ 2 1
1

1(1 ) [( ) ( 1) ( )
2 1

m m
n nx P n m n m P x

n
)

∃∃ % ) ) )
)

1( ) ( 1) ( )]m
nn m n m P x)∃ ∃ ∃ ) ... (2)

Replacing m by (m – 1) in (2), we get

2 1/ 2 1
1

1(1 ) ( ) [( 1) ( ) ( )
2 1

m m
n nx P n n m n m P n

n
∃

∃∃ % ) ∃ )
)

1
1( 1) ( 2) ( )].m

nn m n m P x∃
)∃ ∃ ) ∃ )

EXERCISE

1. Show that 
2 1/ 2

2 1/ 20

(2 )!(1 )( ) .
2 !(1 2 )

m
m n

n m m mn

m xP x t
m tx t

)#

) )%

∃
& %

∃ )

2. Prove that (a) 2 / 2 21( ) (1 ) ( 1)
2 !

n m
m m n

n n n m
dP x x x

n dx

)

)
% ∃ ∃

∗
 (b) ( )!( ) ( 1) ( ).

( )!
m m m

n n
n mP x P x
n m

∃ ∃
% ∃

)

3. Prove that 
2 / 2

2 1
( )!(1 ) 1( ) , 1; 1; .

2( )!2 !

m
m

n m
n m x xP x F m n m n m

n m m
) ∃ ∃Ε Φ% ∃ ) ) )Γ Η∃ Ι ϑ

4. Define associated Legendre’s polynomials and prove their orthoganality condition.

5. Prove that             
2 / 2

2 1
( )! (1 ) 1( ) , 1; 1; .
( )! 22 !

m
m

m m
n m x xP x F m n m n m
n m m

) ∃ ∃Ε Φ% 1 ∃ ) ) )Γ Η∃ Ι ϑ

6. Prove that ( ) ( 1) ( )m m n m
n nP x P x)∃ % ∃ (Utkal 2003)
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10
Legendre Functions of the

Second Kind—Qn(x)
10.1. Some useful results: From Art. 9.2 of chapter 9, we have

      Qn(x) = ( 1) ( 3)! ( 1) ( 2) ...
1 3 5 ... (2 1) 2(2 3)

n nn n nx x
n n

! � ! �# ∃� �
� �% &∋ ∋ ∋ ∋ � �( )

Multiplying by 2 4 6 .... 2n∋ ∋ ∋ ∋  in the numerator and denominator, we get

      Qn(x) = ( 1) ( 3)! (2 4 6...2 ) ( 1)( 2) ...
1 2 3 4 5 ... 2 (2 1) 2(2 3)

n nn n n nx x
n n n

! � ! �# ∃∋ ∋ � �
� �% &∋ ∋ ∋ ∋ ∋ ∋ ∋ � �( )

or       Qn(x) = ( 1) ( 3)! 2 ! ( 1)( 2)
...

(2 1)! 2(2 3)

n
n nn n n nx x

n n
! � ! �# ∃∋ � �

� �% &� �( )

or       Qn(x) = 2
2 1

1 2
2 2 3

2
1 3

n
n nn

n
x n n

n
x( !)

( )!
( ) ( )

( )
...( ) ( )

�
� � �

�
�L

NM
O
QP

! � ! � , ...(1)

which is a solution of Legendre’s equation in descending powers of x, all the powers of x being
negative. Re–writing (1), we have

Qn(x) = ( 1) ( 3)2 ( !) ( 2)!( !)
(2 1)! 2(2 3)

n
n nn nn x x

n n
! � ! �# �

�%� �(

( 5)( 4)! ...
2 4(2 3) (2 5)

nn x
n n

! � ∃�
� � &∋ � � )

= ( 1) ( 2 1)2 ( !) ( 2)!( !)
(2 1)! 2(2 3)

n
n nn nn x x

n n
! � ! � �# �

�%� �(

( 4 1)( 4)! ...
2 4 (2 3) (2 5)

nn x
n n

! � � ∃�
� � &∋ � � )

=
( 2 1)

0

2 ( !) ( 2 )!
(2 1)! 2 4 ... 2 (2 3) (2 5)...(2 2 1)

n n r

r

n n r x
n r n n n r

∗ ! � �

+

�
� ∋ ∋ ∋ � � � �,

−      Qn(x) = 2
2 1

2
2 2 3 2 5 2 2 1

2 1

0

n n r

r
r

n
n

n r x
r n n n r

( !)
( )!

( )!
( !)( ) ( )...( )

( )

�
�

� � � �

! � �

+

∗

, ...(2)

Differentiating (2) w.r.t. ‘x’ we get

     Qn.(x) =
( 2 2)

0

2 . ! ( 2 1)! .
(2 1)! 2 !(2 3) (2 5)...(2 2 1)

n n r

r
r

n n r x
n r n n n r

∗ ! � �

+

� �
!

� � � � �, ...(3)

Putting n – 1 for n in (3), we get

10.1
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10.2 Legendre Functions of the Second kind—Qn(x)

Q .n – 1(x) =
1 ( 2 1)

0

2 ( 1)! ( 2 )!
(2 1)! 2 !(2 1) (2 3)...(2 2 1)

n n r

r
r

n n r x
n r n n n r

∗! ! � �

+

! �
!

! � � � !,

=
1 ( 2 1)

0

2 2 ( 1)! ( 2 )!
(2 1)! 2 2 !(2 1) (2 3)...(2 2 1)

n n r

r
r

n n n r x
n n r n n n r

∗! ! � �

+

∋ ! �
!

! ∋ ∋ � � � !,

=
( 2 1)

0

2 ! ( 2 )!
(2 )! 2 !(2 1) (2 3)...(2 2 1)

n n r

r
r

n n r x
n r n n n r

∗ ! � �

+

∋ �
!

∋ � � � !, . ...(4)

Again, putting n + 1 for n in (3), we get

Q .n + 1(x) =
1 ( 2 3)

0

2 ( 1)! ( 2 2)!
(2 3)! 2 !(2 5)...(2 2 1) (2 2 3)

n n r

r
r

n n r x
n r n n r n r

∗� ! � �

+

∋ � � �
!

� ∋ � � � � �,

=
( 2 3)

0

2 ! (2 2) ( 2 2)!
(2 3) (2 2) (2 1) (2 )! 2 !(2 5)...(2 2 3)

n n r

r
r

n n n r x
n n n n r n n r

∗ ! � �

+

∋ ∋ � � �
!

� � � ∋ � � �,

=
( 2 3)

0

2 ! ( 2 2)!
(2 )! 2 !(2 1) (2 3)...(2 2 3)

n n r

r
r

n n r x
n r n n n r

∗ ! � �

+

∋ � �
!

∋ � � � �, . ...(5)

10.2. Recurrence Relations (formulae) for Qn(x)
I. Q.n + 1 – Q.n – 1 = (2n + 1)Qn. [Bilaspur 1997, 98]
Proof. We have, Q.n – 1 + (2n + 1)Qn

= !
�
� � � !

! � �

+

∗

,2
2

2
2 2 1 2 3 2 2 1

2 1

0

n n r

r
r

n
n

n r x
r n n n r

( !)
( )!

( )!
( !)( )( )...( )

( )
� �

�
�

� � � �

! � �

+

∗

,( ) ( !)
( )!

( )!
( !)( ) ( )...( )

( )
2 1 2

2 1
2

2 2 3 2 5 2 2 1

2 1

0

n n
n

n r x
r n n n r

n n r

r
r

[using results (4) and (2) Art. of 10.1.]

=
2

2
2

2 2 3 2 5 2 2 1

2 1

0

n n r

r
r

n
n

n r x
r n n n r

( !)
( )!

( )!
( !)( ) ( )...( )

( )�
� � � �

L
N
MM

! � �

+

∗

, ! �
� � � �

O
Q
PP

! � �

+

∗

, ( )
( !)( ) ( )...( )

( )n r x
r n n n r

n r

r
r

2
2 2 1 2 3 2 2 1

2 1

0

=
( 2 1)

0

2 ( !) ( 2 )! {(2 1) (2 2 1}
(2 )! 2 ( !) (2 1) (2 3)...(2 2 1)

n n r

r
r

n n r x n n r
n r n n n r

∗ ! � �

+

# ∃�
/ � ! � �% &

� � � �% &( )
,

= 2
2

2 2
2 2 1 2 3 2 2 1

2 1

0

n n r

r
r

n
n

r n r x
r n n n r

( !)
( )!

( )!
( !)( ) ( )...( )

( )! �
� � � �

L
N
MM

O
Q
PP

! � �

+

∗

, = 
( 2 1)

1
0

2 ( !) ( 2 )!
(2 )! 2 ( 1)! (2 1)(2 3)...(2 2 1)

n n r

r
r

n n r x
n r n n n r

∗ ! � �

!
+

�
!

! � � � �,

= ! �
�

! � � � �

L
N
MM

O
Q
PP

! � �

!
+

∗

,2
2

0 2
2 1 2 1 2 3 2 2 1

2 1

1
0

n n r

r
r

n
n

n r x
r n n n r

( !)
( )!

( )!
( )! ( ) ( )...( )

( )
, as 1

0
( 1) !

+
!

= !
! �
� � � �

! � �

+

∗

,2
2

2 2
2 2 1 2 3 2 2 3

2 3

0

n n s

s
s

n
n

n s x
s n n n s

( !)
( )!

( )!
( )! ( ) ( )...( )

( )

, putting r = s + 1 so that s = r – 1

= Q.n + 1 by result (5) of Art. 10.1.
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Legendre Functions of the Second kind—Qn(x) 10.3

II. nQ .n + 1 + (n + 1)Q .n – 1 = (2n + 1)xQ .n. (Bilaspur 1998)
Proof. We have, (2n + 1)xQ.n – (n + 1)Q.n – 1

=
( 2 2)

0

2 ( !) ( 2 1)!(2 1)
(2 1)! 2 ! (2 3) (2 5)...(2 2 1)

n n r

r
r

n n r xn x
n r n n n r

∗ ! � �

+

� �
! � ∋

� ∋ � � � �,

( 2 1)

0

2 ( !) ( 2 )!( 1) ( 1)
(2 )! 2 ( !) (2 1) (2 3)...(2 2 1)

n n r

r
r

n n r xn
n r n n n r

∗ ! � �

+

�
! � ∋ !

� � � !, ,putting the values of Q.n and Q.n–1

= !
� � �

� � � �

! � �

+

∗

,2
2

2 1 2 1
2 2 1 2 3 2 2 1

2 1

0

n n r

r
r

n
n

n r x n
r n n n r

( !)
( )!

( )! ( )
( !) ( ) ( )...( )

( )

�
� � � �

� � � �

! � �

+

∗

,2
2

2 1 2 2 1
2 2 1 2 3 2 2 1

2 1

0

n n r

r
r

n
n

n r x n n r
r n n n r

( !)
( )!

( )! ( ) ( )
( !) ( ) ( )...( )

( )

= !
�
� � � �

! � �

+

∗

,2
2

2
2 2 1 2 3 2 2 1

2 1

0

n n r

r
r

n
n

n r x
r n n n r

( !)
( )!

( )!
( !) ( ) ( )...( )

( )
× [(n + 2r + 1) (2n + 1) – (n + 1) (2n + 2r + 1)]

=
( 2 1)

1
0

2 ( !) ( 2 )!
(2 )! 2 ( 1)! (2 1) (2 3)...(2 2 1)

n n r

r
r

n n n r x
n r n n n r

∗ ! � �

!
+

∋ �
!

! � � � �,

=
( 2 1)

1
1

2 ( !) ( 2 )! 0
(2 )! 2 ( 1)! (2 1) (2 3)...(2 2 1)

n n r

r
r

n n n r x
n r n n n r

∗ ! � �

!
+

# ∃0 1∋ �2 2! �% &3 4
! � � � �2 2% &5 6( )

,

=
( 2 3)

0

2 ( !) ( 2 2)!
(2 )! 2 ( !) (2 1) (2 3)...(2 2 3)

n n s

s
s

n n n s x
n s n n n s

∗ ! � �

+

∋ � �
!

� � � �, , putting r = s + 1

= nQ .n + 1, by result (5) of Art. 10.1.
III. (2n + 1) xQn = (n + 1) Qn + 1 + nQn – 1.

Or xQn = n
n
�
�
1

2 1
Qn + 1 + n

n2 1�
Qn – 1    Or (n + 1) Qn + 1 – (2n + 1) xQn + nQn – 1 = 0.

Proof. We have, nQn – 1 – (2n + 1) xQn

=
1 ( 2 )

0

2 ( 1)! ( 2 1)!
(2 1)! 2 ( !) (2 3) (2 5)...(2 2 1)

n n r

r
r

n n r xn
n r n n n r

∗! ! �

+

! � !
/

! � � � !,

( 2 1)

0

2 ( !) ( 2 )!(2 1) ,
(2 1)! 2 ( !) (2 3) (2 5)...(2 2 1)

n n r

r
r

n n r xn
n r n n n r

∗ ! � �

+

�
! � /

� � � � �,  putting values of Qn – 1 and Qn

=
1 ( 2 )

0

2 ( !) 2 ( 2 1)! (2 2 1)
(2 1)! 2 ( !) (2 3) (2 5)...(2 2 1) (2 2 1)

n n r

r
r

n n n r x n r
n r n n n r n r

∗! ! �

+

∋ � ! ∋ � �
� � � � ! � �,

!
�

�
�

� � � �

! �

+

∗

,( ) ( !)
( )!

( )!
( !) ( ) ( )...( )

( )2 1 2
2 1

2
2 2 3 2 5 2 2 1

2

0

n n
n

n r x
r n n n r

n n r

r
r

=
2
2 1

2 1
2 2 3 2 5 2 2 1

2

0

n n r

r
r

n
n

n r x
r n n n r

( !)
( )!

( )!
( !) ( ) ( )...( )

( )

�
� !
� � � �

L
N
MM

! �

+

∗

, / � � ! � �{ ( ) ( ) ( )}n n r n n r2 2 1 2 1 2
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10.4 Legendre Functions of the Second kind—Qn(x)

=
2
2 1

2 1 2 1
2 2 3 2 5 2 2 1

2

0

n n r

r
r

n
n

n r x r n
r n n n r

( !)
( )!

( )! ( ) ( )
( !) ( ) ( )...( )

( )

�
� ! ! �

� � � �

! �

+

∗

,

= !
�
�

� !
! � � � �

! �

!
+

∗

,2 1
2 1

2 1
2 1 2 3 2 5 2 2 1

2

1
0

n n r

r
r

n
n

n r x
r n n n r

( )!
( )!

( )!
( )! ( ) ( )...( )

( )

= ! �
�

( ) ( !)
( )!

n n
n

n
1 2

2 1
( )!

( )! ( ) ( )...( )

( )n r x
r n n n r

n r

r
r

� !
! � � � �

RS|T|
UV|W|

�
L
N
MM

O
Q
PP

! �

!
+

∗

, 2 1
2 1 2 3 2 5 2 2 1

0
2

1
1

=
( 2 2)

0

2 ( !) ( 2 1)!( 1)
(2 1)! 2 ( !) (2 3) (2 5)...(2 2 3)

n n s

s
s

n n s xn
n s n n n s

∗ ! � �

+

# ∃� �
! � / % &

� � � � �% &( )
, ,  taking r = s + 1

=
( 2 2)

0

2 ( !) (2 2) ( 2 1)!( 1)
(2 2)! 2 ( !) (2 3) (2 5)...(2 2 3)

n n s

s
s

n n n s xn
n s n n n s

∗ ! � �

+

� � �
! � /

� � � � �,

=
( 2 2)

0

2 ( 1)! ( 2 1)!( 1)
(2 3)! 2 ( !) (2 5)...(2 2 3)

n n s

s
s

n n s xn
n s n n s

∗ ! � �

+

� � �
! � /

� � � �,
= –(n + 1)Qn + 1, be definition (2).

IV. (2n + 1) (1 – x2)Qn. = n(n + 1) (Qn – 1 – Qn + 1).
Proof. Since Qn is a solution of Legendre’s equation, namely,

d
dx

x dy
dx

( )1 2!LNM
O
QP  + n(n + 1) y = 0 so d

dx
[(1 – x2)Q.n] = –n(n + 1)Qn. ...(1)

Integrating both sides of (1) between the limits ∗ to x, we get

         ( )1 2! .
∗

x Qn
x

= ( 1)
x

nn n Q dx
∗

! � 7
or (1 – x2) Q.n(x) = ! �

∗zn n Q dxn
x( )1 ,   as   {Qn.)x = ∗ = 0    and     {x2 Qn.}x = ∗ = 0.

But by recurrence relation I, we get    Q.n + 1 – Q.n – 1 = (2n + 1)Qn. ...(3)
Integrating both sides of (3) between the limits ∗ to x, we get

Q Qn n
x

� ! ∗
!1 1 = ( )2 1n Q dxn

x �
∗z   or    Qn + 1(x) – Qn – 1(x) = ( ) .2 1n Q dxn

x �
∗z   ...(4)

[� {Qn + 1}x = ∗ = 0 = {Qn – 1)x = ∗]

Now, from (4) and (2), (1 – x2) Qn.(x) = – n(n + 1) 
Q x Q x

n
n n� !!

�
1 1

2 1
( ) ( )

or   (2n + 1) (1 – x2) Qn.(x) = n(n + 1) [Qn – 1(x) – Qn + 1 (x)].
V. xQn. – Qn. – 1 = nQn.
Proof. From recurrence relation III, (n + 1) Qn + 1 – (2n + 1)x Qn + n Qn – 1 = 0.    ...(1)
Differentiating (1) w.r.t. ‘x’, we have

(n + 1)Q.n + 1 – (2n + 1) {x Qn. + 1.Qn} + nQ.n – 1 = 0. ...(2)
Now, by recurrence relation I, Q.n + 1 = Q.n – 1 + (2n + 1)Qn. ...(3)
Putting the value of Q.n + 1 given by (3) in (2), we get
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Legendre Functions of the Second kind—Qn(x) 10.5

(n + 1) {Q.n – 1 + (2n + 1)Qn} – (2n + 1) (x Qn. + Qn) + nQ.n – 1 = 0
or (2n + 1) Q.n – 1 – (2n + 1) xQn. + (2n + 1) Qn (n + 1 – 1) = 0
or Q.n – 1 – xQn. + nQn = 0 i.e. xQn. – Q.n – 1 = nQn.

VI. Q .n – xQ .n – 1 = nQn – 1.
Proof. From recurrence relation I,      Q.n + 1 – Q.n – 1 = (2n + 1) Qn.      ...(1)
Multiplying both sides of (1) by x,          x Q.n + 1 – x Q.n – 1 = (2n + 1)x Qn. ...(2)

Now, from recurrence relation III, (n + 1) Qn + 1 – (2n + 1) x Qn + n Qn – 1 = 0.  ...(3)
Putting the value of (2n + 1) xQn from (2) in (3),   (n + 1) Qn + 1 – xQ.n + 1 + xQ.n – 1 + nQn – 1= 0.     ...(4)
From recurrence relation V,                   nQn = xQn. – Q.n – 1. ...(5)
Replacing n by n + 1 in (5), we get         (n + 1) Qn + 1 = xQ .n + 1 – Qn..   ...(6)
Putting the value of (n + 1)Qn + 1 from (6) in (4), we get

xQ.n + 1 – Q.n – xQ.n + 1 + xQ.n – 1 + nQn – 1 = 0        or Qn. – xQ.n – 1 = nQn – 1.
VII. (x2 – 1)Q .n = nxQn – nQn – 1.
Proof. Recurrence relation V, we have           xQn. – Q.n – 1 = nQn.  ...(1)
Multiplying both sides of (1) by x, we get       x2Qn. – xQ.n – 1 = nxQn. ...(2)
Again, from recurrence relation VI, we get Qn. – xQ.n – 1 = nQn – 1. ...(3)
Subtracting (3) from (2), we have

x2Q.n – Q.n = nxQn – nQn – 1 or (x2 – 1)Q.n = nxQn – nQn – 1.
VIII. (x2 – 1)Qn. = (n + 1) Qn + 1 – (n + 1)xQn.
Proof. Recurrence relations V and VI are        xQ.n – Q.n – 1 = nQn ...(1)

and Q.n – xQ.n – 1 = nQn – 1. ...(2)
Replacing n by n + 1 in (1) and (2),        xQ.n + 1 – Q.n = (n + 1)Qn + 1 ...(3)

and Qn. + 1 – xQn. = (n + 1)Qn. ...(4)
Multiplying both sides of (4) by x,       xQ.n + 1 – x2Q.n = (n + 1)x Qn.

...(5)
Subtracting (5) from (3), we have – Q.n + x2Q.n = (n + 1)Qn + 1 – (n + 1)xQn

or (x2 – 1)Qn. = (n + 1)Qn + 1 – (n + 1)xQn.
10.3. Theorem. The associated Legendre function of the second kind defined by

Qn
m(x) = (1 – x2)m/2 d

dx

m

m Qn(x)

satisfy Legendre’s associated equation   ( ) ( )1 2 1
1

2
2

2

2

2! ! � � !
!

RST
UVW

x d y
dx

x dy
dx

n n m
x

y = 0.

Proof. Proceed as in chapter 9.
10.4. Theorem. Assuming Pn as a solution of Legendre’s equation, show that the complete

solution of this equation is given by aPn + bQn, where Qn = cPn
dx
x Pn( )1 2 2!z , c being a constant.

Proof. The Legendre’s equation is given by    ( ) ( )1 2 12
2

2! ! � �x d y
dx

x dy
dx

n n y = 0.    ...(1)

Let y = uPn be the complete solution of (1), where u is a function of x.

Now, dy
dx

= u
dP
dx

P du
dx

n
n�  and d y

dx

2

2 = u
d P
dx

dP
dx

du
dx

P d u
dx

n n
n

2

2

2

22� � .

Putting these values of (1), we have
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10.6 Legendre Functions of the Second kind—Qn(x)

(1 – x2)
2 2

2 22 2n n n
n n

d P dP dPdu d u duu P x u P
dx dx dx dxdx dx

8 9 8 9� � ! �: ; : ;: ; < =< =
+ n(n + 1)uPn = 0

or     (1 – x2) 
22

2
2 2

2 (1 ) 2n n n
n

dP d P dPd u duP x u xu
dx dx dxdx dx

8 9
� ! ! !: ;: ;

< =
! � �2 1xP du

dx
n n uPn n( ) = 0

or     (1 – x2)
2

2 2 n
n

dPd u duP
dx dxdx

8 9
�: ;: ;

< =

2
2

2(1 ) 2 ( 1) 2n n
n n

d P dP duu x x n n P xP
dx dxdx

0 12 2� ! ! � � !3 4
2 25 6

= 0

or
2

2
2

(1 ) 2 2n
n n

dPd u du dux P xP
dx dx dxdx

8 9
! � !: ;: ;

< =
= 0

       [�  Pn is a solution of Legendre’s equation   >   ( ) ( ) .1 2 1 02
2

2! ! � � +
O
QPP

x
d P
dx

x
dP
dx

n n Pn n
n

Now dividing throughout by (1 – x2)Pn (du/dx), we have

d u dx
du dx

dP dx
P

x
x

n

n

2 2

22 2
1

/
/

/
� !

!
= 0. ...(2)

Integrating (2), log (du/dx) + 2 log Pn + log (1 – x2) = log k
or log {(du/dx) . Pn

2 (1 – x2)} = log k, k being an arbitrary constant.

or     du
dx

 . Pn
2 (1 – x2) = k or du

dx
= 2 2

.
(1 ) n

k
x P!

Integrating, u = 2 2
1 ,

(1 ) n

k dx a
x P

�
!7  where a and k are arbitrary constants of integration.

Hence the complete solution of Legendre’s equation is

y = uPn = 2 2(1 ) n
n

dxk a P
x P

# ∃�% &!( )
7 = aPn + kPn 2 2 2 2(1 ) (1 )n n

n n

dx k dxaP cP
cx P x P

+ � /
! !7 7

or y = aPn + bQn,   where   b = k/c.
10.5. Christoffel’s second summation formula
From recurrence relations of Pn(x) and Qn(x), we have

(2n + 1) xPn(x) = (n + 1) Pn + 1(x) + nPn – 1(x), ...(1)
and (2n + 1) yQn(y) = (n + 1) Qn + 1(y) + nQn – 1(y), ...(2)

Multiplying both sides of (1) by Qn(y) and (2) by Pn(x) and then subtracting, we have
(2n + 1) (x – y) Pn(x) Qn(y) = (n + 1) {Pn + 1(x) Qn(y) – Pn(x) Qn + 1(y)}

+ n{Pn – 1(x) Qn(y) – Qn – 1(y) Pn(x)}
or   (2n + 1) Pn(x) Qn(y) (x – y) + n{Pn(x) Qn – 1(y) – Pn – 1(x) Qn(y)}

                                                      = (n + 1) {Pn + 1(x) Qn(y) – Pn(x)Qn + 1(y)}. ...(3)
Putting n = 1, 2, 3, ...n in succession in (3), we have
3P1(x) Q1(y) (x – y) + {P1(x) Q0(y) – Q1(y) P0(x)}= 2{P2(x) Q1(y) – P1(x) Q2(y)}, ...(A1)
5P2(x) Q2(y) (x – y) + 2{P2(x) Q1(y) – P1(x) Q2(y)}= 3{P3(x) Q2(y) – P2(x) Q3(y)}, ...(A2)
7P3(x) Q3(y) (x – y) + 3{P3(x) Q2(y) – P2(x) Q3(y)}= 4{P4(x) Q3(y) – P3(x) Q4(y)}, ...(A3)

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Legendre Functions of the Second kind—Qn(x) 10.7

(2n + 1) Pn(x) Qn(y) (x – y) + n{Pn(x) Qn – 1(y) – Pn – 1(x) Qn(y)}= (n + 1) {Pn + 1(x) Qn(y) – Pn(x) Qn + 1(y)}. ...(An)

Adding (A1), (A2), (A3), (A4) etc. upto (An), we have

(x – y) ( ) ( ) ( ) { ( ) ( ) ( ) ( )}2 1 1 0 1 0
1

r P x Q y P x Q y Q y P xr r
r

n
� � !,

+
= (n + 1) {Pn + 1(x) Qn(y) – Pn(x) Qn + 1(y)}

or  (y – x) ( ) ( ) ( ) { ( ) ( ) ( ) ( )}2 1 1 0 1 0
1

r P x Q y Q y P x P x Q yr r
r

n
� � !,

+
= –(n + 1) {Pn + 1(x) Qn(y) – Pn(x) Qn + 1(y)}

or (y – x) 0 0 0 0
1
(2 1) ( ) ( ) [{ ( ) 1} ( ) ( ) ( )]

n

r r
r

r P x Q y yQ y P x xQ y P x
+

� � ! / !,
    = – (n + 1) {Pn + 1(x) Qn(y) – Qn + 1(y) Pn(x)} [� Q1(y) = yQ0(y) – 1, P1(x) = x, P0(x) = 1]

or  (y – x) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 0 0 0
1

r P x Q y y x P x Q y P xr r
r

n
� � ! !,

+
= –(n + 1) {Pn + 1(x) Qn(y) – Qn + 1(y) Pn(x)}

or (y – x) (2r 1) P (x) Q (y) 1 (n 1) [P (x) Q (y)r r n 1 n
r 1

n
� + ! �, �

+
! �Q (y) P (x)],n 1 n

which is called Christoffel’s second summation formula.

10.6. A relation connecting Pn(x) and Qn(x): 1 2 1
0y x

m P x Q ym m
m!

+ �,
+

∗
( ) ( ) ( ) .

Proof. Let f(x) = 1/(y – x).

Now,    f(x) = 1
1

1 1
1

y x y y
x
y( / )!

+ !FHG
I
KJ

!

= y–1 1
2

2� � � � �
F
HG

I
KJ

x
y

x
y

x
y

m

m... ...

                                                     = y–1 + y–2x + y–3x2 + ... + y–m– 1xm + y–m– 2xm + 1 + y–m – 3xm + 2 + y–m – 4xm + 3 + ...    ...(1)
Let    f(x) = A0 + A1x + A2x

2 + ..., ...(2)
where A’s are constant. Further suppose that f(x) is also expressed as

f(x) = B P xm m
m

( )
+

∗
,

0
, ...(3)

then, we know that

 Bm = 2
1 2 3... ( 1) ( 2)

1 3 5...(2 1) 2(2 3)m m
m m mA A

m m �
#∋ ∋ � �

�%∋ ∋ ! �(
4

( 1) ( 2) ( 3) ( 4) ... .
2 4 (2 3) (2 5) m

m m m m A
m m �

∃� � � �
� � &∋ ∋ � � )

Comparing (1) and (2),    A0 = y–1, A1 = y–2,   ...Am = y–(m + 1),   Am + 1 = y–(m + 2),...

−Bm=
( 1) ( 3)! ( 1) ( 2) ...

1 3 5...(2 1) 2(2 3)
m mm m my y

m m
! � ! �# ∃� �

� �% &∋ ∋ ! �( )
= (2m + 1) Qn(y), by

definition

− f(x) = 1 2 1
0 0y x

B P x m P x Q ym m
m

m m
m!

+ , + �,
+

∗

+

∗
( ) ( ) ( ) ( ).

10.7. Neumann’s Integral for Qm(y).

To show that Qm(y) = 1
1

( )1
, ( 1).

2
mP x

dx y
y x!

?
!7 (Bilaspur 1996, 98)

Proof. From Art. 10.6 we have 1 2 1
0

y x
m P x Q ym m

m
!

+ �
+

∗

,( ) ( ) ( ).
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10.8 Legendre Functions of the Second kind—Qn(x)

−
1
1

1 1( )
2 mP x dx

y x! /
!7 = 1

1 ( )mP x
!

/7 ( ) ( ) ( )2 1
0

m P x Q y dxm m
m

�,RST
UVW+

∗
= Qm(y) { ( )} .( )P x m dxm

2

1

1
2 1�

!z
� P x P x dx m nm n( ) ( ) ,+ ≅F
HG

I
KJ!z 0

1

1
if

       = (2m + 1) Qm(y) × 2
2 1m �

= 2Qm(y). � ( )P dx
mm

2

1

1 2
2 1

+
�

L
NM

O
QP!z

Hence Qm(y) = 1
2 1

1 P x
y x

dxm( )
!!z .

10.8 SOLVED EXAMPLES ON CHAPTER 8

Ex. 1. Prove that (i) (x2 – 1) (QnP.n – PnQ.n) = c. [Agra 2006]  (ii) Q
P

dx
x P

n

n nx
+

!

∗z ( )
.2 21

(iii)From (ii) deduce that (a) Q0(x) = 1
2

1
1

log x
x
�
!

.   (b) Q1(x) = x x
x2

1
1

log �
!

– 1.

Sol. (i) Legendre’s equation is (1 – x2)yΑ – 2xy . + n(n + 1)y = 0. ...(1)
Since Pn and Qn are both solutions of (1),    (1 – x2)PΑn – 2xP.n + n(n + 1)Pn = 0 ...(2)

and (1 – x2)Q Αn – 2xQ .n + n(n + 1)Qn = 0. ...(3)
Multiplying (2) by Qn, (3) by Pn and then subtracting, we get

   (1 – x2) (PΑn Qn – Q Αn Pn) – 2x(P .n Qn – Q .n Pn) = 0

or (1 – x2) d
dx

 (P .n Qn – Q .n Pn) – 2x(P .n Qn – Q .n Pn) = 0

or d
dx

 {(1 – x2) (P.n Qn – Q.n Pn)} = 0 ...(4)

Integrating w.r.t. ‘x’, (4) gives (1 – x2) (Qn Pn. – Pn Qn.) = – c
or (x2 – 1) (Qn Pn. – Pn Qn.) = c, c being an arbitrary constant. ...(5)

Part (ii) From part (i) above, we have

Qn Pn. – Pn Qn. = c
x

c
x x2 2 2

1

1
1 1

!
+ !FHG

I
KJ
!

  or    Qn Pn. – Pn Qn. = c
x x x2 2 41 1 1� � �F
HG

I
KJ... . ...(6)

From Art. 9.2, Qn = ( 1) ( 3)! ( 1) ( 2) ...
1 3 5...(2 1) 2 (2 3)

n nn n nx x
n n

! � ! �# ∃� �
� �% &∋ ∋ � ∋ �( )

...(7)

and             Pn = 21 3 5...(2 1) ( 1) ... .
! (2 1) 2

n nn n nx x
n n

!# ∃∋ ∋ ! !
! �% &! ∋( )

...(8)

Using (7) and (8), L.H.S. of (6)  = ( 1) ( 3)! ( 1) ( 2) ...
1 3 5...(2 1) 2 (2 3)

n nn n nx x
n n

! � ! �0 1� �
� �3 4

∋ ∋ � ∋ �5 6

×
1 31 3 5...(2 1) ( 1) ( 2) ...

! (2 1) 2
n nn n n nnx x

n n
! !# ∃0 1∋ ∋ ! ! !

! �3 4% &! ∋5 6( )
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Legendre Functions of the Second kind—Qn(x) 10.9

– Β2 ( 2)1 3 5...(2 1) ( 1) !
... ( 1)

! (2 1) 2 1 3 5...(2 1)
n n nn n n nx x n x

n n n
! ! �# ∃0 1 #∋ ∋ ! !

! � / ! �3 4% & %! ∋ ∋ ∋ �(5 6( )

( 4)( 1) ( 2) ( 3) ...
2 (2 3)

nn n n x
n

! � ∃1� � � 2! � &4
∋ � 2&6)

− the coefficient of 1/x2 in L.H.S. of (6)

=
! 1 3 5...(2 1)

1 3 5...(2 1) !
n n n

n n
∋ ∋ !

/
∋ ∋ �

1 3 5...(2 1) !
( 1)

! 1 3 5...(2 1)
n n n

n n
∋ ∋ !

! / ! !
∋ ∋ �

= n
n

n
n

n
n2 1

1
2 1

2 1
2 1�

�
�
�

+
�
�

= 1.

Also the coefficient of 1/x2 in R.H.S. of (6) = 1
Hence, by equating the coefficients of 1/x2 on both sides of (6), we have c = 1. With this

value of c, (5) becomes
             (x2 – 1) (Pn. Qn – Pn Qn.) = 1     or –(x2 – 1) (Qn. Pn – Pn. Qn) = 1 ... (*)

or
. ! .Q P P Q

P
n n n n

n
2 = !

!
1
12 2( )x Pn

       or d
dx

Q
P

n

n

F
HG
I
KJ = !

!
1
12 2( )x Pn

.

Integrating both sides w.r.t. x from ∗ to x, we get

Q
P

n

n

xL
NM
O
QP∗

= !
!

+
!∗

∗z zdx
x P

dx
x Pn

x

nx( ) ( )2 2 2 21 1
or 

Q x
P x

Q x
P x

n

n x
n

n

( )
( )

( )
( )

!
Χ∗

lim = dx
x Pnx ( )2 21!

∗z     ...(9)

Now,  lim
x

n

n

Q x
P xΧ∗

( )
( ) = lim

x

n

n n

n

n n

d
dx

Q x

d
dx

P xΧ∗

( )

( )
, by L’Hospital’s rule

=

(2 1)! {( 1) ( 1) ( 2)...2 ...}
1 3 5 (2 1)

lim
1 3 5...(2 1) !

!

n n

x

n n n n x
n

n n
n

! �

Χ∗

! � � �
∋ ∋ �

∋ ∋ !
, using (7) and (8)

= 0, on taking limit as .x Χ ∗

− (9) reduces to    
Q x
P x

n

n

( )
( )

= dx
x Pnx ( )2 21!

∗z . ...(10)

Part (iii). Deductions from part (ii).

(a)Replacing n by 0 in (10), we get
Q x
P x

0

0

( )
( ) = dx

x P xx ( ) ( )2
0
21!

∗z .

− Q0(x) = dx
xx ( )2 1!

∗z , as  P0(x) = 1

= 1
2

1
1

1
2

1
1

1
2

1
1

log log logx
x

x
x

x
xx

!
�

L
NM

O
QP + ! !

�
+ �

!

∗

,  as  1 1 1/lim log lim 0
1 1 1/x x

x x
x xΧ∗ Χ∗

8 9 8 9! !
+ +: ; : ;� �< = < =
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10.10 Legendre Functions of the Second kind—Qn(x)

(b) Replacing n by 1 in (10), we get
Q x
P x

1

1

( )
( ) = dx

x P xx ( ) ( )2
1
21!

∗z .

− Q1(x) = x dx
x xx ( )2 21!

∗z , as  P1(x) = x

= x
x x

dx x x
x x xx

1
1

1 1
2

1
1

1
2 2!

!
L
NM

O
QP

+
!
�

�L
NM

O
QP
∗∗z log = !

!
�

�L
NM

O
QPx x

x x
. log1

2
1
1

1 , as before

= !
!
�

! +
�
!

!x x
x

x x
x2

1
1

1
2

1
1

1log log

Ex. 2. Prove that
(i) n(QnPn – 1 – Pn – 1Qn) = (n – 1) (Qn – 1Pn – 2 – Qn – 2Pn – 1) and deduce that
(ii) n(QnPn – 1 – Qn – 1Pn) = –1 or  PnQn – 1 – QnPn – 1 = 1/n. (Bilaspur 1997)
(iii) PnQn – 2 – QnPn – 2 = {(2n – 1)x/n(n – 1)}.
Sol. (i) From recurrence relations of Pn and Qn, we have

(2n + 1)xPn = (n + 1)Pn + 1 + nPn – 1 ...(1)
and (2n + 1)xQn = (n + 1)Qn + 1 + nQn – 1. ...(2)

Replacing n by n – 1 in (1) and (2), we get
(2n – 1)xPn – 1 = nPn + (n – 1)Pn – 2 ...(3)

and (2n – 1)xQn – 1 = nQn + (n – 1)Qn – 2. ...(4)
Multiplying (3) by Qn – 1 and (4) by Pn – 1 and then subtracting, we have

0 = n(Pn Qn – 1 – Pn – 1 Qn) + (n – 1) (Pn – 2 Qn – 1 – Pn – 1 Qn – 2)
or n(Qn Pn – 1 – Qn – 1 Pn) = (n – 1) (Qn – 1 Pn – 2 – Qn – 2 Pn – 1). ...(5)

Part (ii) Deduction. Let Un = n(Qn Pn – 1 – Qn – 1 Pn). ...(6)
Then (5) may be written as Un = Un – 1, which gives Un – 1 = Un – 2 = Un – 3 = ... = U3 = U2 = U1.
Thus, we have Un = U1. or n(Qn Pn – 1 – Qn – 1 Pn) = Q1P0 – Q0P1, by (5)

or n(Qn Pn – 1 – Qn – 1 Pn) = Q1 – xQ0, as P0 = 1  and P1 = x       ...(7)

But Q1 – xQ0 =
1 1 1

log 1 log
2 1 2 1
x x xx

x x
� �

! ! /
! !

= –1. [Do as in part (iii) of Ex. 1]

With this value of Q1 – xQ0, (7) gives the required result.
Part (iii). Multiplying (3) by Qn – 2 and (4) by Pn – 2 and then subtracting, we get

(2n – 1)x (Pn – 1 Qn – 2 – Qn – 2 Pn – 1) = n(Pn Qn – 2 – Qn Pn – 2)

or Pn Qn – 2 – Qn Pn – 2 = 
( )2 1n x

n
!  (Pn – 1 Qn – 2 – Qn – 1 Pn – 2). ...(9)

Replacing n by n – 1 in (1), Pn – 1 Qn – 2 – Qn – 1 Pn – 2 = 1/(n – 1). ...(10)
Using (10), (9) reduces to        Pn Qn – 2 – Qn Pn – 2 = {(2n – 1)x/n(n – 1)}.

Ex. 3. Prove that : Q2(x) = 1
2

1
1

3
22P x x

x
x x( ) log .�

!
!

Sol. From recurrence relation III for Qn(x),    (n + 1)Qn – 1 = (2n + 1)xQn – nQn – 1.   ...(1)
Replacing n by 1 in (1), we get
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2Q2 = 3xQ1 – Q0 = 3
2

1
1

1 1
2

1
1

x x x
x

x
x

log log�
!

!L
NM

O
QP !

�
!

 [Do as in part (iii) of Ex. 1]

 =
3 1

2
1
1

3
2x x

x
x! �

!
!log = P2(x) log x

x
x�

!
!

1
1

3   �P x x
2

23 1
2

( ) +
!L

NM
O
QP

− Q2(x) = 1
2

1
1

3
22P x x

x
x( ) log .�

!
!

Ex. 4. Prove that
1

1 2 1
( 2) !

[ ( )]
( 1)

n n

nn n
d nQ x
dx x

�

� �

!
+ !

!
.

Sol. We know that

Qn(x) = ( 1) ( 3)! ( 1) ( 2)
1 3 5...(2 1) 2(2 3)

n nn n nx x
n n

! � ! �# � �
�%∋ ∋ � �(

( 5)( 1) ( 2) ( 3) ( 4) ...
2 4 (2 3) (2 5)

nn n n n x
n n

! � ∃� � � �
� � &∋ ∋ � � )

  ...(1)

Differentiating both sides of (1) (n + 1) times w.r.t. x, we get

d
dx

Q x
n

n n

�

�

1

1 [ ( )] =
!

1 3 5...(2 1)
n

n∋ ∋ �
d
dx

x
n

n
n

�

�
! ! �

L
NM

1

1
1( )

( ) ( )
( )

( )n n
n

d
dx

x
n

n
n� �

�

�

�
! !1 2

2 2 3

1

1
3

1
5

1
( 1) ( 2) ( 3) ( 4) ( ) ...

2 4 (2 3) (2 5)

n
n

n
n n n n d x

n n dx

�
! !

�

∃� � � �
� � &∋ ∋ � � )

=
!

1 3 5...(2 1)
n

n∋ ∋ �
 [(–n – 1) ) (–n – 2)...(–n – 1 – n)x–n – 1 – n – 1 + ( ) ( )

( )
n n

n
� �

�
1 2

2 2 3
. (–n – 3) (–n – 4)...

(–n – 3 – n)x–n – 3 – n – 1 + 
( 1) ( 2) ( 3) ( 4)

2 4 (2 3) (2 5
n n n n

n n
� � � �

∋ ∋ � �
 (–n – 5) (–n – 6)... (–n – 5 – n)x–n – 5 – n – 1 + ...]

� d x
dx

m m m m n x
n m

n
m n+ ! ! ! �

L
NM

O
QP

!( ) ( )...( )1 2 1

= 1 2 2!
( 1) ( 1) ( 2)...(2 1)

1 3 5...(2 1)
n nn n n n x

n
� ! !# ! � � �(∋ ∋ �

      
1 2 4( 1) ( 2) ( 3)...(2 3)

( 1)
2 (2 3)

n nn n n n x
n

� ! !� � � �
� !

∋ �
1 2 6( 1) ( 2)...(2 5)( 1) ...

2 4 (2 3) (2 5)
n nn n n x

n n
� ! ! ∃� � �

� ! � &∋ ∋ � � )

= 
1 2 2( 1) ! ( 1) ( 2)...(2 1)

1 3 5...(2 1)

n nn n n n x
n

� ! !! � � �
∋ ∋ �

2(2 2) (2 3)
1

2 (2 3)
n n x

n
!# � �

�% ∋ �(

6(2 2) (2 3) (2 4) (2 5)
...

2 4 (2 3) (2 5)
n n n n x

n n
! ∃� � � �

� � &∋ ∋ � � )

=
1 2 2

2 4( 1) (2 1)! ( 1) ( 2)1 ( 1) ...
1 3 5...(2 1) 2!

n nn x n nn x x
n

� ! !
! !! � � �# ∃� � � �% &∋ ∋ � ( )

= (–1)n + 1 2 4 6∋ ∋ ... (2n) x–2n – 2 1 1
2

1

!FHG
I
KJ

! !

x

n

= (–1)n + 1 2n n! x–2n – 2

12

2 2 1
1 ( 2) !

( 1)

n n

n
x n

x x

! !

�

8 9! !
+ !: ;: ; !< =

.
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10.12 Legendre Functions of the Second kind—Qn(x)

EXERCISE

1. Prove that Qn(x) = 2n n! dx dx x dx
x x

n

x

∗ ∗
! !

∗z z z !... ( )2 11 . (Bilaspur 1994, 96)

2. Prove that Qn(x) = dt
x x t n{ ( ) cosh }� ! �

∗z ∆ 2 10 1
.

3. By using the definition of Qn(x), find value of Q0(x) and Q1(x).
4. Show that the Wronskian W(Qn, Px) of Qn(x) and Pn(x) is 1/(x2 – 1), i.e., show that

W(Qn, Pn) = 1/(x2 – 1).           (Ravishankar 2004)
[Hint. Refer equation (*) of part (ii) of Ex. 1 of Art. 10.8. Proceeding as indicated, get

2( 1) ( ) 1n n n nx Q P Q P. .! ! +       or      21/( 1)n n n nQ P Q P x. .! + !     or        2( , ) 1/( 1)n nW Q P x+ !

5. 2( 1) ( )n n nx Q P P Qn. ..! ! +  (a) n2 (b) 0 (c) k (d) None of these [Agra 2006]

[Hint: Ans (c) Refer Ex1, Art 10.8.]
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11.1

11
Bessel Functions

11.1. Bessel’s equation and its solution. [Garhwal 2004; Kanpur 2009]
The differential equation of the form                  x2y! + xy� + (x2 – n2)y = 0

...(1)
or y! + (1/x) × y� + (1 – n2/x2)y = 0 ...(1)�
is called Bessel’s equation of order n, n being a non–negative constant. We now solve (1) in series
by using the well known method of Frobenius.

Let the series solution (1) be y = 0
0

, 0k m
m

m

c x c
#

∃

%

&∋ . ...(2)

( y � = c k m xm
k m

m
( )∃∋ ∃ )

%

# 1
0

         and y! = c k m k m xm
k m

m
( ) ( )∃ ∃ )∋ ∃ )

%

#
1 2

0
.

Substitution for y, y�, y! in (1) now gives

        x2 c k m k m x x c k m xm
k m

m m
k m

m
( ) ( ) ( )∃ ∃ )∋ ∃ ∃∋∃ )

%

# ∃ )

%

#
1 2

0
1

0
+(x2 – n2) c xm

k m
m

∃

%

#
∋

0
= 0

or c k m k m k m n xm
k m

m
{( ) ( ) ( ) }∃ ∃ ) ∃ ∃ )∋ ∃

%

#
1 2

0
+ c xm

k m
m

∃ ∃

%

#
∋ 2

0
= 0.

But the bracketed expression in the above identity
= (k + m)2 – (k + m) + (k + m) – n2 = (k + m)2 – n2 = (k + m + n) (k + m – n).

So the above identity becomes

c k m n k m n x c xm
k m

m
k m

mm
( ) ( )∃ ∃ ∃ ) ∃ ∋∋ ∃ ∃ ∃

%

#

%

# 2
00

∗ 0. ...(3)

Equating to zero the smallest power of x, namely xk, (3) gives the indicial equation

c0(k + n) (k – n) = 0  i.e., (k + n) (k – n) = 0  as  c0 & 0. Its roots are k = n, –n.
Next equating to zero the coefficient of xk + 1 in (3) gives

c1(k + 1 + n) (k + 1 – n) = 0,   so that  c1 = 0    for  k = n  and    k = –n.
Finally equating to zero the coefficient of xk + m in (3) gives

cm(k + m + n) (k + m – n) + cm – 2 = 0   or     cm = 1
2( ) ( )k m n n k m

cm∃ ∃ ) ) ) .   ...(4)

Putting m = 3, 5, 7, ... in (4) and using c1 = 0, we find
c1 = c3 = c5 = c7 = .... = 0. ...(5)

Putting m = 2, 4, 6, ... in (4) gives c2 =
1

2 2 0( ) ( )k n n k
c

∃ ∃ ) )
,

c4 = 1
4 4 2( ) ( )k n n k

c
∃ ∃ ) )

= 1
4 4 2 2 0( ) ( ) ( ) ( )k n n k k n n k

c
∃ ∃ ) ) ∃ ∃ ) )

and so on. Putting these values in (2), we get
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11.2 Bessel Functions

   y = c0x
k

2
1

( 2) ( 2)
x

n k n k
+

∃, ∃ ∃ ) )−
∃

∃ ∃ ) ) ∃ ∃ ) )
∃ OQP

x
n k n k n k n k

4

2 2 4 4( ) ( ) ( ) ( )
...

Replacing k by n and –n and also replacing c0 by a and b in the above equation gives

y = axn
2 4

1 ...
4(1 ) 4 8(1 ) (2 )

x x
n n n

. /0 0) ∃ )1 2
∃ 3 ∃ ∃0 04 5

...(6)

and y = bx–n
2 4

1 ...
4(1 ) 4 8(1 ) (2 )

x x
n n n

. /0 0) ∃ )1 2∃ 3 ) )0 04 5
. ...(7)

The particular solution of (1) obtained from (6) above by taking the arbitrary constant
a = 1/{2n 6(n + 1)}, is called the Bessel function of the first kind of order n. It will be denoted by
Jn(x). Thus, we have

Jn(x) =
2 4

1 ...
4( 1) 4 8( 1) ( 2)2 ( 1)

n

n
x x x

n n nn

+ 7
) ∃ ), 8∃ 3 ∃ ∃6 ∃ − 9

...(8)

or Jn(x) = ( )
! ( )

)
∃ ∃

FH IK
∃

%

#

∋ 1 1
1 2

2

0

r
r n

r r n r
x

6
...(9)

Replacing b by 1/{2n 6(n + 1)} in (7) and proceeding as above gives

J–n(x) =
2

0

1( 1)
! ( 1) 2

r n
r

r

x
r n r

)#

%

: ;) < =6 ) ∃ ∃ > ?∋ ...(10)

Let n be non–integral. We know that 6(m) = # if m is zero or a negative integer and 6(m) is
finite otherwise. Since n is not an integer and r is always integral, the factor 6(–n + r + 1) in (10)
is always finite and non–zero. For 2r < n, (10) shows that J–n(x) contains negative powers of x. On
the other hand, (9) shows that Jn(x) is not containing negative powers of x at all. Therefore, we find
that at x = 0, Jn(x) is finite while J– n(x) is infinite, and so one cannot be expressed as a constant
multiple of the other. From these arguments we conclude that Jn(x) and J–n(x) are two independent
solutions of (1) when n is not an integer (this condition being stronger than 2n non–integral which
was assumed earlier). Thus, the general solution of Bessel equation (1) when n is not an integer is

y = AJn(x) + BJ– n(x), where A and B are arbitrary constant. ... (11)
11.2. Bessel’s functions of the first kind of order n. Definition [Nagpur 2003]

Bessel’s function of the first kind and of order n is denoted by Jn(x) and is defined as

Jn(x) = ( )
! ( )

)
∃ ∃

FH IK
∃

%

#

∋ 1 1
1 2

2

0

r
r n

r r n r
x

6
, where n is any non–negative constant. ...(1)

Remark 1. When n is an integer, 6(n + r + 1) = (n + r) ! and so (1) may be rewritten as

Jn(x) =
2

0

1( 1)
! ( ) ! 2

r n
r

r

x
r n r

∃#

%

: ;) < =∃ > ?∋ . ...(2)

Replacing n by 0 and 1 in turn in (2), Bessel’s functions of orders 0 and 1 are given by

J0(x) =
2 4 6

2 2 2 2 2 21 ....
2 2 4 2 4 6
x x x

) ∃ ) ∃
3 3 3

Kanpur 2005]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Bessel Functions 11.3

and J1(x) =
3 5

2 2 2 ....
2 2 3 2 4 6
x x x

) ∃ )
3 3 3

Remark 2. When there is no confusion regarding the variable, we shall write Jn for Jn(x) and
J �n for d Jn(x)/dx etc.
11.3. List of important results of Gamma function 6(n) and Beta function B(m, n).

For more details, refer Chapter 6.

(i) 6(n) = e x dxx n) )
#z 1

0
, n > 0 (ii) 6(n) = 2

2 2 1

0
e x dxx n) )

#z
(iii) 6(1) = 1 (iv) 6(1/2) = ≅
(v) 6(n + 1) = n 6(n), n > 0 (vi) 6(n + 1) = n !, if n is +ve integer

(vii) B(m, n) = B(n, m)    (viii) 6(n) 6(1 – n) = ≅/sin n≅.

(ix) 6(m) = #, so that 1/ ( ) 0m6 %  if m = 0 or –ve integer

(x) B(m, n) = x x dx x x dxm ni n m) ) ) )) % )z z1 1

0

1 1

0

1
1 1( ) ( ) ,  where m > 0, n > 0

(xi) B(m, n) = 6 6
6
( ) ( )
( )
m n
m n∃

(xii) 6(2n) = 22 1
1
2

n
n n

)
∃

≅
6 6( ) ( )

11.4. Relation between Jn(x) and J–n(x), n being an integer
Theorem. I Show that when n is
(i) positive integer, J–n(x) = (–1)n Jn(x). [Agra 2006; Kanpur 2006, 07, 08

 MDU Rohtak 2004; Purvanchal 2006; Meerut 2006; Nagpur 1995;]
(ii) any integer, J–n(x) = (–1)n Jn(x) [Kanpur 2004, 08; Ranchi 2010; Meerut 1993]
Proof. Part (i). Let n be a +ve integer. We know that

J–n(x) = ( )
! ( )

)
) ∃ ∃

FH IK
)

%

#

∋ 1 1
1 2

2

0

r
r n

r r n r
x

6
. ...(1)

Since n >0, so 6(–n + r + 1) is infinite (and so 1/6(–n + r + 1) is zero) for r = 0, 1, 2, .....,
(n – 1). Keeping this in mind we see that the sum over r in (1) must be taken from n to infinity.
Thus,

J–n(x) = ( )
! ( )

)
) ∃ ∃

FH IK
)

%

#

∋ 1 1
1 2

2
r

r n

r n
r n r

x
6

...(2)

From (2), ( )nJ x) = ( )
( ) ! ( )

)
)

∃ ∃
FH IK∃

∃ )

%

#

∋ 1 1
1 2

2(

0

m n
m n n

m
m n m

x
6

, (on changing the variable

of summation to m = r – n so that r = m + n and so m = 0 when r = n and m = # when r = #)

( ( )nJ x) = ( ) ( )
( ) !

( ) ( )
( ) !

) )
∃ ∃

FH IK % ) )
∃ ∃

FH IK
∃

%

# ∃

%

#

∋ ∋1 1 1
1 2

1 1 1
1 2

2

0

2

0

m n
m n

m

n r
m n

r
m n m

x
r n r

x
6 6

,

(on changing the variable of summation from m to r while keeping the limits of summation unchanged.)

Thus, for n > 0 ( )nJ x) = (–1)n Jn(x), by the definition of Jn(x). ... (3)
Part (ii). Let n < 0. Let p be a positive integer such that n = –p. Since p > 0, from part (i)

above, we have J–p(x) = (–1)pJp(x) so that    Jp(x) = (–1)–p J– p(x).
But p = –n hence the above result becomes J–n(x) = (–1)nJn(x), ...(4)

which is of the same form as (3). Hence the required result holds for any integer.
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11.4 Bessel Functions

Remark. When n is an integer J–n(x) is not independent of Jn(x), because J–n(x) is a constant
multiple of Jn(x) as shown above. Hence y = AJn(x) + BJ–n(x) is not the general solution of Bessel
equation when n is an integer. Of course, when n is not an integer, the most general solution of
Bessel equation is given by y = AJn(x) + BJ–n(x). When n is an integer, the nature of general
solution is indicated by the following theorem.
      Theorem II. The two independent solutions of Bessel’s equation may be taken to be Jn(x) and

Yn(x) =
cos ( ) ( )

sin
n J x J x

n
n n≅

≅
) ) , for all values of n. ...(5)

Proof. Case I. Let n be not an integer. Since n is not an integer, sin n≅ & 0. Hence (5)
shows that Yn(x) is a linear combination of Jn(x) and J–n(x). But we know that Jn(x) and J–n(x) are
independent solutions if n is not an integer. Hence Jn(x) and a linear combination of Jn(x) and
J–n(x) will also be independent solutions. Thus we find that Jn(x) and Yn(x) are two independent
solutions of Bessel’s equation.

Case II. Let n be an integer. Then we have cos n≅ = (–1)n, sin n≅ = 0 and J–n(x) = (–1)n Jn(x).
Using these values in (5), we find that Yn(x) has the form 0/0 and so Yn(x) is undefined. To

make Yn(x) meaningful, we define it as

     Yn(x)  = lim
v nΑ Yv(x) = lim cos ( ) ( )

sinv n
v vv J x J x

vΑ
))≅

≅ ...(6)

 =
[( / ) {(cos ( ) ( )}]

[( / ) cos )]
Β Β )

Β Β
) %

%

v v J x J x
v v

v v v n

v n

≅
≅

, by L’ Hospital’s rule

    =
) ∃ Β

Β
) Β

Β
L
NM

O
QP)

%

%

≅ ≅ ≅

≅ ≅

sin ( ) cos ( ) ( )

[ cos ]

v J x v
v

J x
v

J x

v

v v v
v n

v n
= 

cos ( ) ( )

cos

n
v

J x
v

J x

n

v
v n

v
v n

≅

≅ ≅

Β
Β
L
NM

O
QP ) Β

Β
L
NM

O
QP%

)
%

   =
( ) ( ) ( ) ( )) Β

Β
L
NM

O
QP ) ) Β

Β
L
NM

O
QP%

)
%

1 1 2n
v

v n

n
v

v n
n

v J x v J x

≅ Χ)∆Ε
= 1 1

≅
Β
Β

) ) Β
Β

L
NM

O
QP)

%v
J x

v
J xv

n
v

v n
( ) ( ) ( ) ...(7)

We now establish the following two results about Yn(x) as given by (6).
(i) Yn(x) is a solution of Bessel’s equation. (ii) Yn(x) is a solution independent of Jn(x).

Proof of (i). Since Jv(x) and J–v(x) are solutions of Bessel’s equation of order v, we must have

x2 d J
dx

x dJ
dx

x v Jv v
v

2

2
2 2 0∃ ∃ ) %( ) ...(8)

and x2 d J
dx

x dJ
dx

x v Jv v
v

2

2
2 2 0) )

)∃ ∃ ) %( ) . ...(9)

Differentiating (8) and (9) w.r.t. ‘v’, we obtain

x2 d
dx

J
v

x d
dx

J
v

x v J
v

vJv v v
v

2

2
2 2 2 0Β

Β
F
HG
I
KJ ∃

Β
Β
F
HG
I
KJ ∃ )

Β
Β

) %( ) ...(10)

x2 d
dx

J
v

x d
dx

J
v

x v J
v

vJv v v
v

2

2
2 2 2 0Β

Β
F
HG
I
KJ ∃

Β
Β
F
HG
I
KJ ∃ )

Β
Β

) %) ) )
)( ) . ...(11)

Multiplying (11) by (–1)v and subtracting from (10) gives

    x2 d
dx

J
v v

J x d
dx v

J
v

Jv v
v v

v
v

2

2 1 1Β
Β

) ) Β
Β

RST
UVW ∃ Β

Β
) ) Β

Β
RST

UVW) )( ) ( ) 2 2( ) ( 1)v
v vx v J J

v v )
Β Β. /∃ ) ) )1 2
Β Β4 5

2 { ( 1) } 0v
v vv J J)) ) ) % ...(12)
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Bessel Functions 11.5

Taking v = n in (12) and using (7), we have

x2 d
dx

Y x x d
dx

Y x x n Y xn n n

2

2
2 2{ ( )} { ( )} ( ) ( )≅ ≅ ≅∃ ∃ ) –2n{Jn(x) – (–1)n J–n(x)} = 0

Since n is an integer, J–n(x) = (–1)nJn(x) by theorem I and hence the last term in the above
equation vanishes. So the above equation reduces to

x2Yn! + xYn� + (x2 – n2)Yn = 0, ...(13)
showing that Yn(x) is also a solution of Bessel’s equation of order n.

Proof of (ii). We know that an explicit expression Yn(x) for n integral is given by

        Yn(x) =
1

2 1 1log ( )
2 2

n

n
r

x
J x

r%

. /
∃ Φ )1 2≅ 4 5

∋
2

0 1

1 1 1 1( 1)
!( )! 2

n m m
m

m r

x
m n m r r n

∃#

% %

: ; . /) ) ∃< = 1 2
≅ ∃ ∃> ? 4 5
∋ ∋

                           
21

0

1 ( 1) !
! 2

n mn

m

n m x
m

) ∃)

%

) ) : ;) < =≅ > ?∋ , ...(14)

where Φ is Euler’s constant. From (14) we find that Yn(x) is infinite when x = 0, whereas  Jn(x) is
infinite when x = 0. So Yn(x) as given by (6) and Jn(x) are two independent solutions of Bessel’s
equation of order n.

Remark 1. General solution of Bessel’s equation when n is an integer is
y = AJn(x) + BYn(x), A and B being arbitrary constants. ...(15)

where Yn(x) is given by (6). Yn(x) is known as Bessel’s function of order n of the second kind. Yn(x)
is also called the Neumann function of order n and is denoted by Nn(x).

Remark 2. Equations reducible to Bessel’s equation
Consider x2y! + xy� + (Γ2x2 – n2)y = 0 ...(16)

Let   z = Γx   so that       
2 2

2 2and .dy dy d y d y
dx dz dx dz

Η% Γ % Γ   Then (16)

becomes
2 2 2 2 2( / ) ( / ) ( ) 0z d y dz z dy dz z n y∃ ∃ ) % , ...(17)

which is Bessel’s equation of order n. As explained in remark 1 above, the general solution of (17) is
y = AJn(z) + BYn(z) or   y = AJn(Γx) + BYn(Γx). ...(18)
Thus Jn(Γx) and Yn(Γx) are solutions of (16), which is called the modified Bessel’s equation.

11.5. Bessel’s function of the second kind of order n. Definition
This is denoted by Yn(x) and is defined by

Yn(x) = J x n J x
n

n n( ) cos ( )
sin

≅
≅
) ) , n & integer

and Yn(x) = lim ( ) cos ( )
sinv n

v vJ x v J x
vΑ

))≅
≅ , n is an integer..

11.6. Integration of Bessel’s equation xy! + y� + xy = 0 in series for n = 0. Bessel’s
function of zeroth order, i.e. J0(x).   [Kakitiya 1997]

Bessel’s equation for n = 0 is given by xy! + y� + xy = 0 ...(1)

Let its series solution be      y = c x cm
k m

m
∃

%

#
&∋ , 00

0. ...(2)

( y � = ( )k m c xm
k m

m
∃ ∃ )

%

#

∋ 1

0
 and y! = ( ) ( )k m k m c xm

k m

m
∃ ∃ ) ∃ )

%

#

∋ 1 2

0
.    ...(3)

Substituting for y, y �, y! in (1), we obtain
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11.6 Bessel Functions

x ( ) ( ) ( )k m k m c x k m c xm
k m

m
k m

mm
∃ ∃ ) ∃ ∃∃ ) ∃ )

%

#

%

#
∋∋ 1 2 1

00
∃ ∃

%

#

∋x c xm
k m

m 0
= 0

or ( )( ) ( )k m k m c x k m c xm
k m

m
k m

mm
∃ ∃ ) ∃ ∃∋∋ ∃ ) ∃ )

%

#

%

#
1 1 1

00
∃ ∃ ∃

%

#

∋ c xm
k m

m

1

0
= 0

or {( ) ( ) ( )}k m k m k m c x c xm
k m

m
k m

mm
∃ ∃ ) ∃ ∃ ∃ %∃ ) ∃ ∃

%

#

%

#

∋∋ 1 01 1

00

or ( )k m c x c xm
k m

m
k m

mm
∃ ∃ %∃ ) ∃ ∃

%

#

%

#
∋∋ 2 1 1

00
0 , ...(4)

which is an identity. Equating to zero the coefficient of the lowest power of x, namely xk – 1, we have
k2c0 = 0 so that           k = 0, 0 (as c0 & 0)

Now equating to zero the coefficient of next higher power of x, namely xk, in (4), we have
c1(k + 1)2 = 0 so that           c1 = 0        as      (k + 1)2 & 0      for      k = 0.

Finally, equating to zero the coefficient of xk + m – 1 in (4), we get

(k + m)2cm + cm – 2 = 0 or cm = )
∃

)c
k m

m 2
2( )

, for all m Ι 2.

When k = 0, we have              cm = – (1/m2)cm – 2 for all m Ι 2 ...(5)
Putting m = 3, 5, 7, ... in (5) and noting that c1 = 0, we obtain

    c1 = c3 = c5 = c7 = ... = 0. ...(6)
Next, putting = 2, 4, 6, ... in (5), we have

c2 = )
c0

22
,      c4 = 02

2 2 24 2 4
cc

) %
3

,       c6 = 04
2 2 2 2 ,

6 2 4 6
cc

) % )
3 3

 ... and so on

Putting the above values in (2) for k = 0, y = c xm
m

m%

#
∋

0
= c0 + c1x + c2x

2 + c3x
3 + ....

or y = c0

2 4 6

2 2 2 2 2 21 ..... .... ad. inf
2 2 4 2 4 6
x x x: ;

) ∃ ) ∃< =
3 3 3> ?

If c0 = 1, the above solution is denoted by J0(x) so that

J0(x) =
2 4 6

2 2 2 2 2 21 ..... .... ad. inf
2 2 4 2 4 6
x x x

) ∃ ) ∃
3 3 3

, ...(7)

where J0(x) is known as Bessel’s function of zeroeth order.
Note 1. Replacing n by 0 in Art. 11.2, we can deduce (7).
Note 2. From (7), we have J0(0) = 1. [Nagpur 1995]

11.6.A. Solved examples based on Art. 11.1 to 11.6
Ex. 1. Prove that

(i) J–1/2(x) = ( / )2 ≅x cos x. [Garhwal 2005; Nagpur 2005; Kanpur 2009, 10;
Agara 2010; Bhopal 2010; Ranchi 2010]

(ii) J1/2(x) = ( / )2 ≅x sin x. [Nagpur 2003, 05; Garhwal 2004; Kanpur 2004; 07]
(iii) [J1/2(x)]2 + [J–1/2(x)]2 = 2/(≅x). [Lucknow 2010; Meerut 1992, 93]
Sol. By the definition of Jn(x), we have

Jn(x) =
2 4

21 ...
2 2( 1)2 ( 1) 2 4 2 ( 1) ( 2)

n

n
x x x

nn n n
+ 7

) ∃ ), 83 ∃6 ∃ 3 3 ∃ ∃− 9
...(1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Bessel Functions 11.7

Part (i). Replacing n by – (1/2) in (1) and simplifying, we get

J–1/2(x) = 
Χ Ε

1/ 2 2 4

1/ 2 1
2

1 ...
1 2 1 2 3 42

x x x)

)

+ 7
) ∃ ), 83 3 3 36 − 9

= 2
≅x

 cos x,  as  6 1
2c h = ≅

Part (ii). Replacing n by 1/2 in (1) and simplifying, we get

J1/2(x) = 
1 /2 2 4

1/ 2 . 1 ...
1 2 3 1 2 3 4 52 (3 / 2)

x x x+ 7
) ∃ ), 8

3 3 3 3 3 36 − 9
= 

Χ Ε
3 5

1
2

1 1. ...
2 1 2 3 1 2 3 4 5
x x xx

x∆
Η

+ 7: ; ) ∃ ), 8< = 6 3 3 3 3 3 3> ? − 9
[� 6(p + 1) = p6(p)]

=
3 52 2... sin

3 ! 5 !
x xx x

x x
+ 7

) ∃ ) %, 8≅ ≅− 9
Part (iii). Squaring and adding the results of (i) and (ii), we get

[J1/2(x)]2 + J–1/2(x)]2 = (2/≅x) (sin2x + cos2x) = 2/≅x.

Ex. 2. Prove that lim ( )
( )z

n
n n n

J z
z nΑ

%
∃0

1
2 16

, where n > –1. (Kanpur 2005, 07)

Sol. By defination,  Jn(z) = z
n

z
n

z
n n

n

n2 1
1

4 1 4 8 1 2

2 4

6( ) ( ) . . ( ) . ( )
...

∃
)

∃
∃

∃ ∃
)

L
NM

O
QP

(    lim ( )
z

n
n

J z
zΑ0 =

2 41 11 ...
4( 1) 4 . 8 . ( 1) . ( 2)2 ( 1) 2 ( 1)n n

z z
n n nn n

+ 7
) ∃ ) %, 8∃ ∃ ∃6 ∃ 6 ∃− 9

Ex. 3. Write the general solution of the following equations:
(i) x2(d2y/dx2) + x(dy/dx) + (x2 – 25)y = 0 (MDU Rohtak 2005)

(ii) x2(d2y/dx2) + x(dy/dx) + (x2 – 9/16)y = 0
(iii) d2y/dx2 + (1/x) × (dy/dx) + (1 – 1/6.25x2) y = 0
(iv) x2 (d2z/dx2) + x(dz/dx) + (x2 – 64) z = 0
(v) z(d2y/dz2) + (dy/dz) + zy = 0

Sol. In what follows, we shall use the following solutions of Bessel’s equation
2 2 2( ) 0x y xy x n y�� �∃ ∃ ) %

Result I: y = A Jn (x)+ B J–n(x), where n is not an integer. A, B being arbitrary constants.
Result II: y = A Jn(x) + B Yn(x), where n is an integer, A, B being arbitrary constants.

(i) Given 2 2 2( 5 ) 0,x y xy x y�� �∃ ∃ ) %  which is Bessel’s equation of order 5, which is an
integer. Its general solution is y = A J5(x) + B Y5(x), where A and B are arbitrary constants.

(ii) Given  2 2 2{ (3/ 4) } 0,x y xy x�� �∃ ∃ ) %  which is Bessel’s equation of order 3/4, which is
not an integer. Its solution is y = A J3/4(x) + B J–3/4 (x), where A and B are arbitrary constants

(iii) Re-writing, given equating becomes    2 2 2{ (2 / 5) } 0x y xy x y�� �∃ ∃ ) %

As in part (ii), solution is      y = A J2/5(x) + B J–2/5(x), A, B being arbitrary constants
(iv) Given x2(d2z/dx2) + x(dz/dx) + (x2 – 82) z = 0

As in part (i), solution is      z = A J8 (x) + B Y8(x), A, B being arbitrary constants
(v)   Re-writing the given equation, z2(d2y/dz2) + z(dy/dz) + z2y = 0

which is a Bessel equation of order 0, which is an integer. Its solution is y = A J0(z) + BY0(z).
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11.8 Bessel Functions

Ex. 4. Solve the following differential equation:
(i) x2(d2y/dx2) + x(dy/dx) + (4x4 – 1/4)y = 0

(ii) x(d2y/dx2) + dy/dx + (y/4) = 0 by using the subtitution z x%
Sol. (i) Suppose that z = x2 ... (1)

( 2 ,dy dy dz dyx
dx dz dx dz

% %  by (1) ... (2)

and  
2

2 2 2 2d y d dy d dy dy d dyx x
dx dx dx dz dz dx dzdx

: ; : ; : ;% % % ∃< = < = < =
> ? > ? > ?

2
2

22 2 2 (2 ) ,dy d dy dz dy d yx x
dz dz dz dx dz dz

: ;% ∃ % ∃< =
> ?

 by (1)

Substituting the above values in the given equation, we get
2

2 2 2 4
2

12 4 2 4 0
4

dy d y dyx x x x y
dz dzdz

: ; : ;∃ ∃ ∃ ) %< = < =< = > ?> ?
    or

2
2 2

2
14 4 4 0
4

d y dyz z z y
dzdz

: ;∃ ∃ ) %< =
> ?

or     2 2 2 2 2( / ) ( / ) { (1/ 4) } 0z d y dz z dy dz z y∃ ∃ ) % ... (3)
(3) is a Bessel’s equation of order 1/4. Since 1/4 is a positive non-integral real number, hence

solution of (3) is y = A J1/4(z) + B J–1/4(z)     or     y = A J1/4(x
2) + B J–1/4 (x

2).
(ii) Given z x% ... (1)

( 1 ,
2

dy dy dz dy
dx dz dx dzx

% %  using (1) ... (2)

and
3/ 22

2
1 1

42 2
d y d dy d dy x dy d dy

dx dx dx dz dz dx dzdx x x

): ;: ; : ;% % % ) ∃< =< = < =
> ? > ?> ?

or
2 2

2 3/ 2 3 /2 2
1 1 1 1

44 2 4
d y dy d dy dz dy d y

dz dz dz dx dx xdx x x x dz
: ;% ) ∃ % ) ∃< =
> ?

... (3)

Using (1), (2) and (3), the given equation, reduces to
2

3/2 2
1 1 1 1 0

4 44 2
dy d y dyx y
dz x dzx dz x

: ;
) ∃ ∃ ∃ %< =< =

> ?
or

2

2
1 1 1 1 0
4 4 2 4

dy d y dy y
z dz z dzdz

) ∃ ∃ ∃ %

or 2 2 2 2 2( / ) ( / ) ( 0 ) 0,z d y dz z dy dz z y∃ ∃ ) %
which is a Bessel’s equation of order 0 and so its solution is

y = A J0(z) + B Y0(z) or 0 0( ) ( ),y A J x B Y x% ∃

which is the general solution of the given equation, A, B being arbitrary constants.
Ex. 5 (a) Solve x(d2y/dx2) + 2(dy/dx) + (xy)/2 = 0 in terms of Bessel’s functions.

(KU Kurukshetra 2005)
(b) Solve x(d2z/dx2) – 2(dz/dx) + xz = 0 by using the substitution y = z/x3/2.
Sol. (a) Given x(d2y/dx2) + 2(dy/dx) + (xy)/2 = 0 ... (1)

Assume that z y x%   so that       /y z x% ... (2)

(
3/2

1/ 2 1/ 2( )
2

dy d dz xx z x z
dx dx dx

)
) )% % )

2
1/ 2 3 / 2

2
1 ( )
2

d y d dy d dz dx x z
dx dx dx dx dxdx

) ): ; : ;% % )< = < => ? > ?
=

2 3/ 2 5/ 2
1/ 2 3/ 2

2
1 3

2 2 2
d z x dz dz xx x z

dx dxdx

) )
) ): ;

) ) )< =< =
> ?
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Bessel Functions 11.9

or
2 2

2 1/ 2 2 3/ 2 5/ 2
1 1 3

4
d y d z dz z

dxdx x dx x x
% ) ∃

Substituting the above values of y, dy/dx and d2y/dx2 in (1), we get
2

1/ 2 2 3/2 5 /2 1/ 2 3/ 2 1/ 2
1 1 3 12 0

24 2
d z dz z dz z x zx

dx dxx dx x x x x x

: ; : ;) ∃ ∃ ) ∃ ϑ %< = < =< = > ?> ?

or
2

1/ 2 1/ 2
2 1/ 2 3/2

1 1 0
24

d z dz zx x z
dxdx x x

∃ ) ∃ % ... (3)

Multiplying both sides of (3) by x3/2,    x2(d2z/dx2) + x(dz/dx) + (x2/2 – 1/4) z = 0 ... (4)

Let / 2u x% ... (5)

(
1 ,
2

dz dz du dz
dx du dx du

% % ϑ  by (5) ... (6)

From (6), we have
1
2

d d
dx du

∗ ... (7)

(
2

2
1 1 ,
2 2

d y d dy d dz
dx dx du dudx

: ;: ;% %< = < =
> ? > ?

 by (6) and (7)

Thus,         d2y/dx2 = (1/2) × (d2z/du2) ... (8)
Substituting the above values in (4), we get

2
2 2

2
1 1 12 2 0
2 42

d z dzu u u z
dudu

: ;ϑ ∃ ϑ ∃ ) %< =
> ?

     or       
22

2 2
2

1 0
2

d z dzu u u z
dudu

. /0 0: ;∃ ∃ ) %1 2< =
> ?0 04 5

... (9)

which is a Bessel equation of order 1/2. Since 1/2 a positive non-negative integer, hence the required
solution is given by

z = A J1/2(u) + B J1/2(u)    or    1/ 2 1/ 2( / 2) ( / 2),y x A J x BJ x)% ∃  by (2) and (5)

(b) Ans. 3/ 2 3/ 2
1 3/ 2 2 3/ 2( ) ( ),z c x J x c x J x)% ∃ c1, c2 being arbitrary constants

Ex. 6. Verify that the Bessel function 1/ 2
1/ 2 ( ) (sin ) (2 / )J x x x% ϑ ≅  satisfies the Bessel equation

of order 1/2. (MDU Rohtak 2006)
Sol. Bessel equation of order 1/2 is given by

x2(d2y/dx2)  x(dy/dx) + (x2 – 1/4)y = 0 ... (1)
Let        1/ 2 1/ 2

1/ 2 ( ) (2 / ) ( sin )y J x x x)% % ≅ ϑ ... (2)

( Κ Λ1/ 2 1/ 2 3/ 2/ (2 / ) cos ( 1/ 2) sindy dx x x x x) )% ≅ ϑ ∃ ) ϑ

Κ2 2 1/ 2 3/ 2 1/ 2 5 / 2/ (2 / ) (1/ 2) cos sin (3 / 4) sind y dx x x x x x x) ) )% ≅ ϑ ) ϑ ) ∃ ϑ Λ3/2( 1/ 2) cosx x)∃ ) ϑ

Substituting the above values of y, dy/dx and d2y/dx2 in (1), we get

Κ Λ Κ2 1/ 2 3/2 1/ 2 5 / 2 1/ 2 1/ 2(2 / ) cos sin (3/ 4) sin (2 / ) cosx x x x x x x x x x) ) ) )ϑ ≅ ) ) ∃ ϑ ∃ ϑ ≅

Λ3/ 2 2 1/ 2 1/ 2(1/ 2) sin ( 1/ 4) (2 / ) ( sin ) 0x x x x x) )) ϑ ∃ ) ϑ ≅ ϑ %

or Κ1/ 2 1/ 2 3/ 2 1/ 2 1/ 2 1/ 2(2 / ) cos sin (3/ 4) sin cos (1/ 2) sinx x x x x x x x x x) )≅ ) ) ∃ ϑ ∃ ) ϑ

Λ3/ 2 1/ 2sin (1/ 4) sin 0x x x x)∃ ) ϑ %
or     0 = 0, which is true. Hence y = J1/2 (x) satisfies the Bessel equation (1) of order 1/2.
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11.10 Bessel Functions

Ex. 7. Show that d (xn Jn(ax)/dx = a xn Jn–1(ax) and hence deduce that d(x J1(x))/dx = x J0(x).

Sol. We know that                      
2

0

( 1)( )
! ( 1) 2

r nr

n r

xJ x
r n r

∃#

%

) : ;% Μ < =6 ∃ ∃ > ?
... (1)

(   
2

0

( 1)( )
! ( 1) 2

r nr
n n

n r

axx J ax x
r n r

∃#

%

) : ;% Μ < =6 ∃ ∃ > ?
   or     

2 2 2

20

( 1)( )
2 ! ( 1)

r r n r n
n

n r nr

a xx J ax
r n r

∃ ∃#

∃%

)
% Μ

6 ∃ ∃

( Χ Ε
2 2 2 1

20

( 1) 2( )( )
2 ! ( 1)

r r n r n
n

n r nr

d a r n xx J ax
dx r n r

∃ ∃ )#

∃%

) ϑ ∃
% Μ

6 ∃ ∃ ... (2)

From (1),       
2 1

1 0

( 1)( )
! ( ) 2

r nr

n r

axJ ax
r n r

∃ )#

)
%

) : ;% Μ < =6 ∃ > ?

(
2 2 2 1

1 2 10

( 1) 2( )( )
2 ! ( ) 2( )

r r n r n
n

n r nr

a x r nax J ax
r n r r n

∃ ∃ )#

) ∃ )%

) ϑ ∃
% Μ

6 ∃ ϑ ∃

or
2 2 2 1

1 20

( 1) 2( )( )
2 ! ( 1)

r r n r n
n

n r nr

a r n xax J ax
r r n

∃ ∃ )#

) ∃%

) ϑ ∃
% Μ

6 ∃ ∃ ... (3)

From (2) and (3), Χ Ε 1( ) ( )n n
n n

d x J ax ax J x
dx )% ... (4)

Putting n = 1 and a = 1 in (4), we have 1 0( ( )) ( )d xJ x x J x
dx

%

Ex. 8. Show that  
1

0
2 1/ 20

( ) sin
(1 )
u J xu xdu

xu
%

)Ν

Sol. We have (see Art. 11.2),                 
2 4 6

0 2 2 2 2 2 2( ) 1 .....
2 2 4 2 4 6
x x xJ x % ) ∃ ) ∃

3 3 3
... (1)

(
2 41 1 2 40

2 1/ 2 2 1/ 20 0

( ) 1 ...
4 4 16(1 ) (1 )

uJ xu u x xdu u u du
u u

: ;
% ) ∃< =< =3) ) > ?

Ν Ν

    
2 4/ 2 2 4

0

sin 1 sin sin ... cos
cos 4 64

≅ : ;Ο
% ) Ο ∃ Ο ) Ο Ο< =< =Ο > ?
Ν

x x
d

2 4/2 / 2 / 23 5

0 0 0
sin sin sin ....

4 64

≅ ≅ ≅
% Ο Ο) Ο Ο∃ Ο ΟΝ Ν Ν

x xd d d

[On putting sinu % Ο  and cosdu d% Ο Ο ]

    Π Θ
2 4

/ 2
0

2 4 2cos ....
4 3 64 5 3
x x≅ 3

% ) Ο ) ϑ ∃ ϑ
3

[using Walli’s formula of Integral calculus]

    
2 4 3 51 sin1 ...

3! 5! 3! 5!
x x x x xx

x x
: ;

% ) ∃ ) % ) ∃ ∃ 3333 %< => ?

Ex. 9. Show that 
/ 2

1
0

1 cos( cos )
≅ )

Ο Ο %Ν
zJ z d

z
[Bilaspur 1997]

Sol. We have       
2

0

( 1)( )
! ( 1) 2

r nr

n r

xJ x
r n r

∃#

%

) : ;% Μ < =6 ∃ ∃ > ?
... (1)
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Bessel Functions 11.11

(1)   Ρ
2 1

1 0

( 1) cos( cos )
! (1 1) 2

∃#

%

) Ο: ;Ο % Μ < =6 ∃ ∃ > ?

rr

r

zJ z
r r

( Χ Ε
2 1/ 2 / 2 2 1

1 2 100 0

( 1)cos cos
! ( 1) ! 2

r r
r

rr

zJ z d d
r r

∃#≅ ≅
∃

∃%

)
Ο Ο % Μ Ο Ο

∃Ν Ν
2 1

2 10

( 1) 2 (2 2)...4 2
(2 1)(2 1)...5 3! ( 1)!2

r r

rr

z r r
r rr r

∃#

∃%

) ) 3
% Μ 3

∃ ) 3∃       [using a standard result of Integral calculus]

2 1 2

2 10

( 1) [2 (2 2)...4 2]
(2 1) 2 (2 1) (2 2)...5 4 3 2 1! ( 1)!2

r r

rr

z r r
r r r rr r

∃#

∃%

) ) 3
% Μ 3

∃ ) ) 3 3 3 3∃

2 1 2 2 2 1

2 10 0

( 1) 2 ( 1) ( 1)
(2 1)! 2( 1)(2 1)!! ( 1)!2

r r r r r

rr r

z r z
r r rr r

∃ ∃# #

∃% %

) )
% Μ 3 % Μ

∃ ∃ ∃∃

3 51 1 1 cos...
2! 4! 6!
z z z z

z z z
)

% ) ∃ ) ∃ ) %

Ex. 10. Prove that 
/ 2 2 1

01 0
( ) sin cos ( sin ) ,

2 ( )

≅ )
)

% Ο Ο Ο Ο
6 Ν
n

n
n n

xJ x J x d
n

 where n > – 1/2.

[Ravishankar 2002]

Sol. We have
2

0

( 1)( )
! ( 1) 2

∃#

%

) : ;% Μ < =6 ∃ ∃ > ?

r nr

n
r

xJ x
r n r

... (1)

(1)  Ρ
2

0 0

( 1) sin( sin )
! ( 1) 2

#

%

) Ο: ;Ο % Μ < =6 ∃ > ?

rr

r

xJ x
r r

... (2)

Let
/ 2 2 1

0
0

sin cos ( sin )nI J x d
≅ )% Ο Ο Ο ΟΝ ... (3)

(      
2/ 2 2 1 2
200

( 1)sin cos sin ,
! ( 1) 2

r r
n r

rr

xI d
r r

#≅ )

%

: ;)
% Ο Ο Μ Ο Ο< =< =6 ∃> ?
Ν  using (2)

  
2 / 2 2 1 2 1

2 20 0

( 1) cos sin
( !) 2

r r
n r

rr

x d
r

# ≅
) ∃

%

)
% Μ Ο Ο ΟΝ

22

2 20 0

( 1) ( ) ( 1) ( ) ( 1)
( 1) 2 ! ( 1) 2( !) 2

# #

% %

) 6 6 ∃ 6 ) : ;% Μ 3 % Μ < =6 ∃ ∃ 6 ∃ ∃ > ?

rr r r

rr r

x n r n x
n r r n rr

or
2 2

1 0 0

( 1) ( 1)
2 ! ( 1) 2 !( 1)! 22 ( )

n r r nn r r

n r r

x x x xI
r n r r n rn

∃# #

) % %

) ): ; : ; : ;% Μ % Μ< = < = < =6 ∃ ∃ ∃ ∃6 > ? > ? > ?

or
/ 2 2 1

01 0
sin cos ( sin ) ( ),

2 ( )

≅ )
)

Ο Ο Ο Ο %
6 Ν
n

n
nn

x J x d J x
n

 by (1) and (3)

Ex. 11. Show that 
20

( ) ( )
( )

% ∃Ν
x

n n
n

dxy A J x B J x
xJ x

 is the complete solution of Bessel’ss

equation.    [Bilaspur 1994]

Sol. The Bessel’s equation is 2 2(1/ ) (1 / ) 0y x y n x y�� ∃ ϑ ∃ ) % ... (1)

We know that a solution (1) is u = Jn(x) ... (2)
Let the complete solution of (1) be y = u v ... (3)

Comparing (1) with   ,�� �∃ ∃ %y Py Qy R     P = 1/x      and        Q = 1 – n2/x2,       R = 0
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11.12 Bessel Functions

*Then, we know that v is given by

2

2
2: ;∃ ∃ %< =

> ?

d du d RP
u dx dx udx

v v or       
2

2
2 ( )1 0

( )
n

n

J xd d
x J x dxdx

�: ;
∃ ∃ %< =

> ?

v v
       ... (4)

Let dv/dx = q              so that              d2v/dx2 = dq/dx ... (5)

Then (4) yields 21 0
: ;�
< =∃ ∃ %
< =
> ?

n

n

Jdq q
dx x J

             or              
21 0.

: ;�
< =∃ ∃ %
< =
> ?

n

n

Jdq dx
q x J

Integrating, log q + log x + 2 log Jn = log A or 2
nq x J A%

or 2/ /( )% % nq d dx A x Jv or Κ Λ2/( )% nd A x J dxv

Integrating,
20

,% ∃Ν
x

n

dxA B
x J

v ... (6)

where A and B are arbitrary constants. From (2), (3) and (6) the required complete integral is

20
( )

x

n
n

dxy J x A B
x J

: ;
% ∃< =< =

> ?
Ν       or 20

( ) ( )
( )

% ∃Ν
x

n n
n

dxy A J x BJ x
x J x

Ex. 12. Prove that if n > m – 1, then  Jn(x) = 2 2 1 2 1 1

0

1( / )
( )

( ) ( )x
n m

t t J xt dt
n m

n m m
m

)
) ) ∃

)
)z6

.

Sol. Let      I = ( ) ( )1 2 1 1

0

1
) ) ) ∃z t t J xt dtn m m

m .

Then using the definition of Jm(xt), we have

I = ( ) ( )
! ( )

1 1 1
1 2

2 1 1

0

1 2

0
) )

∃ ∃
FH IK) ) ∃

∃

%

#z ∋t t
r m r

xt dtn m m r
r m

r 6

 = ( ) ( / )
! ( )

( ))
∃ ∃

)
∃

) ) ∃ ∃

%

# z∋ 1 2
1

1
2

2 1 2 2 1

0

1

0

r r m
n m m r

r

x
r m r

t t dt
6

=
2 1 2 1 2

0
0

( 1) ( /2) (1 ) ( )
! ( 1)

r r m
n m m r

r

x t t t dt
r m r

# ∃
) ) ∃

%

)
)

6 ∃ ∃∋ Ν

 = ( ) ( / )
! ( )

. ( ) ( ))
∃ ∃

)
∃

) ) ∃ ∃ )

%

# z∋ 1 2
1

1
2

1
2

1 1 1

0

1

0

r r m
n m m r

r

x
r m r

z z dz
6

,  on putting t2 = z and t dt =
2
dz

= ( ) ( / )
! ( )

. . ( ) ( )
( )

)
∃ ∃

) ∃ ∃
∃ ∃

∃

%

#

∋ 1 2
1

1
2

1
1

2

0

r r m

r

x
r m r

n m m r
n r6

6 6
6

, provided n – m > 0 and m + r + 1 > 0 i.e. n > m > –1

1 1 1

0

( ) ( )(1 ) ( , ) , if 0, 0
( )

z z dz BΣ ) Τ )+ 76 Σ 6 Τ
) % Σ Τ % Σ Υ Τ Υ, 86 Σ ∃ Τ− 9Ν�

  =
2

0

( ) ( 1)
2 2 ! ( 1) 2

m n n rr

r

n m x x
r n r

) ∃#

%

6 ) ): ; : ;
< = < =6 ∃ ∃> ? > ?∋ = 6( )n m x m n) FH IK

)

2 2
Jn(x), by def. of Jn(x)

(  Jn(x) = 2 2( / )
( )

x
n m

I
m n)

)6
  or       Jn(x) =2 2 1 2 1 1

0
1( / )

( )
( ) ( ) ,x

n m
t t J xt dt

m n
n m m

m

)
) ) ∃

)
)z6

 using (1)

*Refer Chapter 10 in part I of ‘‘Ordinary and Partial Differential Equations’’ by Dr. M.D. Raisinghania
published by S.Chand & Co., New Delhi
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Bessel Functions 11.13

Ex. 13. Prove that (i)  Jn(x) = ( / )
( )

( ) /x
n

t e dt
n

n ixt2
1

1 2 1 2

1

1

≅ 6 ∃
) )

)z , if n Ι ) 1
2

(ii) Jn(x) = x
n

t xt dt
n

n
n

2 1
11 1

2

2 1 2

0

1

)
)

)
)z6 6( ) ( )

( ) cos/ .

Sol. Part (i). Let  I = ( ) /1 2 1 2

1

1
) )

)z t e dtn ixt .

But    eA = 1
2

2

0
∃ ∃ ∃ ∃ ∃ %

%

#

∋A A A
r

A
r

r r

r!
....

!
....

!

(   I = ( ) ( )
!

/1 2 1 2

01

1
)

RS|T|
UV|W|

)

%

#

)
∋z t ixt

r
dtn

r

r
        or        I =

( )
!

( ) /ix
r

t t dt
r

r

n r

%

#
)

)
∋ z )

0

2 1 2

1

1
1 .   ...(2)

Now, if r is odd (i.e. r = 2m + 1), the integrand in the above integral is an odd function of t and
hence it vanishes whereas if r is even (i.e. r = 2m), the integral is even function of t and so by a

property of definite integral ( ) /1 2 1 2 2

1

1
) )

)z t t dtn m = 2 1 2 1 2 2

0

1
( ) /) )z t t dtn m . So (2) gives

I =
1 2 1/ 2 2

0
0

( ) . 2 (1 )
(2 ) !

m
n m

m

ix t t dt
m

#
)

%

)∋ Ν =
2 2 1 2 1 2 1

0
0

( ) (1 ) . 2 ,
(2 ) !

m m
n m

m

i x t t t dt
m

#
) )

%

)∋ Ν  by (1)

= ( )
( ) !

( ) ( ) ./ /) ) ) )

%

# z∋ 1
2

1
2

1 2 1 2 2 1

0

1

0

m m
n m

m

x
m

z z dz ,   on putting     t2 = z     so that    2t dt = dz

=
( )

( ) !
( )( / ) ( / )) ) ∃ ) ∃ )

%

# z∋ 1
2

1
2

1 2 1 1 2 1

0

1

0

m m
n m

m

x
m

z z dz =

1 12
2 2

0

( ) ( )( 1) ,
(2 ) ! ( 1)

m m

m

n mx
m n m

#

%

6 ∃ 6 ∃)
ϑ

6 ∃ ∃∋
provided n + 1

2  > 0, m + 1
2  > 0 i.e. n > – 1

2 , m > – 1
2

1 1 1

0

( ) ( )(1 ) ( , ) , 0, 0
( )
ax x dx B ifΣ ) Τ )+ 76 6 Τ

) % Σ Τ % Σ Υ Τ Υ, 86 Σ ∃ Τ− 9Ν�

= 6
6

≅( ) ( )
( ) ! ( )

( ) !
!

n x
m n m

m
m

m m

m
m

∃ )
∃ ∃

ϑ ϑ
%

#

∋1
2

2

2
0

1
2 1

2
2

1
2 2

(2 )!By duplication formula,when  is a+ve integer, ( + )
2 !m
mm m

m

+ 7≅
6 %, 8

− 9
�

= 6 ≅
6

( ) ( )
! ( )

n x
m n m

xn m m n

m
∃ FH IK )

∃ ∃
FH IK

) ∃

%

#

∋1
2

2

02
1

1 2
= 6 ≅( )n x n

∃ FH IK
)

1
2 2 Jn(x), by definition of Jn(x)

( Jn(x) =
( / )

( )
x

n
I

n2
1
26 ≅∃ ...(3)

or Jn(x) =
( / )

( )
( ) , ( )./x

n
t e dt

n
n ixt2 1 1

1
2

1 2

1

1

≅ 6 ∃
) Η )

)z by

Part (ii). Since eixt = cos xt + i sin xt, (1) gives

I = ( ) (cos sin )/1 1 2

1

1
) ∃Η )

)z t xt i xt dtn = ( ) cos ( ) sin/ /1 11 2

1

1 1 2

1

1
) ∃ )Η )

)

Η )

)z zt xt i t xt dtn n
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11.14 Bessel Functions

or I = 2 1 01 2

0

1
( ) cos/) ∃Η )z t xt dtn ...(4)

[� the integrand in the first integral is an even function of t, while the integrand in the
second integral is an odd function of t and it is known that

f t dt
a

a
( )

)z = 0
2 ( ) , if ( ) is even function

0, if ( ) is odd function

a
f t dt f t

f t

.
0
1
04

Ν

Using (4) and noting that ≅ = 6(1/2), (3) gives

  Jn(x) = ( / )
( ) ( )

. ( ) cos/x
n

t xt dt
n

n2 2 11
2

1
2

2 1 2

0

1

6 6 ∃
) )z =  x

n
t xt dt

n

n
n

Η 6 6) 1 ( ) ( )
( ) cos/

1
2

1
2

2 1 2

0

1
1

∃
) )z .

Ex. 14. (i) Prove that n n n nJ J J J) )� �) = ) 2 sin n
x

≅
≅

. [Vikram 2004]

(ii) Prove that d
dx

J
J

n
x J

n

n n

)F
HG
I
KJ % ) 2

2
sin ≅

≅
. [Bilaspur 1998]

(iii) Prove that J �n(x) J–n(x) – Jn(x) nJ)� (x) = c/x where c is a constant. By considering the
behaviour for the large values of x, show that c = (2 sin n≅)/≅.

(iv) Show that the Wronskian W(Jn, J–n) of Jn and J–n is given by

W(Jn, J–n) (2 / ) sin .x n% ) ≅ ϑ ≅ [Ravishankar 1998, 2000]
Sol. (i) We know that Jn and J–n are solutions of Bessel’s equation

        y! + (1/x)y� + (1 – n2/x2)y = 0.

(                2 2(1/ ) (1 / ) 0n n nJ x J n x J∃ ∃ ) %�� � ...(1)

and            2 2
– (1/ ) (1 / ) 0n n nJ x J n x J) )∃ ∃ ) %�� � ...(2)

Multiplying (1) by J–n and (2) by Jn and then subtracting, we have

(1/ ) ( )n n n n n n n nJ J J J x J J J J) ) ) )�� �� � �) ∃ ϑ ) = 0 ...(3)

Let     n n n nJ J J J v) )� �) % . ...(4)
Differentating w.r.t. ‘x’ (4) gives

– –( )n n n n n n n nJ J J J J J J J v) )∃ ) ∃ %�� � � �� � � �      or        .n n n nJ J J J v) )) %�� �� �    ...(5)
Using (4) and (5), (3) becomes

v� + (1/x)v = 0      or       (dv/dx) + (1/x)v = 0 or (1/v)dv + (1/x)dx = 0.
Integrating, log v + log x = log c or v = c/x

or J �nJ–n / ,n nJ J c x)) %�  by (4) ...(6)

Now, Jn(x) =
2 41 ...

4( 1) 4 8 ( 1)( 2)2 ( 1)

n n
n

n
x xx
n n nn

∃ ∃+ 7
) ∃ ), 8

∃ 3 3 ∃ ∃6 ∃ − 9

and J–n(x) =
2 41 ...

4(1 ) 4 8 (1 )(2 )2 ( 1)

n n
n

n
x xx

n n nn

) )
)

)

+ 7
) ∃ ), 8) 3 3 ) )6 ) ∃ − 9

( Using the above values of Jn and J–n, (6) gives
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Bessel Functions 11.15

1 3
11 ( 2) ( 4) ...

2 ( 1) 4( 1) 4 8 ( 1)( 2)

n n
n n x n xnx

n n n n

∃ ∃
)+ 7∃ ∃

) ∃ ), 86 ∃ ∃ 3 3 ∃ ∃− 9
2 41 ...

4(1 ) 4 8 (1 )(2 )2 ( 1)

n n
n

n
x xx

n n nn

) )
)

)

+ 7
ϑ ) ∃ ), 8) 3 3 ) )6 ) ∃ − 9
1 3

11 (2 ) (4 ) ...
4(1 ) 4 8 (1 )(2 )2 ( 1)

n n
n

n
n x n xn x

n n nn

) )
) )

)

+ 7) )
) ) ) ∃ ), 8) 3 3 ) )6 ) ∃ − 9

2 41 ...
4( 1) 4 8 ( 1)( 2)2 ( 1)

n n
n

n
x x cx
n n n xn

∃ ∃+ 7
ϑ ) ∃ ) %, 8∃ 3 3 ∃ ∃6 ∃ − 9

Now comparing the coefficients of 1/x from both sides, we get

2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1)n n n n
n n

n n n n) )
∃

6 ∃ 3 6 ) ∃ 6 ) ∃ 3 6 ∃
= c or c = 2

1
n

n n n6 6( ) ( ))

or c = 2
( / sin )≅ ≅n

= 2 sin n≅
≅

� 6 6 ≅
≅

( ) ( )
sin

n n
n

1 ) %L
NM

O
QP

Putting this value of c in (6) and multiplying both sides by (–1), we get

n n n nJ J J J) )� �) = – 2 sin n
x

≅
≅ . ...(7)

Part (ii). Dividing both sides of (7) by Jn
2, we get

J J J J
J

n n n n

n

� ) �) )
2 = – 2

2
sin n
x Jn

≅
≅

or d
dx

J
J

n

n

)F
HG
I
KJ = ) 2

2
sin n
x Jn

≅
≅

.

Part (iii) Refer part (i).

(iv) By definition, ( , ) n n
n n n n n n

n n

J J
W J J J J J J

J J
)

) ) )
)

��% % )
� �

(2 / ) sin ,% ) ≅ ϑ ≅x n  by (7)

Ex. 15(a). Prove that Jn(x) = (–2)n xn 0
2
( )

.
( )

n

n
d J x
d x

[Ranchi 2010]

(b)  Show that if 02( ) ( ),: ;% < =
> ?

n
n

n
dJ x kx J x

dx
 then k = –(2)n. [Ravishankar 1998]

Sol. (a) We know that J0(x) is a solution of Bessel’s equation of order zero (i.e. n = 0) namely,
2 2/ (1/ ) ( / ) 0d y dx x dy dx y∃ ϑ ∃ % . ...(1)

Let x2 = X so that x = X and dX/dx = 2x = 2 X .  ...(2)

( dy
dx

= dy
dX

dX
dx

X dy
dX

% 2 2, ( )by ...(3)

From (3)               d
dx

∗ 2 dX
dX

. ...(3)�

(      d y
dx

2

2 = d
dx

dy
dx

X d
dX

X dy
dx

FH IK % FH IK2 2 ,  by (3) and (3)�

 = 4 4 1
2

1 2
2

2X d
dX

X dy
dX

X X dy
dX

X d y
dX

FH IK % ∃
L
NM

O
QP

)( ) /   = 4 2
2

2X d y
dX

dy
dX

∃   ... (4)
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11.16 Bessel Functions

Putting the values of x, dy/dx and d2y/dx2 from (2), (3) and (4) in (1), we get

4 2 1 2 0
2

2X d y
dX

dy
dX X

X dy
dX

y∃ ∃ ∃ %. or    4 4
2

2X d y
dX

dy
dX

y∃ ∃ = 0.  ...(5)

Differentiation of (5) n times w.r.t. ‘X’ by Leibnitz theorem gives

4 X d y
dX

n d y
dX

d y
dX

d y
dX

n

n

n

n

n

n

n

n

∃

∃

∃

∃

∃

∃∃
L
NM

O
QP ∃ ∃

2

2

1

1

1

11 4. = 0  or   4 4 1
2

2

1

1X d y
dX

n d y
dX

d y
dX

n

n

n

n

n

n

∃

∃

∃

∃∃ ∃ ∃( ) = 0 ....(6)

Since y = J0(x) is a solution of (1), we now take

Y = 
d y
dX

d J x
d x

n

n

n

n% 0
2
( )

( )
  so that

1 2 2

1 2 2and
n n

n n
dY d y d y d y
dX dX dX dX

∃ ∃

∃ ∃% % ...(7)

(  (6) gives 4 4 1
2

2X d y
dX

n dy
dX

X∃ ∃ ∃( ) = 0. ...(8)

But Jn(x) is a solution of Bessel equation       
d y
dx x

dy
dx

n
x

y
2

2

2

2
1 1∃ ∃ )
F
HG
I
KJ = 0. ...(9)

Let y = xnz so that Jn(x) = xnz. ...(10)

Differentiating (10) , dy
dx

= xn dz
dx

 + nxn – 1z    and      d y
dx

2

2 = x d z
dx

nx dz
dx

n n z zn n n
2

2
1 22 1∃ ∃ )) )( ) .

Using the above values of y, dy/dx and d2y/dx2, (9) gives

x d z
dx

nx dz
dx

n n x z
x

x dz
dx

nx zn n n n n
2

2
1 2 12 1 1∃ ∃ ) ∃ ∃FH IK) ) )( ) + 1

2

2)
F
HG
I
KJ

n
x

xnz = 0

or   x d z
dx

n x
x

dz
dx

x zn
n

n
2

2 2 1∃ ∃ ∃( ) . = 0 or d z
dx

n
x

dz
dx

z
2

2 2 1 1∃ ∃ ∃( ) = 0. ...(11)

Using (2) and also (3) and (4) [after replacing y by z here], (11) gives

  4 2
2 1

2
2

2X d z
dX

dz
dX

n
x

X dz
dX

z∃
F
HG

I
KJ ∃

∃
∃

( )
. = 0

or 2 24 ( / ) 4( 1)( / )X d z dX n dz dX∃ ∃ + z = 0. ...(12)
Comparing (8) and (12), we have z = kY, where k is a constant to be determined. Using (7)

and (10), we have xnz = kxnY or Jn(x) = kxn 0
2
( )

( )

n

n
d J x
d x

.             ...(13)

But J0(x) =
( )
( !)

( )
( !)

) % )

%

#

%

#

∋ ∋1
2

1
2

2

2
0

2
0

r r

r
r

r r

r
r

x
r

X
r (� x2 = X)

Differentiating both sides w.r.t. x2 (i.e. X) n times, we have

            d J x
d x

n

n
0
2
( )

( )
= ( )

( !)
)

%

#

∋ 1
2 2

0

r

r

n

n
r

r r
d

dX
X ...(14)

= ( )
( !)

!)1
2 2

n

n n
n  + terms involving X (i.e. x2)

(Note that on differentiation all those terms in R.H.S. of (14) for which r < n will vanish).
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Bessel Functions 11.17

Using value of Jn(x) and the above expression, (13) gives
2

2
2

( 1) !1 ... terms contaning
2 2( 1)2 ( 1) (2 !)

n n
n

n n
x x nkx x

nn n

+ 7 + 7)
) ∃ % ∃, 8 , 83 ∃6 ∃ − 9 − 9

Equaing the coefficients of xn from both sides, we get

1
2 1n n6( )∃

= k n
n

n

n
( ) !
( !)
)1
2 2 or k = (–1)n 2n = (–2)n ... (15)

[� 6(n + 1) = n !, n being +ve integer]

With this value of k, (13) gives Jn(x) = (–2)nxn d J x
d x

n

n
0
2
( )

( )
.

(b) Proceed as in part (a). From (15), we have k = (–2)n

EXERCISE 11 (A)
1. Show that y = x–n/2 Jn(2 x ) satisfies the equation xy! + (n + 1)y� + y = 0.

2. Show that ( ) ( )/
/

≅
≅

x J x dx1 2
0

2
2z = 1.

3. (a)  Prove : J bx x e dxn
n ax( ) )#z0 =

2 1
2

2 2 1 2

n n

n
n b

a b
6

≅
( )

.
( ) /

∃

∃ ∃

(b) Prove that J bx x e dxn
n ax( )

0

1
#

∃ )z =
2 1 1

2
2 3 2

n n

n
n ab

a b

∃

∃
∃

∃

6
≅
( )

.
( ) / ,  a > 0.

4. Prove : J bx x e dxn
n ax( ) ∃ )#z 1

0

2

= b
a

b a
n

n( )
exp( / )

2
41

2
∃ ) , where exp (p) = ep

5. Prove that J bx x e dxn
n ax( ) ∃ )

#z 1

0

2

= b
a

n

n n2 1 2∃ ∃ n b
a

b
a

a∃ )
F
HG

I
KJ )
F
HG
I
KJ Υ1

4 4
0

2 2
exp , .

6. For what value of n the general solution of Bessel’s differential equation will be of the
form y = AJn(x) + BJn(x).

7. Write the differential equation satisfied by Bessel’s function of order n. Express the following
Bessel’s functions in terms of trigonometric functions :

(i) J1/2(x), (ii) J–1/2 (x), (iii) J3/2(x), (iv)J–3/2(x).
11.7. Recurrence Relations (Formulae) for Jn(x). Prove that

I. d
dx

{xnJn(x)} = xnJn – 1(x). [Agra 2005; Guwahati 2007; Kanpur 2004, 09; Nagpur 1996]

II. d
dx

{x–nJn(x)} = –x–nJn + 1(x). [Agra 2008; Gulbarga 2005; Kanpur 2009]

III. J �n(x) = Jn – 1(x) – (n/x) Jn or nx J � = –nJn + xJn – 1. [Agra 2010; Bilaspur 2004;

KU Kurukshetra 2005; Agra 1997;  Kanpur 2005, 09, 11; Meerut 2010; Nagpur 2010]
IV. J �n(x) = (n/x) Jn(x) – Jn + 1(x)      or     xJ �n = nJn – xJn + 1. [Nagpur 2005;

 Bangalore 93, 94; Meerut 2005, 07, 11; Kanpur 1999; Bilaspur 1998]
V. J �n(x) = 1

2 {Jn – 1(x) – Jn + 1(x)}    or      Jn – 1 – Jn + 1 = 2 J �n.
Agra 2009; Jiwaji 2004, 07; Ravishankar 2004; Nagpur 1995; Kanpur 2007]

VI. Jn – 1(x) + Jn + 1(x) = (2n/x)Jn(x) or xJn + 1(x) + xJn – 1(x) = 2nJn(x)
or 2Jn = x(Jn – 1 + Jn + 1). [Agra 2008; Bangalore 2005; Meerut 2006;

Kanpur 2006, 11; Nagpur 2010]
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11.18 Bessel Functions

Proof 1. Using the definition of Jn(x), we have

d
dx {xnJn(x)} = d

dx
x

r n r
xn r

r n

r

( )
( )

)
∃ ∃

F
HG
I
KJ

R
S|
T|

U
V|
W|

∃

%

#

∋ 1 1
1 2

2

0 ς 6

=
( )
( )

. . ( ))
∃ ∃ ∃

∃

%

#

∋ 1
1

1
22

2 2

0

r

r n
r n

r r n r
d
dx

x
 ς 6

=
( ) ( )

! ( )
) ∃

∃ ∃

∃ )

∃
%

#

∋ 1 2 2
1 2

2 2 1

2
0

r r n

r n
r

r n x
r n r6

=
2 1

2
0

( 1) 2 ( ) .
( ) 2

r n r n

r n
r

r n x x
r n r n r

# ∃ )

∃
%

) 3 3 ∃ 3
ς Χ ∃ Ε 6 ∃∋ [� 6(n + 1) = n6(n)]

= x
r n r

xn
r r n

r

( )
( )

)
) ∃ ∃

FH IK
∃ )

%

#

∋ 1
1 1 2

2 1

0 ς 6
= xnJn – 1(x). by the definition of Jn – 1(x).

II.  Using the definition of Jn(x), we have

d
dx {x–nJn(x)} = d

dx
x

r n r
xn r

r n

r

)
∃

%

#

)
∃ ∃

FH IK
R
S|
T|

U
V|
W|∋ ( )

( )
1 1

1 2

2

0
ς6

= 2
2

0

( 1) 1 ( )
( 1) 2

r
r

r n
r

d x
r n r dx

#

∃
%

)
3 3

ς6 ∃ ∃∋ =
( )

( )
)

∃ ∃

)

∃
%

#

∋ 1 2
1 2

2 1

2
0

r r

r n
r

rx
r r n rΧ ) Ε ς61

=
2 1

2 1
0

( 1) 1
1 ( 1) 2

r r

r n
r

x
r n r

# )

∃ )
%

)
3

Χ ) Ε ς6 ∃ ∃∋ =
2 1

2 1
1

( 1) 1
1 ( 1) 2

r r

r n
r

x
r n r

# )

∃ )
%

)
3

Χ ) Ε ς6 ∃ ∃∋
(since (r – 1) ! = # when r = 0 so the term corresponding to r = 0 vanishes)

          =
1 2 2 1

2 2 1
0

( 1)
( 2) 2

m m n n

m n
m

x x x
m n m

# ∃ ∃ ) )

∃ ∃ )
%

) 3
3

ς6 ∃ ∃∋ , (on changing the variable of summation to m = r –1

so that r = m + 1. Then m = 0 when r = 1 and m = # when r = #)

= –x
m n m

xn
m n m

m

)
∃ ∃

%

#
)

∃ ∃
FH IK∋ ( )

( )
1

2 2

1 2

0
ς6

= ) )
∃ ∃ ∃

FH IK)
∃ ∃

%

#

∋x
r n r

xn
r n r

r

( )
( )

1
1 1 2

1 2

0
ς6

(on changing the variable of summation from m to r)
= –x–nJn + 1(x), by the definition of Jn + 1(x).

III.  Recurrence relation I is
d
dx {xnJn(x)} = xnJn – 1(x) or n xn – 1Jn(x) + xnJ �n(x) = xnJn – 1(x).

Dividing both sides by xn – 1,                 n Jn(x) + x J �n(x) = x Jn – 1(x)
or (n/x) Jn(x) + Jn�(x) = Jn – 1(x) or J �n(x) = Jn – 1(x) – (n/x) Jn(x)

IV. Recurrence relation II is
d
dx

{x–n Jn(x)} = –x–n Jn + 1(x)     or      –n x–n – 1Jn(x) + x–n J �n(x) = –x–nJn + 1(x)

Dividing both sides by x–n,                         n x–1 Jn(x) + J �n(x) = –Jn + 1(x)
or (–n/x) Jn + J �n = Jn + 1     or J �n = (n/x) Jn – Jn + 1.
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V. From recurrence relations III and IV, we have J �n(x) =Jn – 1(x) – (n/x)Jn(x)   ...(1)
and J �n(x) = (n/x) Jn(x) – Jn + 1(x). ...(2)

Adding (1) and (2), 2J �n(x) = Jn – 1(x) – Jn + 1(x) or    J �n(x) = 1
2 {Jn – 1(x) – Jn + 1(x)}.

VI. From recurrence relations III and IV, we have J �n(x) = Jn – 1(x) – (n/x)Jn(x)     ...(1)
and J �n(x) = (n/x) Jn(x) – Jn + 1(x). ...(2)

Subtracting (2) from (1), we get
0 = Jn – 1 + Jn + 1 – 2(n/x) Jn or Jn – 1 + Jn + 1 = (2n/x) Jn.

11.7. A. Solved examples based on recurrence relations
Ex. 1(a). Show that xnJn(x) is a solution of x(d2y/dx2) + (1 – 2n) × (dy/dx) + xy = 0.

[CDLU 2004]
(b) Show that x–nJn(x) is a solution of x(d2y/dx2) + (1 + 2n) × (dy/dx) + xy = 0.

[MDU Rohtak 2005]
Sol. (a) Given x(d2y/dx2) + (1 – 2n) × (dy/dx) + xy = 0 ... (1)
Let y = xn Jn(x) ... (2)

From recurrence relation I, 1[ ( )] ( ))%n n
n n

d x J x x J x
dx

or dy/dx = xn Jn–1, using (2) ... (3)
From (3), d2y/dx2 = xn J �n–1 + n xn–1 Jn–1
Substituting the above values of y, dy/dx and d2y/dx2 in (1), we get

1 1
1 1 1( ) (1 2 ) 0n n n n

n n n nx x J nx J n x J x J) ∃
) ) )� ∃ ∃ ) ∃ %      or     1 1

1 1( 1) 0∃ ∃
) )� ) ) ∃ %n n n

n n nx J n x J x J

or Κ Λ1 1
1 1( 1) / 0n n

n n nx J n x J x J∃ ∃
) )� ) ) ∃ %+ 7− 9 ... (4)

From recurrence relation VI, we have

1( ) ( )∃� % )n n n
nJ x J J x
x

so that 1 1
1 ( )) )

)� ) % )n n n
nJ J J x

x
... (5)

Using (5), (4) reduces to –xn + 1 Jn + xn + 1 Jn = 0,  i.e., 0 = 0, which is true.
Hence xn Jn is a solution of (1).

(b) Given 2 2( / ) (1 2 ) ( / ) 0∃ ∃ ϑ ∃ %x d y dx n dy dx xy ... (1)

Let   y = x–nJn(x) ... (2)

From recurrence relation II, Κ Λ 1( ) ( )) )
∃% )n n

n n
d x J x x J x
dx

or        dy/dx = –x–nJn + 1, using (2)

From (3), 2 2 1
1 1/ n n

n nd y dx x J n x J) ) )
∃ ∃% ) ∃� ... (3)

Substituting the above values of y, dy/dx and d2y/dx2 in (1), we get
1 1

1 1 1( ) (1 2 ) ( ) 0n n n n
n n n nx x J nx J n x J x J) ) ) ) ) ∃

∃ ∃ ∃�) ∃ ∃ ∃ ϑ ) ∃ %

or  1 1
1 1( 1) 0) ∃ ) ) ∃

∃ ∃�) ) ∃ ∃ %n n n
n n nx J n x J x J   or  Κ Λ1 1

1 1( 1) / 0) ∃ ) ∃
∃ ∃�) ∃ ∃ ∃ %+ 7− 9

n n
n n nx J n x J x J ... (4)

From recurrence relation III, we have

1( ) ( ))� % )n n n
nJ x J x J
x

so that 1 1
1 ( )∃ ∃

∃� ∃ %n n n
nJ J J x

x
... (5)
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11.20 Bessel Functions

Using (5), (4) reduce to     –x–n + 1 Jn + x–n + 1 Jn = 0,      i.e.,       0 = 0, which is true.
Hence x–n Jn is a solution of (1).
Ex. 2. (Lommel theorems) Prove that

(i) Χ Ε1 ,)
)

: ; %< =
> ?

m
n n m

n n m
d x J x J

x dx  where m is positive integer and m < n.

(ii) 
1 ( ) ( 1)) ) )

∃
: ; % )< =
> ?

m
n m n m

n n m
d x J x J

x dx

(iii) 0
1( ) ( 1) ( ),

n
n n

n
dJ x x J x

x dx
: ;% ) < =
> ?

n being positive integer..

Sol. (i) From recurrence relation I, we have

1( ) )%n n
n n

d x J x J
dx so that

1
1

1 ( ) )
)

: ; %< =
> ?

n n
n n

d x J x J
x dx ... (1)

Now, 
11 1 1( ) ( )

m m
n n

n n
d d dx J x J

x dx x dx x dx

)
: ; : ; : ;%< = < = < =
> ? > ? > ?

1
1

1
1 ( ),

)
)

)
: ;% < =
> ?

m
n

n
d x J

x dx  using (1)

.......................................................................

= ,)
)

n m
n mx J  on preceeding as before m times more

(ii) From recurrence relation II, we have

1( )) )
∃% )n n

n n
d x J x J
dx   so that     

1 1
1 1

1 ( ) ( 1)n n
n n

d x J x J
x dx

) ) )
∃ ∃

: ; % )< =
> ?

             ... (2)

Now, 
11 1 1( ) ( )

m m
n n

n n
d d dx J x J

x dx x dx x dx

)
) ): ; : ; : ;%< = < = < =

> ? > ? > ?

1
1 1

1
1 ( 1) ,

m
n

n
d x J

x dx

)
) )

∃
: ;% )< =
> ?

 using (2)

.......................................................................
                              = (–1)m x–n–m Jn+m, on proceeding as before m times more ... (3)
(iii) Replacing n by 0 and m by n in part (ii), we get

0
1 ( 1) ): ; % )< =

> ?

n
n n

n
d J x J

x dx
or 0

1( ) ( 1) ( )
n

n n
n

dJ x x J x
x dx

: ;% ) < =
> ?

Ex. 3. Prove that t J t dt x J x J x J xn n n n{ ( )} { ( ) ( ) ( )}2

0

1
1
2

2 2
1 1z % ) ) ∃ .

Sol.  We have, d
dt

t J t J t J tn n n

2
2

1 12
{ ( ) ( ) ( )})
L
NM

O
QP) ∃

= t{Jn
2(t) – Jn – 1(t) Jn + 1(t)} + 1

2 t2 {2Jn(t) J �n(t)–J �n – 1(t)Jn + 1(t) – Jn – 1(t) J �n + 1(t)}

= t{Jn
2(t) – Jn – 1(t) Jn + 1(t)} + 1

2 t2{2Jn(t) × 1
2 {Jn – 1(t) – Jn +1(t)} 1 1

1 ( ) ( )n n n
nJ J t J t

t∃ )
). /) )1 2

4 5

1 1
1( ) ( ) ( )n n n

n
J t J t J t

t) ∃
∃. /) )1 2

4 5
, using recurrence relations III, IV and VV

= t Jn
2(t), on simplification.
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( tJn
2(t) = d

dt
t J t J t J tn n n

2
2

1 12
{ ( ) ( ) ( )})
L
NM

O
QP) ∃ . ...(1)

Integrating both sides of (1) w.r.t. ‘x’ from 0 to x, we get

t J t dtn

x 2

0
( )z =

t J t J t J tn n n

x2
2

1 1
02

{ ( ) ( ) ( )})
L
NM

O
QP) ∃ = x2

2
{Jn

2(x) – Jn – 1(x) Jn + 1(x)}

[� Jn(0) = Jn + 1(0) = Jn – 1(0) = 0]

Ex. 4. Prove that (i) J–3/2(x) = 2
≅x

x
x

xFH IK
) )FH IK

cos sin [Kanput 2005, 10]

(ii) J3/2(x) = 2
≅x

x
x

xFH IK )FH IK
sin cos i.e. ≅x

2
FH IK J3/2(x) = sin cosx

x
x) .

[Purvanchal 2005, Agra 2005, Kakitiya 1997; Kanpur 2008, 11; Bangalore 1997;
Meerut 2007; KU Kurukshetra 2004]

Sol. Proceed as in Ex. 1 of Art. 11.6A and prove that
J–1/2(x) = ( / )2 ≅x  cos x ...(1)

and J1/2(x) = ( / )2 ≅x  sin x. ...(2)
Recurrence relation (VI) is Jn – 1(x) + Jn + 1(x) = (2n/x) × Jn(x). ...(3)
Part (i). Replacing n by) 1

2  in (3), we have   J–3/2(x) + J1/2(x) = –(2/2x) × J–1/2(x)

or J–3/2(x) = –J1/2(x) – (1/x)× J–1/2 (x) = – 2
≅x
FH IK  sin x – 1

x
2

≅x
FH IK  cos x, by (1) and (2)

        = 2
≅x

x
x

xFH IK ) )FH IK
cos sin .

Part (ii). Replacing n by 1
2  in (3), we have J–1/2(x) + J3/2(x) = (2/2x) × J1/2(x)

or J3/2(x) = –J–1/2(x) + (1/x) × J1/2(x) = – 2
≅x
FH IK  cos x + 1 2

x x≅
FH IK  sin x, by (1) and (2)

      =
2

≅x
x

x
xF

HG
I
KJ )F
HG

I
KJ

sin
cos .

Ex. 5. Prove that  (i) Κ ΛΚ Λ1/ 2 2 2
5 /2 ( ) (2 / ) (3 ) / sin (3 / ) cos% ≅ ) ) ϑJ x x x x x x x

[Kanpur 2006, 07]

(ii) Κ ΛΚ Λ1/ 2 2 2
5/ 2 ( ) (2 / ) (3 ) / cos (3/ ) sinJ x x x x x x x) % ≅ ) ∃ ϑ [KU Kurukshetra 2006]

Sol. (i) From recurrence relation VI, we have

Jn(x) = (x/2n) {Jn–1 (x) + Jn–1(x)}       or          1 1(2 / ) ( ) ( )∃ )% )n n nJ n x J x J x     ... (1)
Putting n = 3/2 in (1), we have,

5 / 2 3/ 2 1/ 2
3 3 2 sin 2( ) ( ) ( ) cos sinxJ x J x J x x x
x x x x x

: ;% ) % ϑ ) )< =≅ ≅> ?
  [using values of J3/2 (x) and J1/2(x) as obtained in Ex. 4 (ii), Art. 11.7A and Ex. 1 (ii), Art 11.6A]

2

2 2
2 3sin 3cos 2 3 3cossin sinx x x xx x
x x x xx x

: ;): ;% ) ) % )< =< = < =≅ ≅> ? > ?
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11.22 Bessel Functions

(ii) Re-writing (1), Jn–1(x) = (2n/x) Jn(x) – Jn + 1(x) ... (2)
Putting n = – 3/2 in (1), we have

5/ 2 3/ 2 1/ 2
3 3 2 cos 2( ) ( ) ( ) sin cosxJ x J x J x x x
x x x x x) ) )

: ;% ) ) % ) ϑ ) ) )< =≅ ≅> ?
 [using values of J–3/2 (x) and J–1/2 (x) as obtained in Ex. 4 (i), Art. 11.7A and Ex. 1 (i), Art. 11.6A]

1/ 2 1/ 2 2

2 2
2 3cos 3sin 2 3 3sincos cosx x x xx x
x x x xx x

: ;): ; : ; : ;% ∃ ) % ∃< =< = < = < = < =≅ ≅> ? > ? > ? > ?
Ex. 6. Express J4(x) in terms of J0 and J1.
Sol. Recurrence relation VI is Jn + 1(x) = (2n/x)Jn(x) – Jn – 1(x).    ...(1)
Replacing n by 3 in (1), we get                J4(x) = (6/x)J3(x) – J2(x). ...(2)
Now replacing n by 2 in (1), we get           J3(x) = (4/x)J2(x) – J1(x). ...(3)
Using (3), (2) becomes

J4(x) = 6 4
2 1 2x x

J x J x J x( ) ( ) ( ))L
NM

O
QP ) or     J4(x) = 24 1 6

2 2 1x
J x

x
J x)FH

I
K )( ) ( ) . ...(4)

Next, replacing n by 1 in (1) gives     J2(x) = (2/x)J1(x) – J0(x). ...(5)
Using (5), (4) becomes

J4(x) = 24 1 2 6
2 1 0 1x x

J x J x
x

J x)FH
I
K )L
NM

O
QP )( ) ( ) ( )    or     J4(x) = 48 8 24 13 1 2 0x x

J x
x

J x)FH
I
K ) )FH

I
K( ) ( ).

Ex. 7(a). Prove that  (i) 1
2 xJn = (n + 1)Jn + 1 – (n + 3)Jn + 3 + (n + 5)Jn + 5 ... .

(ii) Jn – 1 = (2/x) [n Jn – (n + 2)Jn + 2 + (n + 4)Jn + 4 – ...].
Proof (i). Recurrence relation VI is         2nJn = x(Jn – 1 + Jn + 1).
Replacing n by n + 1 in the above relation, we get

2(n + 1)Jn + 1 = x(Jn + Jn + 2) or             1
2 xJn = (n + 1) Jn + 1 – 1

2 xJn + 2. ...(1)

Replacing n by n + 2 in (1), we get                 1
2 xJn + 2 = (n + 3)Jn + 3 – 1

2 xJn + 4.     ...(2)

Putting the value of 1
2 xJn + 2 from (2) in (1),      1

2 xJn = (n + 1)Jn + 1 – (n + 3)Jn + 3 + 1
2 xJn + 4. ...(3)

Repalcing n by n + 4 in (1) gives 1
2 xJn + 4 = (n + 5)Jn + 5 – 1

2 xJn + 6. ...(4)

Putting the value of 1
2 xJn + 4 from (4) in (3) gives

1
2 xJn = (n + 1)Jn + 1 – (n + 3)Jn + 3 + (n + 5)Jn + 5 – 1

2 xJn + 6

Proceeding likewise and noting that JnΑ 0 as n Α #, we get
1
2 xJn = (n + 1)Jn + 1 – (n + 3)Jn + 3 + (n + 5)Jn + 5 – ... ...(5)

(ii) Replacing n by n – 1 in (5) and then multiplying both sides by (2/x), we get
Jn – 1 = (2/x) [nJn – (n + 2)Jn + 2 + (n + 4)Jn + 4 – ...]

Ex. 7(b). Prove that Jn – 1 = (2/x)[nJn – (n + 2)Jn + 2 + (n + 4)Jn + 4 – ...] and hence deduce that
(x/2)Jn = (n + 1)Jn + 1 – (n + 3)Jn + 3 – (n + 5)Jn + 5 + ... [Meerut 1993]
Hint : Proceed as in Ex. 7(a).

Ex. 8. Prove that J �n = ( / ) ( / ) ( ) ( ) ...2 2 2 42 4x n J n J n Jn n n) ∃ ∃ ∃ )∃ ∃

Sol. Recurrence relation III is xJ �n = –nJn + xJn – 1 or     J �n = –(n/x)Jn + Jn – 1.     ...(1)
From Ex. 7(a) part (ii), Jn – 1 = (2/x)[nJn – (n + 2)Jn + 2 + (n + 4)Jn + 4 – ...] ... (2)
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Putting the value of Jn – 1 from (2) in (1), we get
Jn� = –(n/x)Jn + (2/x) [nJn – (n + 2)Jn + 2 + (n + 4) Jn + 4 – ...]

or J �n = ( / ) ( / ) ( ) ( ) ...2 2 2 42 4x n J n J n Jn n n) ∃ ∃ ∃ )∃ ∃ .

Ex. 9. Prove : d
dx (Jn

2 + J2
n + 1) = 2 12

1
2n

x
J n

x
Jn n) ∃FH IK∃ [Agra 2005; Meerut 1998]

Sol. From recurrence relation III and IV, we have
J �n = –(n/x)Jn + Jn – 1 ...(1)

and J �n = (n/x)Jn – Jn + 1. ...(2)

Replacing n by n + 1 in (1), we get J �n + 1 = ) ∃ ∃∃
n

x
J Jn n

1
1 . ...(3)

d
dx  (J2

n + J2
n + 1) = 2Jn J �n + 2Jn + 1J �n + 1 = 2 2 1

1 1 1J n
x

J J J n
x

J Jn n n n n n)FH IK ∃ ) ∃ ∃FH IK∃ ∃ ∃ , by (2) and (3)

= 2 12
1

2n
x

J n
x

Jn n) ∃FH IK∃ , on simplification.

Ex. 10. Prove that (i) J0
2 + 2(J1

2 + J2
2 + J3

2 + ...) = 1.
[Agra 2009, 10; Meerut 2008; Kanpur 2011]

(ii) | J0(x) | Ω 1 [Agra 2009; Meerut 1996, 97, 98; Kanpur 2011]
(iii) | Jn(x) | Ω 2–1/2, when n Ι 1. [Meerut 1996, 97, 98; Kanpur 2011]

Sol. (i) From Ex. 9 above,       d
dx

 (J2
n + J2

n + 1) = 2 12
1

2n
x

J n
x

Jn n) ∃FH IK∃ . ...(1)

Replacing n by 0, 1, 2, 3 ... successively in (1), we get
d
dx

(J0
2 + J1

2) = 2 0 1
1
2)FH IKx

J

d
dx

(J1
2 + J2

2) = 2 1 2
1
2

2
2

x
J

x
J)FH IK

d
dx

(J2
2 + J3

2) = 2 2 3
2
2

3
2

x
J

x
J)FH IK

... ... ... ... ... ... ... ... ... ... ... ... ...
Adding these columnwise and noting that Jn Α 0 as n Α #, we get

d
dx [J0

2 + 2(J1
2 + J2

2 + ...)] = 0

Integrating, J0
2(x) + 2[J1

2(x) + J2
2(x) + ...] = C. ...(2)

Replacing x by 0 in (2) and noting that J0(0) = 1 and Jn(0) = 0 for n Ι 1, we get
1 + 2(0 + 0 + ...) = C  or  C = 1.         Hence (2) becomes       J0

2 + 2(J1
2 + J2

2 + ...) = 1 ...(3)
Part (ii).  From (3), J0

2 = 1 – 2(J1
2 + J2

2 + ... + J2
n – 1 + J2

n + J2
n + 1 + ....) ...(4)

Since J1
2, J2

2, J3
2... are all positive or zero, (4) gives    J0

2 Ω 1    so that     | J0(x) | Ω 1.
Part (iii). Solving (4) for Jn

2, we have
Jn

2 = (1/2) × (1 – J0
2) – (J1

2 + J2
2 + ... + J2

n – 1 + J2
n + 1 + ...). ...(5)

Since J0
2, J1

2, J2
2 ... are all positive or zero, (5) gives J2

n Ω 1/2 or | Jn(x) | Ω 2–1/2, where n Ι 1.

Ex. 11. Prove that (i) d
dx {xJn(x) Jn + 1(x)} = x{Jn

2(x) – J2
n + 1(x)}

[Agra 2009; Sager 2004; Meerut 2005; Kanpur 2007]
(ii) x = 2J0J1 + 6J1J2 + ... + 2(2n + 1)Jn Jn + 1 + .... [Bilaspur 1998]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



11.24 Bessel Functions

Sol. (i) d
dx (xJn Jn + 1) = JnJn + 1 + x(J �n Jn + 1 + JnJ �n + 1) = JnJn + 1 + Jn + 1(xJ �n) + Jn(xJ �n + 1).  ...(1)

From recurrence relation III and IV, we have xJ �n = nJn – xJn + 1 ...(2)
and xJ �n = –nJn + xJn – 1 ...(3)

Replacing n by n + 1 in (3), xJ �n + 1 = –(n + 1)Jn + 1 + xJn. ...(4)
Putting the values of xJ �n and xJ �n + 1 from (2) and (4) in (1), we get

d
dx (xJn Jn + 1) = JnJn + 1 + Jn + 1(nJn – xJn + 1) + Jn[–(n + 1)Jn + 1 + xJn]= x(Jn

2 – J2
n + 1), other terms cancel.

Part (ii). From part (i) above we have d
dx (xJnJn + 1) = x(Jn

2 – J2
n – 1).

Replacing n by 0, 1, 2, ... successively, we get
d
dx (xJ0J1) = x(J0

2 – J1
2) ...(1)

d
dx (xJ1 J2) = x(J1

2 – J2
2) ...(2)

d
dx (xJ2 J3) = x(J2

2 – J2
3) ...(3)

................      ..     .................
Multiplying (1), (2), (3) ... by 1, 3, 5, ... respectively and adding, we have
d
dx [x(J0 J1 + 3J1J2 + 5J2J3 + ...)] = x[(J0

2 – J1
2) + 3(J1

2 – J2
2) + 5(J2

2 – J2
3) + ...]

     = x[J0
2 + 2(J1

2 + J2 + ...)] = x × 1 = x , by Ex. 10. (i)

Integrating, x(J0 J1 + 3J1 J2 + 5J2J3 + ...) = xdx C x C∃ % ∃z 1
2

2 . ...(4)
Putting x = 0 in (4) gives C = 0. Putting C = 0 in (4) and simplifying, we get

2J0J1 + 6J1J2 + 10J2J3 + ... = x.
Ex. 12. Prove that (i) J0� = –J1.  [Agra 2010; Kanpur 2008]  (ii) J2 – J0 = 2J!0. [Agra

2008]
(iii) J2 = J0! – (1/x)J0�.       [Bilaspur 1997] (iv) J2 + 3J �0 + 4J0!� = 0.
Sol. (i) Recurrence relation IV is xJ �n = nJn – xJn + 1. ...(1)
Replacing n by 0 in (1), we have xJ �0 = –xJ1      or           J0� = –J1.
Part (ii). Recurrence relation V is 2J �n = Jn – 1 – Jn + 1. ...(2)
Differentiating (2), w.r.t. ‘x’, we get 2Jn! = J �n – 1 – J �n + 1 ...(3)
Replacing n by n – 1 and n + 1 successively in (2), we have

2J �n – 1 = Jn – 2 – Jn ...(4)
and 2J �n + 1 = Jn – Jn + 2. ...(5)

Putting the values of J �n – 1 and J �n + 1 from (4) and (5) in (3), we have

2Jn! = 1
2 (Jn – 2 – Jn) – 1

2 (Jn – Jn + 2) or 4Jn! = Jn – 2 – 2Jn + Jn + 2. ...(6)
Replacing n by 0 in (6), we have

04J ��   = J–2 – 2J0 + J2 = (–1)2J2 – 2J0 + J2 [� J–n = (–1)n Jn]

( 04J �� = 2(J2 – J0) or 2J0! = J2 – J0.
Part (iii). Replacing n by 1 in (1), we get

xJ1� = J1 – xJ2    or J2 = x–1J1 – J1�. ...(7)
From part (i),   J1 = –J �0 so that J �1 = –J0!.
(  (7) gives J2 = x–1(–J �0) + J !0 = J0! – x–1 J0�.
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Bessel Functions 11.25

Part (iv). Differentating (6), we have         4Jn! = J �n – 2 – 2J �n + J �n + 2. ...(8)
Replacing n by n – 2 and n + 2 successively in (2), we get

2J �n – 2 = Jn – 3 – Jn – 1 ...(9)
and 2J �n + 2 = Jn + 1 – Jn + 3. ...(10)

Putting the values of J �n – 2, J �n + 2 and J �n from (9), (10) and (2) in (8), we get

nJ ��� = 1
2 (Jn – 3 – Jn – 1) – (Jn – 1 – Jn + 1) + 1

2 (Jn + 1 – Jn + 3)
or 8Jn!� = Jn – 3 – 3Jn – 1 + 3Jn + 1 – Jn + 3. ...(11)

Replacing n by 0 in (11), we get
8J0!� = J–3 – 3J–1 + 3J1 – J3 = –2J3 + 6J1 [� J–n = (–1)n Jn]

   = –2J3 – 6J0� [� J1 = – J �0]

( 8J0!� + 2J3 + 6 0J � = 0   or J3 + 3 0J �  + 4J0!� = 0.
Ex. 13. Show that Jn(x) = 0 has no repeated roots except at x = 0.
Sol. If possible suppose Jn(x) = 0 has repeated roots; then at least two roots must be equal

(say Σ), that is, Σ is a double root of Jn(x) = 0. Then from the theory of equations, we have
Jn(Σ) = 0 and J �n(Σ) = 0. ...(1)

Recurrence relations III and IV, Jn – 1(x) = (n/x)Jn(x) + J �n(x). ...(2)
and Jn + 1(x) = (n/x) Jn(x) – J �n(x). ...(3)

Replacing x by Σ in (2) and (3) and using (1), we get
Jn + 1(Σ) = 0 and Jn – 1(Σ) = 0 except when x = 0.

Since two different power series have distinct sum functions, so Jn + 1(Σ) = 0 = Jn – 1(Σ) must
be absurd. Hence Jn(x) = 0 has no repeated roots except at x = 0.

Ex. 14. From the recurrence formula 2Jn� = Jn – 1 – Jn + 1, deduce the result

            2rJn
r(x) = Jn – r – r Jn – r + 2 + 

r r J Jn r
r

n r
( )

!
... ( )) ∃ ∃ )) ∃ ∃

1
2

14 .        ...(1)

Sol. Given that 2J �n = Jn – 1 – Jn + 1. ...(2)
Clearly (2) shows that (1) is true for r = 1. We assume that (1) is true for some particular

value of r, say r = p. Then we have

2p J p
n(x) = Jn – p – p Jn – p + 2 + 4

( 1) ... ( 1)
2 !

p
n p n p

p p J J) ∃ ∃
)

∃ ∃ )

or 2pJn
p(x) = Jn – p – pC1 Jn – p + 2 + pC2 Jn – p + 4 + ... + (–1)p Jn + p. ...(3)

Differentiating (3) w.r.t. x and then multiplying by 2, we get
2p + 1Jn

p + 1(x) =  2J �n – p – 2 × pC1Jn – p + 2 + 2 × pC2 J �n – p + 4 + ... + 2(–1)p J �n + p. ...(4)
Replacing n by n – p, n – p + 2, n – p + 4 ..., n + p successively in (2),

2J �n – p = Jn – p – 1 – Jn – p + 1

2J �n – p + 2 = Jn – p + 1 – Jn – p + 2

2J �n – p + 4 = Jn – p + 3 – Jn – p + 5

......... .... .... ....
2J �n + p = Jn – p – 1 – Jn + p + 1

Substituting these values in (4), we have
2p + 1Jn

p + 1(x) = Jn – p – 1 – Jn – p + 1 – pC1(Jn – p + 1 – Jn – p – 3)
+ pC2(Jn – p + 4 – Jn – p + 5) + ... + (–1)p (Jn – p – 1 – Jn + p + 1)
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11.26 Bessel Functions

= Jn – p – 1 – (1 + pC1)Jn – p + 1 + (pC1 + pC2)Jn – p + 2 + ... + (–1)p + 1Jn + p + 1. ...(5)
Since  pCr + pCr – 1 = p + 1Cr,  we have  1 + pC1 = pC0 + pC1 = p + 1C1, 

pC1 + pC2 = p + 1C2

and so on. Then (5) becomes
2p + 1Jn

p + 1(x) = Jn – p – 1 – p + 1C1 Jn – p + 1 + p + 1C2 Jn – p + 2 + ... + (–1)p + 1 Jn + p + 1,
showing that (1) is true for r = p + 1 if it were true for r = p. So (1) is true for all natural numbers
by mathematical induction.

Ex. 15. Prove that x2J!n(x) = (n2 – n – x2)Jn(x) + xJn + 1(x), where n = 0, 1, 2, ....
Sol. Recurrence relation IV is xJn�(x) = nJn(x) – xJn + 1(x). ...(1)
Differentiating both sides of (1) w.r.t. ‘x’, we have

xJ !n(x) + J �n(x) = nJ �n(x) – [xJ �n + 1(x) + Jn + 1(x)]
or x2J !n(x) = (n – 1)xJ �n(x) – x[xJ �n + 1(x)] – xJn + 1(x). ...(2)

Recurrence relation III is xJ �n(x) = –nJn(x) + xJn + 1(x)
Replacing n by (n + 1) in this relation, we obtain

xJ �n + 1(x) = – (n + 1) Jn + 1(x) + x Jn(x). ...(3)
Substituting for xJ �n from (1) and for xJ �n + 1(x) from (3) in (2), we get

x2J !n(x) = (n – 1) [n Jn(x) – xJn + 1(x) – x[– (n + 1)Jn + 1(x) + xJn(x)] – x Jn + 1(x)
= [(n – 1)n – x2]Jn(x) + [– (n – 1) + (n + 1) – 1]xJn + 1(x)

(          x2J !n(x) = (n2 – n – x2) Jn(x) + x Jn + 1(x).

Ex. 16. Show that*
J
J

x
n

x
n

x
n

n

n

∃ %
∃ ) ∃ ) ∃ )

1
2 32

1
2
2

2
3

( / )
( )

( / )
( )

( / )
( )

.. .

Sol. Recurrence relation VI is Jn – 1 + Jn + 1 = (2n/x) × Jn

or Jn – 1 = 2n
x

Jn – Jn + 1 or
J
J

n
x

J
J

n

n

n

n

) ∃% )1 12 . ...(1)

Replacing n by (n + 1) in (1), we get J
J

n

n ∃ 1
=

2 1 2

1

( )n
n

J
J

n

n

∃ ) ∃

∃
...(2)

(   
J
J
n

n

∃ 1 =
1 1

2 1

1

2

1

J
J

n
x

J
J

n

n

n

n∃

∃

∃

%
∃

)
( )

, using (2)

= 1
2 1 1

1
2 1 1

2 21 2 3

2

( )
( / )

( )
( )

n
x J J

n
x n

x
J
J

n n n

n

∃ )
% ∃ )

∃ )∃ ∃ ∃

∃

[With help of (2) by replacing n by n + 1]

*Student should read a chapter on continued fractions in some book on Algebra to understand the

notations, namely, 3 51 1

3 2 4 6
2

5
4

6

...

...

a aa a
a a a aa aa
a

%
∃ ∃ ∃∃

∃
∃
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= 1
2 1 1

2 2 1
2 3

( )
( )

( / )

n
x n

x J Jn n

∃ ) ∃ )
∃ ∃

= 1
2 1 1

2 2 1
2 3 4

3

( )
( )

( )

n
x n

x n
x

J
J

n

n

∃ ) ∃ )
∃ ) ∃

∃

= x

n x
n

x n
x

/

( ) /
( )

( ) .. .

2

1 2
2 2 1

2 3

∃ ) ∃
)

∃
∃

= x

n x
n x

n
x

/

( ) ( / )
( ) ( / )

( ) ...

2

1 2
2 2

2 3

2
∃ )

∃ ) ∃ ∃

L

N
MMM

O

Q
PPP

= ( / )
( )

( / )
( )

( / )
( )

x
n

x
n

x
n

2
1

2
2

2
3

2 3

∃ ) ∃ ) ∃ ) 333
.

EXERCISE 11 (B)
1. Show that all roots of Jn(x) are real.
2. Prove that between any two zeros of Jn(x) lie one and only one zero of Jn + 1(x) as well as Jn – 1(x).

3.(a) Prove that between any two consecutive positive roots of the equation Jn(x) = 0, there is
one and only one root of the equation Jn + 1(x) = 0.

(b) Show that between two consecutive positive zeros of Jn (x) there is precisely one zero of
Jn–1 (x).

4. Prove (i) Jn + 3 + Jn + 5 = (2/x) (n + 4)Jn + 4. [Kanpur 2009]
(ii) 4J!n = Jn – 2 – 2Jn + Jn + 2.

5. For Bessel’s functions Jn(x), find out a and b, where
d{Jn (x)}/dx = aJn – 1(x) + bJn + 1(x). Ans. a = 1/2; b = –(1/2)

6. Show that 2 0 02J J J ��) % [Kanpur 2006]
7. Evaluate J3(x) in terms of J0(x) and J1(x). Ans. J3(x) = {(8 – x2)/x2}J1(x) – (4/x)J0(x)
8. Prove that (a) x2J !n(x) + J �n(x) = (n2/x)Jn(x) – xJn(x). [Meerut 1998]

(b) J x dxn ∃z 1( ) = J x dx J xn n)z )1 2( ) ( ). [Kanpur 1998]
11.7.B.  Solved Example involving integration and recurrence relations

Ex. 1. If n > –1, show that x J x dx x J xn
n

n
n

x
∃ ∃

∃%z 1 1
1

0
( ) ( ). [Bilaspur 1998]

Sol. From recurrence relations I,     d
dx {xnJn(x)} = xnJn – 1(x). ...(1)

Replacing n by n + 1 in (1), d
dx {xn + 1Jn + 1(x)} = xn + 1Jn(x). ...(2)

Integrating (2) w.r.t. ‘x’ between the limits 0 and x, we get

With help of (2) by
replacing by + 2n n

+ 7
, 8
− 9

Multiply numerator and 
denominator by /2x

+ 7
, 8
− 9

Repeating the 
similar operations
L
NM

O
QP
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1
1 0[ ( )]n x

nx J x∃
∃ = 1

0
( )

x n
nx J x dx∃Ν or x J x dxn

n

x
∃z 1

0
( ) = xn + 1Jn + 1(x).

Ex. 2. Prove that Jn + 1(x) = x J xy y dyn
n( ) ∃z 1

0

1
.

Sol. Let xy = t so that x dy = dt

( R.H.S. of (1)  = x J t t x dt x x t J t dtn
nx n n

n
x( ) ( / ) ( / ) ( )) ) ) ∃z z%1

0
1 1

0

      = x–n – 1 x J x dx x x J xn
n

x n n
n

∃ ) ) ∃
∃z %1

0

1 1
1( ) ( ), by Ex. 1

      = Jn + 1(x) = L.H.S. of (1).

Ex. 3. Show that (a) x J x dx
n

x J nn
n

x

n
n

n
)

∃
)z %

∃
) Υ10

1
2 1

1( )
( )

, .
6

[Bilaspur 1997]

(b) x J x dx
n

nn
n n

)
∃

#z %
∃

Υ )1
0

1
2 1

1
2

( )
( )

, .
6

Sol. (a) From recurrence relation II, d
dx

 [x–nJn(x)] = –x–nJn + 1(x). ...(1)

Integrating (1) w.r.t. ‘x’ between the limits 0 and x, we get

x J xn
n

x) ( )
0

= ) )
∃z x J x dxn

n

x

10
( )     or x J x J x

x
n

n x
n

n
)

Α
)( ) lim ( )

0
= ) )

∃z x J x dxn
n

x

1
0

( ) .    ...(2)

But lim ( )
x

n
n

J x
xΑ0

= 
2

0

1lim 1 ...
2 2( 1)2 ( 1)

n

n nx

x x
nx nΑ

+ 7
) ∃, 83 ∃6 ∃ − 9

= 1
2 1n n6( )∃

Hence (2) may be written as x J x dxn
n

x
)

∃z 1
0

( ) = 1
2 1n

n
nn

x J x
6( )

( )
∃

) ) .

Part (b). Integrating (1) w.r.t. ‘x’ from 0 to #, we get

x J xn
n

) #
( )

0
= ) )

∃

#z x J x dxn
n 10

( )    or lim ( ) lim ( )
x

n
n x

n
n

J x
x

J x
xΑ# Α

)
0 = ) )

∃

#z x J x dxn
n 1

0
( ) .       ...(3)

As in part (a),
0

( )
lim n

nx

J x
xΑ

= 1
2 1n n6( )

.
∃

...(4)

We know that for large values of x the approximate value of Jn(x) is

Jn(x) ~ 2 1
2 2

1
2

1 2

≅
≅

x
x n nFH IK ) ∃FH IKRST

UVW Υ
/

cos , ...(5)

Using (5), lim ( )
x

n
n

J x
xΑ# = 0. ...(6)

Using (4) and (6), (3) reduces to x J x dxn
n

)
∃

#z 10
( ) = 1

2 1n n6( )∃
.

Ex. 4. Prove (i) d
dx

{xJ1(x)} = xJ0(x). (ii) xJ ax dx b
a

J ab
b

0 1
0

( ) ( ).%z
Sol. (i) Recurrence relation I is d

dx
{xnJn(x)} = xnJn – 1(x). ...(1)

Replacing n by 1 in (1), we have d
dx

{xJ1(x)} = xJ0(x).
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Part (ii). Put ax = t, so that adx = dt. Then, we get

x J ax dx
b

0
0

( )z = 1
2 0

0a
t J t dt

ab
( )z = 1

2 1
0a

d
dt

t J t dt
ab

{ ( )} ,z by part (i)

       = 1
2 1 0a

tJ t ab( ) = 1
2a

 [abJ1(ab) – 0], as J1(0) = 0.

( x J ax dx
b

0
0

( )z = b
a

J ab1( ).

Ex. 5. Prove that (i) d
dx

 J0(x) = –J1(x).

(ii) J x J x dx
a

b

0 1( ) ( )z = 1
2 0

2
0
2[ ( ) ( )]J a J b) . [Nagpur 2005]

Sol. (i) From recurrence relation II, d
dx {x–nJn(x)} = –xnJn + 1(x). ...(1)

Put n = 0 in (1). Then d
dx J0(x) = –J1(x). ...(2)

Part (ii). Using (2), we have

J x J x dx
a

b

0 1( ) ( )z = ) �z J x J x dx
a

b

0 0( ) ( ) =
2

2 20 1
0 02

[ ( )]
[ ( ) ( )]

2

b

a

J x
J a J b

+ 7
) % ), 8

, 8− 9

Ex. 6. Evaluate J x dx3( )z and express the result in terms of J0 and J1.

Sol. From recurrence II, we have x–nJn + 1 =
d
dx {x–nJn(x)}.

Integrating it, x J dxn
n

)
∃z 1 = –x–nJn. ...(1)

Now, J x dx3( )z = x x J dx2 2
3( ))z = x2(–x–2J2) – 2 2

2x x J dx( ) .)z )

[Integrating by parts and using (1) for n = 2]

      = –J2 + 2 x J dx)z 1
2 = –J2 + 2(–x–1J1) + c [using (1) for n = 1]

( J x dx3( )z = –J2 – 2x–1J1 + c. ...(2)
From recurrence relation VI, (2n/x)Jn = Jn – 1 + Jn + 1 ...(3)
Put n = 1 in (3). Then J2 = 2J1/x – J0 ...(4)
Using (4), (2) gives J x dx3( )z = –(2J1/x – J0) – 2x–1 J2 + c

( J x dx3( )z = J0 – 4J1/x + c, being an arbitrary constant.

Ex. 7. Evaluate x J x dx3
3( ) .z [Gulbarga 2005]

Sol. Since d
dx

{x–nJn} = –xnJn + 1  so x J dxn
n

)
∃z 1 = –x–nJn. ...(1)

Now, 3
3 ( )x J x dxΝ = 5 2

3( )x x J dx)Ν = x5(–x–2J2) – 5 4 2
2x x J dx( ))z )

(On integration by parts and using (1) for n = 2)

      = –x3J2 + 5 x J dx x J x x J dx2
2

3
2

3 1
25% ) ∃ )zz ( ) = –x3J2 + 5 3 1 2 1

1 1( ) 3 ( )x x J x x J dx) )+ 7) ) ), 8− 9Ν
(on integration by parts and using (1) for n = 1)
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11.30 Bessel Functions

= –x3J2 – 5x2J1 + 15 x J dx1z = –x3J2 – 5x2J1 + 15 x J dx( )) �z 0 [� J1 = –J0�]

= –x3J2 – 5x2J1 – 15 x J dx�z 0 = –x3J2 – 5x2J1 – 15 x J J dx0 01) z . ,integrating by part,

= –x3J2 – 5x3J1 – 15xJ0 + 15x J dx0z .

Remark. From Ex. 6. and 7 note that, in general, an integral of the form x J x dx m nm
n( ) , ,z ∃ Ι 0

can be completely integrated if m + n is an odd integer, while if m + n is even, then the integral can
be put in terms of J x dx0( )z . Note that J x dx0( )z  cannot be expressed in closed form and so it must
be left as such in final answer.

Ex. 8. Evaluate x J x dx4
1( ) .z

Sol. Since d
dx

{xnJn} = xnJn – 1           so            x J dxn
n )z 1 = xnJn.          ...(1)

Now x J dx4
1z = x x J dx2 2

1( )z = x2(x2J2) – 2 2
2x x J dx( )z

[on integrating by parts and using (1) for n = 2]

= x4J2 – 2 x J dx3
2z = x4J2 – 2x3J3 + c [using (1) for n = 3]

Ex. 9. Express x J x dx)z 3
4 ( )  in terms of J0 and J1.

Sol. Putting n = 3 in recurrence relation II d
dx

{x–nJn} = –x–nJn + 1 gives d
dx

{x–3J3} = –x–3J4.

Integrating,     x J x dx)z 3
4 ( ) = –x–3J3 + c, c being an arbitrary constant ...(1)

Recurrence relation VI is Jn + 1 = (2n/x)Jn – Jn – 1. ...(2)
Replacing n by 2 and 1 successively in (2) gives   J3 = (6/x)J2 – J1

...(3)
and J2 = (4/x)J1 – J0. ...(4)

Using (4), (3) becomes       J2 = (6/x)[(4/x)J1 – J0] – J1 = (24x–2 – 1)J1 – (6/x)J0 ...(5)

Using (5), (1) becomes x J x dx)z 3
4 ( ) = –x–3[(24x–2 – 1)J1 – 6x–1J0] + c.

Ex. 10. Prove J dxn ∃z 1 = J x dx J xn n) )z 1 2( ) ( ).
Sol. From recurrence relations, we have

2J �n(x) = Jn – 1(x) – Jn + 1(x) or Jn + 1(x) = Jn – 1(x) – 2J �n(x)

Integrating J x dxn ∃z 1( ) = J x dx J xn n) )z 1 2( ) ( ).

Ex. 11(a). Prove that x J x dx)z 1
4( ) = –x–1J3(x) – 2x–2J2(x) + c.

Sol. Recurrence relation II is d
dx {x–nJn(x) = –x–nJn + 1(x).

Integrating it, we get x J x dx x J xn
n

n
n

)
∃

)z % )1( ) ( ). ...(1)

( x J x dx)z 1
4( ) = x x J x dx2 3

4[ ( )])z = 2 3 3
3 3( ) 2 [ ( )]x x J x x x J x dx) )+ 7) ) ϑ )− 9 Ν

(Integrating by parts taking x2 as first function and using result (1) for n = 3)

= –x–1J3(x) + 2 x J x dx)z 2
3( ) = –x–1J3(x) + 2[–x–2J2(x)] + c, using result (1) for n = 2

= –x–1J3(x) – 2x–2J2(x) + c.

Ex. 11(b). Prove that 3 2 0( ) ( ) (2 / ) ( )J x dx J x x J x C% ) ) ϑ ∃Ν [KU Kurukshetra 2005]
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Sol. From recurrence relation II, Κ Λ 1( ) ( )n n
n n

d x J x x J x
dx

) )
∃% )

Integrating, 1( ) ( )n n
n nx J x dx x J x) )

∃ % )Ν ... (1)

Now, Κ Λ Χ Ε2 2 2 2 2
3 3 3 3( ) ( ) ( ) 2 ( )J x dx x x J x dx x x J x dx x x J x dx dx) ) )% % )Ν Ν Ν Ν Ν

Χ Ε2 2 2
2 2( ) 2 ( ( )) ,x x J x x x J x dx) )% ) ) )Ν  using (1) for n = 2

1 1
2 2 2 1( ) 2 ( ) ( ) 2 ( )J x x J x dx J x x J x C) )% ) ∃ % ) ) ∃Ν , using (1) again for n = 1

Ex. 12. Show that (i) x J x dxx 3
00 ( )z = x3J1(x) – 2x2J2(x). [GATE 2003]

(ii) x J x dx3
00

1 ( )z = 2J0(1) – 3J1(1).

Sol. (i) Since d
dx

{xnJn(x)] = xnJn – 1(x) so x J x dxn
n )z 1( ) = xnJn(x)  ...(1)

( x J x dxx 3
00 ( )z =  x x J x dx x xJ x x x J x dxx x x2

00
2

1 0 10 2[ ( )] [ { ( )}] { ( )}z z% )

(Integrating by parts and using (1) for n = 1)

= x3J1(x) – 2 x J x dxx 2
10 ( )z = x3J1(x) – 2[x2J2(x)]x

0, using result (1) for n = 2

= x J x x J x J3
1

2
2 22 0 0( ) ( ), ( )) %as

(ii) Proceed as in part (i) and prove that x J x dxx 3
00 ( )z = x3J1(x) – 2x2J2(x). ...(2)

Putting x = 1 in (2), x J x dx3
00

1 ( )z = J1(1) – 2J2(1). ...(3)

Recurrence relation VI is Jn – 1(x) + Jn + 1(x) = (2n/x)Jn(x).
Putting n = 1 and re–writing it, we have J2(1) = 2J1(1) – J0(1) ...(4)
Substituting the above value of J2(1) in (3), we have

x J x dx3
00

1 ( )z = J1(1) – 2{2J1(1) – J0(1)] = 2J0(1) – 3J1(1).

EXERCISE 11(C)
1. Prove that x J x dx2

0( )z = x2J1(x) + xJ0(x) – J x dx0( )z .

2. Prove that x J x J x dxx 2
0 10
( ) ( )z = 1

2 x2J1
2(x).

3. Prove that x J x dx)z 2
1( ) = ) ) ∃) z1

3
1

2
1
3 1

1
2 0x J x J x J x dx( ) ( ) ( ) .

4. Prove that J x x dx0( ) sinz = xJ0(x) sin x – xJ1(x) cos x + c.

5. Show that 3 0 13 4J dx J J �% ) ∃Ν [Bilaspur 1997]

11.8. Generating function for the Bessel’s function Jn(x)

Prove : exp 1
2

1x z
z

z J xn
n

n
)FH IKRST
UVW %

%)#

#

∋ ( ) [Kanpur 2007; Meerut 1996, 97]

Or  Show that when n is a positive integer, Jn(x) is the coefficient of zn in the expansion of
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11.32 Bessel Functions

exp {( / 2) ( 1/ )}x z zϑ )               i.e.,        e(x/2) (z – 1/z)   in ascending and descending power of
z. Also show that Jn is coefficient of z–n multiplied by (–1)n in the expansion of the above expression.

[Kanpur 2007; Kakitiya 1997; Kanpur 2005, 06]
Note. Exp{(x/2) × (z – 1/z)} is called the generating function for Jn(x). Here exp A = eA.

Proof. We have exp {(x/2) × (z – 1/z)} = 2 2 2 2.
xz x xz x

z ze e e
) )

%

=  
2 12 1

1 ... ...
2 2 2 ! 2 ! 2 ( 1)

n nn nx x z x z x zz
n n

∃ ∃+ 7: ; : ; : ; : ;∃ ∃ ∃ ∃ ∃ ∃, 8< = < = < = < = ∃> ? > ? > ? > ?, 8− 9

11
2
x z)+ : ;ϑ ) < =, > ?−

2 12 1 ( 1)( 1) ( 1)... ...
2 2! 2 ! 2 ( 1) !

n nn n n nx z x z x z
n n

∃) ) ∃ ) ∃ 7) ): ; : ; : ;∃ ∃ ∃ ∃ ∃ 8< =< = < = > ? ∃> ? > ? 89
  ...(1)

The coeff. of zn in the product (1) is obtained by multiplying the coefficients of zn, zn + 1,
zn + 2, ... in the first bracket with the coeff. of z0, z–1, z–2, ... in the second bracket respectively

(  coefficient of zn in product (1)  = x
n

x
n

x
n

n n n

2
1

2
1

1 2
1
2 2

2 4FH IK ) FH IK ∃
∃ FH IK ∃

)
∃ ∃

! ( ) ! ( ) ! !
...

=
( )

! ( ) !
( )

! ( ) !
)

∃
FH IK % )

∃ ∃
FH IK

∃

%

# ∃

%

#

∋ ∋1
2

1
1 2

2

0

2

0

r n r

r

r n r

rr n r
x

r n r
x

6
= Jn(x)

[� (n + r) ! = 6(n + r + 1), n + r being positive integer].
The coeff. of z–n in the product (1) is obtained by multiplying the coefficients of

z–n, z–n – 1, z– n – 2... of the second bracket with the coefficients of z0, z1, z2, ... in the first bracket
respectively

(coeff. of z–n in product (1) =
1 2 21 2( 1) ( 1) ( 1) ...

2 ! 2 ( 1) ! 2 2 ( 2) ! 2 ! 2

n n nn n nx x x x x
n n n

∃ ∃∃ ∃) ) ): ; : ; : ; : ;∃ ∃ ∃< = < = < = < =∃ ∃> ? > ? > ? > ?

2 41 1 1( 1) ...
2 ! 2 ( 1)! 2 ( 2) 2!

n n n
n x x x

n n n

∃ ∃+ 7: ; : ; : ;% ) ) ∃, 8< = < = < =∃ ∃> ? > ? > ?, 8− 9
 = (–1)nJn(x), as before

Thus the coefficient of  z–n = (–1)nJn(x)  Ρ Jn(x) = (–1)n × the coefficient of z–n.
Finally, in the product (1) the coefficient of z0 is obtained by multiplying the coefficient of z0,

z1, z2, ... in the first bracket with the coefficients of z0, z–1, z–2, ... in the second bracket and is thus

= 1 – 
2 22 4 6 2 4

2 2 2
1 1 ... 1 ...

2 2 2! 2 3! 2 2 4
x x x x x: ; : ;: ; : ; : ;∃ ) ∃ % ) ∃ )< = < =< = < = < = 3> ? > ? > ?> ? > ?

= J0(x).

We observe that the coefficients of z0, (z – z–1), (z2 + z–2) ..., [zn + (–1)nz–n] ... are J0(x), J1(x),
J2(x) ..., Jn(x) ... respectively. Thus, (1) gives

exp{(x/2) × (z – 1/z)} = J0(x) + (z – z–1)J1(x) + (z2 + z–2)J2(x) + ...+ [z2 + (–1)nz–n]Jn(x) + ...

 = z J x J x J xn
n n

n
n

n
( ), ( ) ( ) ( )as )

%) #

#
% )∋ 1

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Bessel Functions 11.33

11.9. Trigonometric expansions involving Bessel’s functions. Show that

(i) cos (x sin Ξ) = J0 + 2 cos 22 JΞ 3  + 2 cos 44 JΞ 3  + ... [Meerut 1995, KU Kurukshetra 2005]

(ii) sin (x sin Ξ) = 2 1sin JΞ 3  + 2 sin 23 JΞ3  + ... [KU Kurukshreta 2006]

(iii) cos (x cos Ξ) = J0 – 2 cos 22 JΞ 3  + 2 cos 44 JΞ 3 – ...

(iv) sin (x cos Ξ) = 2 1cos JΞ3 – 2 cos 33 JΞ3  + 2 cos 55 JΞ3 – ...

(v) cos x = J0 – 2J4 + 2J4 .... = J x J xn
n

n
0 2

1

2 1( ) ( ) ( )∃ )
%

#

∋ [Kanpur 2011]

(vi) sin x = 2J1 – 2J3 + 2J5 ... = 2 1 2 1
0

( ) ( )) ∃
%

#

∋ n
n

n
J x [Kanpur 2011]

Proof. We know that
e(x/2)(z – 1/z)  = J0 + (z – z–1) J1 + (z2 + z–2) J2 + (z3 – z–3) J3 + ...

...(1)
Let z = eiΞ so that zn = einΞ and z–n = e–inΞ. Then (1) gives

( / 2) ( )i ix e ee
Ξ ) Ξ) = J0 + (eiΞ – e–iΞ) J1 + (e2iΞ + e–2iΞ) J2 + (e3iΞ – e–3iΞ) J3 + ... ...(2)

Since cos nΞ = (eniΞ + e–niΞ)/2  and sin nΞ = (eniΞ – e–niΞ)/2i, (2) gives
exi sin Ξ = J0 + 2i 1sin JΞ 3  + 2 cos 22 JΞ 3  + 2i sin 33 JΞ3  + ...

or cos (x sin Ξ) + i sin(x sin Ξ) = (J0 + 2 cos 22 JΞ 3  + ...)+ 2i( 1sin JΞ 3  + sin 33 JΞ3  + ...)     ...(3)
Part (i). Equating real parts in (3), we get

cos (x sin Ξ) = J0 + 2 cos 22 JΞ 3  + 2 cos 44 JΞ 3  + ... ...(4)
Part (ii). Equating imaginary parts in (3), we get

     sin (x sin Ξ) = 2 1sin JΞ 3  + 2 sin 33 JΞ3  + 2 sin 55 JΞ3  + ... ...(5)
Part (iii). Replacing Ξ by ≅/2 – Ξ in (4) and simplifying, we have

cos (x cos Ξ) = J0 – 2 cos 22 JΞ 3  + 2 cos 44 JΞ 3 – ... ...(6)
Part (iv). Replacing Ξ by ≅/2 – Ξ in (5) and simplifying, we get

  sin (x cos Ξ) = 2 1cos JΞ3 – 2 cos 33 JΞ3  + 2 cos 55 JΞ 3 – ...           ...(7)
Part (v) & (vi). Replacing Ξ by 0 in (6) and (7), we get

cos x = J0 – 2J1 + 2J4 – ... = J x J xn
n

n
0 2

1

2 1( ) ( ) ( )∃ )
%

#

∋
and sin x = 2J1 – 2J3 + 2J5 – ... = 2 1 2 1

0
( ) ( )) ∃

%

#

∋ n
n

n
J x .

11.9A. Solved examples based on Art 11.8 and 11.9.
Ex. 1. Show that  (i) x sin x = 2(22J2 – 42J4 + 62J6 – ...). [Agra 2010]
(ii) x cos x = 2(12J1 – 32J3 + 52J5 – ...).
Sol. We know that cos (x sin Ξ) = J0 + 2J2 cos 2Ξ + 2J4 cos 4Ξ + ... ...(1)
Differentiating (1) w.r.t. ‘Ξ’,  – sin (x sin Ξ) x3  cos Ξ= 0 – 22 2J3  sin 2Ξ – 42 4J3 sin 4Ξ + ... ...(2)

Differentiating (2) w.r.t. ‘Ξ’, 2cos( sin ) ( cos ) sin( sin ) ( sin )x x x x) Ξ 3 Ξ ∃ Ξ 3 Ξ

                  = 2
22 2 J) 3  cos 2Ξ – 2

42 4 J3  cos 4Ξ – 2
62 6 J3  cos 6Ξ + ... ...(3)

Replacing Ξ by ≅/2 in (3), we get x sin x = 2(22J2 – 42J4 + 62J6 – ...)
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11.34 Bessel Functions

Part (ii). Start with sin (x sin Ξ) = 2J1 sin Ξ + 2J3 sin 3Ξ + 52 sin ...J Ξ ∃

Differentiate this twice w.r.t. ‘Ξ’ as in part (i) and then replace Ξ by ≅/2. This will lead to the
desired answer. Complete the solution yourself.

Ex. 2. Bessel’s Integrals. Show that

(i) Jn(x) = 1
0≅

Ξ Ξ Ξ
≅
cos ( sin )n x d)z , where n is a positive integer

[Purvanchal 2004, 07; Punjab 2005]

(ii) Jn(x) = 1
0≅

Ξ Ξ Ξ
≅
cos ( sin )n x d)z , where n is any integer [KU Kurukshetra 2004]

(iii) J0(x) = 1 1
0 0≅

Ξ Ξ
≅

Ξ Ξ
≅ ≅
cos ( sin ) cos ( cos )x d x dz z% . [Agra 2006]

(iv) Deduce that J0(x)  =
2 4 2

2 2 2 2
0

( 1)1 ...
2 2 4 (2 !)

r r

r
r

x x x
r

#

%

)
) ∃ ) %

3 3∋ .

Sol. (i). We shall use the following results :

cos m n dΞ Ξ Ξ
≅

cos
0z = sin m n d when m n

when m n

Ξ Ξ Ξ ≅
≅

sin /
0

2

0
z % %

% &

U
V|
W|

...(1)

cos (x sin Ξ) = J0 + 2J2 cos 2Ξ + 2J4 cos 4Ξ + ... ...(2)
and sin (x sin Ξ) = 2J1 sin Ξ + 2J3 sin 3Ξ + 2J5 sin 5Ξ + ...

...(3)
Multiplying both sides of (2) by cos nΞ and then integrating w.r.t. ‘Ξ’ between limits 0 to ≅

and using (1), we have cos ( sin ) cos x n dΞ Ξ Ξ
≅

0z = 0, if n is odd    ...(4)

 = ≅ Jn, if n is even. ...(5)
Again, multiplying both sides of (3) by sin nΞ and then integrating w.r.t. ‘Ξ’ between limits 0

to ≅ and using (1), we get sin ( sin ) sin x n dΞ Ξ Ξ
≅

0z = ≅Jn, if n is odd     ...(6)

= 0, if n is even. ...(7)
Let n be odd. Adding (4) and (6), we get

[cos ( sin ) cos +  sin (  sin ) sin ] x n x n dΞ Ξ Ξ Ξ Ξ
≅

0z = ≅Jn.

or    cos ( sin )n x dΞ Ξ Ξ
≅

)z0 = ≅Jn                or        Jn(x) = 1
0≅

Ξ Ξ Ξ
≅
cos ( sin )n x d)z . ...(8)

Next, let n be even. Then adding (5) and (7) as before, we again get (8). Thus (8) holds for
each positive integer (even as well as odd).

Part (ii). Let n be any integer. Then as in part (i), if n is positive integer, we have

Jn(x) = 1
0≅

Ξ Ξ Ξ
≅
cos ( sin )n x d)z ...(9)

Next, let n be a negative integer so that n = –m, where m is a positive interger. To prove the
required result for a negative integer, we prove that

         J–m(x) = 1
≅

Ξ Ξ Ξ
Ψ

≅
cos ( sin )) )z m x d . ...(10)

Let Ξ = ≅ – Ο so that d Ξ = –d Ο. Then, we have
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R.H.S. of (10)

=
1 cos { ) sin )} (m x d

Ψ

≅
) Χ≅ ) Ο ) Χ≅ ) Ο ) ΟΕ

≅ Ν =
0

1 cos [( sin )m x m d
≅

Ο ) Ο ) ≅Θ Ο
≅ Ν

=
0

1 [cos ( sin ) cos sin( sin ) sinm x m m x m d
≅

Ο ) Ο ≅ ∃ Ο ) Ο ≅Θ Ο
≅ Ν

=
0

1 ( 1) cos( sin )m m x d
≅

) Ο ) Ο Ο
≅ Ν [� sin m≅ = 0 and cos m≅ = (–1)m]

= 1 1
≅

Ξ Ξ Ξ
Ψ

≅
( ) cos ( sin )) )zm m x d = (–1)m Jm(x) [Using (9) as m is + ve integer]

= J–m(x) = L.H.S. of (10) [� J–m(x) = (–1)m Jm(x)]
Thus, (10) is true. (9) and (10), show that the required result holds for each integer.
Part (iii). Integrating (2) w.r.t. ‘Ξ’ between the limits 0 to ≅ and using the result

cos p dΞ Ξ
Ψ

≅
%z 0 , if p is an even interger, we have                ...(11)

cos ( sin ( ) ...x d J x dΞΕ Ξ % Ξ
Ψ

≅

Ψ

≅

0 0 0∃ ∃ ∃zz = J0(x). ≅.

( J0(x) = 1
≅

ΞΕ Ξ
Ψ

≅
cos ( sinx dz . ...(12)

Replacing Ξ by ≅/2 – Ξ in (2) and simplifying, we get
cos (x cos Ξ) = J0 – 2J2 cos 2Ξ + 2J4 cos 4Ξ – ... ...(13)

Integrating (13) w.r.t. ‘Ξ’ and using (11), we get

cos ( cosx dΞΕ Ξ
Ψ

≅z = J0(x). ≅ – 0 – 0... or         J0(x) = 1
≅

ΞΕ ΞΖ
Ψ

≅
cos ( cosx dz ...(14)

(iv) Deduction. From (14), J0(x) = 1 1
2 4

2 2 4 4

≅
Ξ Ξ Ξ

Ψ

≅
) ∃ )
F
HG

I
KJz x x dcos

!
cos

!
... ...(15)

But cos2n dΞ Ξ
Ψ

≅z =
1 3 5 ...(2 1)

2 4 6 ...(2 )
n

n
3 3 )

≅
3 3

. ...(16)

Using (16), (14) becomes J0(x) =
2 4 61 1 1 3 1 3 5 ...

2 ! 2 4 ! 2 4 6 ! 2 4 6
x x xx

+ 73 3 3
) 3 ≅ ∃ 3 ≅ ) 3 ≅ ∃, 8

≅ 3 3 3− 9

or J0(x) =
2 4 6 2

2 2 2 2 2 2 2
0

( 1)1 ...
2 2 4 2 4 6 (2 !)

r r

r
r

x x x x
r

#

%

)
) ∃ ) ∃ %

3 3 3 3∋ .

  Ex. 3. Use the generating function to show that Jn(–x) = (–1)n Jn(x).
[Agra 2008; Meerut 2006, 11; Kanpur 2008]

Sol. We have J x z x z
zn

n

n

( ) exp% )FH IKRST
UVW%) #

#

∋ 2
1 . ...(1)

Replacing x by –x in (1), we get

  J x z x z
z

x z
zn

n

n

( ) exp exp) % ) )FH IKRST
UVW % ) )

)
FH IKRST

UVW%) #

#

∋ 2
1

2
1 = J x zn

n

n
( ) . ( ))

%)#

#

∋ , by (1)
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( J x z J x zn
n

n
n

n n

n

( ) ( ) ( ) .) % )
%) #

#

%) #

#

∋ ∋ 1 ...(2)

Equating the coefficients of zn from both sides of (2), we have Jn(–x) = (–1)nJn(x).

Ex. 4. Use the generating function to prove that Jn(x + y) = J x J yr n r
n

( ) ( ))
%) #

#

∋ .

Sol. By the generating function, exp ( )1
2

1x y z
z

∃ )FH IKRST
UVW= J x y zn

n

n

( ) .∃
%) #

#

∋ ...(1)

So we see that Jn(x + y) is the coefficient of zn on R.H.S. of (1). We next obtain the coefficient
of zn on L.H.S. of (1). Now, we have

L.H.S. of (1)  = exp . exp1
2

1
2

1 1x z
z

y z
z

)FH IKRST
UVW )FH IKRST

UVW , as exp(A + B) = eA + B = exp A. exp B.

= J x z J y zr
r

r
s

s

s

( ) . ( )
%) #

#

%) #

#

∋ ∋ [by definition of generating function]

= J x J y zr s
r s

sr

( ) ( ) ∃

%) #

#

%)#

#

∋∋ . ...(2)

For a fixed value of r, we get zn by taking r + s = n i.e. s = n – r. Thus keeping r fixed, the
coefficient of zn in (1) is Jr(x) Jn – r(y). So the total coefficient of zn will be given by summing all

such terms from r = – # to r = # and is given by J x J yr n r
r

( ) ( ).)
%)#

#

∋

Hence equating the coefficient of zn from both sides of (1),      Jn(x) = J x J yr n r
r

( ) ( ))
%) #

#

∋ .

Ex. 5. If a > 0, prove that e J bx dx
a b

ax)
#

%
∃z 0 2 20

1( )
( )

.

[Ravishanker 1999; Purvanchal 2007; Lucknow 2010]

Sol. We know that (Refer Ex. 2. Part (iii)) J0(x) = 1
0≅

Ξ Ξ
≅
cos ( sin )x dz .

( J0(bx) = 1
0≅

Ξ Ξ
≅
cos ( sin )bx dz . ...(1)

(    e J bx dxax)
#z 0

0
( ) = e bx d dxax)

## zz RST
UVW

1
00 ≅

Ξ Ξcos ( sin ) , using (1)

= 1
00≅

Ξ Ξ
≅

e bx d dxax)
# zz RST UVWcos ( sin ) = 1

00≅
Ξ Ξ

≅
e bx dx dax)

#zz RST UVWcos ( sin )

(On interchanging the order of integration)

= 1
200≅

Ξ
Ξ Ξ≅

e e e dx dax
i bx i bx

)
)# ∃RST

UVWzz sin sin
= 1

00Η≅
ΞΞ Ξ

≅
[ ]( sin ) ( sin )e e dx da ib x a ib x) ) ) ∃

#
∃RST

UVWzz
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= 1
00Η≅ Ξ Ξ

Ξ
Ξ Ξ≅ e

a ib
e
a ib

d
a ib x a ib x) ) ) ∃ #

) )
∃

) ∃
L
NM

O
QPz ( sin ) ( sin )

( sin ) ( sin ) = 1 1 1
0Η≅ Ξ Ξ

Ξ
≅

a ib a ib
d

)
∃

∃
L
NM

O
QPz sin sin

= a d
a b

a d
b a≅

Ξ
Ξ ≅

Ξ Ξ
Ξ

≅ ≅

2 2 20 2 2 20∃
%

∃z zsin
cosec

cosec

2
= a d

b a
a d

a b a≅
Ξ Ξ

Ξ ≅
Ξ

Ξ

≅ ≅ [Ηcosec cosec
cot

2 2

2 2 20 2 2 2 201
2

∃ ∃
%

∃ ∃z z( cot ) ( )

= 2
2 2 2 2

0a dt
a b a t≅

( ))
∃ ∃#z ( )

, putting cos Ξ = t so that – cosec2 Ξ dΞ = dt

= )
∃ ∃

%
∃ ∃

#

# zz2 2
2 2 2 2 2 2 2 20

0a
a

dt
t a b a a

dt
t a b a≅ ≅2 ( ) / [ ( ) / ]

= 2 1
2 2

1
2 2

0
a a b a

t
a b a≅

.
( )

tan
( )∃ ∃

L
NM

O
QP

)
#

= 2
2

0
2 2≅

≅

( )a b∃
)FH IK =

2 2

1

a b∃
.

Ex. 6. Using the generating function, prove that

(i) 1 12 ( ) ( ) ( )n n nJ x J x J x) ∃� % ) (ii) Κ Λ1 12 ( ) ( ) ( )n n nn J x x J x J x∃ )% ∃

Sol. Generating function is given by                     ( / 2) ( 1/ )( ) n x z z
n

n
J x z e

#
ϑ )

%)#
Μ % ... (1)

Diff. both sides of (1) w.r.t. ‘x’, ( / 2) ( 1/ )( ) (1/ 2) ( 1/ )n x z z
n

n
J x z e z z

#
ϑ )

%)#
�Μ % ϑ ϑ )

or 12 ( ) ( ) ( )n n
n nn n

J x z z z J x z
# #

)

%)# %)#
�Μ % ) Μ 1 1( ) ( )n n

n
n

J x z z
#

∃ )

%)#
% Μ ) , using (1)

or         1 12 ( ) ( ) ( )n n n
n n nn n n

J x z J x z J x z
# # #

∃ )

%)# %)# %)#
�Μ % Μ ) Μ ... (2)

Equating the coefficients of zn on both sides of (2) yields   1 12 ( ) ( ) ( )n n nJ x J x J x) ∃� % )

(ii) Differentiating both sides of (1) w.r.t. ‘z’, we get

1 ( / 2) ( 1/ ) 2( ) (1/ 2) (1 )n x z z
nn

n J x z e z
#

) ϑ ) )

%)#
Μ % ϑ ϑ ∃

or           1 2
12 ( ) (1 ) ( ) ,n n

n n
n n

n J x z x z J x z
# #

) )
)

%)# %)#
Μ % ∃ Μ  using (1)

or           1 22 ( ) ( ) ( )n n n
n n n

n n n
n J x z x J x z x J x z

# # #
) )

%)# %)# %)#
Μ % Μ ∃ Μ ... (3)

Equating the coefficients of zn–1 on both sides of (3), 2n Jn(x) = x{Jn – 1(x) + Jn + 1 (x)}

Ex. 7. Show that 12 2 1/ 20

sin ( )
2( )

y x ax ydx J ay
y x

≅
%

)Ν
Sol. From result (ii) of Art. 11.9,     1 2sin ( sin ) 2sin 2sin 3 ...x J JΞ % Ξ 3 ∃ Ξ 3 ∃   ... (1)

Multiplying both sides of (1) by sin Ξ  and then integrating between the limits 0 and ,≅  we have

2
1 2

0 0 0
sin( sin ) sin (2sin ) (2sin sin 3 ) ...x d J d J d

≅ ≅ ≅
Ξ Ξ Ξ % Ξ Ξ ∃ Ξ Ξ Ξ ∃Ν Ν Ν
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11.38 Bessel Functions

1 2
0 0

(1 cos 2 ) (cos 2 cos 4 ) ...J d J d
≅ ≅

% ) Ξ Ξ ∃ Ξ ) Ξ Ξ ∃Ν Ν 1 2
0 0

sin 2 sin 2 sin 4 ....
2 2 2

J J
≅ ≅Ξ Ξ Ξ+ 7 + 7% Ξ ) ∃ ) ∃, 8 , 8− 9 − 9

1 ,J% 3 ≅  since the remaining terms vanish

Thus, 1
0

( ) sin ( sin ) sinJ x x d
≅

≅ % Ξ Ξ ΞΝ ... (2)

Let ( ) sin( sin )sin .F xΞ % Ξ Ξ  Then, clearly  ( ) ( ).F F≅ ) Ξ ) Ξ

Hence, using a property of definite integrals, (2) yields 
/ 2

1
0

( ) 2 sin ( sin ) sinJ x x d
≅

≅ % Ξ Ξ ΞΝ

Ρ
/ 2

1
0

( ) 2 sin ( sin ) sinJ ay ay d
≅

≅ % Ξ Ξ ΞΝ ... (3)

Put siny xΞ %  so that cosy d dxΞ Ξ % and hence

2 1/ 2 2 2 1/ 2 2 2 1/ 2cos (1 sin ) (1 / ) ( )
dx dx dx dxd

y y y x y y x
Ξ % % % %

Ξ ) Ξ ) )

Hence (3) yields 1 2 2 1/20

1( ) 2 sin
( )

y xJ ay ax dx
y y x

: ;
≅ % ϑ ϑ< =< =)> ?

Ν   Ρ    12 2 1/20

sin ( )
2( )

y x ax dx y J ay
y x

≅
%

)Ν

Ex. 8. Prove that  (i) Jn(x) = 1
21

2

2

0≅ 6
Ξ Ξ Ξ

≅

( )
cos ( sin ) cos .

n
x x d

n
n

∃
FH IK z

[Garhwal 2005, Ravishanker 2004; Ranchi 2010]

(ii) Jn(x) = 1
21

2

2

0≅ 6
Ξ Ξ Ξ

≅

( )
cos ( cos ) sin .

n
x x d

n
n

∃
FH IK z [Bilaspur 1998]

Sol. (i). Let    I = cos ( sin ) cos .x dnΞ Ξ Ξ
≅ 2

0z ...(1)

( I = 2

0
2 cos ( sin ) cos ,nx d

≅[Η
Ξ Ξ ΞΝ since 2cos( sin )cos nx Ξ Ξ  is an even function.

or      I = 2 1
2 4

2
2 2 4 4

0
cos sin

!
sin

!
...n x x dΞ Ξ Ξ Ξ

≅ [Η
) ∃ )
L
NM

O
QPz . ...(2)

But         2
0

cos cosp q dΞ Ξ Ξ
≅ [ Ηz =

6 6

6

p q

p q

∃FH IK
∃FH IK

∃ ∃FH IK

1
2

1
2

2 2
2

. ...(3)

Using (3), (2) may be written as

I = 2
2 1 2

3 2
2 2 4

5 2
2 3

1
2

1
2

2 1
2

4 1
26 6

6
6 6

6
6 6

6
( ) ( )

( ) !
( ) ( / )

( ) !
( ) ( / )

( )
...n

n
x n

n
x n

n
∃

∃
)

∃
∃

∃
∃

∃
)L

NM
O
QP

=
1 12 4
2 21

2( ) ..
( 1) 2 ! ( 1) ( 1) 4 ! ( ( 1)

x xn
n n n n n n

+ 7≅ Χ∴[ΗΕ ϑ ≅≅
6 ∃ ) ϑ ∃ ϑ ), 8

6 ∃ ∃ 6 ∃ ∃ ΗΕ Χ ∃ ∆Ε6 ∃, 8− 9

=
1 2 4
2( )

1 ...
( 1) 4( 1) 4 8( 1) ( 2)

n x x
n n n n

6 ∃ ≅ + 7
) ∃ ), 8

6 ∃ ∃ 3 ∃ ∃− 9
...(4)
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Also, Jn(x) =
2 4

1 ...
4( 1) 4 8( 1) ( 2)2 ( 1)

n

n
x x x

n n nn

+ 7
) ∃ ), 8

∃ 3 ∃ ∃6 ∃ − 9
. ...(5)

Multiplying both sides of (4) by x
n

n

n2 1
26 ≅( )∃

, we get

x I
n

n

n2 1
26 ≅( )∃

= x
n

n

n2 1
26( )∃

2 4
1 ...

4( 1) 4 8 ( 1) ( 2)
x x
n n n

+ 7
) ∃ ), 8∃ 3 3 ∃ ∃− 9

...(6)

Using (1) and (5), (6) becomes       1
1 2 2

2

0≅ 6
Ξ Ξ Ξ

≅

( / )
cos ( sin ) cos ( ).

n
x x d J x

n
n

n∃
FH IK %z

Part (ii). Proceed as in part (i),

Ex. 9. Prove that Jn(x) = x
n

t xt dt
n

n
n

2
11 1

2

2 1 2

0

1

)
)

∃
)z6 ≅( )

( ) cos ./      [Bilaspur 1994, 97]

Sol. From part (i) of Ex. 8,     Jn(x) = 1
21

2

2

0≅ 6
Ξ Ξ Ξ

≅

( )
cos ( sin ) cos .

n
x x d

n
n

∃
FH IK z      ...(1)

Let            I = cos ( sin ) cosx dnΞ Ξ Ξ
≅ 2

0z = 2 2

0
cos ( sin ) cosx dnΞ Ξ Ξ

≅ [Ηz ...(2)

Let sin Ξ = t so that cos Ξ dΞ = dt. Then (2) gives

I = 2 2 1

0 0
2 cos cos 2 cos cos

cos
n ndtxt xt d t

∆ ∆
)Ξ % Ξ

ΞΝ Ν

= 2 (2 1) / 2 2 1 2

0 0
2 cos (cos ) 2 cos (1 sinn nxt dt xt d t

∆ ∆
) ) [Ξ % ) ΞΕΝ Ν .

( I = 2 2 1 2

0
cos . ( ) ./xt I t dtn) )z∆ ...(3)

Using (2), (3) gives cos ( sin ) cosx dnΞ Ξ
≅ 2

0z = 2 1 2 1 2

0
( ) cos/) )z t xt dtn∆

. ...(4)

Using (4), (1)    Ρ  Jn(x) = 2 1/ 2
1 0
2

1 2 (1 ) cos
( )2 2

n
n

n n
x t xt dt

n

∆
)ϑ ϑ )

≅ 6 ∃ Ν

( Jn(x) = x
n

t xt dt
n

n
n

Η 6 ≅

∆

)
)

∃
)z1 1

2

2 1 2

0
1

( )
( ) cos/ .

Ex. 10. Verify directly that representation J0(x) = 1
0≅

Ο Ο
≅
cos ( sin )x dz satisfies Bessel’ss

equation in which n = 0.     [Indore 2004]

Sol. Given J0(x) = 1
0≅

Ο Ο
≅
cos ( sin )x dz . ...(1)

Bessel’s equation of order n is x2y! + xy � + (x2 – n2)y = 0. ...(2)
For n = 0, (2) reduces to          x2y! + xy � + x2y = 0. ...(3)
In order to show that J0(x) satisfies (3), we must prove that

      2 2
0 0 0( ) ( ) ( ) 0.x J x x J x x J x�� ∃ ∃ %� ...(4)
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11.40 Bessel Functions

Differentiating both sides of (1) w.r.t. ‘x’,         0 ( )J x� = ) z1 0≅
Ο Ο Ο

≅
sin ( sin ) sinx d .  ...(5)

Differentiating both sides of (5) w.r.t. ‘x’,            0 ( )J x�� = ) z1 2

0≅
Ο Ο Ο

≅
cos ( sin ) sinx d . ...(6)

Integrating R.H.S. of (5) by parts taking sin Ο as second function, we get

0 ( )J x� = ) )1
0≅

Ο ΟΕ ≅sin ( sin ) (cosxl q
0

cos ( sin ) cos cosx x d
≅ 7∃ Ο 3 Ο Ο Ο89Ν

or    0 ( )J x� = ) ∃LNM
O
QPz1 0 2

0≅
Ο Ο Ο

≅
x x dcos ( sin ) cos = – x x d

≅
Ο Ο Ο

≅
cos ( sin ) cos2

0z .    ...(7)

Using (1), (6) and (7), L.H.S. of (4)

= ) )z zx x d x x d
2

2

0

2
2

0≅
Ο Ο Ο

≅
Ο Ο Ο

≅ ≅
cos ( sin ) sin cos ( sin ) cos ∃ zx x d

2

0≅
Ο Ο

≅
cos ( sin )

= ) ∃ ∃z zx x d x x d
2

2 2

0

2

0≅
Ο Ο Ο Ο

≅
Ο Ο

≅ ≅
cos ( sin ) (sin cos ) cos ( sin ) = 0 = R.H.S. of (4)

Thus (4) is true. Hence we get the required result.

EXERCISE 11 (D)

1. Prove that (i) J0(x) = 2
1 20

1

x
xt dt

t
cos

( ))z (ii) J x
x

dx
n

n( ) .
0

1#z %

2. If n is non–negative, prove that J bx dx
bn( ) .

0

1#z %

3. Prove that  (i) sin ( )ax J bx dx0
0

#z = 2 2 1/ 2

0,

1/( ) ,

b a

a b b a

Υ.0
1

∃ ]04

 (ii) cos ( )ax J bx dx0
0

#z =
2 2 1/ 21/( ) ,

0,
b a b a
b a

. ) Υ0
1

]04

4. Show that (i) 
/ 2

00

sin( cos ) cos xJ x d
x

≅
Ο Ο Ο %Ν (ii) J x d x

x1
0

2 1( cos ) cos .
/

Ο Ο
≅

%
)z

5. For Bessel function Jn(x) prove that Jn(x) = 1
0≅

Χ Ο Ο Ο
≅
cos )n x d)z sin  and hence show that

J0(x) = 2
1 20≅

∆ cos
( )

xt dt
t)z . [Purvanchal 2007]

6. Show that the recurrence relation ( )nJ x� = 1
2 [Jn – 1(x) – Jn + 1(x)], follows directly from

differentiation of Jn(x) = 1
≅

Ο Ο Ο
Ψ

≅
cos ( sin )n x d)z .

7. Show that coefficient of tn in the expansion of e x t t) )( / ) ( / )2 1  equals  1
0≅

Ξ Ξ Ξ
≅
cos ( sin ) .n x d)z

11.10. Orthogonality of Bessel functions
If Γi and Γj are roots of the equation Jn(Γa) = 0, then
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Bessel Functions 11.41

     
0

( ) ( )
a

n i n jx J x J x dxΓ ΓΝ =
0

2 1
2

,

( ),

if (different roots)

if (equal roots)
2

i j
a J a i jn i

&

%

R
S|
T| ∃ Γ

i.e.
0

( ) ( )
a

n i n jx J x J x dxΓ ΓΝ = a J an i ij

2

2 1
2

∃ ( )Γ ⊥ .     where    ⊥ij = Kronecker delta = 0 if
1 if =

i j
i j

&RST
[Meerut 2010; Nagpur 2005; Purvanchal 2005, 06; Delhi Physics (H) 2002]

Proof. Case I. Let i & j, i.e., let Γi and Γj be unequal roots of Jn(Γa) = 0.
( Jn(Γia) = 0 and Jn(Γja) = 0 ...(1)
Let u(x) = Jn(Γix) and v(x) = Jn(Γj x). ...(2)
Then u and v are Bessel functions satisfying the modified Bessel’s equation [Refer Art. 11.4]

x2y! + xy� + (Γ2x2 – n2)y = 0. ...(3)
( x2u! + xu� + (Γi

2x2 – n2)u = 0. ...(4)
and x2v! + xv� + (Γj

2x2 – n2)v = 0. ...(5)
Multiplying (4) by v and (5) by u and then subtracting, we get

x2(vu! – uv!) + x(vu� – uv�) + x2(Γi
2 – Γj

2)uv = 0   or x(vu! – uv!) + (vu� – uv�) = x(Γj
2 – Γi

2)uv

or x d
dx (vu� – uv�) + (vu� – uv�) = x(Γj

2 – Γi
2)uv

or d
dx {x(vu� – uv�)} = x(Γj

2 – Γi
2)uv.. ...(6)

Integrating (6) w.r.t. x from 0 to a, (Γj
2 – Γi

2) 
0

a
xuv dxΝ = x vu uv a( )� ) � 0 . ...(7)

Using (2), (7) reduces to

  (Γj
2 – Γi

2) x J x J x dxn i n j

a
( ) ( )Γ Γ

0z = x J x J ' x J x J ' xn j n i n i n j
a

{ ( ) ( ) ( ) ( )}Γ Γ Γ Γ)
0

     = a{Jn(Γja)J �n(Γia) – Jn(Γia)J �n(Γja)} = 0, using (1)

Since Γi & Γj, the above equation gives       x J x J x dxn i n j

a
( ) ( )Γ Γ

0z = 0, when i & j. ...(8)

Case II. Let i = j (equal roots). Multiplying (4) by 2u�, we have

2x2u!u� + 2xu�2 + 2(Γi
2x2 – n2)uu� = 0    or d

dx
{x2u�2 – n2u2 + 2

iΓ x2u2} – 2 2
iΓ xu2 = 0

( 2Γi
2xu2 = d

dx
(x2u�2 – n2u2 + Γi

2x2u2). ...(9)

Integrating (9) w.r.t. ‘x’ from 0 to a, 2Γi
2 xu dx

a 2

0z = x u n u x ui
a2 2 2 2 2 2 2
0

� ) ∃ Γ ...(10)

Using (1) and (2) and noting that Jn(0) = 0, we have

2Γi
2 x J x dxn i

a 2

0
( )Γz = a J ' xn i x a

2 2{ ( )}Γ
%

...(11)

From recurrence relation IV, we have         d
dx

Jn(x) = n
x Jn(x) – Jn + 1(x). ...(12)

Replacing x by Γix in (12), we have
d

d xi( )Γ
Jn(Γix) = n

xiΓ
Jn(Γix) – Jn + 1(Γix)  or 1

Γ
Γ

i
n i

d
dx

J x( ) = n
xiΓ

Jn(Γix) – Jn+ 1 (Γix)
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11.42 Bessel Functions

or J �n(Γix) = n
x

 Jn(Γix) – Γi Jn + 1(Γix).

(   { ( )}J ' xn i x a
Γ 2

%
= n

x
J x J xn i i n i

x a

( ) ( )Γ Γ Γ)
L
NM

O
QP∃

%
1

2

{ } = {0 – Γi Jn + 1(Γia)}2, by (1)

= Γi
2 J2

n + 1(Γia).
Using this value in (11) and dividing both sides of the resulting equation by 2Γi

2, we get

x J x dxn i

a 2

0
( )Γz =

a J an i

2

1
2

2 ∃ ( )Γ . ...(13)

Combining (8) and (13), we have   x J x J x dxn i n j

a
( ) ( )Γ Γ

0z = a J an i ij

2

1
2

2 ∃ ( ) .Γ ⊥ . ...(14)

11.11. Bessel–series or Fourier–Bessel expansion for f(x).
If f(x) is defined in the region 0 Ω x Ω a and has an expansion of the form

f(x) =
1

( )i n i
i

c J x
#

%

Γ∋ , ...(1)

where the Γi are the roots of the equation Jn(Γa) = 0, ...(2)

then ci = 0
2 2

1

2 ( ) ( )

( )

a
n i

n i

x f x J x dx

a J a∃

Γ

Γ

Ν
. ...(3)

Proof. Multiplying both sides of (1) by  xJn(Γjx),  xf(x) Jn(Γjx) = c x J x J xi n i n j
i

( ) ( )Γ Γ
%

#

∋
1

   ...(4)

Integrating both sides of (4) w.r.t. ‘x’ from 0 to a, we get

0
( ) ( )

a
n jx f x J x dxΓΝ = c x J x J x dxi n i n j

a

i
( ) ( ) .Γ Γ

01
z∋

%

#

...(5)

From the orthogonality property of Bessel functions, we have

x J x J x dxn i n j

a
( ) ( )Γ Γ

0z =
0

2 1
2

,

( ),

if

if
2

i j
a J a i jn j

&

%

R
S|
T| ∃ Γ

...(6)

Using (6), (5) reduces to
0

( ) ( )
a

n jx f x J x dxΓΝ = cj
a2

2
 J2

n + 1(Γja). ...(7)
Replacing j by i in (7), we have

ci
a2

2
J2

n + 1(Γia) = x f x J x dxn i

a
( ) ( )Γ

0z or  ci = 0
2 2

1

2 ( ) ( )
.

( )

a
n i

n i

x f x J x dx

a J a∃

Γ

Γ

Ν

...(8)
11.11A. Solved Exaples based on Art. 11.11

Ex. 1. Expand the function f(x) = 1, 0 Ω x Ω a in a series of the form c J xi i
i

0
1

( )Γ
%

#

∋ , where Γi

are the roots of the equation J0(Γa) = 0.

Sol. Given      f(x) = 1 = c J xi i
i

0
1

( )Γ
%

#

∋ , ...(1)
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where  J0(Γia) = 0. ...(2)
Then from Art. 11. 11 (with n = 0), we know that

ci =
2 00

2
1
2

x f x J x dx

a J a
i

a

i

( ) ( )
( )

Γ

Γ
z =

2 00
2

1
2

x J x dx

a J a
i

a

i

( )
( )
Γ

Γ
z ,  as f(x) = 1 ...(3)

Let Γix = t so that dx = dt/Γi. Then, we have

x J x dxi

a

0
0

( )Γz = 1
2 0

0Γ

Γ

i

a
t J t dt
i

( )z
  = 1

2 1
0Γ

Γ

i

a d
dt

t J t dt
i

{ ( )}z , as  1 1 0[ ( )] ( ) [ ( )] ( )n n
n n

d dx J x x J x x J x x J x
dx dx)% Ρ %

  = 1 1 0 0 02 1 0 2 1 1Γ Γ
Γ ΓΓ

i

a

i
i it J t a J a Ji( ) [ ( ) ], ( )% ) %as .

( x J x dxi

a

0
0

( )Γz = (a/Γi) × J1(aΓi) ...(4)

Using (4), (3) becomes ci = 1
2 2

11

2 ( / ) ( ) 2
( )( )

i i

i ii

a J a
a J aa J a

ϑ Γ ϑ Γ
%

Γ ΓΓ

 ...(5)

Using (5), (1) becomes 1 = 2 0

01a
J x

J a
i

i ii

( )
( )
Γ

Γ Γ%

#

∋ .

Ex. 2. Expand x in a series of the form C J xr r
r

1
1

( )Γ
%

#

∋ valid for the region 0 Ω x Ω 1, wheree

Γr are the roots of the equation J1(Γ) = 0.

Sol. Given           f(x) = x = C J xr r
r

1
1

( )Γ
%

#

∋ , ...(1)

where J1(Γr) = 0 ...(2)

Then from Art. 11.11 (with n = 1, i = r and a = 1),                     Cr =
2 2

10
1

2
2

x J x dx

J
r

r

( )
( )

Γ

Γ
z

...(3)
Let Γrx = t, so that dx = dt/Γr. Then we have

x J x dxr
2

1
0

1
( )Γz = 1

3
2

1
0Γ

Γ

r
t J t dt

r
( )z

= 1
3

2
2

0Γ

Γ

r

d
dt

t J t dt
r

{ ( )}z ,    as     2 2
1 2 1[ ( )] ( ) [ ( )] ( )n n

n n
d dx J x x J x x J x x J x
dx dx)% Ρ %

= 1 1 0 0 03
2

2 0 3 2 2Γ Γ
Γ Γ

Γ

r r
r rt J t J Jr( ) [ ( ) ], ( )% ) %2 as

(       x J x dxr
2

1
0

1
( )Γz = 1

Γr
 J2(Γr). ...(4)

Using (4), (3) becomes Cr = 2

2
( )r rJΓ Γ ...(5)

Using (5), (1) becomes x = 2 1

21

J x
J

r

r rr

( )
( )

Γ
Γ Γ%

#

∋ , 0 Ω x Ω 1.
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11.44 Bessel Functions

EXERCISE 11 (E)

1. Expand x2 in a series of the form C J xr r
r

0
1

( )Γ
%

#

∋  valid for the region 0 Ω x Ω a, where Γr are

the roots of the equation J0(Γa) = 0.
2

2 0
3

01

{( ) 4} ( )2
( )

r r

r rr

a J xx
a J a

#

%

Γ ) Γ
%

Γ Γ∋Ans.

2. Prove that 1 = 2 0

11 Σ
Σ
Σn

n

nn

J x
J

( )
( )

%

#

∋ .

3. If Γi are the solutions of J0(Γ) = 0, show that
J x
J

xi

i ni

0

1
2

1

1
2

( )
( )}

log
Γ

ΚΓ Γ%

#
∋ % ) , where 0 < x < 1.

4. If f(x) = C J xi i
i

0
1

( )Γ
%

#
∋  where J0(Γi) = 0, i = 1, 2, 3, ..., show that  x f x dx[ ( )]2

0

1z = Γ Γi i
i

J2
1
2

1
( )

%

#

∋ .

5. If Γi are the positive roots of J0(Γ) = 0, show that 1
8

2) x =
J x

J
i

i ii

0
3

11

( )
( )

Γ

Γ Γ%

#

∋ ,  where –1 < x <

1

6. If Γi are the positive roots of J1(Γ) = 0, show that  x3 = 2 1

21

J x
J

i

i ii

( )
( )

Γ
Γ Γ%

#

∋ ,  where –1 < x < 1

7. If Γi are the positive roots of J1(Γ) = 0, show that x3 =
2

1
3

11

(8 ) ( )
2

( )
i i

i ii

J x
J

#

%

) Γ Γ
�Γ Γ∋ ,  where –1 < x < 1

OBJECTIVE PROBLEMS ON CHAPTER 11
1. Write (a), (b), (c) or (d) whichever is correct

(a) 1 1{ ( ) ( )}n nx J x J x) ∃∃  is equal to

(a) 2Jn(x) (b) 2 ( )nJ x� (c) 2n Jn (x) (d) None of these [Agra 2005, 06]
Sol. Ans. (c). Refer recurrence relation VI of Art. 11.7.

2. The Bessel’s equation is (a) z2(d2w/dz2) – z (dw/dz) + (z2 – n2) w = 0
(b) z2(d2w/dz2) + z (dw/dz) + (z2 + n2) w = 0       (c) z2(d2w/dz2) + z(dw/dz) + (z2 – n2)w = 0
(d) None of these. [Agra 2005, 07]
Sol. Ans. (c). Refer equation (1) of Art. 11.1

3. d {xn Jn(x)}/dx is equal to
(a) xn Jn – 1 (x) (b) xn – 1 Jn  (x) (c) xn Jn + 1 (x)     (d) xn + 1 Jn(x) [Bhopal 2010]
Sol. Ans. (a). Refer recurrence relation I of Art. 11.7.

4. The Bessel’s functions Κ Λ0 1( )k kJ x #
%Σ with kΣ  denoting the kth zero of J0(x) form an

orthogonal system on [0, 1] with respect to weight function    (a) 1     (b) x2     (c) x    (d) .x
Sol. Ans. (c) Refer Art. 11.10. [GATE 2002]

5. If Jn(x) and Yn(x) denote Bessel functions of order n of the first and second kind, then the
general solution of the differential equation x(d2y/dx2) + (dy/dx) + xy = 0 is given by

(a) 1 1( ) ( ) ( )y x x J x xY x% Σ ∃ Τ   (b) 1 1( ) ( ) ( )y x J x Y x% Σ ∃ Τ

(c) 0 0( ) ( ) ( )y x J x Y x% Σ ∃ Τ (d) 0 0( ) ( ) ( ).y x xJ x xY x% Σ ∃ Τ [GATE 2005]
Sol. Ans. (c) Refer remark of theorem I, Art. 11.4.
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Bessel Functions 11.45

MISCELLANEOUS PROBLEMS ON CHAPTER 11

1. If x > a, show that cos 2 2 1/ 2
0

0
cos( sin ) {( ) }ae x d J x a

≅
Ο Ο Ο % )Ν

2. Prove that 0
0

1( ) cos( cos )J x x d
≅

% Ξ Ξ
≅ Ν  and deduce that (i) 0 2 2 1/ 20

1( )
( )

axe J bx dx
a b

#
) %

∃Ν

(ii) 0
0

cos( ) ( ) 0ax J bx dx
#

%Ν  or 2 2 1/ 2
1

( )b a)
, according a2 > or < b2

(iii) 0 2 2 1/ 20

1sin( ) ( )
( )

ax J bx dx
a b

#
% )

)Ν  or 0, according as a2 > or < b2.

3. Show that (i) Π Θ
/ 2 2

2
0

(2 cos ) ( )
2n nJ x d J x

≅ ≅
Ο Ο %Ν   (ii) 0 0

0

2 sin ( )( ) ( )x yJ x J y dy
x y

# ∃
%

≅ ∃Ν

(iii) 20

( 2 ) ( 1)2 ( )
!

n n
n rr

n r n rx J x
r

#

∃
%

∃ ∃ )
% Μ

4. Show that Jn (x) is even or odd function of x according as n is even or odd, respectively.

5. Show that  Χ Ε1 1/ 2
0

0
{ ( )} 2sin ( / 2).J x t x t) %Ν [Kanpur 2008]

Sol. Setting n = 0 and x = {x (t – x)}1/2 in result (1) of Art. 11.2, we have

j0 ({x (t – x)}1/2) 
0

1( 1)
! ( 1)

r

r r r

#

%

% )
6 ∃∋

21/2

2
0

{ ( } ( 1) ( )
2 2 ! ( 1)

r r r r

r
r

x t x x t x
r r

#

%

+ 7) ) )
%, 8

6 ∃− 9
∋

( Χ Ε1 1/2
00

{ ( )}J x t x dx)Ν !
1 1

2 20 0
0 0

( 1) ( ) ( 1) ( )
2 ! ( 1) 2 ! ( 1)

r r r r
r r

r r
r r

x t x dx x t x dx
r r r r

# #

% %

) ) )
% )

6 ∃ 6 ∃
∋ ∋Ν Ν

!
2 1 1

2 0
0

( 1) (1 ) ,
2 ! ( 1)

r r
r r

r
r

t y y dy
r r

∃#

%

)
)

6 ∃
∋ Ν putting x = ty and dx = tdy

!
2 1

2
0

( 1) ( 1, 1),
2 ! ( 1)

r r

r
r

t B r r
r r

# ∃

%

)
∃ ∃

6 ∃
∋ by definition 6.2, page 6.1

!
2 1

2
0

( 1) ! ,
2 ! (2 1)

r r

r
r

t r
r r

# ∃

%

)
6 ∃

∋  since 6 (r + 1) = r!, r being a positive integer..

!
2 1 3 5

0

( / 2) ( / 2) ( / 5)2 ( 1) 2 ......
(2 1)! 2 3! 5!

r
r

r

t t t t
r

∃#

%

. /0 0) % ) ∃ )1 2∃ 0 04 5
∋

! 2 sin ( t/2), as sin x = x – x3/3! + x3/5! – x7/7! +...

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



11.46 Bessel Functions

6. Show that every non-trivial  solution of Bessel’s equation x2 y�� + xy� + (x2 – n2) y = 0 has
infinitely many zeros. [Mumbai 2010]

7. Find the normal form of Bessel’s equation x2y��  + xy� + (x2– p2) y = 0 and use it to show
that every non-trival solution has infinitely many positive zeros. [Himachal 2010]

8. Show that if x is real, between two consecutive zeros of x–n Jn (x), there lies one and only
one zero of x–n Jn+1 (x).
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12.1

12
Hermite Polynomials

12.1. Hermite’s equation and its solution. [Meerut 1993, 95, 96]
Hermite’s equation is (d2y/dx2) – 2x(dy/dx) + 2ny = 0, ...(1)

where n is a constant. We now solve (1) in series by using the method of Frobenius.

Let the series solution of (1) be y =
m!

�
#

0
Cm xk + m,    C0 ∃ 0 ...(2)

Differentiating (2) and then putting the value of y, dy/dx and d2y/dx2 in (1), we get

m!

�

#
0

Cm (k + m) (k + m – 1) xk + m – 2 –2xCm(k + m) xk + m – 1 + 2n
m!

�

#
0

Cm xk + m = 0

or     
m!

�

#
0

Cm (k + m) (k + m – 1) xk + m – 2–2 
0m

�

!

%
&
∋

# Cm (k + m) xk + m – 
0

k m
m

m
C nx

�
(

!

)
∗
+

# = 0

or
m!

�

#
0

Cm (k + m) (k + m – 1) xk + m – 2 – 2
m!

�

#
0

Cm (k + m – n) xk + m = 0. ... (3)

(3) is an identity. To get the indicial equation, we equate to zero the coefficient of the smallest
power of x, namely xk – 2, in (3) and obtain

C0 k (k – 1) = 0 or   k (k – 1) = 0,         as            C0 ∃ 0.
...(4)

So the roots of indicial equation (4) are k = 0, 1. They are distinct and differ by an integer.
The next smallest power of x is k – 1. So equating to zero the coefficient of xk – 1 in (3), we get

C1 (k + 1) k = 0. ... (5)
When k = 0 (one of the roots of the indicial equation), (5) shows that C1 it indeterminate.

Hence C0 and C1 may be taken as arbitrary constants. Equating to zero the coefficient of xk + m – 2,
(3) gives Cm (k + m) (k + m – 1) – 2 Cm – 2 (k + m – 2 – n) = 0

or Cm =
2 2

1
( )

( ) ( )
k m n

k m k m
( , ,

( ( ,
Cm–2. ...(6)

Putting k = 0 in (6) gives Cm = 
2 2

1
( )

( )
m n
m m

, ,
,

Cm–2 . ...(7)

Putting m = 2, 4 , 6, ..., 2m, in (7), we have

C2 =
2
2 1

n
,

−
C0 = , 2

2
n
!
 C0 = 

1 1( 1) 2
2 !

n, − −
, C0,

   C4 = 
2 (2 )

4 3
n,

−
C2 = 

2( 1) 2 (2 ) 2
4 3 2 !

n n, − ,
.

−
 C0 = ( ) ( )

!
, ,1 2 2

4

2 2n n  C0,

... ...       ...    ...           ...    ...

and C2m =
( 1) 2 ( 2)...( 2 2)

(2 ) !

m m n n n m
m

, − , , (
 C0
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12.2 Hermite Polynomials

Next, putting m = 3, 5, 7, ..., 2m + 1, in (7), we get

C3 =
2 (1 )

3 2
n,

−
C1 = ,

,2 1
3

( )
!

n  C1 = ( ) ( )
!

, ,1 2 1
3

1 1 n  C1, C5 =
2 (3 )

5 4
n,

−
C3 = 

( ) ( ) ( )
!

, , ,1 2 1 3
5

2 2 n n  C1,

...   ...        ...    ...     ...      ...

and C2m + 1 =
( ) ( ) ( )...( )

( ) !
, , , , (

(
1 2 1 3 2 1

2 1

m m n n n m
m

 C1.

Putting the above values in (2) with k = 0, we get y = C0 + C1 x + C2 x
2 + C3 x

3 + ....
i.e. y = (C0 + C2 x

2 + C4 x
4 + ....) + (C1 x + C3 x

3 + C5 x
5 + ....),

i.e.                   y = C0 1 2
2

2 2
4

2
2

, ( ,L
NM

n x n n
!

( )
! x4 ...( , , , ( (

O
QP

( ) ( )...( )
( ) !

...2 2 2 2
2

2
m

mn n n m
m

x

     ( ,
,

(
, ,

(
L
NM

C x n x n n x1
3

2
52 1

3
2 1 3

5
( )

!
( ) ( )

!
... (

, , , , (
(

(
O
QP

(( ) ( ) ( )...( )
( ) !

...2 1 3 2 1
2 1

2 1
m

mn n n m
m

x ...(8)

or y = C0 u + C1 v, say, ...(9)
Since u/v is not merely a constant, u and v form a fundamental set (i.e. linearly independent)

of solutions of (1). Hence (8) or (9) is the most general solution of (1) with C0 and C1 as two
arbitrary constants.

Remarks. In practice we require a solution of (1) such that
(i) it is finite for all finite values of x       and (ii) as x / �, exp. (1/2x2) y(x) / 0.

The solution (8) in ascending powers of x does not satisfy the condition exp. (1/2x2) ( ) 0y x /
as x / �. However, this requirement is easily seen to be satisfied provided the series terminate.
Replacing m by m + 2 in (7), we have

Cm+ 2 =
2

1 2
( )

( ) ( )
m n

m m
,

( (
Cm. ...(10)

Let n be a non–negative integer. Then (10) shows that Cm + 2 and all subsequent coefficients
in (2) will vanish and so the corresponding series terminate. We shall now obtain the series solution
of (1) in descending powers of x by assuming n to be a non–negative integer. Re–writing (2) for
k = 0, we have as explained above

  y = Cn xn + Cn – 2 xn – 2 + Cn – 4 xn – 4 + ... ...(11)

From (10),       Cm = ,
( (

,
( ) ( )

( )
m m

n m
1 2

2
Cm + 2. ...(12)

Putting m = n – 2, n – 4, ...., in (12),        Cn – 2 = ,
,

, (
( )

( )
n n

n n
1

2 2
Cn =

( 1)
2 2

n n ,
,

−
Cn

      Cn – 4 = ,
, ,

, (
( ) ( )

( )
n n

n n
3 2

2 4
Cn – 2 = 

2
( 1) ( 2) ( 3)

2 2 4
n n n n, , ,

,
− −

Cn

and so on. Putting these is (11), we have y = an{xn

2 4
2

( 1) ( 1) ( 2) ( 3) ....
2 2 2 2 4

n nn n n n n n
x x, ,, , , ,

, ( (
− − −

2( 1) ( 2 1)( 1) ...
2 2 4 ... 2

r n r
r

n n n r x
r

, 0, , ( 1( , ( 2
− 13−

or y = an

[ / 2]
2

0

( 1) ( 2 1)( 1)
2 2 4...2

n
r n r

rr

n n n r x
r

,

!

, , (
4 ,

− −
= a n

r n r
xn

r

r

n

r
n r( ) !

! ( ) !

[ / ]
,#

,!

,1
2 20

2

2
2 ,
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Hermite Polynomials 12.3

where
/ 2, if is even

[ / 2]
( 1) / 2, if is odd
n n

n
n n

5
! 6 ,7

Taking an = 2n and denoting the solution by Hn (x), we obtain the standard solution of (1),
known as Hermite polynomial of order n.
12.2. Hermite polynomial of order n. [Meerut 1994, 97, 98]

Hermite polynomial of order n is denoted and defined by

Hn (x) = ( ) !
! ( ) !

( )
[ / ]

,
,

!

,# 1
2

2
0

2
2r

r

n
n rn

r n r
x , where, n n n

n n/ / ,
( ) / ,2 2

1 2! ,
if is even

if is odd{
12.3. Generating function for Hermite polynomials.

Theorem. Prove that e t
n

H xt x t
n

n
n

2

0

2,

!

�

! # !
( ) [Meerut 1992, 94]

Proof. Using the well known expansion for exponential function, we get

              e t x t2 2, = e et x t2 2

. , =
( )

!
( )

!
2 2

00

t x
s

t
r

s r

rs

,

!

�

!

�

##  = ( ) ( )
! !

, (

!

�

!

�

## 1 2 2

00

r
s

s r

rs

x
r s

t .  ...(1)

Let s + 2r = n so that s = n – 2r. So for a fixed value of r, the coefficient of tn is given by

( ) ( )
! ( ) !

,
,

,

1 2
2

2
r

n rx
r n r

. ...(2)

Now, s 8 0 9 n – 2r 8 0 9 n 8 2r 9 r : n/2,
which gives all values of r for which (2) is the coefficient of tn. If n is even, r : n/2 shows that r
varies from 0 to n/2. Again, if n is odd, r : n/2 shows that r varies from 0 to (n – 1)/2. Here note
that r is an integer. Combining these results we see that r varies from 0 to [n/2], where,

n n n
n n/ / ,

( ) / ,2 2
1 2! ,
if is even

if is odd{
Hence the total coefficient of tn in the expansion of e tx t2 2,  is given by

( )
! ( ) !

( )
[ / ]

,
,

,

!
# 1 1

2
2 2

0

2
r n r

r

n

r n r
x   i.e.   

[ / 2]
2

0

1 ! 1( 1) (2 ) , . . ( ).
! ! ( 2 ) ! !

n
r n r

n
r

n x i e H x
n r n r n

,

!

,
,#

Again the coefficient of tn in
0

. ( )
!

n

n
n

t
H x

n

�

!
#         is also          1

n !
Hn (x).

This proves the required result.
12.4. Alternative expressions for the Hermite polynomials.

Theorem 1. Prove that Hn (x) = (–1)nex2 d
dx

e
n

n
x, 2

.

[Kanpur 2005, 07, 09; Garhwal 1996; Meerut 1997]

Proof.  Using the generating function, we have    t
n

H x
n

n
n

!
( )

!

�

#
0

= e tx t2 2, .  ...(1)

Expanding the function on the R.H.S. by Taylor’s theorem, (1) gives

t
n

H x
n

n
n

!
( )

!

�

#
0

= ;
;
L
NM

O
QP

,

!

�

!
#

n

n
tx t

n t

n

t
e t

n
2

0 0

2

! . ...(2)
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12.4 Hermite Polynomials

Equating coefficient of tn in (2) and cancelling n ! from both sides, we get

Hn (x) = ;
;
L
NM

O
QP

,

!

n

n
tx t

tt
e2

0

2

= ;
;
L
NM

O
QP

, ,

!

n

n
x x t

tt
e

2 2

0

( ) = e
t

ex
n

n
x t

t

2 2

0

;
;
L
NM

O
QP

, ,

!

( ) = e
x

ex n
n

n
x t

t

2 2

1
0

( ) ( ), ;
;

L
NM

O
QP

, ,

!

� ;
;

, ! , ;
;

,
RST

UVW
n

n
n

n

nt
f x t

x
f x t( ) ( ) ( )1

= e d
dx

e e d
dx

ex n
n

n
x n x

n

n
x2 2 2

1 1
2

( ) ( ),
L
NM

O
QP ! ,, , .

Theorem II. Prove that Hn (x) = 2n exp ,
F
HG

I
KJ

RST
UVW

1
4

2

2
d
dx

x n . [Meerut 1995, 96, 97]

Proof. Since exp x = ex = x
n

n

n
!

!

�

#
0

, we have

exp ,
F
HG

I
KJ

1
4

2

2
2d

dx
e tx = 1 1

4
0

2

2
2

n
d
dx

e
n

n
tx

!
!

�

# ,
F
HG

I
KJ = ( )

!
, FH IK

!

�

# 1 1
2

0

2
2

n

n

n
tx

n
d
dx

e = ( )
!

,

!

�

# 1 1
20

2

2

2
2

n

n
n

n

n
tx

n
d
dx

e

       =
( )

!
. ( ),

!

�

# 1 1
2

2
0

2
2 2

n

n
n

n tx

n
t e  = e

n
ttx

n

n

n2

0

21( )
!

,

!

�

# =
22

2 2

0

( ) .
!

n
tx tx t

n

te e e
n

�
,

!

,
! −# ...(1)

Using the generating function, we have       
22tx te e,− = e H x t

n
tx t

n
n

n
2

0

2,

!

�

! # ( )
! . ...(2)

Also,       e2tx =
( )

! !
2 2

0 0

t x
n

x
n

t
n

n

n n
n

n!

�

!

�

# #! . ...(3)

Using (2) and (3), (1) becomes
2

2
0

1 2exp
4 !

n n
n

n

d x t
ndx

�

!

< =
,> ?> ?

≅ Α
# = H x t

nn
n

n
( )

!
!

�

#
0

.    ...(4)

On equating the coefficients of tn on both sides of (4), we have
2

2
1 2exp
4 !

n nd x
ndx

< =
,> ?> ?

≅ Α
=

H x
n
n ( )

!
    or       2 1

4

2

2

n
n

n
d
dx

x
!

exp ,
F
HG

I
KJ

RST
UVW

=
H x

n
n ( )

!

or Hn(x) = 2 1
4

2

2
n nd

dx
xexp ,

F
HG

I
KJ

RST
UVW

.

12.5. Hermite Polynomials for some special values of n.

By definition, Hn (x) = ( ) !
! ( ) !

( )
[ / ]

,
,

,

!
# 1

2
2 2

0

2
r n r

r

n n
r n r

x ...(1)

where, n n n
n n/ / ,

( ) / ,2 2
1 2! ,
if is even

if is odd{ ...(2)

Putting n = 0, 1, 2, 3, ... in (1), we have

H0 (x) = ( ) !
! ( ) !

( ) ( )
! !

( ) ,,
,

! , !,

!
# 1 0

2
2 1 1

0 0
2 12 0 0

0

0
r r

r
r r

x x
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H1 (x) = ( ) !
! ( ) !

( ) ( )
! !

( ) ,,
,

! , !,

!
# 1 1

1 2
2 1 1

0 1
2 21 2 0 1

0

0
r r

r
r r

x x x

H2 (x) = ( ) !
! ( ) !

( ),
,

,

!
# 1 2

2 2
2 2 2

0

1
r r

r
r r

x = 0 2 1 02 ! 2 !( 1) (2 ) ( 1) (2 )
0 ! 2 ! 1!0 !

x x, ( , = 4x2 – 2,

H3 (x) = ( ) !
! ( ) !

( ),
,

,

!
# 1 3

3 2
2 3 2

0

1
r r

r
r r

x = 0 3 1 13 ! 3 !( 1) (2 ) ( 1) (2 )
0 !3 ! 1!1!

x x, ( , = 8x3 – 12x,

H4 (x) = ( ) !
! ( ) !

( ),
,

,

!
# 1 4

4 2
2 4 2

0

2
r r

r
r r

x = 0 4 1 2 2 04 ! 4 ! 4 !( 1) (2 ) ( 1) (2 ) ( 1) (2 )
0 ! 4 ! 1!2 ! 2 !0 !

x x x, ( , ( ,

or H4 (x) = 16 x4 – 48 x2 + 12 and so on.
12.6. Evaluation values of H2n (0) and H2n + 1 (0) = 0.

Theorem. Prove that   H2n (0) = (–1)n ( ) !
!

2n
n

; H2n + 1 (0) = 0.
[Meerut 1997, Kanpur 2006, 08, 09, 10]

Proof. Using the generating function, we have    
H x

n
tn

n

n( )
!

!

�

#
0

= e tx t2 2, . ...(1)

Replacing x by 0 in (1), we have

H
n

tn

n

n( )
!
0

0!

�

# = e t, 2

= ( )
!

,

!

�

# t
n

n

n

2

0

or H
n

tn n

n

( )
!
0

0!

�

# = ( )
!

,

!

�

# 1

0

n

n
n

t2n.         ...(2)

Equating coefficients of t2n on both sides of (2), we have

H
n
n2 0

2
( )

( ) !
=

(–1)
!

n

n
or 2

(2 )!(0) (–1) .
!

n
n

n
H

n
!

Since the R.H.S. of (2) does not contain odd powers of t. equating coefficients of t2n + 1 on

both sides of (2) gives
H

n
n2 1 0

2 1
(

(

( )
( ) ! = 0 so that H2n + 1 (0) = 0.

12.7. Orthogonality properties of the Hermite Polynomials.

Theorem. Prove that : e H x H x dx nx
n m

n
nm

,

,�

�z !
2

2( ) ( ) ! Β Χ

or e H x H x dxx
n m

,

,�

�z 2

( ) ( ) =
0
2

,
!,

if 
if 

m n
n m nn

∃
!

RST Β

or    Show that Hermite polynomials are orthogonal over (–�,�) with respect to the weight function 
2
.xe,

Proof. Using the generating functions, we have

H x t
nn

n

n
( )

!
!

�

#
0

=
2 22 2 .

0

and ( )
!

m
tx t sx s

m
m

s
e H x e

m

�
, ,

!

!#

Multiplying their corresponding sides, gives  
H x H x

n m
t sn m

m

n m

n

( ) ( )
! !

!

�

!

�

##
00

= e tx t sx s2 22 2, ( ,

Multiplying both sides by e x, 2
 and then integerating both sides w.r.t. ‘x’ from –� to �, we have
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12.6 Hermite Polynomials

e H x H x dx t s
n m

x
n m

mn

n m
,

,�

�

!

�

!

� z## L
NM

O
QP

2

00

( ) ( )
! !

= e dxx x t s t s, ( ( , (

,�

�z 2 2 22 ( ) ( ) = e e dxx x t s t s t s t s, ( ( , (

,�

� ( , (z .
2 2 2 2 22 ( ) ( ) ( ) ( )

= e e dxts x t s2 2, , (

,�

�z [ ( )] = e e dyts y2 2,

,�

�z , putting x – (t + s) = y so that dx = dy

= e ts2 Β ,   
2

as ye dy
� ,

,�
! Β∆

0

(2 )
!

n

n

ts
n

�

!

! Β # =
2

0

n
n n

n

t sΒ
Εn

.
!

�

# ...(1)

We note that powers of t and s are always equal in each term on R.H.S. of (1). Hence when
m ∃ n, equating coefficients of tnsm on both sides of (1), we have

1 2

n m
e H x H x dxx

n m! !
( ) ( ),

,�

�z = 0  9   e H x H x dxx
n m

,

,�

�z 2

( ) ( ) = 0, when n ∃ m.    ...(2)

Again equating coefficients of tnsn on both sides (1), we have

2 21 [ ( )]
! !

x
ne H x dx

n n

�
,

,�∆ = 2n

n
Β

!
    or                 e H x dxx

n
,

,�

�z 2 2[ ( )] = 2n n ! .Β ...(3)

[Kanpur 2007; Utkal 2003]

Let Χnm =
0
1
,
, .

if
if

n m
n m

∃
!{ ...(4)

Combining results (2) and (3) with help of (4), we get

e H x H x dxx
n m

,

,�

�z 2

( ) ( ) = 2n
nmn ! .Β Χ

12.8. Recurrence Relations (or formulae)
Theorem. (i) HΦn (x) = 2n Hn–1(x)  (n 8 1) ;         H Φ0(x) = 0. [Kanpur 2007]
(ii) Hn+1(x) = 2x Hn(x) – 2n Hn–1(x)  (n 8 1) ;   H1(x) = 2x H0(x).    [Kanpur 2007, 11]
(iii) HnΦ(x) = 2x Hn(x) – Hn+1(x).
(iv) HnΦΦ(x) – 2x HnΦ(x) + 2n Hn(x) = 0.

Proof. (i) We know that    
22

0

( )
!

n
tx t

n
n

tH x e
n

�
,

!

!# ...(1)

Differentiating both sides of (1) w.r.t. ‘x’ we have

H x t
nn

n

n
Φ

!

�

# ( )
!

0

= 2 2 2

t e tx t, = 2
0

t H x t
nn

n

n
( )

!
!

�

# , by (1).

Thus, H x t
nn

n

n
Φ

!

�

# ( )
!

0

= 2
0

1
H x t

nn
n

n
( )

!
!

� (

# . ...(2)

Equating coefficients of tn from both sides for n = 0, (2) gives H0Φ(x) = 0.
Again equating coefficient of tn from both sides for n 8 1, (2) gives
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H x
n
n
Φ( )
!

=
H x
n
n ,

,
1

1
( )

( ) !
so that HnΦ(x) = 2n Hn–1(x)       [� n ! = n(n – 1) !]

(ii) We know that e tx t2 2, = H x t
nn

n

n

( )
!
.

!

�

#
0

...(3)

Differentiating both sides of (3) w.r.t. ‘t’ gives (2x – 2t)e tx t2 2, = nt
n

H x
n

n
n

,

!

�

#
1

0
!

( )

or (2x – 2t) H x t
nn

n

n

( )
!

!

�

#
0

= 0
0

0 1

0

1

1

.
!

( )
!

( )t H x nt
n

H x
n

n
n

, ,

!

�

( #

or 2 2
1

00

x H x t
n

H x t
nn

n

n

n

nn

( )
!

( )
!

,
(

!

�

!

�

## = t
n

H x
n

n
n

,

!

�

,#
1

1
1( ) !

( ) ...(4)

[� 0 ! = 1, Hn(x) = 1 and n ! = n(n – 1) !]
Equating coefficients of tn from both sides for n = 0, (4) gives 2x H0(x) = H1(x).
Again equating coefficient of tn from both sides for n 8 1, (2) gives

1( )( )2 2
! ( 1) !

nn H xH x
x

n n
,. ,
, =

H x
n

n ( 1( )
!

. ...(5)

On multiplying both sides of (5) by n! and noting that n! = n(n – 1)!, (5) gives
2x Hn(x) –2n Hn – 1(x) = Hn + 1(x).

(iii) From recurrence relations (1) and (2), we get                    HnΦ(x) = 2n Hn – 1(x) ...(1)
and Hn + 1(x) = 2x Hn(x) –2n Hn – 1(x). ...(2)

Adding (1) and (2),   HnΦ(x) + Hn + 1(x) = 2x Hn(x) or HnΦ(x) = 2x Hn(x) –Hn + 1(x).
(iv) Since Hn(x) is a solution of Hermite’s differential equation        yΦΦ – 2xyΦ + 2ny = 0.
Γ HnΦΦ(x) –2x HnΦ(x) + 2n Hn(x) = 0.

12.9. SOLVED EXAMPLES
Ex. 1. Express H(x) = x4 + 2x3 + 2x2 – x – 3 in terms of Hermite’s polynomials.

[Kanpur 2008, 10]
Sol. We know that   H0(x) = 1,   H1(x) = 2x,   H2(x) = 4x2 – 2,   H3(x) = 8x3 – 12x

and H4(x) = 16x4 – 48x2 + 12. From these, we have
x4 = (1/16) × H4(x) + 3x2 – (3/4), ...(1)
x3 = (1/8) × H3(x) + (3x/2) ...(2)
x2 = (1/4) × H2(x) + 1/2 ...(3)

and x = (1/2) × H1(x), 1 = H0(x). ...(4)
Γ  H(x) = x4 + 2x3 + 2x2 – x – 3 = (1/16) × H4(x) + 3x2 – (3/4) + 2x3 + 2x2 – x – 3, by (1)

= (1/16) × H4(x)+ 2x3 + 5x2 – x – 15/4 =  (1/16) × H4(x)+ 2 [(1/8) × H3(x) + 3x/2] + 5x2 – x – 15/4, by (2)
= (1/16) × H4(x) + (1/4) × H3(x) + 5x2 + 2x – (15/4)
= (1/16) × H4(x) + (1/4) × H3(x) + 5 [(1/4 ) × H2(x) + (1/2)] + 2x – (15/4), by (3)
= (1/16) × H4(x) + (1/4) × H3(x) + (5/4) × H2(x) + 2x – (5/4),
= (1/16) × H4(x) + (1/4) × H3(x) + (5/4) × H2(x) + H1(x) – (5/4) × H0(x), by (4)

Ex. 2. Prove that, if m < n,   
d
dx

H x
m

m n{ ( )} = 2m

n m
n

n m
H x. !

( )!
( ).

, ,     [Garhwal 2004, 05; Meerut 98]
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12.8 Hermite Polynomials

Sol. We know that H x t
nn

n

n
( )

!
!

�

#
0

= e tx t2 2, . ...(1)

Differentiating both sides of (1) w.r.t. ‘x’ m times, we have

t
n

d
dx

H x
n m

m n
n

!
{ ( )}

!

�

#
0

= d
dx

e
m

m
tx t2 2, = ( )2 2 2

t em tx t, = 2
0

m m
n

n

n

t H x t
n

( )
!

!

�

# , by (1)

Γ t
n

d
dx

H x
n m

m n
n

!
{ ( )}

!

�

#
0

= 2
0

m
n

n

n m
H x t

n
( )

!
!

� (

# . ...(2)

Equating coefficients of tn from both sides for m < n, (2) gives

1
n

d
dx

H x
m

m n!
{ ( )}= 2m n mH x

n m
,

,
( )

( ) !
      or d

dx
H x

m

m n{ ( )} = 2mn
n m

!
( ) !,

Hn – m (x).

Ex. 3. Prove that x e H x dxx
n

2 22,

,�

�z [ ( )] = ( ) 2 ! ( 1/ 2)n n nΒ ( .

Sol. From the recurrence relations, we know that
Hn+ 1(x) = 2x Hn(x) –2n Hn – 1(x)      or      x Hn(x) = n Hn – 1(x) + (1/2) × Hn + 1(x)      ...(1)
or x2 Hn(x) = nx Hn – 1(x) + (x/2) × Hn + 1(x) ...(2)

Replacing n by n – 1 and n + 1 successively in (1), we have
x Hn–1(x) = (n – 1) Hn – 2(x) + (1/2) × Hn(x) ...(3)

and x Hn+1(x) = (n +1) Hn(x) + (1/2) × Hn + 2(x). ...(4)
Using (3) and (4), (2) becomes
x2 Hn(x) = n [(n – 1) Hn – 2(x) + (1/2) × Hn(x)] + (1/2) × [(n + 1) Hn(x) + (1/2) × Hn + 2(x)]

or x2 Hn(x) = n (n – 1) Hn – 2(x) + (1/4) × Hn+2(x) + (n + 1/2) Hn(x) ...(5)

Multiplying both sides of (5) by e H xx
n

, 2

( )  and then integrating w.r.t. ‘x’ from –� to �, gives

x e H x dxx
n

2 22,

,�

�z { ( )} = n n e H x H x dxx
n n( ) ( ) ( ), ,

,�

�

,z1 2

2

( ,

,�

�

(z14 2

2e H x H xx
n n( ) ( ) ( (FH IK ,

,�

�zn e H x dxx
n

1
2

2 2{ ( )}

= 0 + 0 + n ( 1 2/b g d iΒ  2n n !,       as Η Ι2
( ) ( ) 2 !x n

n m nme H x H x dx n
�

,

,�
! Β Χ∆

= n ( 1 2/b g d iΒ  2n n !.

Ex. 4. Evaluate xe H x H x dxx
n m

,

,�

�z 2

( ) ( ) . [Meerut 1997]

Sol. From the recurrence relations, we have Hn+1(x) = 2x Hn(x) – 2n Hn – 1(x)
or xHn(x) = n Hn – 1(x) + (1/2) × Hn + 1(x). ...(1)

        Multiplying both sides of (1) by e x, 2

Hm(x) and then integrating w.r.t. ‘x’ from –� to �, we have

      xe H x H x dxx
m n

,

,�

�z 2

( ) ( ) = n e H x H x dxx
m n

,

,�

�

,z 2

1( ) ( ) ( ,

,�

�

(z12 2

1e H x H x dxx
m n( ) ( )
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Hermite Polynomials 12.9

    = 1 1
1, 1,2 ( 1) ! (1/ 2) 2 ( 1) !n n

n m n mn n n, (
, (Β , Χ ( . Β ( Χ

2
( ) ( ) 2 !x n

n m nme H x H x dx n
� ,

,�

% )! Β Χ& ∗∋ +∆�

      = 1
1, 1,2 ! 2 ( 1) !n n

n m n mn n,
, (Β Χ ( Β ( Χ .

Ex. 5. Show that P xn( ) =
2

0

2 ( )
!

n t
nt e H xt dt

n

�
,

Β ∆ .

Sol. By the definition of Hermite polynomial (on replacing x by xt here), we have

Hn(xt) = ( ) !
! ( ) !

( )
[ / ]

,
,

,

!
# 1

2
2 2

0

2
r n r

r

n n
r n r

xt . ...(1)

Making use of (1), we have
2

0

2 ( )
!

n t
nt e H xt dt

n

�
,

Β ∆

=
2

[ /2] 2 2
2

0
0

2 !2( 1)
!( 2 )!!

n n r n r
n t r n r

r

n xt e t dt
r n rn

, ,� , ,

!

5 01 1,6 2
,Β 1 17 3

#∆ =

ϑ Κ
2

/ 2 2 1 2
2 2

0
0

2 ( 1)
! ( 2 )!

n n r r n r
t n r

r

x e t dt
r n r

, ( , � , ,

!

,
Β ,# ∆

=

ϑ Κ/ 2 2 1 2

0

2 ( 1) 1 ( 1/ 2)
2! ( 2 )!

n n r r n r

r

x n r
r n r

, ( ,

!

,
Λ , (

Β ,#

2 22 2 2( 1/ 2) 1

0 0

t n r t n re t dt e t dt
� �, , , , ( ,% !&∋ ∆ ∆� Η Ι 2 2 11 1

2 2 0
, as ( ) 2 t xn r x e e dt

� , , )! Λ , ( Λ ! ∗+∆

=
ϑ Κ/ 2 2 2

2 2
0

2 ( 1) (2 2 ) !
! ( 2 )! 2 ( ) !

n n r r n r

n r
r

x n r
r n r n r

, ,

,
!

, ,
. Β

Β , ,#      
2

by using duplication formula, if n is
1 (2 )! positive integer then +
2 2 !n

nn
n

< =
> ?

< => ?Λ ! Β> ?> ?≅ Α≅ Α

�

= ( ) ( ) !
! ( ) ! ( ) !

/

, ,
, ,!

,# 1 2 2
2 20

2
2r

r

n

n
n rn r

r n r n r
x = Pn(x), by the definition of Legendre polynomial.

Ex. 6. If Μn (x) = e x, 2 2/ Hn(x), where Hn(x) in a Hermite’s polynomial of degree n, then

(a) Μ Μ Β Χm n
n

m nx x dx( ) ( ) ! ,
,�

�z ! 2

(b) Μ Μ Β
Β

m( ) ( )
,
! ,

( ) ! ,
x ' x dx

m n
n m n

n m n
n

n

n,�

� ,z !
∃ Ν
! ,

, ( ! (

R
S|
T|

0 1
2 1

2 1 1

1
if
if
if

Sol. Part (a) Given Μ n
x

nx e H x( ) ( )/! , 2 2 . ...(1)

Γ
,�

�z Μ Μm nx x dx( ) ( ) = e H x e H x dxx
m

x
n

,

,�

� ,z 2 22 2/ /( ). ( ) , using (1)

         = e H x H x dxx
m n

,

,�

�z 2

( ) ( ) = 2n
nmn ! ,Β Χ

[using orthogonal properties of the Hermite polynomials]
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12.10 Hermite Polynomials

Part (b) Here Μn(x) = e H xx
n

, 2 2/ ( ) ...(2)

and Μm(x) = e H xx
m

, 2 2/ ( ). ...(3)

From (2),      ΜnΦ(x) = , ( Φ, ,xe H x e H xx
n

x
n

2 22 2/ /( ) ( ) ...(4)

From recurrence relations, we have     xHn(x) = 1 1( ) (1/ 2) ( )n nn H x H x, (( . ...(5)

and     HnΦ(x) = 2n Hn–1(x). ...(6)
Using (5) and (6), (4) reduces to

ΜnΦ(x) =
2 2/ 2 / 2

1 1 1[ ( ) (1/ 2) ( )] 2 ( )x x
n n ne n H x H x e n H x, ,

, ( ,, ( . ( .

or ΜnΦ(x) =
2 / 2

1 1[ ( ) (1/ 2) ( )]x
n ne n H x H x,

, (, . ...(7)

Γ Μ Μm nx x dx( ) ( )
,�

�z Φ = e H x e n H x H x dxx
m

x
n n

, ,
, (

,�

�
,z 2 22 2

1 1
1
2

/ /( ). [ ( ) ( )] , by (3) and (7)

  = n e H H x dx e H x H x dxx
n m

x
n m

,
,

,�

� ,
(

,�

�
,z z2 2

1 1
1
2

( ) ( ) ( )

                 = n 2n – 1(n – 1)! 1
1. 1 ,(1/ 2) 2 ( 1) !n

n m n mn(
, (Β Χ , . ( Β Χ ,  using orthogonal

properties

   = 2 2 11
1 1

n
n m

n
n mn n,

, (, (! ( ) !, ,Β Χ Β Χ

   =
0 1

2 1
2 1 1

1
,
! ,

( ) ! ,

if
if
if

m n
n m n

n m n

n

n

∃ Ν
! ,

, ( ! (

R
S|
T|

, Β
Β

Ex. 7. Using the Rodrigue’s formula for Hn(x) and integrating by parts iteratively, show that

Μ = exp ( ) ( ) ( ) ,, ! ∃
,�

�z x H x H x dx m nn m
2 0 if

= 2n n m n! ,Β if =

Sol. Rodrigue’s formula for Hn(x) is given by Hn(x) = (–1)n e d
dx

ex
n

n
x2 2, .

Γ exp (–x2) Hn(x) = (–1)n d
dx

e
n

n
x, 2

. ...(1)

Γ Μ = ( ) exp ( ) ( ) ( ), ,
,�

�z 1 2n
n mx H x H x dx = ( ) exp ( ),

RST
UVW

,

,�

�z 1
2n

n

n
x

m
d
dx

e H x dx

= ( ) ( ),
F
HG

I
KJ

RST
UVW

L
N
MM

,

,
,

,�

�

1
1

1

2n
n

n
x

m
d
dx

e H x ,
F
HG

I
KJ

O
QP

,

,
,

,�

�z d
dx

e d
dx

H x dx
n

n
x

m

1

1

2

( ) ,  integrating by parts

= 0
1

1

2

,
F
HG

I
KJ

,

,
,

,�

�z d
dx

e d
dx

H x dx
n

n
x

m ( ) , as first term is zero due to presence of  
2xe,

= ( ) ( ) ( ) ., ,
,�

� ,z1 1
2n n

n

n m
xd

dx
H x e dx , integrating by parts iteratively
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Γ Μ = d
dx

H x e dx
n

n m
x( ) . ,

,�

�z 2

. ...(2)

We know that Hm(x) is a polynomial of degree m. Hence if n > m,         d
dx

H x
n

n m( ) = 0.

Γ If n > m, then from (2), Μ = 0. ...(3)
Since Μ is symmetrical in m and n, it follows that if   m > n,       then      Μ = 0. ...(4)
From (3) and (4), we see that Μ = 0, for m ∃ n ...(5)
When, m = n, (2) gives

             Μ  = d
dx

H x e dx
n

n n
x( ) . ,

,�

�z 2

= 2
2n xn e dx! ,

,�

�z ,      as      ( ) 2 !
n

n
nn

d H x n
dx

!

   = 2n n ! Β ,          as     
2xe dx

�
,

,�
! Β∆

Γ Μ = 2n n ! Β when m = n ...(6)
From (5) and (6), we get the required results.

Ex. 8. Show that         
H x H y

k
k k

k
k

n ( ) ( )
!20!

# =
H y H x H x H y

n y x
n n n n

n
( (

(

,

,
1 1

12

( ) ( ) ( ) ( )

! ( )
.

Sol. From the recurrence relations, we have       Hn+1 (x) = 2x Hn(x) –2n Hn–1(x)
or       x Hn(x) = n Hn–1 (x) + (1/2) × Hn+1(x). ...(1)

Replacing x by y in (1), y Hn (y) = n Hn–1 (y) + (1/2) × Hn+1 (y). ...(2)
Multiplying (2) by Hn(x) and (1) by Hn(y) and then subtracting, we have
(y – x) Hn (x) Hn(y) = (1/2) × [Hn+1 (y) Hn (x) – Hn+1 (x) Hn (y)]

   – 2 [Hn–1 (x) Hn (y) – Hn–1 (y) Hn (x)]. ...(3)
Putting n = 0, 1, 2, 3, ...., (n – 1), n successively in (1), we have
(y – x) H0 (x) H0 (y) = (1/2) × [H1 (y) H0 (x) – H1 (x) H0 (y)] – 0 ...(E0)
(y – x) H1 (x) H1 (y) = (1/2) × [H2 (y) H1 (x) – H2 (x) H1 (y)]

                  – [H0 (x) H1(y) – H0 (y) H1(x)]. ...(E1)
(y – x) H2 (x) H2 (y) = (1/2) × [H3 (y) H2 (x) – H3 (x) H2 (y)]

                –2 [H1 (x) H2 (y) – H1 (y) H2 (x)]. ...(E2)
... ... ... ... ... ... ... ... ...

(y – x) Hn – 1 (x) Hn – 1 (y) = (1/2) × [Hn (y) Hn – 1(x) – Hn (x) Hn – 1(y)]
      –2 [Hn – 2(x) Hn – 1(y) – Hn – 2 (y) Hn – 1(x)]. ...(En – 1)

(y – x) Hn (x) Hn (y) = (1/2) × [Hn + 1 (y) Hn (x) – Hn + 1 (x) Hn (y)]
       –2 [Hn – 1(x) Hn (y) – Hn – 1 (y) Hn (x)]. ...(En)

Multiplying (E0), (E1), (E2), ..., (En – 1), (En) by 2 3 1
1 1 1 1 11, , , , ...., ,

2 .1! 2 . 2 ! 2 . 3! 2 ( 1) ! 2 . !n nn n, ,

respectively and adding (note that all terms, except the first term on R.H.S. of (En), cancel in
pairs), we have

( )
( ) ( )

!
y x

H x H y
k

k k
k

k

,
!

�

# 20

=
H y H x H x H y

n
n n n n

n
( (

(

,1 1
12

( ) ( ) ( ) ( )
!

or          
H x H y

k
k k

k
k

( ) ( )
!20!

�

# =
H y H x H x H y

n y x
n n n n

n
( (

(

,

,
1 1

12
( ) ( ) ( ) ( )

! ( )
.
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12.12 Hermite Polynomials

EXERCISE

1. Show that Hn (x) = 2n + 1 e e t P x
t

dtx t

x

n
n

2 2 1,
�

(z FH IK .

2. If f (x) is a polynomial of degree m, show that f (x) may be expressed in the form

f (x) = C H xr r
r

m

( ),
!
#

0
where, Cr = 1

2

2

r
x

rr
e f x H x dx

!
( ) ( )

Β
,

,�

�z .

Deduce that e x,

,�

�z 2
f (x) Hn (x) = 0, if f (x) is a polynomial of degree less than n.

3. Using the generating function for Hermite polynomials, evaluate the values of
(i) H0 (x) (ii) H1 (x) (iii) H2 (x) (iv) H3 (x).

4. Show that Hn (x) defined by e
H x

n
ttx t n n

n

2

0

2,

!

�

! # ( )
!

 satisfies the differential equation

HnΦΦ (x) –2x HnΦ (x) + 2x Hn(x) = 0.
5. The Hermite polynomial is defined for integral values of x by the identity

e
H x

n
ttx t n n

n

2

0

2,

!

�

! # ( )
!

. Show that Hn (x) satisfies the differential equation HnΦΦ (x) –2x HnΦ(x)

+ 2x Hn(x) = 0 and Hn (x) is given by  Hn(x) = ( ) ., ,1
2 2n x

n

n
xe d

dx
e

Further show that
,�

�
,z { ( )}H x e dxn

x2 2
= Β 2n n !.

6. Show that
,�

� ,z e H x dxx
n

2 2{ ( )} = 2 2
2n x nn e dx n! !

,�

� ,z ! Β .

7. Show that (a) H5 (x) = 32 x5 – 160 x3 + 120 x.   (b) H6 (x) = 64 x6 – 480 x4 + 720 x2 – 120.
8. Show that for n = 0, 1, 2 ....

(i) H2n(x) =
2 11 2

3n n x
te e

(
,

�
, z. ( )
( )Β

Ο

t2n cos 2xt dt.

(ii) H2n(x) = 2 12 2 2
2n n x

te e
(

,
�

, z. ( )
( )Β

Ο

t2n + 1 sin 2xt dt. [Kanpur-2004]

9. Prove that Hn (–x) = (–1)n Hn(x). [Kanpur-2004, 09]

10. Prove that 
[ / 2]

2
0

! ( )
2 ! ( 2 )!

n
n n k

nk

n H x
x

k n k
,

!
! 4

,
 and express x6 in terms of Hermite polynomials.

[Kanpur 2004, 09]

11. Show that ( ) / 2 !!n n n
od H x dx n (Kanpur 2008, 09)

12. Show that ϑ Κ1 10

1( ) ( ) ( )
2( 1)

x

n n nH y dy H x H o
n ( ,! ,

(∆ (Kanpur 2010)
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13.1

13
Laguerre Polynomials

13.1. Laguerre’s equation and its solution. [Meerut 1995, 96]
Laguerre’s equation of order n is

x d y dx x dy dx ny( / ) ( )( / )2 2 1! � ! = 0, ...(1)
where n is a positive integer. We obtain a solution of (1) which is finite for all values of x and
which tends to infinity no faster than ex/2 as x # ∃. For this we use the well known method of
Frobenius. Let the series solution of (1) be

y =
0

,k m
m

m
C x

∃
!

%
& C0 ∋ 0. ...(2)

Differentiating (2) and then putting the values of y, dy/dx and d2y/dx2 in (1), we have

x C k m k m x x C k m xm
k m

m
m

k m

m
( )( ) ( ) ( )! ! � ! � !! �

%

∃ ! �

%

∃
& &1 12

0

1

0

! !

%

∃
&n C xm

k m

m 0
= 0

or      C k m k m x C k m xm
k m

m
m

k m

m
( )( ) ( )! ! � ! !! �

%

∃ ! �

%

∃
& &1 1

0

1

0

� ! !!

%

∃ ! �

%

∃
& &C k m x n C xm

k m

m
m

k m

m
( )

0

1

0
= 0

or C k m x k m C x k m nm
k m

m
m

k m

m
( ) {( ) } ( )! ! � ! � ! �! �

%

∃ !

%

∃
& &1

0 0
1 1 = 0

or C k m x C k m n xm
k m

m
m

k m

m
( ) ( )! � ! �! �

%

∃ !

%

∃
& &2 1

0 0
= 0. ...(3)

(3) is an identity. To get the indicial equation, we equate to zero the coefficient of the smallest
power of x, namely xk – 1 in (3) and obtain

C0k
2 = 0, so that k2 = 0 (� C0 ∋ 0) ...(4)

From (4) we see that the roots of indicial equation are equal. Next equating to zero the
coefficient of xk + m – 1, we have

Cm(k + m)2 – Cm – 1(k + m – 1 – n) = 0        or            Cm = k m n
k m

Cm
! � �

! �
1

2 1( )
.  ...(5)

The two independent solutions in the present case are (y)k = 0 and ((y/(k)k = 0. But ((y/(k)k = 0
involves a term of the form log x, and so is infinite when x = 0. Since we wish to obtain a solution
finite for all finite values of x, we consider only the former solution, i.e., (y)k = 0, as follows.

With k = 0, (5) and (2) reduce to          Cm =
m n

m
Cm

� �
�

1
2 1 ...(6)

and y = C xm
m

m %

∃
&

0
= C0 + C1x + C2x

2 + .... ...(7)
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13.2 Laguerre Polynomials

Putting m = 1, 2, 3, ... in (6), we have

C1 = � % �n C nC
1

1
12 0 2 0
( )
( !)

, C2 =
1

2
1

2
1 1 1

22 1 2 0
2

2 0
� % � � ) � % � �n C n nC n n C( ) ( ) ( ) ( )

( !)
,

C3 =
2

3
2

3
1 1

2
1 1 2

32 2 2
2

2 0
3

2 0
� % � � ) � � % � � �n C n n n C n n n C( ) ( ) ( )

( !)
( ) ( )( )

( !)
,

.... .... .... .... ....

Thus, Cr = 02
( 1)...( 1)( 1) ,

( !)
r n n n r

C
r

� � !
�   for r ∗ n.

Also, Cn + 1 = Cn + 2 = Cn + 3 = ... = 0.
With these values, (7) reduces to

y = C n x n n x n n n r
r

xr r
0 2 2

2
21

1
1

2
1 1 1� ! � ! ! � � � ! !

L
NM

O
QP( !)

( )
( !)

... ( ) ( )...( )
( !)

....

= C n n n r
r

xr r

r
0 2

0

1 1 1( ) ( )....( )
( !)

� � � !

%

∃

& = 0 2
0

( 1)....( 1)( )( 1)...3 2 1( 1)
( )( 1)...3 2 1.( !)

n
r r

r

n n n r n r n r
C x

n r n r r%

� � ! � � � + +
�

� � � + +&

Thus, y = C n
n r r

xr r

r

n

0 2
0

1( ) !
( )!( !)

.�
�%

&
Taking C0 = 1, we define the corresponding solution as the Laguerre polynomial of order n,

and denote it by Ln(x). Thus, we have       Ln(x) = ( ) !
( )! ( !)

�
�%

& 1 2
0

r r

r

n
n

n r r
x .

13.2A. Laguerre polynomial of order (or degree) n. Definition. [Meerut 1997]
Laguerre polynomial of order n is denoted and defined by

Ln(x) = 2
0

!( 1)
( )! ( !)

n
r r

r

n
x

n r r%
�

�
& .

13.2B. Alternative definition of Laguerre polynomial of order (or degree) n.
In Art. 13.1, we took C0 = 1 to define Ln(x) and the same is given in Art. 13.2A. However,

some authors take C0 = n! to define Ln(x). Thus, another definition of Laguerre polynomial is

Ln(x) =
2

2
0

( 1) ( !)
( )! ( !)

r rn

r

n x
n r r%

�

�
& .

13.3. Generating function for Laguerre polynomials.

Theorem. Prove that exp { / ( )}� �
�

xt t
t
1

1
=

0
( ) n

n
n

L x t
∃

%
& .

Proof. In order to prove the required result we must show that the coefficient of tn in the
expansion of L.H.S. (in ascending powers of t) is Ln(x). Now,

exp { / ( )}� �
�

xt t
t
1

1
=

0

1 1.
1 1 !

r

r

xt
t t r

∃

%

, −�
. /� �0 1

& , as exp 
0 !

r
x

r

xx e
r

∃

%

% % &

= ( )
!

( ) ( )� � � !

%

∃

& 1 1 1

0

r
r r r

r
r

x t t =
( )

!
( )!

! !
� !

%

∃

%

∃

& &1

0 0

r
r r

r s
r

x t r s
r s , by the binomial theorem

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Laguerre Polynomials 13.3

= 2
0 0

( )!( 1)
( !) !

r r r s

r s

r s x t
r s

∃ ∃
!

% %

!
�& & .

Let r be fixed. Then the coefficient of tn can be obtained by setting r + s = n i.e. s = n – r.

Hence, for the chosen fixed value of r, the coefficient of tn is ( ) !
( !) ( )!

�
�

1 2
r rn

r n r
x .

Now, s 2 0 3 n – r 2 0 3 r ∗ n, which gives all allowed values of r for finding coefficient
of tn. Thus, the total coefficient of tn is given by

( ) !
( !) ( )!

�
�%

& 1 2
0

r r

r

n
n

r n r
x i.e.    Ln(x), by definition 13.2A

This proves the desired result.

Remark. If we use definition 13.2B, then exp { / ( )}� �
�

xt t
t
1

1
=

0

( )
!

n
n

n

L x t
n

∃

%
& .

13.4. Alternative expression for the Laguerre polynomials

Prove that Ln(x) = ( )
!

x n
n x

n
e d x e
n dx

� . [Kanpur 1992; Meerut 1992, 93; Garhwal 2005]

Proof. By the Leibnitz’s theorem, we have

Dn(uv) = ( ) /n nd u dxv = Dnu.v + nC1D
n – 1u.Dv + ... + nCrD

n – ru.Drv + ... + uDnv

i.e., Dn(uv) =
0

n
n n r r

r
r

C D u D�

%
& v .

4 e
n

d
dx

x e
x n

n
n x

!
( )� =

0

,
!

nx
n n r n r x

r
r

e C D x D e
n

� �

%
& . by (1)

= e
n

C n
n n r

x e
x

n
r

n n r r x

r

n

!
!

{ ( )}!
. ( )( )

� �
�& � � �

%
1

0
,     as

!
and

( )!
n m m n n ax n axm

D x x D e a e
m n

�% %
�

=
0

! !
( 1)

! !( )! !

n x
r r x

r

e n n
x e

n r n r r
�

%

) ) �
�& =

( ) !
( !) ( )!

�
�%

& 1
2

0

r
r

r

n
n

r n r
x = Ln(x), by definition.

Remark. If the use definition 13.2B, we get Ln(x) = e d
dx

x ex
n

n
n x( )� .

13.5. First few Laguerre polynomials.

We know that (Refer Art. 13.4) Ln(x) = e
n

d
dx

x e
x n

n
n x

!
( )� . ...(1)

Putting n = 0, 1, 2, 3, 4, ... in succession in (1), we obtain

L0(x) = e x e
x

x

0
10

!
( )� % , L1(x) = e d

dx
xe e e xe x

x
x x x x

1
1

!
( ) ( ) ,� � �% � % �

L2(x) = e d
dx

x e e d
dx

d
dx

x e e d
dx

xe x e
x

x
x

x
x

x x

2 2 2
2

2

2
2 2 2

!
( )

!
( )

!
( )� � � �% L

NM
O
QP % �
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13.4 Laguerre Polynomials

= 2 21[2 2 ( ) {2 ( )}] (2 4 )
2! 2!

x
x x x xe e x e xe x e x x� � � �! � � ! � % � ! ,

3 2 2
3 3 2 3 3 2 3

3 3 2 2( ) ( ) ( ) (3 ) {(3 ) }
3! 3! 3! 3!

x x x x
x x x xe d e d d e d e d dL x x e x e x e x e x x e

dx dx dxdx dx dx
� � � � �5 6 5 6% % % � % �7 8 7 89 : 9 :

        2 2 3 2 3[(6 3 ) (3 ) ] {(6 6 ) }
3! 3!

x x
x x xe d e dx x e x x e x x x e

dx dx
� � �% � � � % � !

        = 2 2 3( / 3!) [(6 12 3 ) (6 6 ) ]x x xe x x e x x x e� �) � ! � � ! = (6 – 18x + 9x2 – x3)/3!,

 L4(x) = e d
dx

x e e d
dx

d
dx

x e e d
dx

x e x e
x

x
x

x
x

x x

4 4 4
4

4

4
4

3

3
4

3

3
3 4

!
( )

!
( )

!
[ ]� � � �% L

NM
O
QP % � =

2
3 4

2 {(4 ) }
4!

x
xe d d

x x e
dxdx

�5 6�7 89 :
2

2 3 3 4
2 [(12 4 ) (4 ) ]

4!

x
x xe d x x e x x e

dx
� �% � � � = e d

dx
d
dx

x x x e
x

x

4
12 82 3 4

!
( )� !L

NM
O
QP

�

= e d
dx

x x x e x x x e
x

x x

4
24 24 4 12 82 3 2 3 4

!
[( ) ( ) ]� ! � � !� � = e d

dx
x x x x e

x
x

4
24 36 122 3 4

!
[( ) ]� ! � �

= ( / !)[( ) ( ) ]e x x x e x x x x ex x x4 24 72 36 4 24 36 122 3 2 3 4� ! � � � ! �� � = (24 – 96x + 72x2 – 16x3 + x4)/4!

Note : If we use the result given remark of Art. 13.4, namely,     Ln(x) = e d
dx

x ex
n

n
n x( )�

and proceed as before, then we have  L0(x) = 1, L1(x) = 1 – x, L2(x) = 2 – 4x + x2, L3(x) = 6 – 18x
+ 9x2 – x3, L4(x) = 24 – 96x + 72x2 – 16x3 + x4 and so on.
13.6. Orthogonality properties of Laguerre’s polynomials.

       Theorem. Prove that –

0
( ) ( ) 0,x

n me L x L x dx if m n
∃

% ∋;
and – 2

0
{ ( )} 1x

ne L x
∃

%; (Kanpur 2004)

or      prove that e L x L x dxx
n m

�∃z ( ) ( )0 = <mn =
0
1

,
,

m n
m n

∋
%{

[Arga 1992, Rohilkhand 1996, Meerut 1996, 97]
Proof. Using the generating function, we get

L x tn
n

n
( )

%

∃
&

0
=

exp �
�

F
HG
I
KJ

�

xt
t

t
1

1
         and L x sm

m

m
( )

%

∃

&
0

=
exp �

�
F
HG
I
KJ

�

xs
s

s
1

1
.

Multiplying the corresponding sides, we have

0 0

( ) ( ) n m
n m

n m

L x L x t s
∃ ∃

% %
& & = e

t s
x t t s s� � ! � )

� �
{ /( ) /( )}

( )( )
1 1 1

1 1
.

...(1)
[� exp x.exp y = ex.ey = ex + y]

Multiplying both sides of (1) by e–x and then integrating both sides w.r.t. ‘x’, from 0 to ∃, gives

0
0 0

( ) ( )x n m
n m

n m

e L x L x dx t s
∃ ∃ ∃

�

% %

5 6
7 89 :& & ; = 1

1 1
1 1 1

0( )( )
{ /( ) /( )}

� �
� ! � ! �∃zt s

e dxx t t s s

= 1
1 1 1 1 1

1 1 1

0
( )( ) / ( ) / ( )

{ /( ) /( )}

� � � ! � ! �
L
NM

O
QP

� ! � ! � ∃

t s
e

t t s s

x t t s s

l q =
1 1

(1 )(1 ) 1
1 1

t st s
t s

)
� � ! !

� �
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Laguerre Polynomials 13.5

= 1
1 1 1 1( )( ) ( ) ( )� � ! � ! �t s t s s t

= 1
1

1 1

0�
% � %�

%

∃
&st

st s tn n

n
( ) , by the binomial theorem

4      0
0 0

( ) ( )x n m
n m

n m

e L x L x dx t s
∃ ∃ ∃

�

% %

5 6
7 89 :& & ; =

0

n n

n

s t
∃

%
& . ...(2)

We note that the indices of t and s are always equal in each term on R.H.S. of (2). When
m ∋ n, equating coefficients of tnsm on both sides of (2) gives

0
( ) ( )x

n me L x L x dx
∃

�; = 0,   if m ∋ n. ...(3)

Again equating coefficients of tnsn on both sides of (2) gives   e L x dxx
n

�∃z [ ( )]2
0 = 1.    ...(4)

Using (5), (3) and (4) can be combined to give

0
( ) ( )x

m ne L x L x dx
∃ �; = <mn =

0, if
1, if

m n
m n

∋=
> %?

.

Remark. If we use result of remark given in Art. 13.3, namely

L x t
n

n
n

n

( )
!

%

∃

&
0

= exp { / ( )} ,� �
�

xt t
t
1

1
     we get     

0
( ) ( )x

n me L x L x dx
∃

�; = n! m! <mn.

13.7. Expansion of a polynomial in a series of Laguerre polynomials
Theorem. If f(x) is polynomials of degree m, show that f(x) may be expressed in the form

f(x) =
0

( )
m

r r
r

C L x
%
& , where Cr = e L x f x dxx

r
�∃z ( ) ( )0 .

Proof. Since f(x) is polynomal of degree m, we write
f(x) = am x

m + am – 1 x
m – 1 + ... + a1x + a0. ...(1)

Again, we know that Lm(x) is a polynomial of degree m of the form
Lm(x) = km x

m + km – 1 x
m – 1 + ... + k1x + k0. ...(2)

Consider f(x) – (am/km)Lm(x). Two cases may arise :
Case (i) Let f(x) – (am/km)Lm(x) = 0 so that f(x) = (am/km)Lm(x),

which proves the required result.
Case (ii) Let f(x) – (am/km)Lm(x) = gm – 1(x), gm – 1(x) being a polynomial of degree m – 1.

Taking Cm = am/km, we may write f(x) = CmLm(x) + gm – 1(x).    ...(3)
Taking gm – 1(x) in place of f(x) and proceeding as above, we have

gm – 1(x) = Cm – 1Lm – 1(x) + gm – 2(x). ...(4)
Making use of (4), (3) may be re–written as

  f(x) = CmLm(x) + Cm – 1Lm – 1(x) + gm – 2(x). ...(5)
Noting that L0(x) = 1 and proceeding as above, we finally obtain

f(x) = CmLm(x) + Cm – 1Lm – 1(x) + ... + C1L1(x) + C0L0(x)   or      f(x) =
0

( )
m

r r
r

C L x
%
& . ...(6)

Since
0

( )
%
&

m

r r
r

C L x =
0

( )
%
&

m

s s
s

C L x , (6) gives        f(x) =
0

( )
%
&

m

s s
s

C L x . ...(7)
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13.6 Laguerre Polynomials

Multiplying both sides of (7) by e–xLr(x) and then integrating w.r.t. ‘x’ between the limits 0

to ∃, we have e f x L x dxx
r

�∃z ( ) ( )0 = C e L x L x dxs
x

r s
s

m
�∃

%
z& RST

UVW( ) ( )
0

0

   ...(8)

But e L x L x dxx
r s

�∃z ( ) ( )0 = 0
1

,
,

r s
r s
%
∋ .{ ...(9)

Using (9), (8) gives
0

( ) ( )x
r rC e f x L x dx

∃ �% ; ...(10)

(6) and (10) prove the required result.
13.8. Relations between Laguerre polynomials and their derivatives:

Recurrence relations (formulae). Show that
I.  (n + 1)Ln + 1(x) = (2n + 1 – x)Ln(x) – nLn – 1(x).   [Kanpur 2005, 07–10; Meerut 1994]
II.  xLn≅(x) = nLn(x) – nLn – 1(x). [Kanpur 2009; Meerut 1992, 95]

III. Ln≅(x) = – 

1

0

( )
n

r
r

L x
�

%
& [Meerut 1997]

Proof I. We know that
0

( )
∃

%
& n

n
n

L x t = exp{ / ( )}.� �
�

xt t
t
1

1
...(1)

Differentiating both sides of (1) w.r.t. ‘t’, we get

   L x ntn
n

n
( ). �

%

∃
& 1

0
= 1

1 1
1

1 1 12 2( )
exp exp

( )�
�

�
RST
UVW � �

) �
�

RST
UVW ) �t

xt
t t

xt
t

x
t

i.e.,    L x ntn
n

n
( ). �

%

∃
& 1

0
= 2

0 0

1 ( ) ( )
1 (1 )

n n
n n

n n

xL x t L x t
t t

∃ ∃

% %

�
� �& & , by (1)

Multiplying both sides by (1 – t)2, the above equation becomes

( ) ( ).1 2 2 1

0
� ! �

%

∃
&t t L x ntn

n

n
=

0 0

(1 ) ( ) ( )
∃ ∃

% %

� �& &n n
n n

n n

t L x t x L x t

or    nL x t nL x t nL x tn
n

n
n

n

n
n

n

n
( ) ( ) ( )�

%

∃

%

∃
!

%

∃

& & &� !1

0 0

1

0
2 = L x t L x t x L x tn

n

n
n

n

n
n

n

n
( ) ( ) ( )

%

∃
!

%

∃

%

∃
& & &� �

0

1

0 0
. ...(2)

Equating the coefficients of tn from both sides, (2) gives
(n + 1)Ln + 1(x) – 2nLn(x) + (n – 1)Ln – 1(x) = Ln(x) – Ln – 1(x) – xLn(x)

or (n + 1)Ln + 1(x) = (2n + 1 – x)Ln(x) – nLn – 1(x). ...(3)

Remark. If we use
t L x

n

n
n

n

( )
!

%

∃

&
0

= 1
1

1

�
� �

t
e xt t/( )

and proceed as above, we have Ln + 1(x) = (2n + 1 – x)Ln(x) – n2Ln – 1(x).

II. We know that    
0

( ) n
n

n

L x t
∃

%
& =

exp{ / ( )}.� �
�

xt t
t
1

1
...(1)

Differentiating both sides of (1) w.r.t. ‘x’, we get
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   ≅
%

∃
& L x tn

n

n
( )

0
= 

1
exp

1 1 1
xt t

t t t
= Α , −�

) � )> Β . /� � �0 1? Χ
or ≅

%

∃
& L x tn

n

n
( )

0
=

0

( )
1

n
n

n

t L x t
t

∃

%

�
� & , by (1)

or    ( ) ( )1
0

� ≅
%

∃
&t L x tn

n

n
= �

%

∃
&t L x tn

n

n
( )

0
    or ≅ � ≅

%

∃ !

%

∃
& &L x t L x tn

n

n
n

n

n
( ) ( )

0

1

0
= � !

%

∃
& L x tn

n

n
( ) 1

0
...(2)

Equating the coefficients of tn from both sides, (2) gives  L≅n(x) – L≅n – 1(x) = –Ln – 1(x).   ...(3)
From recurrence relation (1),       (n + 1)Ln + 1(x) = (2n + 1 – x)Ln(x) – nLn – 1(x).

...(4)
Differentiating (4) w.r.t. ‘x’, we have

(n + 1)L≅n + 1(x) = (2n + 1 – x)L≅n(x) – Ln(x) – nL≅n – 1(x). ...(5)
From (3), L≅n – 1(x) = L≅n(x) + Ln – 1(x). ...(6)
Now, replacing n by n + 1 in (3), we have
L≅n + 1(x) – L≅n(x) = –Ln(x) or L≅n + 1(x) = L≅n(x) – Ln(x). ...(7)
Putting the values of L≅n – 1(x) and L≅n + 1(x) from (6) and (7) in (5), we get

(n + 1)[L≅n(x) – Ln(x)] = (2n + 1 – x)L≅n(x) – Ln(x) – n[L≅n(x) + Ln – 1(x)]
or  xL≅n(x) = nLn(x) – nLn – 1(x), on simplification

Remark. If we use 
t L x

n

n
n

n

( )
!

%

∃

&
0

= 1
1

1

�
� �

t
e tx t/( )  and proceed as above, we have

L≅n(x) – xL≅n – 1 + nLn – 1(x) = 0.

III. We know that L x tn
n

n

( )
%

∃

&
0

=
exp{ / ( )}.� �

�
xt t

t
1

1
...(1)

Differentiating both sides of (1) w.r.t. ‘x’, we get

≅
%

∃
& L x tn

n

n
( )

0
=

1
exp

1 1 1
= Α , −
� ) �> Β . /� � �0 1? Χ

xt t
t t t

= �
� %

∃
&t

t
L x tr

r

r1 0
( ) , using (1) and writing r in place of n

= � � �

%

∃
&t t L x tr

r

r
( ) ( )1 1

0
= �

%

∃

%

∃
&&t t L x ts

r
r

rs
( )

00
, by the binomial theorem

4 ≅
%

∃
& L x tn

n

n
( )

0
= – 1

0 0
( )

∃ ∃
! !

% %
& & r s

r
r s

L x t . ...(2)

Clearly the coefficient of tn on L.H.S. of (2) is L≅n(x). We now obtain the coefficient of tn on
R.H.S. of (2). Let r + s + 1 = n so that s = n – r – 1. Hence, for a fixed value of r, the coefficient
of tn on R.H.S. of (2) is –Lr(x).

But s 2 0 3 n – r – 1 2 0 3 r ∗ n – 1, which gives all the values of r for which –Lr(x) is the

coefficient of tn. Hence the total coefficient of tn on R.H.S. of (2) is given by              �
%

�

&L xr
r

n
( )

0

1

Thus, equating the coefficients of tn from both sides of (2), we get         L≅n(x) =�
%

�

&L xr
r

n
( )

0

1
.

13.9. SOLVED EXAMPLES
Ex. 1. Prove that (i) Ln(0) = 1.    [Meerut 1993] (ii) Ln(0) = n!. [Meerut 1996]
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13.8 Laguerre Polynomials

Sol. (i) We know that (Refer Art. 13.3.)          t L xn
n

n
( )

%

∃
&

0
= 1

1
1

�
� �

t
e tx t/( ) ...(1)

Putting x = 0 in (1), t Ln
n

n
( )0

0%

∃
& = 1 21

(1 ) 1 .,
1

�% � % ! ! !
�

t t t
t

 by the binomial theorem

or
0

(0)
∃

%
& n

n
n

t L =
0

∃

%
& n

n
t , ...(2)

which is an identity. Equating the coefficient of tn on both sides of (2), we get     Ln(0) = 1.

(ii) We know that (Refer remark of Art. 13.3)      t L x
n

n
n

n

( )
!%

∃

&
0

= 1
1

1

�
� �

t
e tx t/( ) .    ...(3)

Putting x = 0 in (3),
t L

n

n
n

n

( )
!
0

0%

∃

& = ( )1 1

0
� %�

%

∃
&t tn

n
, by binomial theorem

Equating the coefficient of tn on both sides, we get
(1/n!)Ln(0) = 1 or Ln(0) = n!.

Ex. 2. Prove that   (i) L≅n(0) = –n. (ii) L∆n(0) = {n(n – 1)}/2
Part (i). Since Ln(x) is a solution of the Laguerre’s equation

        xy∆ + (1 – x)y≅ + ny = 0, ...(1)
we get xLn∆(x) + (1 – x)Ln≅(x) + nLn(x) = 0. ...(2)

Putting x = 0 and using Ln(0) = 1, (3) gives
0 + (1 – 0)Ln≅(0) + n × 1 = 0 or Ln≅(0) = –n.

Part (ii). We know that 1
1� t

 exp{–xt/(1 – t)} = t L xn
n

n
( )

%

∃
&

0
. ... (3)

Differentiating twice w.r.t. ‘x’, (3) gives exp{ / ( )}� �
�

�
�

F
HG
I
KJ

xt t
t

t
t

1
1 1

2

=
0

( )
∃

%

≅≅& n
n

n
L x t . ...(4)

Putting x = 0 in (4), we have
0

(0)
∃

%

≅≅& n
n

n
L t = t2(1 – t)–3. ...(5)

Equating the coefficients of tn on both sides of (5), we get
Ln∆(0) = coefficients of tn in the expansion of t2(1 – t)–3 = coeff. of tn – 2 in the explansion of (1 – t)–3

= ( )( )...{ ( ) }
( )!

( )� � � � � � !
�

� �3 3 1 3 2 1
2

1 2n
n

n = 2 2 2( 3)( 4)...( ) 3 4 5 ...
( 1) ( 1) ( 1)

( 2)! ( 2)!
n n nn n

n n
� � �� � � + +

� % � �
� �

=
1 2 3 4
1 2 ( 2)!
+ + + ++
+ + �

+ n
n

= n
n

n n n
n

n n!
( )!

( )( )!
( )!

( )
2 2

1 2
2 2

1
2�

% � �
�

% � . [� (–1)2n – 2 = 1]

Ex. 3. Prove that xLn∆(x) + (1 – x)Ln≅(x) + Ln(x) = 0 and hence deduce that Ln≅(0) = –n.
Sol. Since Ln(x) satifies Laguerre’s equation x(x2y/dx2) + (1 – x)(dy/dx) + ny = 0,

therefore xLn∆(x) + (1 – x)Ln≅(x) + nLn(x) = 0. ...(1)
Replacing x by 0 in (1), we have

Ln≅(0) + nLn(0) = 0 or Ln≅(0) = –n,    as Ln(0) = 1.
Ex. 4. Expand x3 + x2 – 3x + 2 in a series of Laguerre polynomials. [Meerut 1994]
Sol. We know that L0(x) = 1, L1(x) = 1 – x, L2(x) = (2 – 4x + x2)/2 and L3(x) = (6 – 18x + 9x2 – x3)/6.
4 x3 = 6 – 18x + 9x2 – 6L3(x), ...(1)
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Laguerre Polynomials 13.9

x2 = 4x – 2 + 2L2(x), ...(2)
x = 1 – L1(x) and 1 = L0(x). ...(3)

Now, x3 + x2 – 3x + 2 = 6 – 18x + 9x2 – 6L3(x) + x2 – 3x + 2, by (1)
= 8 – 21x + 10x2 – 6L3(x)  = 8 – 21x + 10[4x – 2 + 2L2(x)] – 6L3(x), by (2)
= –12 + 19x + 20L2(x) – 6L3(x)= –12 + 19[1 – L1(x)] + 20L2(x) – 6L3(x), by (3)
= 7 – 19L1(x) + 20L2(x) – 6L3(x)= 7L0(x) – 19L1(x) + 20L2(x) – 6L3(x), by (3).

Ex. 5. Find the values of  (i) e L x L x dxx�∃z 3 50 ( ) ( ) (ii) e L x dxx�∃z { ( )}4
2

0 .

Sol. By results of Art 13.6, we have

(i) e L x L x dxx�∃z 3 50 ( ) ( ) = 0 (ii) e L x dxx�∃z { ( )}4
2

0 = 1.
Ex. 6. Taking Ln(x) to be the coefficient of tn in the expansion of

1
1 1�

�
�
F
HG
I
KJt

xt
t

exp , prove that e L L dn m

�z tan

cos
(tan (tan

Ε

Φ

Γ Η

Ε
ΕΙ ΕΙ Ε2

2
= <mn.

Sol. e L L dn m

�z tan

cos
(tan (tan

Ε

Φ

Γ Η

Ε
ΕΙ ΕΙ Ε2

2
= e L x L x dxx

n m
�∃z ( ) ( )0

[on putting x = tan Ε   so that   dx = sec2 Ε dΕ]
= <m, n, by orthogonal property of Ln(x).

Ex. 7. Taking t
n

L x
t

tx
t

n

n
n

!
( ) exp

%

∃

& %
�

�
�
RST
UVW0

1
1 1

, prove that

(i) Ln≅(x) = n[L≅n – 1(x) – Ln – 1(x)] (ii) xL≅n(x) = nLn(x) – n2Ln – 1(x).

Sol. Part (i) Given t
n

L x
n

n
n

!
( )

%

∃

&
0

= 1
1

1

�
� �

t
e tx t/( ) . ...(1)

Differentiating both sides of (1) w.r.t. ‘x’, we get

t
n

L x
n

n
n

!
( )≅

%

∃

&
0

=
1

1 1�
�

�
F
HG
I
KJ

� �

t
e

t
t

tx t/(1 ) or t
n

L x
n

n
n

!
( )≅

%

∃

&
0

= �
�

%

∃

&t
t

t
n

L x
n

n
n1 0 !

( ) , using (1)

( )
!

( )1
0

� ≅
%

∃

&t t
n

L x
n

n
n

= �
%

∃

&t t
n

L x
n

n
n

!
( )

0

    or   t
n

L x
n

n
n

!
( )≅

%

∃

&
0

= t
n

L x t
n

L x
n

n
n

n

n
n

!

%

∃ !

%

∃

≅ �& &
1

0

1

0
!

( )
!

( ) .   ...(2)

Equating the coefficient of tn on both sides of (2), we have

1
n

L xn!
( )≅ =

1
1

1
11 1( )!

( )
( )!

( )
n

L x
n

L xn n�
≅ �

�� �       or L≅n(x) = n[L≅n – 1(x) – Ln – 1(x)].

Part (ii) : We have (From Remark of recurrence relation 1).
Ln + 1(x) = (2n + 1 – x)Ln(x) – n2Ln – 1(x). ...(1)

Differentiating both sides of (1) w.r.t. ‘x’, we get
L≅n + 1(x) = (2n + 1 – x)L≅n(x) – Ln(x) – n2L≅n – 1(x). ...(2)

From part (i) above, we have    L≅n(x) = n[L≅n – 1(x) – Ln – 1(x)]. ...(3)
Replacing n by n + 1 in (3), we get L≅n + 1(x) = (n + 1)[L≅n(x) – Ln(x)]. ...(4)
Again, from (3), we get     nL≅n – 1(x) = L≅n(x) + nLn – 1(x). ...(5)
Using (4) and (5), (2) reduces to

(n + 1)[L≅n(x) – Ln(x)] = (2n + 1 – x)L≅n(x) – Ln(x) – n[L≅n(x) + nLn – 1(x)]
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13.10 Laguerre Polynomials

or xL≅n(x) = nLn(x) – n2Ln – 1(x).

Ex. 8. Prove that e L t dtst
n

�∃z ( )0 = (1/s) × (1 – 1/s)n. [Kanpur 2011]

Sol. By definition of Ln(x), we have Ln(t) = ( ) !
( )! ( !)
�
�%

& 1
2

0

r r

r

n n t
n r r

.  ...(1)

Now, L.H.S. of the problem

= e L t dt e n t
n r r

dtst
n

st
r r

r

n
�∃ �

%

∃z &z% �
�

F
H
GG

I
K
JJ( ) ( ) !

( )!( !)0 2
0

0

1
=

( ) !
( )!( !)

( )�
�%

� ! �
∃

& z1
2

0

1 1

0

r

r

n
st rn

n r r
e t dt

= ( ) !
( )!( !)

. ( ) ( ) !
( )!( !)

�
�

! % �
�

FH IK!
% %
& &1 1 1 1 1

2 1
0 0

r

r
r

n r r

r

n
n

n r r
r

s s
n

n r r s
ϑ , as ( 1) !r rϑ ! %

= 1 1 1 1 1

0
s

C
s s s

n
r

r

r

n n
�FH IK % �FH IK

%
& , by the binomial theorem.

Ex. 9. Prove that e L y dyy
nx

�∃z ( ) = e–x[Ln(x) – Ln – 1(x)]. [Kanpur 2007]

Sol. e L y dyy
nx

�∃z ( ) = [ ( )] ( ) ( )� � � ≅� ∃ �∃ze L y e L y dyy
n x

y
nx , integrating by parts

= e L x e L y dyx
n

y
nx

� �∃! ≅z( ) ( ) = e L x e L y dyx
n

y
r

r

n

x

� �

%

�∃
! �

F
H
GG

I
K
JJ&z( ) ( )

0

1

,   as  ≅ % �
%

�

&L y L yn r
r

n

( ) ( )
0

1

= e L x e L y dyx
n

y
rx

r

n
� �∃

%

�

� z&( ) ( )
0

1

.

4 e L y dy e L y dyy
n

x

y
r

x
r

n
�∃ �∃

%

�z z&!( ) ( )
0

1

= e–xLn(x). ...(1)

Re–writing (1), we have e L y dyy
r

x
r

n
�∃

%
z& ( )

0

= e–xLn(x). ...(2)

Subtracting (1) from (2), we have

e L y dy e L y dy e L y dyy
r

x

y
n

x

y
r

x
r

n

r

n
�

∃
�

∃
�

∃

%

�

%
z z z&& � �( ) ( ) ( )

0

1

0

= 0

or e L y dyy
nx

�∃z ( ) = e L y dy e L y dyy
r

x

y
r

x
r

n

r

n
�∃ �∃

%

�

%
z z&& �( ) ( )

0

1

0

    = e–xLn(x) – e–xLn – 1(x), using (2) for n = n and n = n – 1
        = e–x[Ln(x) – Ln – 1(x)].

Ex. 10. Prove that  e x L x dxy k
n

�∃z ( )0 =
0

1
,

( ) !, .
if

if
k n

n k nn
Κ

� %
RST [Kanpur 2004]

Sol. From Art. 13.7, we know that if f(x) is a polynomial of degree m, we have

f(x) = C L xr r
r

m
( )

%
&

0
, ...(1)
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where Cr = e f x L x dxx
r

�∃z ( ) ( )0
. ...(2)

Let f(x) = xk so that f(x) is a polynomial of degree k. Then (1) and (2) reduce to

xk =
0

( ),
%
&
k

r r
r

C L x ...(3)

where Cr = e x L x dxx k
r

�∃z ( )0 . ...(4)
    Case (i) Let k < n. Then expansion (3) shows that Cn = 0. Hence from (4), we have (with r = n)

e x L x dxx k
n

�∃z ( )0  = 0. ...(5)

Case (ii). Let k = n. Then (3) and (4) give  xn = C L x C L x C L xr r
r

n

n n( ) ( ) ... ( )
%
& % ! !

0
0 0    ...(6)

and    Cr = e x L x dxx n
n

�∃z ( )0 . ...(7)

We have, by definition of Ln(x)           Ln(x) = ( ) !
( )!( !)

�
�%

& 1 2
0

r r

r

n n
n r r

x . ...(8)

From (8), we see that, coefficient of xn in Ln(x) = ( ) !
!( !)

( )
!

� % �1
0

1
2

n
nn

n n
. ...(9)

Equating the coefficients of xn from both sides of (6) and using (9), we get
1 = Cn(–1)n/n! so that Cn = (–1)nn!.

With this value of Cn, (7) (with r = n) reduces to e x L x dxx n
n

�∃z ( )0 = (–1)n n!. ...(10)

(5) and (10) together may be written as e x L x dxx k
n

�∃z ( )0 =
0

1
,

( ) !, .
if

if
k n

n k nn
Κ

� %
RST

EXERCISE
1. Express 10 – 23x + 10x2 – x3 in terms of Laguerre polynomials.

Ans. L0(x) + L1(x) + 2L1(x) – 6L3(x)

2. Prove that Ln(2x) = n!
( )

!( )!
( )�

�

�

�
%

∃

& 1 2

0

m n m

n m
n

m n m
L x .

3. If e–x = C L xn n
n

( )
%

∃
&

0
, then show that Cn = 1/(2n + 1n!).

4. Show that Ln(x) defined by exp �
�

F
HG
I
KJ

xt
t1

= ( )
( )

!
1

0

�
%

∃

&t
L x t

n
n

n

n

satisfies the differential equation xL∆n(x) + (1 – x)L≅n(x) + nLn(x) = 0.

5. Laguerre polynomial Lq(x) is defined by e–xs/(1 – s) =
L x

q
sq q

q

( )
!

%

∃

&
0

, s < 1.

Show that L≅q = qL≅q – 1 – qLq – 1      and            Lq + 1 = (2q + 1 – x)Lq – q2Lq – 1.
6. State and prove that generating function for Laguerre polynomial. [Meerut 1993]

7. Show that ( ) ( )( ) (0) ( 1) ( ) (0) ( 1) !n nn n
n ni L ii L n% � % �

where ( )n
nL stands for ( ) /n n

nd L x dx [Kanpur 2009]
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14
Hypergeometric Function

14.1. Pochhammer symbol. Definition.
Let n be a positive integer. Then Pochhammer symbol is denoted and defined by

(!)n = !(! + 1)...(! + n – 1) ...(1)
with (!)0 = 1. ...(2)

Deductions. By definition, we have

I. (!)n = !(! + 1)...(! + n – 1) = 1 2 3...( 1) ( 1)...( 1)
1 2 3...( 1)

n� � ! # ! ! ∃ ! ∃ #
� � ! #

= % !
% !

% %( )
( )

( ) ( ) ( )∃ & # #n p p pas 1 1

Thus, (!)n = % !
% !
( )

( )
∃ n . ...(3)

II.  (!)n + 1 = !(! + 1)(! + 2)...[! + (n + 1) – 1] = ![(! + 1)(! + 2)...(! + 1 + n – 1)] = !(! + 1)n
Thus,   (!)n + 1 = !(! + 1)n. ...(4)
III. (! + n)(!)n = !(! + 1)...(! + n – 1)(! + n)

         = !(! + 1)...(! + n – 1)(! + n + 1 – 1) = (!)n + 1
Thus, (! + n)(!)n = (!)n + 1. ...(5)

14.2. General hypergeometric function. Definition.
The general hypergeometric function is denoted and defined by

mFn(!1, !2,...!m ; ∋1, ∋2...∋n ; x) = 1 2

1 21

( ) ( ) ...( )
.

( ) ( ) ...( ) !

r
r r m r

r r n rr

x
r

(

&

! ! !
∋ ∋ ∋) ....(1)

The general hypergeometric function is also denoted by         m n
m
n

F x
! ! !

∋ ∋ ∋
1 2

1 2

, ,... ;
, .. . ;

L
NM

O
QP . ...(2)

Remark. We shall consider only two special cases of (1) in the present chapter. These are
given in the following two articles for m = n = 1 and m = 2, n = 1 respectively.
14.3. Confluent hypergeometric (or Kummer) function. Definition.

Confluent hypergeometric function is denoted by 2F1(!; ∋; x) or F(!; ∋; x) or M(!, ∋, x) and

is defined by F(!; ∋; x) =
( )
( )

.
!
.

!
∋

r

r

r

r

x
r

&

(

)
0

   ...(1)

Remark. Sometimes we use the following modified definition of the confluent hypergeometric

function                                                             F(!; ∋; x) = 2( 1)
1 ...

1 1 2 ( 1)
x

x x
! ! ∃

∃ ∃ ∃
�∋ � �∋ ∋ ∃

...(2)

14.4. Hypergeometric function. Definition. [Ranchi 2010]
      Hypergeometric function is denoted by 2F1(!; ∋; ∗; x) or simply F(!, ∋; ∗; x) and is defined by

14.1
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14.2 Hypergeometric Function

F(!, ∋; ∗; x) =
0

( ) ( )
( ) !

r
r r

rr

x
r

(

&

! ∋
�

∗) . ...(1)

Remark 1. The series on the R.H.S. of (1) is 2( 1) ( 1)
1 ...

1 1 2 ( 1)
x x

! �∋ ! ! ∃ ∋ ∋ ∃
∃ ∃ � ∃

� ∗ � � ∗ ∗ ∃
   ...(2)

In particular, if ! = 1, ∋ = ∗, then the series (2) takes the form
1 + x + x2 + x3 + ...,

which is a geometric series. Since (2) reduces to a geometric series as a particular case, (2) is
called hypergeometric series.

Remark 2. Sometimes we use the following modified definition of the hypergeometric series

F(!, ∋; ∗; x) = 1
2( 1) ( 1)

1! ( 1) 2!
!�∋ ! ! ∃ �∋ ∋ ∃

∃ ∃
∗ ∗ ∗ ∃

x x 3( 1)( 2) ( 1)( 2)
...

( 1)( 2) 3!
! ! ∃ ! ∃ �∋ ∋ ∃ ∋ ∃

∃ ∃
∗ ∗ ∃ ∗ ∃

x
  ...(3)

Remark 3. Hypergeometric function F(a, b; c; x) can be put in the following different forms:
F(a, b; c; x) = (1 – x)c – a – bF(c – a, c – b; c; x)  [Lucknow2010] ...(4)

     = ( ) , ; ;1
1

# #
#

F
HG

I
KJ

#x F a c b c x
x

a [Kanpur 2009] ...(5)

     = ( ) , ; ;1
1

# #
#

F
HG

I
KJ

#x F b c a c x
x

b . ...(6)

14.5. Gauss’s hypergeometric equation or Gauss’s equation or hypergeometric

equation. Definition. 2 2(1 ) ( / ) { ( 1) }( / )x x d y dx x dy dx y# ∃ ∗ # ! ∃ ∋ ∃ # !∋ = 0

is called hypergeometric equation.
14.6. Solution of the hypergeometric eqution.    [Kanpur 2006]

For solution refer Ex. 7 of Art. 8.9 of chapter 8. Let , and! ∋ ∗  be constants, then

+ ,(1 ) ( 1) 0x x y x y y−− −# ∃ ∗ # ! ∃∋ ∃ # ! ∋ & ... (1)

is known the hypergeometric equation. Let 0, 1, 2, .....∗ . # # . Then a solution of (1) is given by

2
2 1

( 1) ( 1)
( , ; , ) 1 ....

1 1 2 ( 1)
!�∋ ! ! ∃ ∋ ∋ ∃

! ∋ ∗ & ∃ ∃ ∃
� ∗ � ∗ ∗ ∃

F x x x ... (2)

2 1( ; ; ; )F x! ∋ ∗  called the hypergeometric function.
If ∗  is not an integer, then the other solution of (1) and linearly independent of the solution

2 1( , ; , )! ∋ ∗F x  is 1
2 1( 1 , 1 ; 2 ; ).#∗ ! ∃ # ∗ ∋ ∃ # ∗ # ∗x F x

Thus, if ∗  is not an integer, the general solution of (1) is

1
22 1 1( , ; ; ) ( 1 , 1 ; 2 ; ),y a F x bx F x#∗& ! ∋ ∗ ∃ !∃ #∗ ∋∃ #∗ #∗ where a and b are arbitrary constants.    ... (3)

Note 1. The hypergeometric function ( , ; ; )F x! ∋ ∗  is defined only if (i) and! ∋  are real

numbers (ii) ∗  is any real number such that 0, 1, 2, ...∗ . # # (iii) the variable x satisfies | x | < 1.

Note 2. The general solution (3) of (1) exists if ∗  is not an integer..
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Hypergeometric Function 14.3

Note 3. If either or! ∋  is a negative integer, then ( , ; ; )! ∋ ∗F x  reduces to a polynomial,
because after finite number of terms, the coefficient of each term will be zero. For examples,
consider the following:

2( 2) ( 2)( 1) ( 1)
( 2, ; ; ) 1 0

1 1 2 ( 1)
# # # ∃

# ∗ & ∃ ∃ ∃
� � � ∃

b b b
F b c x x

c c c
22 ( 1)

1 ...
( 1)

b b b
x x

c c c
∃

& # ∃ ∃
∃

which is a polynomial of degree 2

Similarly, 2( , 2; : ) 1 (2 / ) { ( 1) / ( 1)} .F a c a c x a a c c x# ∗ & # ∃ ∃ ∃
14.7. Symmetric property of hypergeometric function.

Hypergeometric function does not change if the parameters ! and ∋ are interchanged, keeping
∗  fixed. Thus,           F(!, ∋; ∗; x) = F(∋, !; ∗; x).

Proof. We have, by definition F(!, ∋; ∗; x) =
( ) ( )

( )
.

!
! ∋

∗
r r

r

r

r

x
r

&

(

)
0

...(1)

and            F(∋, !; ∗; x) =
( ) ( )

( )
.

!
∋ !

∗
r r

r

r

r

x
r

&

(

)
0

. ...(2)

From (1) and (2), we have         F(!, ∋; ∗; x) = (∋, !; ∗; x).
14.8. Differentiation of hypergeometric functions. Show that

d
dx

F x( , ; ; )! ∋ ∗ =
!∋
∗

! ∃ / ∋ ∃ / ∗ ∃ /F x( , ; ; )

[Garhwal 2005; Kurukshreta 2006; Kanpur 2005, 08, 10]

and deduce that (i) d
dx

F x
n

n ( , ; ; )! ∋ ∗ =
( ) ( )

( , ; ; )
( )

n n

n

F n n n x
! ∋

! ∃ ∋ ∃ ∗ ∃
∗

.

(ii) d
dx

F x
n

n
x

( , ; ; )! ∋ ∗
L
NM

O
QP & 0

= ( ) ( )
( )

! ∋
∗
n n

n
.

Proof. By definition, we have F(!, ∋; ∗; x) =
( ) ( )
( ) !
! ∋
∗

r r

r

r

r
r

x
&

(

)
0

.

Differentiating both sides w.r.t. ‘x’, we have

d
dx

F x( , ; ; )! ∋ ∗ =
( ) ( )
( ) !

.
! ∋

∗
r r

r

r

r
r

rx #

&

(

) 1

0

=
( ) ( )

( ) ( )!
! ∋

∗
r r

r

r

r
r

x
#

#

&

(

) 1
1

1

(� the term with r = 0 vanishes)

=
( ) ( )

( ) !
! ∋

∗
m m

m

m

m
m

x∃ ∃

∃&

(

) 1 1

10

 (taking m as the new variable of summation such that

r = m + 1 i.e. m = r – 1 so that when r = 1, m = 0, and r = (, m = ()

=
1

0

( ) . ( )
( ) !

( ∃

&

! ! ∃ / ∋ ∋ ∃ /

∗ ∗ ∃ /
) m m m

m m
x

m
, by Art. 14.1

=
!∋
∗

! ∃ / ∋ ∃ /
∗ ∃ /

( ) ( )
( ) !

m m

m

m

m
m

x
&

(

)
0

=
!∋
∗

! ∃ ∋ ∃ ∗ ∃ /F x( , ; ; )1 1 .
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14.4 Hypergeometric Function

0 d
dx

F x( , ; ; )! ∋ ∗ =
!∋
∗

! ∃ ∋ ∃ ∗ ∃ /F x( , ; ; )1 1 . ...(1)

Deduction. (i) For each positive integer, we must show that

d
dx

F x
n

n ( , ; ; )! ∋ ∗ =
1!2 1∋2

1∗2
! ∃ ∋ ∃ ∗ ∃n n

n
F n n n x( , ; ; ) ...(2)

Since ! = (!)1, ∋ = (∋)1 and ∗ = (∗)1, (1) shows that (2) is true for n = 1. We now assume that
(2) is true for a particular value of n (say n = m) so that

d
dx

F x
m

m ( , ; ; )! ∋ ∗ =
1!2 1∋2

1∗2
! ∃ ∋ ∃ ∗ ∃m m

m
F m m m x( , ; ; ). ...(3)

Differentiating both sides of (3) w.r.t. ‘x’ we get

d
dx

F x
m

m

∃

∃

1

1 ( , ; ; )! ∋ ∗ =
1!2 1∋2

1∗2
! ∃ ∋ ∃ ∗ ∃m m

m

d
dx

F m m m x( , ; ; ) =
1!2 1∋2

1∗2
! ∋

∗
! ∃ ∋ ∃ ∗ ∃m m

m

m m F m m m x
m

( )( )
(

( , ; ; )
)

∃ ∃
∃

∃ ∃ ∃1 1 1

[using (1) for ! + m, ∋ + m, ∗ + m in place of !, ∋, ∗ respectively]

0        d
dx

F x
m

m

∃

∃

1

1 ( , ; ; )! ∋ ∗ =
1!2 1∋2

1∗2
! ∃ ∋ ∃ ∗ ∃m m

m
F m m m x∃ ∃

∃
∃ ∃ ∃1 1

1
1 1 1( , ; ; ), ...(4)

where we have used relation (5) of Art. 14.1. (4) shows that (2) is true for n = m + 1. Thus if (2) is
true for n = m, then (2) is also true n = m + 1. Hence by mathematical induction, (2) is true for each
positive integer.

Deduction (ii). Putting x = 0 in (2), we have

d
dx

F x
n

n
x

( , ; ; )! ∋ ∗
L
NM

O
QP & 0

=
1!2 1∋2

1∗2
! ∃ ∋ ∃ ∗ ∃n n

n
F n n n( , ; ; )0 =

1!2 1∋2
1∗2

!∃ ∋∃

∗ ∃
n n

n

r r

r

r

r x

n n
n

x
r

( ) ( )
( ) !

&

(

&

)
L
N
MM

O
Q
PP0 0

=
1!2 1∋2

1∗2
n n

n
.

14.9. Integral representation for the hypergeometric function

F(!, ∋; ∗; x) = %
% %

( )
( ) ( )

( ) ( )∗
∋ ∗ ∋

∋ ∗ ∋ !

#
# ## # # #z t t xt dt1 1

0

1
1 1

[Purvanchal 2007; Garhwal 2004; Kanpur 2004, 07, 10]

or   F(!, ∋; ∗; x) = 1 1 11 1

0

1

B
t t xt dt

( , )
( ) ( )

∋ ∗ ∋
∋ ∗ ∋ !

#
# ## # # #z , if ∗ > ∋ > 0.

Proof. By definition, we have

F(!, ∋; ∗; x) =
( ) ( )

( )
.

!
! ∋

∗
n n

n

n

n

x
n

&

(

)
0

= ( ) ( )
( )

. ( )
( )

.
!

!
% ∋

% ∋
% ∗

% ∗n

n

n

n
n

x
n

∃
∃&

(

)
0

, by Art. 14.1

= % ∗
% ∗ ∋ % ∋

! % ∋ % ∗ ∋
% ∋ ∃ ∃ ∗ # ∋

( )
( ) ( )

( ) ( ) ( )
( )

.
!#

∃ #

&

(
) n

n

n

n
n

x
n1

, multiplying and dividing by %(∗ – ∋)

= + ,1 1 1
0

0

( )
( ) (1 )

( ) ( ) !

(
∋ ∃ # ∗ # ∋ #

&

% ∗
! #

% ∋ % ∗ # ∋
) 3

n
n

n
n

x
t t dt

n , where ∗ – ∋ > 0, ∋ + n > 0 so that ∗ > ∋ > 0

  
1 1 1
0, )

( ) ( ) ( (1 )
( )

# #&
4 5% %

& #6 7% ∃8 9
3� p qq

p q B p t t dt
p q
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Hypergeometric Function 14.5

= % ∗
% ∋ % ∗ ∋

!∋ ∗ ∋( )
( ) ( )

( ) ( ) ( )
!#

#
F
H
GG

I
K
JJ

# # #

&

(z )t t xt
n

dtn

n

n

1 1

0

1

0

1

Thus, ( , , , )F x! ∋ ∗ =
% ∗

% ∋ % ∗ ∋
∋ ∗ ∋ !( )

( ) ( )
( ) ( )

#
# ## # # #z t t xt dt1 1

0

1
1 1 ...(1)

( )( 1)...( 1)
[ the general term in the expansion of (1  ) ( )

!
( 1)...( 1)

( 1) ( 1) ( ) , .14.1]
! !

#! #! #! # #! # ∃
# & #

! ! ∃ ! ∃ #
& # : # & !

� n

n n
n n n n

n

n
xt xt

n
n x t

x t by Art
n n

Also, B(∋, ∗ – ∋) =
( ) ( ) ( ) ( )
( ) ( )

% ∋ % ∗ # ∋ % ∋ % ∗ # ∋
&

% ∋ ∃ ∗ # ∋ % ∗
; % ∗

% ∋ % ∗ ∋
( )

( ) ( )#
= 1

B( , )∋ ∗ ∋#
.   ...(2)

Using (2), (1) may be re–written as

F(!, ∋; ∗; x) = 1
B

t t xt dt
( , )

( ) ( ) .
∋ ∗ ∋

∋ ∗ ∋ !

#
# ## # # #z 1 1

0

1
1 1 ...(3)

Thus (1) and (3) are the required results.

14.10. Gauss Theorem.     F(!, ∋; ∗; 1) = % ∗ % ∗ ∋ # !
% ∗ # ! % ∗ ∋

( ) ( )
( ) ( )

#
#

[Kanpur 2005, 06, 07

Proof. From Art. 14.9, for x = 1 we have               
  Ranchi 2010]

F(!, ∋; ∗; 1) = % ∗
% ∋ % ∗ ∋

∋ ∗ ∋ !( )
( ) ( )

( ) ( )
#

# ## # # #z t t t dt1 1

0

1
1 1

     = 
% ∗

% ∋ % ∗ ∋
∋ ∗ ∋ !( )

( ) ( )
( )

#
## # # #z t t dt1 1

0

1
1 =

( ) ( ) ( )
( ) ( ) ( )

% ∗ % ∋ % ∗ # ∋ # !
% ∋ % ∗ # ∋ % ∋ ∃ ∗ # ∋ # !

1 1 1
0

( ) ( )(1 ) ( , )
( )

# #< =% %
# & &> ?% ∃≅ Α3� p q p qt t dt B p q

p q

     =
% ∗ % ∗ # ∋ # !
% ∗ ! % ∗ ∋

( ) ( )
( ) ( )# #

.

14.11. Vandermonde’s theorem. F(–n, ∋; ∗; 1) =
( )

( )
∗ ∋

∗
# n

n
.

Proof. From Art. 14.10, with ! = –n, we get

F(–n, ∋; ∗; 1) =
( ) ( )
( ) ( )

% ∗ % ∗ # ∋ ∃
% ∗ ∃ % ∗ # ∋

n
n

=
( ) ( 1) ( 2)...( ) ( )

( 1)( 2)... ( ) ( )
% ∗ % ∗ # ∋ ∃ # ∗ # ∋ ∃ # ∗ # ∋ % ∗ # ∋

∗ ∃ # ∗ ∃ # ∗% ∗ % ∗ # ∋
n n

n n

  =
1) ( 2)...( )

( 1) ( 2)...
1∗ # ∋ ∃ # ∗ # ∋ ∃ # ∗ # ∋

∗ ∃ # ∗ ∃ # ∗
n n

n n
=

( )
( )

∗ ∋
∗
# n

n
, by Art. 14.1
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14.6 Hypergeometric Function

14.12. Kummer’s theorem.

F(!, ∋; ∋ – ! + 1; –1) =
1) ( 1)

( 1) ( / 2 1)
%1∋ # ! ∃ % ∋ΒΧ ∃
% ∋ ∃ % ∋ # ! ∃

. [Purvanchal 2005]

Proof. From Art. 14.9, with x = –1   and   ∗ = ∋ – ! + 1, we get
F(!, ∋; ∋ – ! + 1; –1)

= 1 1 1 1
0

1)
(1 ) (1 )

( ) ( 1 )
∋ # ∋ # ! ∃ # ∋ # #!%1∋ # ! ∃

# #
% ! % ∋ # ! ∃ # ∋ 3 t t t dt = 

1 1 2
0

1)
(1 )

( ) (1 )
∋ # #!%1∋ # ! ∃

#
% ∋ % # ! 3 t t dt

=
1 1/ 2 1
0

1)
( ) (1 ) ( / 2 )

( ) (1 )
∋ # #!%1∋ # ! ∃

#
% ∋ % # ! 3 u u du u (putting t2 = u so that dt = du u/ 2 )

= 
1 ( / 2) 1 1 1
0

( 1)
(1 )

2 ( ) (1 )
∋ # # ! #% ∋ # ! ∃

#
% ∋ % # ! 3 u u du =

( 1) ( (1 )
.

2 ( ) (1 ) ( / 1 )
% ∋ # ! ∃ % ∋ΒΧ2 % # !
% ∋ % # ! % ∋ Χ ∃ # !

� u u B p q p q
p q

p q# ## & &
∃

F
HG

I
KJz 1 1

0

1
1( ) ( , ) ) ( )

( )
%1 %
%

=
( 1) ( / 2) ( / 2)

( (
% ∋ # ! ∃ � ∋ �% ∋

% ∋ΒΧ ∃ / # !2∋% ∋2
=

% ∋ ! % ∋
% ∋ Β Χ ∃ / # !2 % ∋ /

( ) ( / )
( ( )

# ∃ ∃
∃

1 2 1

14.13. More about the confluent hypergeometric function and solution of confluent
hypergeometric equation   The hypergeometric differential equation is

(x2 – x)y∆ + [(1 + ! + ∋)x – ∗]y− + !∋y = 0. ...(1)

Replacing x by x/∋ in (1), we get x x y x y y1 1 1#FHG
I
KJ −− ∃ # ∃ ∃F

HG
I
KJ

RST
UVW − #

∋
∗ !

∋
! = 0    ...(2)

Its solution is represented by the function F(!, ∋; ∗ ; x/∋)
When ∋ Ε (, the equation (2) reduces to xy∆ + (∗ – x)y− – !y = 0 ...(3)

whose solution is given by 1 2Lim , ; ; /
∋Ε(

! ∋ ∗ ∋F x . ...(4)

The equation (3) is known as the confluent hypergeometric differential equation or Kummer’s
equation.

Now,  Lim
∋

∋
∋Ε(

( )r
r =

0

( 1)( 2)...( 1)
Lim

... times
r

r∋Ε

∋ ∋ ∃ ∋ ∃ ∋ ∃ #
∋�∋�∋

= Lim
∋ ∋ ∋ ∋Ε(

∃FHG
I
KJ ∃FHG
I
KJ ∃ #F
HG

I
KJ &1 1 1 2 1 1 1... r

Hence solution (4) may be written as

Lim
∋

! ∋ ∗
∋Ε(

F
HG

I
KJF x, ; ; = Lim

∋

! ∋
∗ ∋Ε(

&

( F
HG
I
KJ) ( ) ( )

! ( )
r r

r

r

r
r

x

0

= Lim
∋

! ∋
∗ ∋Ε(

&

(

) ( ) ( )
! ( )

r r

r
r

r

r r
x

0

= ( )
! ( )

( ; ; )
!

∗
! ∗r

r

r

r
r

x F x&
&

(

)
0

. ...(5)

The function F(a; ∗; x) is called the confluent hypergeometric function.
Solution of differential equation (3) may also be obtained directly by the series integration

method. Considering the equation (3), we find that x = 0 is a removable (non–essential) singularity
and so the series representing the solution can be developed about the point x = 0.

Solution of the confluent hypergeometric differential equation when x = 0 and ∗ is not
an integer. [Kanpur 2010]

Let us consider the solution of the hypergeometric differential equation (3) in the ascending
powers of x as
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Hypergeometric Function 14.7

y = xk(a0 + a1x + a2x
2 + ...) = a xk r

r
0

0

∃

&

(
) , a0 . 0. ...(6)

0 y− = a k r xr
k r

r
( )∃ ∃ #

&

(

) 1

0
and   y∆ = a k r k r xr

k r

r
( )( )∃ ∃ # ∃ #

&

(

) 1 2

0
.

Now putting the values of y, y− and y∆ in (3) we get

2 1

0 0 0
( )( 1) ( ) ( )

( ( (
∃ # ∃ # ∃

& & &
∃ ∃ # ∃ ∗ # ∃ # !) ) )k r k r k r

r r r
r r r

x a k r k r x x a k r x a x = 0

or        
1

0 0
[( )( 1) ( )] [ ( ) ]

( (
∃ # ∃

& &
∃ ∃ # ∃ ∗ ∃ # ∃ ∃ !) )k r k r

r r
r r

a k r k r k r x a k r x = 0.    ...(7)

which is an identity and so coefficients of various powers of x must be zero.
Equating the coefficients of xk – 1 (lowest powers of x) to zero, we get

a0[k(k – 1) + ∗k] = 0 or k(k – 1) + ∗k = 0     as     a0 . 0.
Hence k = 0 and k = 1 – ∗ are the roots of the indical equation.
Now equating to zero the coefficients of xk + i, in (7) we get

[(k + i + 1)(k + i) + ∗(k + i + 1)]ai + 1 – [(k + i + !)]ai = 0.

0 ai + 1 =
( )

( 1) ( )
∃ ∃ !

∃ ∃ ∃ ∃ ∗ i
k i

a
k i k i

. ...(8)

Case I. When k = 0. Then (8) gives ai + 1 = ( )
( )( )

i
i i

ai
∃

∃ ∃
!

∗1
. ...(9)

Putting i = 0, 1, 2, 3, ... in (9), we get       a1 = !
∗

a0 , a2 = / ∃ !
Χ1/ ∃ ∗2

!1! ∃ /
/ΦΧΦ∗1∗ ∃ /2

a a1 0& )

............................................................................................................

am = 0 0
( ))( 2)...( 1)

1) ! ( )
m

m

a a m
a a

m m m
!!1! ∃ / ∃ ∃ #

&
/� Χ �ΓΦΦΦ � ∗1∗ ∃ /2ΦΦΦ1∗ ∃ # ∗

.

Substituting the values of a1.a2...am in the series (6), we get

y = 2
0 0

0

( )( 1)
1 ...

1 2 ( 1) ! ( )

(

&

4 5 !! ! ! ∃
∃ ∃ ∃ &6 7∗ � � ∗ ∗ ∃ ∗8 9

) mm

m m
a x x a x

m
.

Taking a0 = 1, we have y = F(!; ∗; x) which is called the confluent hypergeometric function
of the first kind.

Case II. When k = 1 – ∗. Then (8) gives  ai + 1 =
1

2 1
1

2 1
# ∃ ∃

∃ # ∃
& # ∃ ∃

# ∃ ∃
∗ !

∗
! ∗

∗
i

i i
a i

i i
ai i( )( )

( )
( )( )

0 ai + 1 = − ∃
− ∃ ∃

!
∗

1
1( )( )i i

ai where   ! – ∗ + 1 = !− and 2 – ∗ = ∗−.

Putting i = 0, 1, 2, 3, ... in the above relation, we have

a1 = 0 2 1 0,
! ! ∃ / ! 1! ∃ /2− − − −

& &
∗ 1∗ ∃ /2�Χ /�Χ � ∗ 1∗ ∃ /2− − − −

a a a a Similarly,   am =
1! 2

∗ 2
−

−
m

mm
a

! ( 0 .

Substituting the values of a1, a2, ... in (6), we have
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14.8 Hypergeometric Function

y = 1 2
0 1 ...

1 2
# ∗ 4 5! ! 1! ∃ /2− − −

∃ ∃ ∃6 7∗ � � ∗ 1∗ ∃ /2− − −8 9
a x x x = a x

m
xm

m

m

m
0

1

0

#

&

( −
−)∗ !

∗
( )
! ( )

or           y = a0x
1 – ∗ F(!−; ∗−; x) = a0x

1 – ∗F(! – ∗ + 1; 2 – ∗; x).
Putting a0 = 1, we have y = x1 – ∗ F(! – ∗ + 1; 2 – ∗, x) which is called the confluent

hypergeometric function of the second kind. Thus the general solution of the confluent
hypergeometric differential equation is given by

y = AF(!; ∗; x) + Bx1 – ∗ F(! – ∗ + 1; 2 – ∗; x), where ∗ > 0.
14.14. Differentiation of hypergeometric confluent functions.

Show that d
dx

F x( ; ; )! ∋ = !
∋

! ∃ / ∋ ∃ /F x( ; ; )  and deduce that

(i) d
dx

F x
n

n ( ; ; )! ∋ = 
( )
( )

( ; ; )
!
∋

! ∃ ∋ ∃n

n
F n n x (ii) d

dx
F x

n

n
x

( ; ; )! ∋
L
NM

O
QP & 0

=
( )
( )
!
∋

n

n
.

Proof. By definition, we have F(!; ∋; x) =
( )
( )
!
∋

r

r

r

r
x

&

(
)

0
.

Now the proof is similar to that of Art. 14.8.
14.15. Integral representation for confluent hypergeometric function.

F(!; ∋; x) =
1 1 1

0

( )
(1 )

( ( )
xtt t e dt∋ # ! # ! #% ∋

#
% !2 % ∋ # ! 3 [Purvanchal 2006]

or F(!; ∋; x) =
1 1 1

0

1
(1 )

( , )
xtt t e dt

B
∋ # ! # ! ##

! ∋ # ! 3 , where ∋ > ! > 0.

Proof. By definition, we have

F(!; ∋; x) = ( )
( ) !

( )
( )

( )
( ) !

!
∋

% ! ∃
% !

% ∋
% ∋

n

n

n

n

n

n

x
n

n
n

x
n&

(

&

(

) )&
∃0 0

, by Art. 14.1

=
0

( ) ( ) ( )
( ) ( ) ( ) !

(

&

% ∋ % ∋ # ! % ! ∃
% ! % ∋ # ! % ∋ # ! ∃ ! ∃

)
n

n

n x
n n

 = + ,1 1 1
0

0

( )
(1 )

( ) ( ) !

(
∋ # ! # !∃ #

&

% ∋
#

% ! % ∋ # !
) 3

n
n

n

x
t t dt

n
, if ∋ > !

1 1 1
0

( ) ( )
( , ) (1 ) , if 0, 0

( )
# #< =% %

& & # Η Η> ?% ∃≅ Α3� p qp q
B p q t t dt p q

p q

=
1 1 1
0

0

( ) ( )
(1 )

( ) ( ) !

(
∋ # ! # ! #

&

< =% ∋
# > ?% ! % ∋ # ! ≅ Α

)3
n

n

xt
t t dt

n

0 ( ; ; )! ∋F x =
% ∋

% ! % ∋ !
∋ ! !( )

( ) ( )
( )

#
# # # #z 1 1 1

0

1
t t e dtxt ...(1)

or ( ; ; )! ∋F x = 1 1 1 1

0

1

B
t t e dtxt

( )
( )

!Ι ∋ !
∋ ! !

#
# # # #z ...(2)

( ) ( ) 1 ( )
( , )

( ) ( , ) ( ) ( )
< =% ! % ∋ # ! % ∋

! ∋ # ! & ; &> ?% ! ∃ ∋ # ! ! ∋ # ! % ! % ∋ # !≅ Α
�B

B

Thus (1) and (2) are the required results.
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Hypergeometric Function 14.9

14.16. Theorem (Kummer’s Relation). Show that  F(!; ∋; x) = exF(∋ – !; ∋; –x).
Proof. From Art. 14.15, we know that

F(! ; ∋ ; x) = 1 1 1
0

( )
(1 )

( ) ( )
∋ # ! # ! #% ∋

#
% ! % ∋ # ! 3 xtt t e dt . ...(1)

Replacing ! by ∋ – ! and x by –x in (1), we get

F(∋ – !; ∋; –x) = 1 ( 1 1
0

( )
(1 )

( ) [ ( )]
∋ # ∋ # !2 # ∋ # ! # #% ∋

#
% ∋ # ! % ∋ # ∋ # ! 3 xtt t e dt

=
1 1 1
0

( )
(1 )

( ) ( )
! # ∋ # ! # #% ∋

#
% ∋ # ! % ! 3 xtt t e dt =

0 1 1 (1 )
1

( )
(1 ) ( )

( ) ( )
! # ∋ # ! # # #% ∋

# #
% ∋ # ! % ! 3 x uu u e du

(putting 1 – t = u so that dt = – du and t = 1 – u)

=
1 1 1
0

( )
(1 )

( ) ( )

#
∋ # ! # ! #% ∋

#
% ∋ # ! % ! 3

x
xue

u u e du =
1 1 1
0

( )
(1 )

( ) ( )
# ∋ # ! # ! #% ∋

#
% ! % ∋ # ! 3x xte t t e dt

= e–xF(!; ∋; x), by (1)
0 F(∋ – !; ∋; –x) = e–x F(!; ∋; x) so that         F(!; ∋; x) = ex(∋ – !; ∋; –x).

14.17. Contiguous hypergeometric functions. Definitions.
According to Gauss, the function F(!−, ∋− ; ∗− ; x) is said to be contiguous to F(!, ∋ ; ∗ ; x)

when it is increased or decreased by one and only one of the parameters !, ∋, ∗ by unity.
According to above definition, there exist six hypergeometric functions contiguous to

F(!, ∋ ; ∗ ; x). These are denoted and defined as given below :
F!+ = F(! + 1, ∋ ; ∗ ; x), F∋+ = F(!, ∋ + 1 ; ∗ ; x), F∗+ = F(!, ∋ ; ∗ + 1 ; x)
F!– = F(! – 1, ∋ ; ∗ ; x), F∋– = F(!, ∋ – 1 ; ∗ ; x), F∗– = F(!, ∋ ; ∗ –1 ; x).

14.18. To prove the contiguity relationship
(! – ∋)F(!, ∋ ; ∗ ; x) = !F(! + 1, ∋ ; ∗ ; x) – ∋F(!, ∋ + 1 ; ∗ ; x)

or   (! – ∋)F(!, ∋, ∗, x) = !F!+ – ∋F∋+.
Proof. We have, by definition 14.4, !F(! + 1, ∋ ; ∗ ; x) – ∋F(!, ∋ + 1 ; ∗ ; x)

=
0 0

( 1) ( ) ( ) ( )
( ) ! ( ) !

( (

& &

! ∃ ∋ ! ∋ ∃ /
! # ∋

∗ ∗
) )r rr r r r

r rr r
x x

r r
=

0 0

( 1) ( ) ( ) ( )
( ) ! ( ) !

( (

& &

! ! ∃ ∋ ! ∋ ∋ ∃ /
#

∗ ∗
) )rr r r r

r rr r
x

r r

=
0 0

( ) ( ) ( ) ( ) ( )
( ) ! ( ) !

( (

& &

! ∃ ! ∋ ! 1∋2 ∋ ∃
#

∗ ∗
) )r rr r r r r

r rr r

r r
x x

r r

[� !(! + 1)r = !(! + 1)(! + 2)...(! + 1 – r)(! + 1 + r – 1), by Art. 14.1
     = [!(! + 1)(! + 2)...(! + r – 1)](! + r) = (! + r)(!)r, by Art. 14.1 again

Similarly, ∋(∋ + 1)r = (∋ + r)(∋)r]

= [( ) ( )]
( )
( ) !

! ∋
! 1∋2
∗

∃ # ∃
&

(

) r r
r

xr r

r

r

r 0

= ( )
( )

( ) !
( ) ( , ; ; )! ∋

! 1∋2
∗

! ∋ ! ∋ ∗# & #
&

(

) r r

r

r

r r
x F x

0

14.19. Contiguity relationship for confluent hypergeometric functions
(! – ∋)xF(! ; ∋ + 1 ; x) + ∋(! + ∋ – 1)F(! ; ∋ ; x) – ∋(∋ – 1)F(! ; ∋ – 1 ; x) = 0.
Proof. Proceed as explained in Art. 14.18.
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14.10 Hypergeometric Function

14.20. A SOLVED EXAMPLES
Ex. 1. Prove that
(i) ex = 1F1(! ; ! ; x).
(ii) (1 – x)–! = 2F1(!, ∋ ; ∋ ; x).    [Kanpur 2008, 09, Lucknow 2010]
(iii) (1 – x)–1 = F(1, 1 ; 1 ; x), | x | < 1. [Kanpur 2004]
(iv) (1 + x)n = F(–n, 1 ; 1 ; –x).
(v) ln(1 + x) = loge (1 + x) = x 2F1(1, 1 ; 2 ; –x).
(vi) log (1 – x) = –x 2F1(1, 1 ; 2 ; x).

(vii) log 1
1

∃
#

x
x

= 1 222 1/ 2,1 ; 3 / 2 ;x F x  =  .
21/ 2,1;

;3/ 2
F x

4 5
& 6 7

8 9
   [Kanpur 2005, 10]

(viii) sin–1 x = xF(1/2; 1/2; 3/2; x2).
(ix) tan–1 x = x F(1/2; 1; 3/2; –x2). [Kanpur 2006]
Sol. (i) We have, by definition 14.3

1F1(! ; ∋ ; x) = 1
1

1
1 2

2
∃ ∃ ∃

∃
∃!

∋
! !
∋ ∋

.
!

( )
( )

.
!

... . inf.x x ad ...(1)

Replacing ∋ by ! in (1), we have

1F1(! ; ! ; x) = 1
1 2

2
∃ ∃ ∃x x

! !
... or 1F1(! ; ! ; x) = ex.

(ii) We have, by definition 14.4

2F1(!, ∋ ; ∗ ; x) =
2( 1) ( 1)

1 . ...
1! ( 1) 2!

! ∋ ! ! ∃ ∋ ∋ ∃
∃ ∃ ∃

∋ ∗ ∗ ∃
x x

...(1)

Replacing ∗ by ∋ in (1), we have

2F1(!, ∋ ; ∋ ; x) = 1
1

1 1
1 2

2
∃ ∃ ∃ ∃

∃
∃!∋

∋
! ! ∋ ∋

∋ ∋
.

!
( ) ( )

( ) !
...x x = 1

1
1

2
1 2

3

2 2
∃ ∃ ∃ ∃ ∃ ∃ ∃! ! ! ! ! !.

!
( )

!
( )( )

!
...x x x

= 1
1

2 3
2 3∃ #

# # #
# ∃

#
# ∃(

( )( )
!

( )
(

!
( ) ...!21# 2 ∃

! ! !21#! # /21#! # Χ2
x x x

= (1 – x)–!, by the binomial theorem.
(iii) and (iv). Procced like part (ii) above.

(v)  We have, 2F1(!, ∋ ; ∗ ; x) =
2( 1) ( 1)

1 . ...
1! ( 1) 2!

! �∋ ! ! ∃ �∋ ∋ ∃
∃ ∃ ∃

∗ ∗ ∗ ∃
x x

...(1)

Replacing !, ∋, ∗, x by 1, 1, 2 and –x respectively in (1), we get

2F1(1, 1 ; 2 ; 1 – x) =
2 31 1 ( ) 1 2 1 2 ( ) 1 2 3 1 2 3 ( )1 ...

2 1! 2 3 2! 2 3 4 3!
x x x� # � � � # � � � � � #

∃ � ∃ � ∃ � ∃
� � �

Multiplying both sides of the above equation by x, we get

x 2F1(1, 1 ; 2 ; – x) = x x x x# ∃ # ∃
2 3 4

2 3 4
... inf.ad. = log (1 + x).

(vi) and (vii). Proceed like part (v) above

(viii) We have, F(!, ∋ ; ∗ ; x) =
2( 1) ( 1)1 ...

1! ( 1) 2!
! �∋ ! ! ∃ �∋ ∋ ∃

∃ ∃ ∃
∗ ∗ ∗ ∃

x x ...(1)

Replacing !, ∋, ∗, x by 1/2, 1/2, 3/2 and x2 respectively in (1), we get
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Hypergeometric Function 14.11

F x1
2

1
2

3
2

2, ; ;FH IK =
2 4(1/ 2) (1/ 2) (1/ 2) (3/ 2) (1/ 2) (3/ 2)1 ...

(3/ 2) 1! (3/ 2) (5 / 2) 2!
x x: : : :

∃ � ∃ � ∃
:

0          xF x1
2

1
2

3
2

, ; ;FH IK = 
3 5 7

2 2 2 2 3 21 1 3 1 3 5 ...
3! 5! 7!
x x xx ∃ � ∃ � � ∃ � � � ∃ = sin–1 x.

(ix) We have, F(!, ∋ ; ∗ ; x) =
2( 1) ( 1)1 ...

1! ( 1) 2!
!�∋ ! ! ∃ �∋ ∋ ∃

∃ ∃ ∃
∗ ∗ ∗ ∃

x x
...(1)

Replacing !, ∋, ∗ and x by 1/2, 1, 3/2 and –x2 respectively in (1), we have

F x1
2

1 3
2

2, ; ; #FH IK =
2 2 2(1/ 2) 1 ( ) (1/ 2) (3/ 2) 1 2 ( )1 ... so that

(3/ 2) 1! (3 / 2) (5 / 2) 2!
x x: # : : : #

∃ � ∃ � ∃
:

F x1
2

1 3
2

2, ; ; #FH IK = 1
3 5

2 4
# ∃ # (x x ... ; xF x1

2
1 3

2
2, ; ; #FH IK = x x x# ∃ ∃ (

3 5

3 5
... = tan–1 x.

Ex. 2. Show that 2 1lim (1, ; 1; / ) .
Ε(

& x

a
F a x a e

Sol. By definition,
2

2 1
1 1 2 ( 1)

(1, ; 1; / ) 1 ....
1 1 1 2 1 2

a x a a x
F a x a

a a
� � � ∃< = < =& ∃ ∃ ∃> ? > ?� � � �≅ Α ≅ Α

or
2 3

2 1
1 1 2(1, ;1; / ) 1 1 1 1 ...

1! 2! 3!
< = < =< =& ∃ ∃ ∃ ∃ ∃ ∃ ∃> ? > ?> ?
≅ Α ≅ Α≅ Α

x x xF a x a
a a a

0 2 3
2 1lim (1, ;1; / ) 1 /1! / 2! / 3! ...

Ε(
& ∃ ∃ ∃ ∃ & x

a
F a x a x x x e

Ex. 3. Show than 1
2 1( ,1; ; ) (1 ) .#& #F a a x x

Sol. 2 31 ( 1) 1 2 ( 1) ( 2) 1 2 3
( , 1; ; ) 1 ...

1 1 2 ( 1) 1 2 3 ( 1) ( 2)
a a a a a a

F a a x x x x
a a a a a a
� ∃ � � ∃ ∃ � � �

& ∃ ∃ ∃ ∃
� � ∃ � � � ∃ ∃

 = 1 + x + x2 + x3 + .... = (1 – x)–1

Ex. 4. Show that 2 1( , ; ; ) .
&

4 5 &6 78 9 x c

d ab
F a b c x

dx c

Sol. By definition, 2
2 1

( 1) ( 1)
( , ; ; ) 1 ...

1 1 2 ( 1)
∃ ∃

& ∃ ∃ ∃
� � � ∃

ab a a b b
F a b c x x x

c c c

0 2 1
( 1) ( 1)

( , ; ; ) 0 1 2 ...
2 ( 1)

∃ ∃
& ∃ � ∃ � ∃

� ∃
d ab a a b b

F a b c x x
dx c c c ; 2 1

0
( , ; ; )

x

d ab
F a b c x

dx c&

4 5 &6 78 9
Ex. 5. Show that 1 – n x 2F1(1 – n, 1; 2; x) = (1 – x)n, where n is any natural number.

Sol. Using formula 2( 1) ( 1)
( , ; ; ) 1 ...,

1 1 2 ( 1)
F x x x

y
!∋ ! ! ∃ ∋ ∋ ∃

! ∋ ∗ & ∃ ∃ ∃
� ∗ � � ∗ ∃

 we get

     1 – n x 2F1 (1 – n, 1; 2; x)
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14.12 Hypergeometric Function

2 1(1 ) .1 (1 ) (2 ) 1 2 (1 ) (2 ) ...( 1 ) 1 2 ...( 1)1 1 0
1 2 1 2 2 3 1 2 .... ( 1) 2 3 ....

nn n n n n n n nnx x x x
n n

#ϑ Κ# # # � � # # # # � � #
& # ∃ ∃ ∃ ∃Λ Μ

� � � � � # � �Ν Ο

1
2 11 ( 1) ( 2) ( 1) ( 1) ( 2) 2 1

1 1 ...
2! 3! !

#
#ϑ Κ# # # # # # ��� �Π Π& # ∃ ∃ ∃ ∃Λ Μ

Π ΠΝ Ο

n
nn n n n n

nx x x x
n

2 3( 1) ( 1)( 2) ( 1) !1 ...
2! 3! !
# # # #

& # ∃ # ∃ ∃
n

nn n n n n nnx x x x
n

= 1 + nc1 (–x) + nc2 (–x)2 + nc3 (–x)3 + ... + ncn (–x)n = (1 – x)n

Ex. 6. Show that 2
2 1

,
lim ( , ; 1/ 2; / 4 ) cosh

Ε(
&

a b
F a b x ab x

Sol. Using formula 2
2 1

( 1) ( 1)
( , ; ; ) 1 ....,

1 1 2 ( 1)
F x x x

!∋ ! ! ∃ ∋ ∋ ∃
! ∋ ∗ ∃ ∃ ∃ ∃

� ∗ � ∗ ∗ ∃
 we get

22 2
2

2 1
( 1) ( 1)

( , ;1/ 2; / 4 ) 1 ...
1 (1/ 2) 4 1 2 (1/ 2) (3/ 2) 4

ab x a a b b x
F a b x ab

ab ab
< =∃ ∃

& ∃ : ∃ : ∃> ?> ?: : : : ≅ Α

2 41 / 2 (1 1/ ) (1 1/ ) ( / 24) ....& ∃ ∃ ∃ ∃ : ∃x a b x

0 2
2 1

,
lim ( , ;1/ 2; / 4 )

a b
F a b x ab

Ε(

2 41 / 2! / 4! ... cosh& ∃ ∃ ∃ &x x x

Ex. 7. Show that 2 1 2 1( 1, 1, ; ) ( , 1); ; ) ( / ) (1 ) ( , ; 1; )# # # # & : # ∃F a b c x F a b c x x c b F a b c x

Sol. Using formula 2
2 1

( 1) ( 1)
( , ; ; ) 1 ...,

1 1 2 ( 1)
F x x x

!∋ ! ! ∃ ∋ ∋ ∃
! ∋ ∗ & ∃ ∃ ∃

� ∗ � ∗ ∗ ∃
 we get

( 1, 1; ; ) 1 ( 1) ( 1) ( / )# # & ∃ # # :F a b c x a b x c

2 3( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
....

1 2 ( 1) 1 2 3 ( 1) ( 2)
a a b b a a a b b b

x x
c c c c c

# # # ∃ # ∃
∃ ∃ ∃

� � ∃ � � � ∃ ∃
... (1)

and F(a, b – 1; c; x) = 1 + a(b – 1) × (x/c)

          2 3( 1) ( 1) ( 1) ( 2) ( 1) ( 1)
...

1 2 ( 1) 1 2 3 ( 1) ( 2)
a a b b a a a b b b

x x
c c c c c

∃ # ∃ ∃ # ∃
∃ ∃ ∃

� � ∃ � � � ∃ ∃
... (2)

Subtracting (2) from (1), F(a – 1, b – 1; c; x) – F(a, b – 1; c; x)

2( 1 ) ( 1) ( 1 1) ( 1)
1 2 ( 1)

# # # # # # #
& ∃

� � ∃
a a b a a a b b

x x
c c c

3( 1 2) ( 1) ( 1) ( 1)
...

1 2 3 ( 1) ( 2)
# # # ∃ # ∃

∃ ∃
� � ∃ ∃

a a a a b b b
x

c c c

21 2 3 ( 1) ( 1)1 ...
1 2 ( 1) 1 2 3 ( 1) ( 2)

ϑ Κ# ∃ ∃
& ∃ ∃ ∃Λ Μ

� � ∃ � � ∃ ∃Ν Ο

b ab a a b bx x x
c c c c = (x/c) × (1 – b) 2F1 (a, b; c + 1; x)

Ex. 8. Find the third derivative of 2F1 (2, 3; 1; x) w.r.t. ‘x’
(b) Find the fourth derivative of the following hypergeonetre functions w.r.t ‘x’:

(i) 2F1 (2, 1; 4; x) (ii) 2F1 (2, –2; 5; x).
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Hypergeometric Function 14.13

Sol. (a) By Art. 14.8,      2 1
( ) ( )

( , ; ; ) ( , ; ; )
( )

! ∋
! ∋ ∗ & ! ∃ ∋ ∃ ∗ ∃

∗

n
n n

n
n

d F x F n n n x
dx

... (1)

0
3

3 3
2 13

3

(2) (3)
(2, 3;1; ) (2 3, 3 3;1 3; )

(1)
d F x F x
dx

& ∃ ∃ ∃ ... (2)

But ( ) ( 1) ( 2)...( 1),! & ! ! ∃ ! ∃ ! ∃ #n n  by Art. 14.1

0  (1)3 = 1 2 3,� �  (2)3 = 2 × (2 + 1) × (2 + 2) = 24; (3)3 = 3 × (3 + 1) × (3 + 2) = 60

Hence, (2) yields
3

2 1 2 1 2 13
24 60(2, 3;1; ) (5, 6; 4; ) 240 (5, 6; 4; )

6
:

& &
d F x F x F x
dx

(b) Proceed as in part (a) Ans. (i) (24/7) × F(6, 5; 8; x) (ii) 0
Ex. 9. Find the solutions of the following equations :

(i) (1 ) (3/ 2 2 ) 2 0−− −# ∃ # ∃ &x x y x y y about x = 0 (KU Kurukshetra 2004)

(ii) 2( ) (3 / 2 2 ) ( / 4) 0−− −# ∃ # # &x x y x y y about x = 0 (KU Kurukshetra 2004)

(iii) 8 (1 ) (4 14 ) 0−− −# ∃ # # &x x y x y y  about x = 0

(iv) 4 (1 ) 8 0−− −# ∃ ∃ &x x y y y about x = 0
Sol. In what follows, we shall use the following results:

I. Hypergeometric equation is given by (1 ) { ( 1) } 0# ∃ ∗ # ! ∃ ∋ ∃ # !∋ &−− −x x y x y y
II. General solution of hypergeometric equation is

  1
2 1 2 1( , ; ; ) (1 ,1 ; 2 ; ),∗#& ! ∋ ∗ ∃ # ∗ ∃ ! # ∗ ∃ ∋ # ∗y a F x b x F x  where a and b are arbitrary constants

III. 2
2 1

( 1) ( 1)
( , ; ; ) 1 ....

1 1 2 ( 1)
F x x x

! � ∋ ! ! ∃ ∋ ∋ ∃
! ∋ ∗ & ∃ ∃ ∃

� ∗ � ∗ ∗ ∃

Part (i) Re-writing the given equation, we have,  (1 ) (3 / 2 2 ) 2 0−− −# ∃ # ∃ &x x y x y y ... (1)

Comparing (1) with (1 ) { ( 1) } 0,x x y x y y−− −# ∃ ∗ # ! ∃ ∋ ∃ # !∋ & we have 3/ 2,∗ & 1 2! ∃ ∋ ∃ & and

2!∋ & # . Solving these, 2, 1, 3/ 2.! & ∋ & # ∗ &

Here ∗  is not an integer. The general solution of (1) is ,y au bv& ∃  where

2 1( , ; ; ) (2, 1; 3 / 2; )& ! ∋ ∗ & #u F x F x 22 ( 1) 2 3 ( 1) 0 4
1 ... 1

1 (3/ 2) 1 2 (3/ 2) (5 / 2) 3
x

x x
: # : : # :

& ∃ ∃ ∃ & #
: : : :

and  1
2 1( 1 , 1 ; 2 ; )#∗& ! ∃ # ∗ ∋ ∃ # ∗ # ∗x F xv

1 (3/2) 1/ 2
2 21 1(2 1 3/ 2, 1 1 3/ 2; 2 3/ 2; ) (3 / 2, 3 / 2;1/ 2; )# #& ∃ # # ∃ # # & #x F x x F x

Hence the general solution of (1) is given by   y = a(1 – 4x/3) + b x–1/2
2F1(3/2, – 3/2; 1/2; x)

(ii) Given (1 ) (3 / 2 2 ) (1/ 4) 0−− −# ∃ # # : &x x y x y y ... (1)

Comparing (1) with (1 ) { ( 1) } 0,x x y x y y−− −# ∃ ∗ # ! ∃ ∋ ∃ # !∋ &  we have
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14.14 Hypergeometric Function

1/ 2, 1/ 2, 3/ 2.! & ∋ & ∗ &  Hence ∗ is not an integer. The general solution of (1) is ,& &y au bv

where 2 1 2 1( , ; ; ) (1/ 2, 1/ 2; 3 / 2; )& ! ∋ ∗ &u F x F x        and

   1
2 1( 1 , 1 ; 2 ; )#∗& ! ∃ # ∗ ∋ ∃ # ∗ # ∗x F xv   1 3 / 2

2 1 (1 / 2 1 3 / 2, 1 / 2 1 3 / 2; 2 3 / 2; )x F x#& ∃ # ∃ # #

1/ 2
2 1(0; 0;1/ 2; )x F x#& 1/ 2 0 0 11 ...

1 (1 / 2)
x x

x
# < =:

& ∃ ∃ &> ?:≅ Α

General solution of (1) is 2 1(1/ 2,1/ 2; 3 / 2; ) / ,& ∃y a F x b x a, b being arbitrary constants

(iii) Ans. y = a (1 – x)–1/4 + bx1/2
2F1(1, 3/4; 3/2; x)

(iv) Ans. y = a (1 – 8x + 32x2/5) + bx3/4 2F1(7/4 – 5/4; 7/4; x)
Ex. 10. Solve the Legendre equation (1 – x2) (d2y/dx2) – 2x (dy/dx) + n(n + 1)y = 0 by

changing it to a hypergeometre equation.       (MDU Rohtak 2004)
Sol. Given (1 – x2) (d2y/dx2) – 2x (dy/dx) + n(n + 1)y = 0 ... (1)
Let     z = x2 ... (2)

Now,            &
dy dy
dx dz

2dz dyx
dx dz

& ... (3)

and   
2

2 2 2 2< = < = < =& & & ∃> ? > ? > ?
≅ Α ≅ Α ≅ Α

d y d dy d dy dy d dyx x
dx dx dx dz dz dx dzdx

2
2

22 2 2 (2 )< =& ∃ & ∃> ?≅ Α
dy d dy dz dy d y

x x
dz dz dz dx dz dz

Substituing the above values in (1),   
2

2 2 2
2

(1 ) 2 4 (2 ) ( 1) 0
< =

# ∃ # ∃ ∃ &> ?> ?
≅ Α

dy d y dyx x x n n y
dz dzdz

or
2

2
(1 ) 2 4 4 ( 1) 0

< =
# ∃ # ∃ ∃ &> ?> ?

≅ Α

dy d z dyz z z n n y
dz dzdz

or    2 24 (1 )( / ) (2 6 )( / ) ( 1) 0# ∃ # ∃ ∃ &z z d y dz z dy dz n n y

or
2

2
1 3 ( 1)(1 ) 0
2 2 4

∃< =# ∃ # ∃ &> ?≅ Α
d y dy n nz z z y

dzdz
... (4)

Refer Ex. 9 for hypergeometric equation and its solution. Comparing (4) with hypergeometre

equation      2 2(1 ) ( / ) { ( 1) } ( / ) 0,# ∃ ∗ # ! ∃ ∋ ∃ # !∋ &z z d y dz z dy dz y   ... (5)

we have, 1/ 2, 1 3/ 2∗ & ! ∃ ∋ ∃ & and (1/ 4) ( 1)!∋ & # : ∃n n

Solving these, ( 1) / 2, ( / 2)n n! & ∃ ∋ & # and 1/ 2∗ &

Note that here ∗  is not an integer. The general solution of (5) is given by
1
22 1 1( , ; ; ) (1 ,1 ; 2 ; )y a F z b z F z∗ #& ! ∋ ∗ ∃ # ∗ ∃ ! # ∗ ∃ ∋ # ∗

Hence the required solution of (1) is given by

1/ 2
22 1 1

1 1 1 1 1 1, ; ; 1 , 1 ; 2 ;
2 2 2 2 2 2 2 2

n n n ny a F z b z F z∃ ∃< = < =& # ∃ ∃ # # ∃ # #> ? > ?
≅ Α ≅ Α

or  2 2
2 1 2 1

1 1 2 1 3, ; ; , ; ; ,
2 2 2 2 2 2
∃ ∃ #< = < =& # ∃ #> ? > ?

≅ Α ≅ Α

n n n ny a F x bx F x  where a and b are arbitrary constants.
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Hypergeometric Function 14.15

Ex. 11. Show that (i)  
/ 2 2

2 12 2 1/ 20

2 (1/ 2, 1/ 2;1; ), | | 1
(1 sin )

Θ Ρ
& Σ

Θ # Ρ3
d F x x

x

(ii)  
/ 2 2 1/ 2 2

2 1
0

2 (1 sin ) ( 1/ 2, 1/ 2;1; ), | | 1
Θ

# Ρ Ρ & # Σ
Θ 3 x d F x x

Sol. By Art. 14.9,        
1 1 1

2 1
0

( )
( , ; ; ) (1 ) (1 )

( ) ( )
∋# ∗#∋# #!% ∗

! ∋ ∗ & # #
% ∋ % ∗ # ∋ 3F x t t xt dt

so that
1

1 1
2 1

0

( ) (
(1 ) (1 ) ( , ; ; )

( )
∋# ∗ #∋# #! % ∋ % ∗ #∋2

# # & : ! ∋ ∗
% ∗3 t t xt dt F x ... (A)

Part (i) Putting 2sin& Ρt  and 2sin cos ,& Ρ Ρ Ρdt d  we have

/ 2

2 2 1/ 20

2
(1 sin )

Θ Ρ
Θ # Ρ3

d
x

1 1

2 1/ 2 2 1/ 2 1/ 2 1/ 20 0

2 1 2 1
2sin cos(1 ) (1 ) 2 (1 )

& &
Θ Ρ Ρ Θ# # #3 3dt dt

x t x t t t

1 1 11 1 1 1 11/ 2 1/ 2 2 1/ 2 22 2 2
0 0

1 1(1 ) (1 ) (1 ) (1 )
# # # ## # #& # # & # #

Θ Θ3 3t t x t dt t t x t dt

2
2 1

1 (1/ 2) (1 1/ 2)
(1/ 2; 1/ 2;1; ),

(1)
F x

% % #
& :

Θ % using result (A) taking 1/ 2, 1, 1/ 2∋ & ∗ & ! & , x = x2

2 2
2 1 2 1

1 (1/ 2,1/ 2, 1; ) (1/ 2,1/ 2; 1; )
1

Θ : Θ
& : : &

Θ
F x F x

(ii) Putting 2sin& Ρt  and 2sin cos ,& Ρ Ρ Ρdt d  we have

/ 2 2 2 1/ 2

0

2 (1 sin )
Θ

# Ρ Ρ
Θ 3 x d

1 12 1/ 2 2 1/ 2
1/ 2 1/ 20 0

2 1(1 ) (1 )
2sin cos (1 )

& # & #
Θ Ρ Ρ Θ #3 3

dt dtx t x t
t t

1 11 1 1 1 11/ 2 1/ 2 2 1/ 2 2 1/ 22 2
0 0

1 1(1 ) (1 ) (1 ) (1 )t t x t dt t t x t dt
# # ## #& # # & # #

Θ Θ3 3
2 2

2 1 2 1
1 (1/ 2) (1 1/ 2)

( 1/ 2, 1/ 2;1; ) ( 1/ 2, 1/ 2;1; )
(1)

% % #
& : # & #

Θ %
F x F x

[using result (A), taking 21/ 2, 1, 1/ 2,∋ & ∗ & ! & # &x x ]

Ex. 12. Show that if | x | < 1 and | x/(1 – x) | < 1, then

2F1(!, ∋ ; ∗ ; x) = (1 – x)–!
2 1 1
F x

x
! ∗ ∋ ∗, ; ;#

#
F
HG

I
KJ

or F(!, ∋ ; ∗ ; x) = ( ) , ; ;1
1

# #
#
#

L
NM

O
QP

#x F
x
x

! ! ∗ ∋ ∗ .

Sol. By integral representation for the hypergeometric function (refer Art. 14.9), we have

2F1(!, ∋ ; ∗ ; x) = % ∗
% ∋ % ∗ ∋

∋ ∗ ∋ !( )
( ) ( )

( ) ( ) .
#

# ## # # #z t t xt dt1 1

0

1
1 1 ...(1)
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14.16 Hypergeometric Function

Putting u = 1 – t    so that dt = – du and t = 1 – u, (1) gives

2F1(!, ∋ ; ∗ ; x) = % ∗
% ∋ % ∗ ∋

∋ ! ∋ !( )
( ) ( )

( ) ( ) ( )
#

# # ∃ ## # # #z 1 11 1

1

0
u u x xu du

     =
% ∗

% ∋ % ∗ ∋
∗ # ∋ ∋ !

!( )
( ) ( )

( ) ( )
#

# # ∃
#

RST
UVW

# # #
#z u u x xu

x
du1 1

0

1
1 1 1

1

     =
( ) ( )

( ) ( )
( )1 1 1

1
1 1

0

1#
#

# #
#

RST
UVW

#
# #

#zx u u x
x

u du
!

∗ # ∋ ∋
!

% ∗
% ∋ % ∗ ∋

. ...(2)

Replacing ∋ and x by ∗ – ∋ and x/(x – 1) in (1), we get

2 1 , ; ;
1

xF
x

< =
! ∗ #∋ ∗> ?#≅ Α

=
% ∗

% ∗ ∋ % ∗ ∗ ∋
∗ # ∋ ∗ ∗ ∋

!( )
( ) [ ( )]

( ) ( )

# # #
# #

#
RST

UVW
# # # #

#z t t xt
x

dt1 1

0

1
1 1

1

 =
% ∗

% ∗ ∋ % ∋
∗ # ∋ ∋

!( )
( ) ( )

( )
#

# #
#

RST
UVW

# #
#z u u x

x
u du1 1

0

1
1 1

1 . ...(3)

Using (3), (2) reduces to 2F1(!, ∋ ; ∗ ; x) = ( ) , ; ;1
12 1# #

#
F
HG

I
KJ

#x F x
x

! ! ∗ ∋ ∗

Ex. 13. Prove that  Pn(x) = 2 1 1 1
2

F n n x# /, ; ;∃ #FH IK
[Punjab 2005, Purvanchal 2005,06, Kanpur 2004, 06]

Sol.  Pn(x) = 1
2

12

n
d
dx

xn

n

n
n

!
( )# , by Rodrigue’s formula

= 1# # & # # ∃RST
UVW

1
2

1 1 1 1
2

2)
!

( ) ( )
!

( ) . ( )n

n

n

n
n

n n

n
n

n

nn
d
dx

x
n

d
dx

x x
=

1# # # #RST
UVW

L
NM

O
QP

1 1 1 1
2

)
!

( ) .
n n

n
n

n

n
d
dx

x x

= 1# # # #FH IK ∃ # #FH IK #
RST

UVW
L
NMM

O
QPP

1 1 1 1
2

1
2

1
2

2)
!

( ) . ( )
!

...
n n

n
n

n
d
dx

x n x n n x , by the binomial theorem

= 1# # # # ∃ # # ∃
L
NM

O
QP

∃ ∃1 1
2

1 1
2 2

11
2

2)
!

( ) ( ) ( )
!

( ) ...
n n

n
n n n

n
d
dx

x n x n n x

= 2
2

1) ( 1)! ( 1) ( 2)
( 1) ! ( 1) (1 ) ( 1) (1 ) ...

! 2 1! 2!2! 2

4 51# ∃ # ∃
# # # # ∃ # : : # ∃6 7

8 9

n
n n nn n n n n

n x x
n

� d
dx

a bx b m
m n

a bx
n

n
m n n m n( ) ( ) . !

( )!
( )# & #

#
#

L
NM

O
QP

#1

= ( )
!

! ( ) !( ) ( )
!

( )( ) !( ) ...# # ∃ # ∃ # ∃ ∃ # ∃
L
NM

O
QP

1 1
2

1 1
2 2

2 1 1
2

2
2

n

n
n n n n x n n n n n x

=
2( )( 1) 1 ( )( 1)( 1)( 2) 1

1 ...
1 1! 2 2 1 2! 2

# ∃ # # # ∃ ∃ ∃ #< = < =∃ ∃ ∃> ? > ?≅ Α ≅ Α� � �
n n x n n n n x

= 2 1 1 1 1
2

F n n x# ∃ #FH IK, ; ; , by definition.
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Hypergeometric Function 14.17

Ex. 14. Show that Pn(cos Ρ) = cosn Ρ 2 1
2

2
1

2
1F n n# # # #FH IK, ; ; tan Ρ .

Sol. From Laplace’s first integral for Pn(x), (Refer Art. 9.6 in chapter 9), we have

Pn(x) = 2 1/ 21
[ ( 1) cos ] .

Θ

Τ
Υ # ς ς

Θ 3 nx x d ...(1)

Let x = cos Ρ. Then, we have 2 1/ 2 2 1/ 2 2 1/ 2( 1) (cos –1) {(–1) (1– cos )}x # & Ρ & : Ρ = i sin Ρ.
With these values and taking positive sign in (1), we get

  Pn(cos Ρ) = 1
(cos sin cos )ni d

Θ

Τ
Ρ ∃ Ρ ς ς

Θ 3 =
cos ( tan cos )

n
ni dΡ

Θ
Ρ ς ς

Τ
1 ∃z1

= 2 2 2cos ( 1)1 tan cos tan cos ... ,
2!

n n ni i d
Θ

Τ

Ρ #ϑ Κ∃ Ρ ς ∃ Ρ ς ∃ ςΛ ΜΘ Ν Ο3  by the binomial theorem

=
cos ( )

tan cos
/n

d
n n

i d
Ρ

Θ
Ρ ς ς

Θ

Τ

Θ
ς ∃ ∃

# F
HG

I
KJ ∃

L
NM zz 0

1
2

2 02 2 2

0

2

/ 24 4 4

0

( 1)( 2)( 3) tan 2 cos ... ,
3 2 1

Θ 5# # # < =∃ Ρ ς ς ∃> ? 7≅ Α� � 93n n n n i d as
2

0 0

0, (2 ) ( )
( )

2 ( ) , if (2 ) ( )

# & #ϑΠ& Λ
# &ΠΝ

3
3

a

a

if f a x f x
f x dx

f x dx f a x f x

= cos ( ) tan
n n nΡ

Θ
Θ Ρ Θ# # : : :L
NM

1
2

2 1
2 2

2 2( 1)( 2)( 3) 3 1
tan ...

3 2 1 4 2 2
# # # Θ 5∃ Ρ : : : ∃ 7� � 9

n n n n

= cos ( tan )
!

n

n n

Ρ Ρ1 2
1

2
1 1

2
#

#FH IK # #FH IK #
L
N
MM

2 2
1 11 1

( tan )2 2 2 2 ...
1 2 2!

# # 5< = < = < = < =# # ∃ # # ∃> ? > ? > ? > ? 7≅ Α ≅ Α ≅ Α ≅ Α # Ρ 7∃ ∃
� 9

n n n n

= cos , ; ; tann F n nΡ Ρ2 1
2

2
1

2
1# # #FH IK , by definition.

EXERCISE
1. Show that 1F1(∋ ; ∗ ; x) = lim ( , ; ; / )

∋
! ∋ ∗ ∋

Ε(
2 1F x .

2. Show that 2F1(!, ∋ ; ∋ – ! + 1 ; –1) =
% ∋ ! % ∋
% ∋ % ∋ !

( ) /
( ) /
1 1 2
1 1 2

∃ # ∃
∃ ∃ #

b g
b g  and deduce that

2F1(!, 1 – ! ; ∗ ; 1/2) =
% ∗ % ∗

% ! ∗ % ! ∗
/ / /

/ / / / /
2 2 1 2

2 2 1 2 2 2
b g b g

b g b g
∃

∃ # ∃ .

3. Evaluate the integral e F x dxsx#
(

z 1 1
0

( ; ; )! ∋ . [Ans. (1/s)2 × F1(!, 1 ; ∋ ; s]

[Hint. Use Art. 14.15]

4. Prove that F(!, ∋ + 1 ; ∗ + 1 ; x) – F(!, ∋ ; ∗ ; x) = ! ∗ ∋
∗ ∗

! ∋ ∗( )
( )

( , ; ; ).#
∃

∃ ∃ ∃
1

1 1 2xF x
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14.18 Hypergeometric Function

5. The complete elliptic integral of the first kind is

K = d

k

ς

ς

Θ

( sin )

/

1 2 2
0

2

#
z . Show that K = Θ

2
1
2

1
2

1 2F k, ; ;FH IK . [Kanpur 2011]

6. The complete elliptic integral of the second kind is

E =
/ 2

2 2

0
(1 sin )

Θ
# ς ς3 k d . Show that E = Θ

2
1
2

1
2

1 2F k#FH IK, ; ; , | k | < 1.

7. Prove the following relations :

(i) F(! – 1, ∋ – 1 ; ∗ ; x) – F(!, ∋ – 1 ; ∗ ; x) = ( ) ( , ; ; )1 1# ∃∋
∗

! ∋ ∗x F x

(ii) !F(! + 1, ∋ ; ∗ ; x) – (∗ – 1)F(!, ∋ ; ∗ – 1 ; x) = (! + 1 – ∗)F(!, ∋ ; ∗ ; x).
8. Prove that F(!, ∋; ∗; 1/2) = 2! F(!, ∗ – ∋ ; ∗ ; –1).
9. Show that (i) ex – 1 = xF(1 ; 2 ; x).

(ii) (1 + x/!)ex = F(! + 1 ; ! ; x).

10. The incomplete Gamma function is defined by the equation ∗(!, x) = e t dtt t# #z !Θ
0

, ! > 0.

Prove that ∗(!, x) = !–1x!F(! ; ! + 1 ; –x).
11. Prove that following relations : (i) ∋F(! ; ∋ ; x) = ∋F(! – 1 ; ∋ ; x) + xF(! ; ∋ + 1 ; x).

(ii) !F(! + 1 ; ∋ ; x) – (∋ – 1)F(! ; ∋ – 1 ; x) = (! – ∋ + 1)F(! ; ∋ ; x).
12.  Prove the following relations :

(i) F(!, ∋ ; ∗ ; x) – F(!, ∋ ; ∗ – 1 ; x) = #
#

∃ ∃ ∃!∋
∗ ∗

! ∋ ∗x F x
( )

( , ; ; )
1

1 1 1

(ii) F(! + 1; ∗ ; x) – F(! ; ∗ ; x) = 1 2/ ( 1, 1; )∗ : ! ∃ ∗ ∃x F x .

13. Hypergeometric function 2F1(!, ∋ ; ∗ ; x) = 1 2( 1). ( 1)
...

1 1 2 ( 1)
!�∋ ! ! ∃ ∋ ∋ ∃

∃ ∃ ∃
� ∗ � � ∗ ∗ ∃

x x  is the

solution of the differential equation x(1 – x)y∆ + [∗ – (! + ∋ + 1)x]y – !∋y = 0. Show that

(a) d
dx

F x
x

2 1
0

( , ; ; )! ∋ ∗L
NM

O
QP &

=
!∋
∗

. (b) 2 F1
1
2

1
2

1
2

1
2! ∋ ! ∋, ; ;∃ ∃d i =

% % ! ∋

% ! % ∋

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

c h c h
c h c h

∃ ∃

∃ ∃
.

(c) 2 1
1
2F ! ∋ ∗, ; ;d i = 2!

2F1(!, ∗ – ∋ ; ∗ ; –1).
14. Prove that  (a) Pn(cos Ρ) = 2F1(–n ; n + 1 ; 1 ; sin2 Ρ/2).

(b) Pn(cos Ρ) = (–1)n
2F1(n + 1, –n ; 1 ; cos2 Ρ/2).

(c) Pn(x) =
x F n n x

x

n#F
H
I
K # # ∃

#
F
HG

I
KJ

1
2

1 1
12 1 , ; ; . [Purvanchal 2007]

15. Show that

(a) H2n(x) = ( ) ( !)
!

; ;# #FH IK1 2 1
21 1

2n n
n

F n x .      (b) H2n + 1(x) = ( ) ( )!
!

; ;# ∃ #FH IK1 2 2 1 3
21 1

2n n
n

x F n x .

16. Show that Ln(x) = n! 1F1(–n ; 1 ; x).
17. Prove that, for |x| < a, 2F1 (a, b, c, x) = (1 – x)c–a–b

2F1 (c – a, c – b, c1, x). [Lucknow 2010]
18. State the confluent hyper geometric equation and explain its solution.     [Lucknow 2010]
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15
Orthogonal Sets of Functions And

Strum Liouville Problem
15.1. Orthogonality. Two functions f(x) and g(x) defined on some interval a ! x ! b are said to

be orthogonal on a ! x ! b if ( ) ( ) 0.
b

a
f x g x dx �#

The norm || f (x) || of f (x) is defined by   || f (x) || =
1/ 2

2( )
b

a
f x dx∃ %

& ∋
( )#

15.2. Orthogonal set of functions. Let {fn(x)}, where n = 1, 2, 3, ... be a set of functions
defined on some interval a ! x ! b. Then the set {fn(x)} is said to be an orthogonal set of functions

on the interval a ! x ! b if     ( ) ( ) 0
b

m na
f x f x dx �# , whenever m ∗ n..

15.3. Orthonormal set of functions. Let {fn(x)}, where n = 1, 2, 3, ... be a set of functions
defined on some interval a ! x ! b. Then the set {fn(x)} is said to be orthonormal on a ! x ! b
if they are orthogonal on a ! x ! b and all have norm 1. Thus, set {fn(x)} is orthonormal on

a ! x ! b, if    ( ) ( )
b

m na
f x f x dx# = +0, when 

1, when
m n
m n

∗
� i.e., ( ) ( )

b

m na
f x f x dx# = ,mn,

where  ,mn = Kronecker delta = +0, when 
1, when

m n
m n

∗
�

15.4. Orthogonality with respect to a weight function. Let p(x) > 0. Then two functions
f (x) and g(x) defined on some interval a ! x ! b are said to be orthogonal on a ! x ! b with respect

to weight function p(x), if    ( ) ( ) ( ) 0
b

a
p x f x g x dx �# .

Then, the norm || f (x) || of f (x) is defined by  || f (x) || =
1/ 2

2( ) ( )
b

a
p x f x dx∃ %

& ∋
( )#

15.5. Orthogonal set of functions with respect to a weight function. Let {fn(x)}, where
n =1, 2, 3, ... be a set of functions defined on some interval a ! x ! b. Then the set {fn(x)} is said to be
orthogonal on a ! x ! b with respect to weight function p(x) > 0, if

( ) ( ) ( ) 0,
b

m na
p x f x f x dx �#  whenever   m ∗ n.

15.6. Orthonormal set of functions with respect to a weight function. Let {fn(x)}, where
n = 1, 2, 3, ... be a set of functions defined on some interval a ! x ! b. Then the set {fn(x)} is said
to be orthonormal with respect to a weight function p(x) > 0 if they are orthogonal with respect to
weight function p(x) on a ! x ! b and all have norm 1. Thus, set {fn(x)} is orthonormal with respect
to weight function p(x), if

15.1
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15.2 Orthogonal Sets of Functions and Strum Liouville Problem

+0, when ( ) ( ) ( ) 1,  when 
b

m n mna

m np x f x f x dx m n
∗� , � �#

Remark 1. Terms defined in Art. 15.1, 15.2 and 15.3 are particular cases of Art. 15.4, 15.5
and 15.6 respectively for p(x) = 1.
15.7. Working rule for getting orthonormal set {fn(x)} of functions corresponding to
a known orthogonal set {fn(x)}, where n = 1, 2, 3, ..., where none of the functions
fn(x) have zero norm. Divide each function fn(x) by its norm || fn(x) || and get a new function
−n(x) = fn(x)/|| fn(x) ||. Then, we have

|| −n(x) || =
1 / 221 / 2

2 ( )
( )

|| ( ) ||
b b

n
na a n

f x
x dx dx

f x

. /∃ %∃ % 0 1− �& ∋ & ∋
( ) 0 1( )2 3
# # = 

1/ 2
21 1( ) || ( ) || 1,

|| ( ) || || ( ) ||
b

n nan n
f x dx f x

f x f x
∃ % � 4 �& ∋
( )#

showing that norm of −n(x) = 1. Hence the set {−n(x)} i.e., {fn(x)/|| fn(x) ||} is an orthonormal set of
functions.
15.8. Gram–Schmidt process of Orthonormalization. [Kanpur 2010]
Let {fn(x)}, where n = 1, 2, 3,... be a set of a linearly independent functions for each of which
norm || fn(x) || exists and is non–zero. Then we wish to obtain an orthonormal set {−n(x)}, where
n = 1, 2, 3, ... such that

+0, when ( ) ( ) 1,  when 
∗− − � �#

b

m na

m nx x dx m n ...(1)

We select f1(x) and obtain −1(x) = f1(x)/|| f1(x) || ...(2)
We next choose f2(x) and let F2(x) = f2 + c −1, ...(3)

where c is chosen in such a manner so that F2 may be orthogonal to −1,

i.e., 2 1 0
b

a
F dx− �# or 2 1 1( ) 05 − − �#

b

a
f c dx , using (3)

or 2
2 1 1 0

b b

a a
f dx c dx− 5 − �# # or 2 1 0,

b

a
f dx c− 5 �#  by (1)

6  c = 2 1

b

a
f dx7 −# .  With this value of c, (3) gives    F2 = f2 – 1 2 1

b

a
f dx− −# ...(4)

We now take −2(x) = F2 /|| F2 || ...(5)
Now choose f3 and let F3(x) = f3 + c1−1 + c2−2, ...(6)

where c1 and c2 are chosen in such a manner so that F2 may be orthogonal to −1 and −2, i.e.,

3 1 1 2 2 1( )
b

a
f c c dx5 − 5 − −# and 3 1 1 2 2 2( ) 0

b

a
f c c dx5 − 5 − − �#

or 3 1 1 0
b

a
f dx c− 5 �# and    3 2 2 0

b

a
f dx c− 5 �# , using (1)

6 c1 = 3 1

b

a
f dx7 −# and    c2 = 3 2

b

a
f dx7 −# ...(7)

Using (7), (6) gives F3 = 3 1 3 1 2 3 2

b b

a a
f f dx f dx7 − − 7 − −# # ...(8)

So we take −3(x) = F3/|| F3 || ...(9)
By continuing the above process, the nth normalized function −n is given by

−n = Fn/|| Fn ||, ...(10)

where Fn = 1 1 2 2 1 1...
b b b

n n n n n na a a
f f dx f dx f dx7 77 − − 7 − − 7 7 − −# # # ...(11)
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Orthogonal Sets of Functions and Strum Liouville Problem 15.3

Above process will fail if and only if at some stage Fr = 0 for 1 ! r ! n.

But, Fr = 0 8 1 1 2 2 1 1... 0
b b b

r r r r r ra a a
f f dx f dx f dx7 77 − − 7 − − 7 7 − − �# # #

8 fr is a linear combination of −1, −2, ..., −r – 1  8 fr is a linear combination of f1, f2, ..., fr – 1
(by our construction of new functions −1, −2, ..., −r – 1)

8 f1, f2, ..., fr is a linearly dependent set for 1 ! r ! n.
But this a contradiction because {fn(x)}, where n = 1, 2, 3, ..., is linearly independent set and

its every subset would also be linearly independent. Hence Fr ∗ 0 for 1 ! r ! n and so we would
always get a set {−n(x)}, where n = 1, 2, 3, ... which would be orthonormal.

Remark. Sometimes orthonormalization is required with respect to a weight function

p(x) > 0. Then (1) takes the form +0,  when ( ) ( ) ( ) 1,  when 
b

m na

m np x x x dx m n
∗− − � �#

Also, 2 1 0
b

a
F dx− �#  would take the form 2 2( ) 0

b

a
p x F dx− �#  etc. Rest of the procedure is similar..

15.9. Illustrative Solved Examples
Ex. 1. Show that the set of functions {sin (n9x/c)}, n = 1, 2, 3, ... is orthogonal on the

interval (0, c) and find the corresponding orthonormal set.
Sol. Here the given functions are fn(x) = sin (n9x/c), n = 1, 2, 3, ... For m ∗ n, we have

0 0
( ) ( ) sin sin

c c

m n
m x n xf x f x dx dx

c c
9 9�# # = + :0

( ) ( )1 cos cos
2

c m n x m n x dx
c c

7 9 5 97#

           =
0

( ) ( )1 sin sin 0,
2 ( ) ( )

cm n x m n xc c
m n c m n c

7 9 5 9. /7 �0 19 7 9 52 3
showing that the given set of functions is orthogonal.

      Norm of  fn(x) = || fn(x) || =
1/ 2 1/ 2

2

0 0

1sin ( / ) {1 cos (2 / )}
2

c c
n x c dx n x c∃ % . /9 � 7 9& ∋ 0 1( ) 2 3# #

1/ 2 1/ 2
0

{ / 2 ( / 4 ) sin(2 / )} ( / 2) .
c

x c n n x c c. /� 7 9 9 �2 3

Let −n(x)  = fn(x)/|| fn(x) || = (2/c)1/2 sin(n9x/c) Hence the required orthonormal set is given by
{−n(x)} i.e., {(2/c)1/2 sin (n9x/c)} where n = 1, 2, 3, ...
Ex. 2.(a) Show that the set of functions {cos nx}, n = 0, 1, 2, 3, ... is orthogonal on the

interval –9 ! x ! 9, and find the corresponding orthonormal set of functions.
(b) Show that the set of functions {cos nx}, n = 0, 1, 2, 3, ... is an orthogonal set of functions

on 0 ! x ! 9, and find the corresponding orthonormal set of functions.
Sol. (a) Here the given functions are fn(x) = cos nx, n = 0, 1, 2, ... For m ∗ n, we have

   
0

( ) ( ) cos cos 2 cos cosm nf x f x dx mx nx dx mx nx dx
9 9 9

79 79
� �# # #

=
0 0

sin ( ) sin ( ){cos ( ) cos ( ) } 0,m n x m n xm n x m n x dx
m n m n

99 5 7. /5 5 7 � 5 �0 15 72 3#
showing that the given set of functions is orthogonal.
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15.4 Orthogonal Sets of Functions and Strum Liouville Problem

Norm of fn(x), i.e., || fn(x) ||, for n ∗ 0

=
1/2 1/2 1/2

2 2 2

0
( ) cos 2 cosnf x dx nxdx nx dx

9 9 9

79 79

∃ % ∃ % ∃ %� �& ∋ & ∋ & ∋
( ) ( ) ( )# # # = + :

1/2
1/2

0 0
(1 cos 2 ) (1/ 2 ) sin 2nx dx x n nx

99∃ % . /5 � 5 � 9& ∋ 2 3( )#

Again, for n = 0,    || fn(x) || = || 1 || =
1/ 2

2(1) 2dx
9

79

. / � 90 12 3#

Thus, −n(x) =
( ) 1/ 2 , if 0

|| ( ) || (cos ) , if 0
∃ 9 �� & ; 9 ∗(

n

n

f x n
f x nx n

Hence, the required orthonormal set is  1/ 21/(2 ) , (cos ) / , (cos 2 ) / , (cos 3 ) / , ...x x x9 9 9 9

(b) Proceed as in part (a), Ans. 1/ 2 1/ 2 1/ 21/ , (2 / ) cos , (2 / ) cos 2 , (2 / ) cos 3 ,...x x x9 9 9 9

Ex. 3. (a) Show that the functions sin x, sin 2x, sin 3x, ..., 1, cos x, cos 2x, cos 3x, ....
constitute an orthogonal set on the interval (–9, 9). Normalize the set. [Lucknow 2010]

Sol. For m ∗ n, we have the following results :

(i)
0

sin sin 2 sin sin
9 9

79
�# #mx nx dx mx nx dx , as sin mx sin nx is an even function

=
0 0

sin ( ) sin ( ){cos ( ) cos ( ) } 0m n x m n xm n x m n x dx m n m n

99 7 5. /7 7 5 � 7 �0 17 52 3#
(ii)  sin cos 0,mx nx dx

9

79
�#  as sin mx cos nx is an odd function of x.

(iii) 
0

cos cos 2 cos cos ,mx nx dx mx nx dx
9 9

79
�# # as cos mx cos nx is an even function of x

  =
0 0

sin ( ) sin ( ){cos( ) cos( ) } 0m n x m n xm n x m n x dx
m n m n

99 5 7. /5 5 7 � 5 �0 15 72 3#
(iv) 1. sin 0,mx dx

9

79
�#  as sin mx is an odd function.

(v) < =
0 0

1. cos 2 cos (2 / ) sin 0
99 9

79
� � > �# #nx dx nx dx n nx

Relations (i), (ii), (iii), (iv) and (v) together show that the given set of functions is orthogonal.

Now, || sin nx || =
1/2 1/2

2 2

0
sin 2 sinnxdx nxdx

9 9

79

∃ % ∃ %�& ∋ & ∋
( ) ( )# # =

1/21/2

0 0

1(1 cos 2 ) sin 2
2

nx dx x nx
n

99 ∃ %? ?∃ % . /7 � 7 � 9& ∋ & ∋0 12 3( ) ? ?( )
#

|| cos nx || =
1/ 2 1/ 2

2 2

0
cos 2 cosnx dx nx dx

9 9

79

∃ % ∃ %�& ∋ & ∋
( ) ( )# # =

1/ 21/ 2

0 0

1(1 cos 2 ) sin 2
2

nx dx x nx
n

99 ∃ %? ?∃ % . /5 � 5 � 9& ∋ & ∋0 12 3( ) ? ?( )#

and || 1 || = < =+ :
1/ 2 1/ 221 2dx x

9 9
7979

∃ % � � 9& ∋
( )#

Hence the required orthonormal set is

(sin ) / , (sin 2 ) / ,....,1/ 2 , (cos ) / , (cos 2 ) / , ....x x x x9 9 9 9 9

Ex. 3. (b) Show that the functions 1, cos (2n9x/T), sin (2n9x/T), n = 1, 2, 3, .... are orthogonal
on the interval –T/2 ! x ! T/2, and find the corresponding orthonormal set.

Sol. Do as in Ex. 3(a).  Ans. + :1/ 2 1/ 21 / , (2 / ) cos (2 / ), (2 / ) sin (2 / ) ,T T n x T T n x T9 9 n = 1, 2, 3, ...
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Orthogonal Sets of Functions and Strum Liouville Problem 15.5

Ex. 4. (a) Show that the functions f1(x) = 1, f2(x) = x are orthogonal on the interval (–1, 1)
and determine the constants A and B so that the function f3(x) = 1 + Ax + Bx2 is orthogonal to
both f1 and f2 on the interval (–1, 1).        [Meerut 2007; Kanpur 2011]

(b) Show that the functions f1(x) = 4 and f2(x) = x3 are orthogonal on the interval (–2, 2) and
determine constants A and B so that the function f3(x) = 1 + Ax + Bx2 is orthogonal to both f1 and f2.

Sol. (a) Here
1 1 12

1 2 11 1
( ) ( ) / 2 0,f x f x dx x dx x

77 7
. /� � �2 3# #

showing that f1(x) and f2(x) are orthgonal on the interval (–1, 1).
If f3(x) is orthogonal to both f1(x) and f2(x) on the interval (–1, 1), then by definition,

1

1 31
( ) ( ) 0f x f x dx

7
�# and

1

2 31
( ) ( ) 0f x f x dx

7
�#

or
1 2

1
(1 ) 0Ax Bx dx

7
5 5 �# and   

1 2

1
(1 ) 0x Ax Bx dx

7
5 5 �#

or
1

2 3

1
0

2 3
A Bx x x

7

. /5 5 �0 12 3
and   

1
2 3 4

1

1 1 1 0
2 3 4

x Ax Bx
7

. /5 5 �0 12 3

or 2 + (2/3)×B = 0 and (2/3)×A = 0    so that    A = 0   and   B = –3.
So f3 is orthogonal to both f1 and f2 if     A = 0     and      B = –3.
(b) Proceed as in part (a). Ans. A = 0 and B = –3/4.
Ex. 5. Given that f1(x) = a0, f2(x) = b0 + b1 x and f3(x) = c0 + c1 x + c2 x

2. Determine the
constants a0 , b0 , c0 , b1, c1 and c2 so that the given functions form an orthonormal set on the
interval –1 ! x ! 1.

Sol. Since f1, f2 and f3 form an orthonormal set on –1 ! x ! 1, we have

(i) 
1

1 21
0f f dx

7
�# (ii) 

1

2 31
0f f dx

7
�# (iii) 

1

3 11
0,f f dx

7
�#

(iv) || f1 || ∗ 0 (v)  || f2 || ∗ 0 (vi)  || f3 || ∗ 0.

Now, (i) 8
11 2

0 0 1 0 0 0 11 1

1( ) 0 0
27 7

. /5 � 8 5 �0 12 3# a b b x dx a b x a b x 8 0 0 1a b �      ...(1)

(ii) 8
1 2

0 1 0 1 21
( ) ( ) 0b b x c c x c x dx

7
5 5 5 �#

or
1

2 3 2 3 4
0 0 0 1 0 2 1 0 1 1 1 2

1

1 1 1 1 1 0
2 3 2 3 4

b c x b c x b c x b c x b c x b c x
7

. /5 5 5 5 5 �0 12 3

or 2b0c0 + (2/3)×b0c2 + (2/3)×b1c1 = 0 or     b0(3c0 + c2) + b1c1 = 0 ...(2)

(iii) 8
11 2 2 3

0 0 1 2 0 0 0 1 0 21 1

1 1( ) 0 0
2 3

a c c x c x dx a c x a c x a c x
7 7

. /5 5 � 8 5 5 �0 12 3#
or 2a0c0 + (2/3)×a0c2 = 0 or          a0(3c0 + c2) = 0 ...(3)

(iv)  8
1/ 21 2 2 1/ 2

0 0 01
0 (2 ) 0 0a dx a a

7

. / ∗ 8 ∗ 8 ∗0 12 3# ...(4)

Now, (1) and (4) give   b0 = 0. ...(5)
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15.6 Orthogonal Sets of Functions and Strum Liouville Problem

Again, since b0 ∗ 0, so by (2), b1c1 = 0 ...(6)

6 (v)  8
1/ 2 1/ 21 12 2 2

0 1 11 1
( ) 0 0,b b x dx b x dx

7 7

. / . /5 ∗ 8 ∗0 1 0 12 3 2 3# #  using (5)

Thus, [(2/3)×b2
1]

1/2 ∗ 0 so that b1 ∗ 0 ...(7)
6 from (6), we get c1 = 0, as   b1 ∗ 0 ...(8)

Finally,  (vi) 8
1/ 21 2 2

0 1 11
( ) 0c c x c x dx

7

. /5 5 ∗0 12 3# 8
1/ 21 2 2

0 21
( ) 0c c x dx

7

. /5 ∗0 12 3# ,

6 + :1/ 212 3 2 5
0 0 2 2 1

(2 / 3) (1/ 5) 0
7

. /5 > 5 > ∗2 3c x c c x c x

or     {2c0
2+ (4/3)×c0c2 + (2/5)×c2

2}1/2 ∗ 0    or     {c0
2 + (2/3)×c0c2 + (1/5)×c2

2}1/2 ∗ 0    ...(9)
From (3) and (5), we get 3c0 + c2 = 0       or     c2 = –3c0 ...(10)
Using (10), (9) can be re–written as
{c0

2 – 2c0
2 + (9/5)×c0

2}1/2 ∗ 0     so that c0 ∗ 0 ...(11)
From (4), (5), (7), (8), (10) and (11), we find that b0 = 0, c1 = 0, c2 = –3c0 and a0, c0 can take

arbitrary real values.
Ex. 6. Show that the functions 1 – x, 1 – 2x + x2/2 and 1 – 3x + 3x2/2 – x3/6 are orthogonal

with respect to e–x on 0 ! x < ≅. Determine the corresponding orthonormal functions.
Sol. Let f1(x) = 1 – x, f2(x) = 1 – 2x + x2/2      and   f3(x) = 1 – 3x + 3x2/2 – x3/6
Here the given weight function = p(x) = e–x.

Now,  2
1 20 0

( ) (1 ) (1 2 / 2)xp x f f dx e x x x dx
≅ ≅ 7� 7 7 5# # = 2 3

0
(1 3 5 / 2 / 2)xe x x x dx

≅ 7 7 5 7#

  =
0 2 3

0 0 0 0

5 13
2 2

x x x xe x dx e x dx e x dx e x dx
≅ ≅ ≅ ≅7 7 7 77 5 7# # # # ...(1)

To evaluate integrals involved in (1), we make use of the following result of Gamma function,

0
!x ne x dx n

≅ 7 �# , if n is a non–negative integer ...(2)

Using (2), (1) 8 1 20
( ) 0! 3 1! (5 / 2) 2! (1/ 2) 3! 1 3 5 3 0p x f f dx

≅
� 7 4 5 4 7 4 � 7 5 7 �#   ...(3)

Next, 2 2 3
2 30 0

( ) (1 2 / 2) (1 3 3 / 2 / 6)xp x f f dx e x x x x x dx
≅ ≅ 7� 7 5 7 5 7# #

= 2 3 4 5

0
(1 5 8 14 /3 13 /12 /12)xe x x x x x dx

≅ 7 7 5 7 5 7# 0! 5 1! 8 2! – (14 / 3) 3! (13/12) 4! (1/12) 5!,� 7 4 5 4 4 5 4 7 4 using (2)

Thus,   2 30
( ) 1 5 16 28 26 10 0p x f f dx

≅
� 7 5 7 5 7 �# ...(4)

Again,  2 3
3 10 0

( ) (1 3 3 / 2 / 6) (1 )xp x f f dx e x x x x dx
≅ ≅ 7� 7 5 7 7# #
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= 2 3 4

0
(1 4 9 / 2 5 /3 /6)xe x x x x dx

≅ 7 7 5 7 5# 0! – 4 1! (9 / 2) 2! – (5 / 3) 3! (1/ 6) 4!,� 4 5 4 4 5 4  using (2)

Thus, 1 30
( ) 1 4 9 10 4 0p x f f dx

≅
� 7 5 7 5 �# ...(5)

From (3), (4) and (5) we find that f1, f2, f3 are orthogonal with respect to weight function
p(x) on 0 ! x < ≅. Also, we have

|| f1 || =
1/ 2

2

0
(1 )xe x dx

≅ 7. /70 12 3# =
1/ 2

2

0
(1 2 )xe x x dx

≅ 7. /7 50 12 3#  = [0! – 2·1! + 2!]1/2 = 1

    || f2 || =
1/ 2

2 2

0
(1 2 /2)xe x x dx

≅ 7. /7 50 12 3#  =
1/ 2

2 3 4

0
(1 4 5 2 / 4)xe x x x x dx

≅ 7. /7 5 7 50 12 3#
1/ 2[0! 4 1! 5 2! – 2 3! (1/ 4) 4!]� 7 4 5 4 4 5 4 = (1 – 4 + 10 – 12 + 6)1/2 = 1

    || f3 || =
1/ 2

2 3 2

0
(1 3 3 / 2 /6)xe x x x dx

≅ 7. /7 5 70 12 3#

=
1/ 2

2 3 4 5 6

0
(1 6 12 28 / 3 13 / 4 / 2 / 36)xe x x x x x x dx

≅ 7. /7 5 7 5 7 50 12 3#
1/2[0! 6 1! 12 2! – (28/ 3) 3! (13/ 4) 4! (1/ 2) 5! (1/36) 6!]� 7 4 5 4 4 5 4 7 4 5 4 = (1 – 6 + 24 – 56 + 78 – 60 + 20)1/2 = 1

Since norm of each of the functions f1, f2 and f3 is unity, it follows that the given set of
functions is an orthonormal set.

Ex. 7. With help of 1, x, x2 construct three functions −0, −1 and −2 which are orthogonal over
–1 ! x ! 1.

Sol. We take −0 (x) = 1 ...(1)
Next, choose        −1 = x + c  −0(x) = x + c ...(2)
Let −1 be orthogonal to −0 so that

1

0 11
0dx

7
− − �# or

1

1
( ) 0x c dx

7
5 �#     or      

1
2

1

1
2

x cx
7

. /50 12 3
= 0

giving c = 0. Hence (2) gives   −1 = x. ...(3)
Next, we take −2 = x2 + c1−0 + c2−1 = x2 + c1 + c2 x ...(4)
Let −2 be orthogonal to both −0 and −1 so that

1

2 01
0dx

7
− − �# and

1

2 11
0dx

7
− − �#

i.e.,
1 2

1 21
( ) 0x c c x dx

7
5 5 �# and

1 2
1 21

( ) 0x c c x x dx
7

5 5 �#
i.e.,

13 2
1 2 1

(1/ 3) (1/ 2) 0
7

. /> 5 5 > �2 3x c x c x   and   
14 2 3

1 2 1
(1/ 4) (1/ 2) (1/ 3) 0

7
. /> 5 > 5 > �2 3x c x c x

i.e., (2/3) + 2c1 = 0       and         c2 × (2/3) = 0        so that c1 = –1/3,        c2 = 0
6 (4) becomes −2(x) = x2 – (1/3).
So the required functions are −0 = 1, −1 = x, −2 = x2 – (1/3).
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15.8 Orthogonal Sets of Functions and Strum Liouville Problem

Ex. 8. With the help of 1, x, x2 construct three functions −0, −1 and −2 which are orthogonal
with respect to e–x over 0 ! x < ≅.

Sol. We take   −0(x) = 1 ...(1)
Next, choose −1 = x + c −0(x) = x + c ...(2)
Let −1 be orthogonal to −0 with respect to e–x. Then, we have

0 0 0
( ) 0 or  0x x xe x c dx e x dx c e dx

≅ ≅ ≅7 7 75 � 5 �# # # ...(3)

We know that
0

!,x ne x dx n
≅ 7 �#    where      n = 0, 1, 2, 3, ..... ...(4)

Using (4), (3) gives 1! + c × 0! = 0       or       1 + c = 0       or        c = –1.
Hence (2) reduces to    −1 = x – 1 ...(5)
Finally, take −2 = x2 + c1−0 + c2−1 = x2 + c1 + c2(x – 1) ...(6)
Let −2 be orthogonal to −0 and −1 with respect to e–x. Then, we have

2 00
0xe dx

≅ 7 − − �#   i.e., 2
2 1 20

( ) 0xe x c x c c dx
≅ 7 5 5 7 �# ...(7)

and 2 10
0xe dx

≅ 7 − − �#   i.e.,             2
2 1 20

( ) ( 1) 0xe x c x c c x dx
≅ 7 5 5 7 7 �#    ...(8)

Using (4), (7) gives 2! + c2 × 1! + (c1 – c2) × 0! = 0
or 2 + c2 + c1 – c2 = 0 so that c1 = –2 ...(9)

Now, by (8), + :3 2
2 1 2 2 10

( 1) ( 2 ) ( ) 0xe x c x c c x c c dx
≅ 7 5 7 5 7 5 7 �#

or 3! + (c2 – 1) × 2! + (c1 – 2c2) × 1! + (c2 – c1) × 0! = 0, using (4)
or 6 + 2(c2 – 1) + c1 – 2c2 + c2 – c1 = 0 so that   c2 = –4.

Since c1 = –2, and  c2 = –4, so (6) gives      −2 = x2 – 4x + 2.
So required functions are  −0(x) = 1,      −1(x) = x – 1      and       −2(x) = x2 – 4x + 2.
Ex. 9. Given the set of functions 1, x, x2, x3, ...,. Obtain from these a set of functions which

are mutually orthonormal in (–1, 1). [Kanpur 2009]
Sol. Let {−n(x)} be the required orthonormal set of function so that

+1

1

0,  if 
1,  if n m

m ndx m n7

∗− − � �# ...(1)

Step 1. Choose f1(x) = 1 and take −1(x) = f1(x)/|| f1(x) ||.

Now, || f1(x) || =
1/ 2 1/ 21 12 2

11 1
( ) 1 2f x dx dx

7 7

. / . /� �0 1 0 12 3 2 3# # . So 1
1( )
2

x− � ...(2)

Step 2. Choose f2(x) = x and take a function   g2(x) = f2(x) + c −1(x) = x + ( / 2)c   ...(3)

Let g2(x) and −1(x) be orthogonal on the interval (–1, 1)

6
1

2 11
( ) ( ) 0g x x dx

7
− �#    or

1

1
( / 2) (1/ 2) 0x c dx

7
5 4 �#

or
12

1
/ 2 / 2 0x cx

7
. /5 �2 3 so that c = 0
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Orthogonal Sets of Functions and Strum Liouville Problem 15.9

Hence, by (3), g2(x) = x

Now, || g2(x) || = Α Β
1/ 2 1/ 2 1/ 21 12 2

21 1

2( )
3

g x dx x dx
7 7

. / . /� �0 1 0 12 3 2 3# #
6 −2(x) = g2(x)/|| g2(x) || = (3/2)1/2·x ...(4)
Step 3. Choose f3(x) = x2 and take a function

    g3(x) = f3(x) + c1 −1(x) + c2 −2(x) = x2 + c1 −1 + c2 −2 ...(5)
Let g3(x) be orthgonal to −1(x) and −2(x) so that

(i) 
1

3 11
( ) ( ) 0g x x dx

7
− �# (ii) 

1

3 21
( ) ( ) 0g x x dx

7
− �#

(i)  8   
1 2

1 1 2 2 11
( ) 0x c c dx

7
5 − 5 − − �#   or

1 1 12 2
1 1 1 2 2 11 1 1

0x dx c dx c dx
7 7 7

− 5 − 5 − − �# # #

or
1 2

1 21
(1/ 2) 1 0 0x dx c c

7
4 5 4 5 4 �# , using (1) and (2)

or (2/3) × (1/ 2)  + c1 = 0 or c1 = Α Β2 / 37 ...(6)

Next, from (ii),
1 2

1 1 2 2 21
( ) 0x c c dx

7
5 − 5 − − �#   or

1 1 12 2
2 1 1 2 2 21 1 1

0x dx c dx c dx
7 7 7

− 5 − − 5 − �# # #

or   
1 2 1/ 2

21
(3/ 2) 0 1 0x x dx c

7
> > 5 5 > �# , using (1) and (4)

or
11/ 2 4

21
(3 / 2) / 4 0x c

7
. / 5 �2 3 or c2 = 0

6 (5) gives g3(x) = 2 2( 2 / 3) (1/ 2) (3 1) / 37 > � 7x x

Now, || g3(x) || =
1/ 2 1/ 21 12 2 2

31 1

1( ) (3 1)
9

g x dx x dx
7 7

. / . /� 70 1 0 12 3 2 3# #

=
1/ 21/ 2 11 4 2 5 3

1 1

1 1 9 2 2(9 6 1) 2
9 3 5 3 5

x x dx x x x
7 7

∃ %? ?. / . /7 5 � 7 5 �& ∋0 1 0 12 32 3 ? ?( )
#

6 −3(x) = g3(x)/|| g3(x) || = (1/2) × (5/2)1/2 × (3x2 – 1) ...(7)
Proceeding like wise, we obtain

−4(x) = Α Β1/ 2 37 5 3
2 2

x xΧ ∆74 Ε Φ
Γ Η

, −5(x) = Α Β1/ 2 4 29 5 30 3.
2 8

x xΧ ∆7 5
Ε Φ
Γ Η

...(8)

and so on. The required orthonormal set of functions {−n(x)} is given by (2), (4), (7), (8) and so on.

EXERCISE 15(A)
1. Show that the functions sin x, sin 2x, sin 3x, ... are orthogonal on the interval (0, 9).
2. Show that the functions 1, cos 2x, cos 4x, cos 6x, ... are orthogonal on interval 0 ! x ! 9,

and find the corresponding orthonormal set. Ans. {1/ 9 , (2/9)1/2 cos 2nx}, n = 1, 2, 3, ...
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15.10 Orthogonal Sets of Functions and Strum Liouville Problem

3. Show that the functions sin 9x, sin 29x, sin 39x, ... form an orthogonal set on the interval
–1 ! x < 1 and obtain the corresponding orthonormal set.

Ans. sin 9x, sin 29x, sin 39x, ... i.e., the given set itself.
4. Show that the functions 1, cos 9x, sin 9x, cos 29x, sin 29x, ... form an orthogonal set on

–2 ! x ! 2 and find the corresponding orthonormal set.
Ans. 1/2, (cos 9x)/2, (sin 9x)/2, (cos 29x)/2, (sin 29x)/2, ...

5. Show that each of the following set is orthogonal on the given interval and find the
corresponding orthonormal sets :
(i) 1, cos (29x/c), cos (49x/c), cos (69x/c), ..., 0 !x ! c Ans. 1 / 2{1 / , (2 / ) cos (2 / )}c c n x c9 , n= 1, 2, 3, ...

(ii) 1, cos 2x, sin 2x, cos 4x, sin 4x, ..., –9/2 ! x ! 9/2 Ans. 1/ 9 , (2/9)1/2 cos 2x, (2/9)1/2 sin 2x, ...
15.10. Strum–Liouville equation. Strum–Liouville problem. Eigen (or characteristic)
functions and eigen (or characteristic) values.

[Meerut 2010; Ravishankar 1998; Himanchal 2010]
Definitions. A differential equation of the form   [r(x) yΙ]Ι + [q(x) + ϑ p(x)]y = 0 ... (1)

is known as Strum–Liouville equation.
We assume that the functions p, q, r and rΙ in (1) are continuous in a ! x ! b and p(x) > 0.

Here ϑ is a parameter independent of x.
Equation (1) is considered on some interval a ! x ! b, satisfying boundary conditions at the

two end points a and b,
a1 y(a) + a2 yΙ(a) = 0 and b1 y(b) + b2 yΙ(b) = 0  ...(2)

with the real constants a1, a2, b1, b2. Suppose that a1, a2 in (2) are not both zero and so are b1, b2.
The boundary value problem consisting of (1) and (2) is called a Strum–Liouville problem.

Clearly y = 0 is always a solution of Strum–Liouville problem for any value of the parameter
ϑ. y = 0 known as a trivial solution is of no practical use. The non–zero solutions of the Strum–
Liouville problem given by (1) and (2) are called the eigenfunctions of the problem and the values
of ϑ for which such solutions exist, are called eigenvalues of the problem.

Remark. A special case of (1) and (2). Let p = r = 1 and q = 0 in (1). Also, let a1 = b1 = 1
and a2 = b2 = 0 in (2). Then (1) and (2) reduce to yΙΙ + ϑy = 0 with y(a) = 0, y(b) = 0. This is the
simplest form of Strum–Liouville problem.
15.11. Orthogonality of eigenfunctions

Theorem. Suppose that the functions p(x), q(x), r(x) and rΙ(x) in the Strum–Liouville equation
[r(x) yΙ]Ι + {q(x) + ϑp(x)}y = 0 are real valued and continuous and p(x) > 0 on the interval
a ! x ! b. Let ym(x) and yn(x) be eigenfunctions of the Strum–Liouville problem (given by the
above Strum Liouville equation and boundary conditions a1 y(a) + a2 yΙ(a) = 0 and b1 y(b)
+ b2 yΙ(b) = 0) that correspond to different eigenvalues ϑm and ϑn respectively. Then ym, yn are
orthogonal on that interval with respect to the weight function p(x).

Prove that eigenfunctions corresponding to different eigenvalues are orthogonal with respect
to some weight function. [Himanchal 2009]

Proof. Consider the following Strum–Lioville problem :
[r(x) yΙ]Ι + [q(x) + ϑ p(x)]y = 0 ...(1)

 a1 y(a) + a2 yΙ(a) = 0 ...(2a)
 b1 y(b) + b2 yΙ(b) = 0, ...(2b)

where p, q, r and rΙ are real valued and continuous and p(x) > 0 on a ! x ! b. Let a1, a2 in (2a) be
given constants, not both zero and so be b1, b2 in (2b).

Let ym and yn be eigenfunctions of the above Strum–Liouville problem that correspond to
different eigenvalues ϑm and ϑn. Then, by definition of eigen functions, ym and yn both satisfy (1).
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Orthogonal Sets of Functions and Strum Liouville Problem 15.11

Hence (ryΙm)Ι + (q + ϑm p) ym = 0 ...(3)
and (ryΙn)Ι + (q + ϑn p) yn = 0 ...(4)

Multiplying (3) by yn and (4) by ym and subtracting, we get
(ryΙm)Ι yn – (ryΙn)Ι ym + (ϑm – ϑn)p ymyn = 0    or  (ϑm – ϑn)p ymyn = (ryΙn)Ι ym – (ryΙm)Ι yn

or (ϑm – ϑn)p ymyn = {( ) ( ) },n m m n
d ry y ry y
dx

Ι Ι7 ...(5)

which can be verified by performing the indicated differentiation of the expression in brackets on
R.H.S. of (5). Since r(x) and rΙ(x) are continuous by assumption and ym, yn are solutions of (1), it
follows that the expression within brackets on R.H.S. of (5) is continuous on a ! x ! b. Integrating
both sides of (5) over x from a to b, we thus obtain

( )
b

m n m na
p y y dxϑ 7 ϑ # = ( ) b

n m m n ar y y y yΙ Ι7. /2 3

or   ( )
b

m n m na
p y y dxϑ 7 ϑ # = r(b) {yΙn(b) ym(b) – yΙm(b) yn(b)}– r(a) {yΙn(a) ym(a) – yΙm(a) yn(a)} ...(6)

We now have to consider several cases depending on whether r(x) vanishes or does not
vanish at a or b.

Case I. Let r(a) = r(b) = 0. Then (6) reduces to   ( ) 0
b

m n m na
p y y dxϑ 7 ϑ �# ...(7)

Cae II. Let r(b) = 0 but r(a) ∗ 0. Then (6) reduces to

( ) ( ){ ( ) ( ) ( ) ( )}
b

m n m n n m m na
p y y dx r a y a y a y a y aΙ Ιϑ 7 ϑ � 7 7# ...(8)

Since ym and yn both satisfy (2a), we have
a1 ym(a) + a2 yΙm(a) = 0 ...(9)

and  a1 yn(a) + a2 yΙn(a) = 0 ...(10)
Let a2 ∗ 0. Multiplying (10) by ym(a) and (9) by yn(a) and then subtracting, we get

a2{yΙn(a) ym(a) – yΙm(a) yn(a)} = 0
Since   a2 ∗ 0,  so   yΙn(a) ym(a) – yΙm(a) yn(a) = 0 ...(11)
Using (11), (8) reduces to (7). If a2 = 0, then let a1 ∗ 0. Now, multiplying (9) by yΙn(a) and

(10) by yΙm(a) and then subtracting, we get
a1{yΙn(a) ym(a) – yΙm(a) yn(a)} = 0

Since   a1 ∗ 0, so       yΙn(a) ym(a) – yΙm(a) yn(a) = 0
Hence as before (8) reduces to (7).
Case III. Let r(a) = 0 but r(b) ∗ 0. Then (6) reduces to

( ) ( ){ ( ) ( ) ( ) ( )}
b

m n m n n m m na
p y y dx r b y b y b y b y bΙ Ιϑ 7 ϑ � 7# ...(12)

Since ym and yn both satisfy (2b), we have
b1 ym(b) + b2 yΙm(b) = 0 ...(13)

and  b1 yn(b) + b2 yΙn(b) = 0 ...(14)
Let b2 ∗ 0. Multiplying (14) by ym(b) and (13) by yn(b) and then subtracting, we get

                  b2{yΙn(b) ym(b) – yΙm(b) yn(b)} = 0
Since b2 ∗ 0, so yΙn(b) ym(b) – yΙm(b) yn(b) = 0 ...(15)
Using (15), (12) reduces to (7). If b2 = 0, then let b1 ∗ 0. Now, multiplying (13) by yΙn(b) and

(14) by yΙm(b) and then subtracting, we get
b1{yΙn(b) ym(b) – yΙm(b) yn(b)} = 0
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15.12 Orthogonal Sets of Functions and Strum Liouville Problem

Since b1 ∗ 0, so       yΙn(b) ym(b) – yΙm(b) yn(b) = 0
Hence, as before, (12) reduces to (7).
Case IV. Let r(a) ∗ 0 and r(b) ∗ 0. There is no loss of generality by assuming that a2 ∗ 0 and

b2 ∗ 0. Then, proceeding as in cases II and III, relations (11) and (15) can be proved. Then, using
(11) and (15), (6) reduces to (7).

Case V. Let r(a) = r(b). Proceed as in case IV to show that (6) reduces to (7).
From the above discussion, we see that in all situations, we get (7). Since ϑm and ϑn are

different, (7) reduces to         ( ) ( ) ( ) 0,
b

m na
p x y x y x dx �#

showing that ym(x) and yn(x) are orthogonal with respect to weight function p(x).
15.12. Reality of eigenvalues [Meerut 2010; Purvanchal 2005; Lucknow 2010]

Theorem. To prove that all eigenvalues of Strum Liouville problem are real.
Proof. Consider the following Strum–Liouville problem :

[r(x) yΙ]Ι + [q(x) + ϑ p(x)]y = 0 ...(1)
            a1 y(a) + a2 yΙ(a) = 0 ...(2a)
             b1 y(b) + b2 yΙ(b) = 0, ...(2b)

where p, q, r and rΙ are real valued and continuous and p(x) > 0 on a ! x ! b. Let a1, a2 in (2a) be
given constants, not both zero, and so be b1, b2 in (2b).

Let y(x) be an eigenfunction corresponding to an eigenvalue ϑ = Κ + iΛ, where Κ, Λ are real
constants. This eigenfunction y(x) satisfies (1), (2a) and (2b) and may be a complex valued function.

Taking the complex conjugates of all the terms in (1), (2a) and (2b), we get

[r(x) y Ι ]Ι + [q(x) + ϑ p(x)] y = 0 ...(3)

              a1 y (a) + a2 y Ι (a) = 0 ...(4a)

   b1 y (b) + b2 y Ι (b) = 0 ...(4b)

The above equations (3), (4a) and (4b) show that ( )y x  is the eigenfunction corresponding to

the eigenvalue ϑ  = Κ – iΛ. Multiplying (1) by y  and (3) by y and subtracting, we get

( ) ( ) 0r y y r y p y yy
ΙΧ ∆Ι7 5 ϑ 7 ϑ �Ι Ι Ε ΦΓ Η or ( )ϑ 7 ϑ p y y = Α Β ( )Ι 7Ι Ι Ιr y y r y y

or      ( )ϑ 7 ϑ p y y = {( ) ( ) }7Ι Ιd r y y r y y
dx , ...(5)

which can be verified by performing the indicated differentiation of the expression in brackets on
R.H.S. of (5). Integrating both sides of (5) w.r.t. ‘x’ from a to b, we thus obtain

( )ϑ 7 ϑ #
b

a
p y y dx = [ ( )]7Ι Ι b

ar y y y y

or ( )ϑ 7 ϑ #
b

a
p y y dx = ( ){ ( ) ( ) ( ) ( )}7Ι Ιr b y b y b y b y b ( ){ ( ) ( ) ( ) ( )}r a y a y a y a y a7 7Ι Ι      ...(6)

We now have to consider several cases depending on whether r(x) vanishes or does not
vanish at a or b.

Case I. Let r(a) = r(b) = 0. Then (6) reduces to       ( )ϑ 7 ϑ #
b

a
p y y dx = 0 ...(7)
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Case II. Let r(b) = 0 but r(a) ∗ 0. Then (6) reduces to

( )ϑ 7 ϑ #
b

a
p y y dx = ( ){ ( ) ( ) ( ) ( )}7 7Ι Ιr a y a y a y a y a ...(8)

Consider relations (2a) and (4a). Let a2 ∗ 0. Multiplying (4a) by y(a) and (2a) by ( )y a  and

then subtracting, we get 2{ ( ) ( ) ( ) ( )}a y a y a y a y a7Ι Ι = 0

Since a2 ∗ 0, so ( ) ( ) ( ) ( ) 0y a y a y a y a7 �Ι Ι . ...(9)
Using (9), (8) reduces to (7). If a2 = 0, then assume that a1 ∗ 0. Now, multiplying (2a)

by ( )y aΙ  and (4a) by ( )Ιy a  and then subtracting, we get

1{ ( ) ( ) ( ) ( )} 0a y a y a y a y a7 �Ι Ι

Since a1 ∗ 0, so      ( ) ( ) ( ) ( ) 07 �Ι Ιy a y a y a y a
Hence as before (8) reduces to (7).
Case III. Let r(a) = 0 but r(b) ∗ 0. Then (6) reduces to

( ) ( ){ ( ) ( ) ( ) ( )}ϑ 7 ϑ � 7Ι Ι#
b

a
p y y dx r b y b y b y b y b ...(10)

Consider relations (2b) and (4b). Let b2 ∗ 0. Multiplying (4b) by y(b) and (2b) by ( )y b  and

then subtracting, we get      2{ ( ) ( ) ( ) ( )} 0b y b y b y b y b7 �Ι Ι .

Since b2 ∗ 0, so ( ) ( ) ( ) ( ) 0y b y b y b y b7 �Ι Ι ...(11)
Using (11), (10) reduces to (7). If b2 = 0, then assume that b1 ∗ 0. Now, multiplying (2b)

by ( )y bΙ  and (4b) by yΙ(b) and then subtracting, we get

1{ ( ) ( ) ( ) ( )} 0b y b y b y b y b7 �Ι Ι

Since b1 ∗ 0, so     ( ) ( ) ( ) ( ) 0y b y b y b y b7 �Ι Ι

Hence as before (10) reduces to (7).
Case IV. Let r(a) ∗ 0 and r(b) ∗ 0. There is no loss of generality by assuming that a2 ∗ 0 and

b2 ∗ 0. Then proceeding as in cases II and III, relations (9) and (11) can be proved. Then, using (9)
and (11), (6) reduces to (7).

Case V. Let r(a) = r(b). Proceed as in case IV to show that (6) reduces to (7).
From the above discussion, we see that in all situations we get (7).

Now,   ϑ = Κ + iΛ 8 ϑ  = Κ – iΛ and    hence ϑ – ϑ  = (Κ + iΛ) – (Κ – iΛ) = 2iΛ.

Again y y  = |y|2, where |y| stands for modulus of y. Then, (7) reduces to

22 ( ) | ( ) | 0Λ �#
b

a
i p x y x dx or     2( ) | ( ) | 0

b

a
p x y x dxΛ �# ...(12)

Since 2( ) | ( ) |
b

a
p x y x dx#  has a positive value in the given interval a ! x ! b, (12) reduces to

Λ = 0 and hence ϑ � Κ 5 ΜΛ � ΚΝ  which is real. Since ϑ is an arbitrary eigenvalue, it follows that
eigenvalues of Strum–Liouville problem are all real.
15.13. SOLVED EXAMPLES

Ex. 1. Find the eigenvalues and the corresponding eigenfunctions of  X ΙΙ + ϑX = 0,
X(0) = 0 and X Ι(L) = 0.      [Himanchal 2009; Jiwaji 2004; Meerut 2006; Ravishakar 2005]
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15.14 Orthogonal Sets of Functions and Strum Liouville Problem

Sol. Given X ΙΙ + ϑX = 0 ...(1)
with boundary conditions X(0) = 0 and X Ι(L) = 0   ...(2)

Case I. Let ϑ = 0. Then solution of (1) is X(x) = Ax + B. ...(3)
From (3), X Ι(x) = A ...(4)
Replacing x by 0 in (3) and using (2), we get B = 0. Again, replacing x by L in (4) and using

(2), we get A = 0. With A = 0, B = 0, (3) reduces to X(x) = 0. Since X(x) ∗ 0, so there is no eigen
function corresponding to ϑ = 0.

Case II. Let ϑ = – Ο2, where Ο ∗ 0 (i.e., ϑ is negative). So (1) gives X ΙΙ – Ο2X = 0
whose solution is X(x) = AeΟx + Be–Οx ...(5)

From (5), X Ι(x) = AΟeΟx – BΟe–Οx ...(6)
Using (2), (5) and (6) reduces to
0 = A + B and          AΟeΟL – BΟe–ΟL = 0   ...(7)
Solving (7), we find A = B = 0. Hence (5) gives X(x) = 0. Since X(x) ∗ 0, so there is no eigen

function corresponding to ϑ = –Ο2.
Case III. Let ϑ = Ο2 where Ο ∗ 0 (i.e., ϑ is positive). So (1) gives X ΙΙ + Ο2X = 0

whose solution is X(x) = A cos Οx + B sin Οx ...(8)
From (8), X Ι(x) = –AΟ sin Οx + BΟ cos Οx ...(9)
Using (2), (8) and (9) reduce to 0 = A and      0 = BΟ cos ΟL
Thus   A = 0         and                   B cos ΟL = 0, as  Ο ∗ 0 ...(10)
Now consider              B cos ΟL = 0 ...(11)
If B = 0, then with A = 0, (8) reduces to X(x) = 0, which is not an eigen function. So B ∗ 0 for

the existence of eigen functions. Since B ∗ 0, (11) gives
cos ΟL = 0 so that          ΟL = (2n – 1)9/2, n = 1, 2, 3, ...

6           Ο = (2n – 1)9/2L ...(12)
Using A = 0 and (12), (8) reduces to   X(x) = B sin {(2n – 1)9/2L}, n = 1, 2, 3, ...

and then ϑ = Ο2 = (2n – 1)292/4L2, n = 1, 2, 3, ...
So required eigenfunctions Xn(x) with corresponding eigenvalues ϑn are

Xn(x) = Bn sin {(2n – 1)9/2L}, and ϑn = (2n – 1)292/4L2, n = 1, 2, 3, ...
Note. We can take Bn = 1 while writing eigenfunctions.
Ex. 2. Find the eigenvalues and eigenfunctions of the Strum–Liouville problem

X ΙΙ + ϑX = 0, X Ι(0) = 0, X Ι(L) = 0. (Kanpur 2009; Meerut 1995)
Sol. Given X ΙΙ + ϑX = 0 ...(1)

with boundary conditions X Ι(0) = 0 and X Ι(L) = 0  ...(2)
Case I. Let ϑ = 0. Then solution of (1) is  X(x) = Ax + B ...(3)
From (3), X Ι(x) = A ...(4)
Using (2), (4) gives     0 = A and 0 = A
These gives A = 0, while B is arbitrary. Hence (3) reduces to X(x) = B which is non–zero.

Hence taking B = 1, X(x) = 1 is an eigenfunction with ϑ = 0 as the corresponding eigenvalue.
Case II. Let X = –Ο2, where Ο ∗ 0. Then (11) reduces to XΙΙ – Ο2X = 0 whose solution is

X (x) = AeΟx + Be–Οx ...(5)
From (5), X Ι(x) = AΟeΟx – BΟe–Οx ...(6)
Using (2), (6) reduces to  0 = AΟ – BΟ and AΟeΟL – BΟe–ΟL = 0

i.e., A – B = 0 and            AeΟL – Be–ΟL = 0, as Ο ∗ 0.
Solving these equations, A = B = 0. So (5) gives X(x) = 0, which is not an eigenfunction.
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Case III. Let ϑ = Ο2, where Ο ∗ 0. Then (1) reduces to X ΙΙ + Ο2X = 0 whose solution is
X(x) = A cos Οx + B sin Οx ...(7)

From (7), X Ι(x) = –AΟ sin Οx + BΟ cos Οx ...(8)
Using (2), (8) reduces to 0 = BΟ and 0 = –AΟ sin ΟL + BΟ cos ΟL

i.e.,    B = 0 and A sin ΟL = 0,   as     Ο ∗ 0 ...(9)
We now consider A sin ΟL = 0. ...(10)
If A = 0, then with B = 0, (8) reduces to X(x) = 0, which is not an eigenfunction. So we take A

∗ 0 for the existence of eigenfunctions. Since A ∗ 0, (10) reduce to
sin ΟL = 0        so that ΟL = n9, n = 1, 2, 3, ...

6 Ο = (n9/L), n = 1, 2, 3, ... ...(11)
(n = 0 is omited as n = 0 8 Ο = 0 which is contrary to our assumption Ο ∗ 0).

Using B = 0 and (11), (7) reduces to X(x) = A cos (n9x/L), n = 1, 2, 3, ...
and then ϑ = Ο2 = n292/L2, n = 1, 2, 3, ...

Hence the required eigenfunctions Xn(x) with the corresponding eigenvalues ϑn are given by
(taking A = 1). Xn(x) = cos (n9x/L), ϑn = n292/L2, n = 0, 1, 2, 3, ...

Ex. 3. Find all the eigenvalues and eigenfunctions of the Strum–Liouville problem yΙΙ + ϑy
= 0 with y(0) + yΙ(0) = 0 and y(1) + yΙ(1) = 0.

Sol. Given  yΙΙ + ϑy = 0 ...(1)
with boundary conditions   y(0) + yΙ(0) = 0 ...(2)

6 y(1) + yΙ(1) = 0 ...(3)
Case I. Let ϑ = 0. Then solution of (1) is y(x) = Ax + B ...(4)
From (4), yΙ(x) = A ...(5)
From (4) and (5), y(0) = B, yΙ(0) = A. With these values, (2) gives

B + A = 0 ...(6)
From (4) and (5), y(1) = A + B and yΙ(1) = A. With these values (3) gives

2A + B = 0 ...(7)
Solving (6) and (7), A = B = 0. Hence (4) reduces to X(x) = 0, which is not an eigenfunction

and so ϑ =0 is not an eigenvalue.
Case II. Let ϑ = –Ο2, where Ο ∗ 0. Then (1) reduces to yΙΙ – Ο2y = 0 whose solution is

y(x) = AeΟx + Be–Οx ...(8)
From (8), yΙ(x) = AΟeΟx – BΟe–Οx ...(9)
From (8) and (9), y(0) = A + B and yΙ(0) = Ο(A – B) ...(10)
Using (10), (2) reduces to A + B + Ο(A – B) = 0

i.e., A(1 + Ο) + B(1 – Ο) = 0 ...(11)
Again, from (8) and (9), we have

y(1) = AeΟ + Be–Ο and yΙ(1) = Ο(AeΟ – Be–Ο) ...(12)
Using (12), (3) reduces to           AeΟ + Be–Ο + Ο(AeΟ – Be–Ο) = 0

i.e., AeΟ(1 + Ο) + Be–Ο(1 – Ο) = 0 ...(13)
We now use the theory of determinants for solving (11) and (13). For non–trivial solution of

these equations, we must have

1 1 0(1 ) (1 )e eΟ 7Ο
5 Ο 7 Ο

�
5 Ο 7 Ο

8 (1 + Ο) (1 – Ο) (e–Ο – eΟ) = 0,    giving    Ο = –1 and Ο = 1.

When Ο = –1, (11) and (13) give B = 0, while A will be arbitrary. So (8) reduces to y(x)
= Ae–x and the corresponding eigenvalue is given by ϑ = –Ο2 = –(–1)2 = –1.
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Next when Ο = 1, (11) and (13) give A = 0, while B will be arbitrary. So (8) reduces to y(x) = Be–

x and the corresponding eigenvalue is given by     ϑ = –Ο2 = –12 = –1.
Taking A = B = 1, y(x) = e–x is an eigen function and ϑ = –1 is the corresponding eigenvalue.
Case III. Let ϑ = Ο2, where Ο ∗ 0. Then (1) reduces to yΙΙ + Ο2y = 0 whose solution is

y(x) = A cos Οx + B sin Οx. ...(14)
From (14), yΙ(x) = –AΟ sin Οx + BΟ cos Οx ...(15)
From (14) and (15), y(0) = A and yΙ(0) = BΟ. ...(16)
Using (16), (2) reduces to         A + BΟ = 0 ...(17)
Again, from (14) and (15), we have
y(1) = A cos Ο + B sin Ο and yΙ(1) = –AΟ sin Ο + BΟ cos Ο ...(18)
Using (18), (3) reduces to        A cos Ο + B sin Ο – AΟ sin Ο + BΟ cos Ο = 0. ...(19)
From (17), A=–BΟ. With this value of A, (19) gives

–BΟ cos Ο + B sin Ο + BΟ2 sin Ο + BΟ cos Ο= 0
or B(1 + Ο2) sin Ο = 0        or     B sin Ο = 0, as (Ο2 + 1) ∗ 0. ...(20)

If B = 0, then (17) gives A = 0. Hence (14) reduces to y(x) = 0, which is not an eigen function.
So take B ∗ 0. Then (20) gives

sin Ο = 0 so that Ο = n9, n = 1, 2, 3, ... ...(21)
(Here we omit n= 0, for n = 0 gives Ο= 0 so that ϑ= Ο2 = 0 which has been considered in case I)
Using A = –BΟ = –Bn9 and (21), (14) reduces to
y(x) = B(sin n9x – n9 cos n9x) n = 1, 2, 3, ...   and then   ϑ = Ο2 = n292, n = 1, 2, 3, ...
Hence the required eigenfunctions yn(x) with the corresponding eigenvalues ϑn are given by

(taking B = 1)       yn(x) = sin n9x – n9 cos n9x, n = 1, 2, 3, ... and ϑn = n292, n = 1, 2, 3, ...
Ex. 4. Find all the eigenvalues and eigenfunctions of  4(e–xyΙ)Ι + (1 + ϑ)e–x y = 0,

y(0) = 0, y(1) = 0.
Sol. Re–writing the given equation, we have
4(e–xyΠ – e–xyΙ) + (1 + ϑ)e–xy = 0        or         4yΠ – 4yΙ + (1 + ϑ)y = 0 ...(1)
Also, given y(0) = 0 and        y(1) = 0 ...(2)
Case I. Let ϑ = 0. Then (1) reduces to

4yΙΙ – 4yΙ + y = 0 i.e., (4D2 – 4D + 1)y = 0, where   D = d/dx. ...(3)
Here auxiliary equation is 4D2 – 4D + 1 = 0 i.e., (2D – 1)2 = 0. This gives D = 1/2, 1/2.
Hence solution of (3) is y(x) = (A + Bx)ex/2  ...(4)
Using (2), (4) reduces to 0 = A and 0 = (A + B)e1/2

These give A = B = 0. So (4) reduces to y(x) = 0, which is not an eigenfunction.
Case II. Let ϑ = –Ο2 where Ο ∗ 0. Then (1) reduces to

4yΙΙ – 4yΙ + (1 – Ο2)y = 0 i.e., (4D2 – 4D + 1 – Ο2)y = 0. ...(5)
Here auxiliary equation is 4D2 – 4D + 1 – Ο2 = 0  giving

2 1/ 2[4 {16 –16(1– )} ] 8 1/ 2 / 2D µ µ� Θ � Θ

Hence solution of (5) is y = Ae(1/2 + Ο/2)x + Be(1/2 – Ο/2)x ...(6)
Using (2), (6) reduces to 0 = A + B,       0 = Ae1/2 + Ο/2 + Be1/2 – Ο/2

These give A = B = 0. So (6) reduces to y(x) = 0, which is not an eigenfunction.
Case III. Let ϑ = Ο2, where Ο ∗ 0. Then (1) reduces to

4yΙΙ – 4yΙ + (1 + Ο2)y = 0 i.e.,      (4D2 – 4D + 1 + Ο2)y = 0 ...(7)
Here auxiliary equation is 4D2 – 4D + 1 + Ο2 = 0
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giving 2 1/ 2[4 {16 16(1 )} ]/8 1/ 2 ( / 2)D i� Θ 7 5 Ο � Θ Ο

Hence solution of (7) is given by y(x) = ex/2{A cos (Οx/2) + B sin (Οx/2)} ...(8)
Using (2), (8) reduces to

0 = A      and     0 = e1/2{cos (Ο/2) + B sin (Ο/2)}       i.e.,     A = 0  and  B sin (Ο/2) = 0  ...(9)
Consider         B sin (Ο/2) = 0 ...(10)
If B = 0, then with A = 0, (8) reduces to y(x) = 0, which is not an eigen function. So we take

B ∗ 0 for the existence of eigen function. As B ∗ 0, (10) gives
sin (Ο/2) = 0       so that        Ο/2 = n9       or      Ο = 2n9, n = 1, 2, 3, ...  ...(11)
(n = 0 is not being considered here as n = 0 8 Ο = 0 which is contrary to our assumption.)
Using A = 0 and (11), (8) reduces to

y(x) = Bex/2 sin n9x and ϑ = Ο2 = 4n292, n = 1, 2, 3, ....
Hence the required eigenfunctions yn(x) with the corresponding eigenvalues ϑn are given by

(taking B = 1) yn(x) = ex/2 sin n9x, ϑn = 4n292, n = 1, 2, 3, ...
Ex. 5. For the eigen–value problem given below, obtain the set of orthogonal eigenfunctions

in the interval (0, 2c) : X ΙΙ + ϑX = 0, X(0) = X(2c), X Ι(0) = X Ι(2c).
Sol. Given X ΙΙ + ϑX = 0 ...(1)

with boundary conditions X(0) = X(2c) ...(2)
and X Ι(0) = X Ι(2c) ...(3)

Case I. Let ϑ = 0. Then solution of (1) is X(x) = Ax + B ...(4)
From (4), X Ι(x) = A ...(5)
From (4), X(0) = B and X(2c) = 2cA + B. So (2) reduces to

B = 2cA + B and hence A = 0.
Next, from (5), XΙ(0) = X Ι(2c) = A. So (3) gives A = A.
Hence corresponding to the eigen value ϑ = 0, the eigenfunction is

X(x) = B or          X(x) = 1,                   taking B = 1.
Case II. Let ϑ = –Ο2, where Ο ∗ 0. Then (1) becomes X ΙΙ – Ο2X = 0 whose solution is

 X(x) = AeΟx + Be–Οx ...(6)
From (6), X Ι(x) = AΟeΟx – BΟe–Οx ...(7)
From (6), X(0) = A + B     and          X Ι(2c) = Ae2Οc + Be–2Οc. So (2) gives
A + B = Ae2Οc + Be–2Οc      or A(1 – e2Οc) + B(1 – e–2Οc) = 0 ...(8)
From (7), XΙ(0) = Ο(A – B) and             X Ι(2c) = Ο(Ae2Οc – Be–2Οc)
6 (3) gives  Ο(A – B) = Ο(Ae2Οc – Be–2Οc) or A(1 – e2Οc) – B(1 – e–2Οc) = 0 ...(9)
Solving (8) and (9), A = B = 0. So (6) reduces to X(x) = 0, which is not an eigen function. So

there is no eigenfunction corresponding to ϑ = –Ο2.
Case III. Let ϑ = Ο2, where Ο ∗ 0. Then (1) becomes X ΙΙ + Ο2X = 0 whose solution is

X(x) = A cos Οx + B sin Οx ...(10)
From (10), X Ι(x) = –AΟ sin Οx + BΟ cos Οx ...(11)
From (10), X(0) = A and       X(2c) = A cos 2Οc + B sin 2Οc
6 (2) gives   A = A cos 2Οc + B sin 2Οc  or     A(1 – cos 2Οc) – B sin 2Οc = 0 ...(12)
From (11), X Ι(0) = BΟ and X Ι(2c) = Ο(–A sin 2Οc + B cos 2Οc)

6 (3) gives BΟ = Ο(–A sin 2Οc + B cos 2Οc) or   A sin 2cΟ + B(1 – cos 2cΟ) = 0   ...(13)
For non–trival solution of (12) and (13), we must have

1 cos 2 sin 2 0sin 2 1 cos 2
c c

c c
7 Ο 7 Ο �Ο 7 Ο
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or (1 – cos 2Οc)2 + sin2 2Οc = 0 or cos 2Οc = 1 = cos 0
6 2Οc = 2n9 or Ο = n9/c, n = 1, 2, 3, ... ...(14)

(n = 0 is omitted here as n = 0 8 Ο = 0, which is contrary to our assumption Ο ∗ 0. )
With this value of Ο, (10) becomes X(x) = A cos (n9x/c) + B sin (n9x/c)  ...(15)

Taking A = 1 and B = 0 in (15), the eigenfunctions are given by X(x) = cos (n9x/c). Again
taking A = 0 and B = 1 in (15), the eigenfunctions are given by  X(x) = sin (n9x/c).

Note that
2 2

0 0
1 cos 0, 1 sin 0

c cn x n xdx dxc c
9 94 � 4 �# # , 

2

0
sin cos 0, for 

c n x m x dx m n
c c
9 9 � ∗#   ... (16)

In view of (16) the required eigenfunctions which are orthogonal on (0, 2c) are given by
{1, cos (n9x/c), sin (n9x/c)}, (n = 1, 2, 3, ...)

Ex. 6. Find the eigenvalues and eigenfunctions of  [xyΙ(x)]Ι + (ϑ/x) y(x) = 0, yΙ(1) = yΙ(e29) = 0
[Kanpur 2009;  Himanchal 2009]

Sol. Re–writing the given equation,    xyΙΙ + yΙ + (ϑ/x)y = 0
or x2yΙΙ + xyΙ + ϑy = 0 i.e., (x2D2 + xD + ϑ)y = 0,     where   D Ρ d/dx   ...(1)

This is a homogeneous differential equation. To solve it, we take
x = ez so that             z = log x   ...(2)

We know that, if  D1 Ρ d/dz Ρ x(d/dx), then  xD = D1    and    x2D2 = D1(D1 – 1)  ...(3)
Using (3), (1) reduces to  {D1(D1 – 1) + D1 + ϑ}y = 0  or (D1

2 + ϑ)y = 0 ...(4)
Also, given that y Ι(1) = 0     and          yΙ(e29) = 0, ...(5)
Case I. Let ϑ = 0. Then solution of (4) i.e., D1

2y = 0 is
y = Az + B or           y = A log x + B, using (2) ...(6)

From (6), yΙ(x) = A/x. ...(7)
Using (5), (7) reduces to 0 = A and         0 = A/e29

These give A = 0, while B may be taken as arbitrary. With these values and taking B = 1, (6)
gives y(x) = 1 as the eigenfunction corresponding to eigenvalue ϑ = 0.
    Case II. Let ϑ = –Ο2, where Ο ∗ 0. Then solution of (4) is
y = AeΟz + Be–Οz = A(ez)Ο + B(ez)–Ο or      y(x) = AxΟ + Bx–ΟΝ   as    x = ez  ...(8)

From (8), yΙ(x) = AΟxΟ – 1 – BΟx–Ο – 1 ...(9)
Using (5), (9) reduces to    0 = AΟ – BΟ and      0 = AΟe29(Ο – 1) – BΟe–29(Ο + 1)

i.e., A – B = 0 and Ae29Ο – Be–29Ο = 0,          as     Ο ∗ 0,
giving A = B = 0. So (8) reduces to y(x) = 0, which is not an eigenfunction.

Case III. Let ϑ = Ο2, where Ο ∗ 0. Then solution of (4) is y = A cos Οz + B sin Οz,
i.e., y(x) = A cos (Ο log x) + B sin (Ο log x), by (2) ...(10)

From (10), yΙ(x) = –(AΟ/x) sin (Ο log x) + (BΟ/x) cos (Ο log x). ...(11)
Using (5), (11) reduces to (noting that log 1 = 0    and     log e29 = 29)

0 = BΟ and 0 = –(AΟ/e29) sin 29Ο + (BΟ/e29) cos 29Ο,
i.e., B = 0 and A sin 29Ο = 0, as Ο ∗ 0.   ...(12)

Consider A sin 29Ο = 0 ...(13)
If A = 0, then with B = 0, (10) reduces to y(x) = 0, which is not an eigenfunction. So we take

A ∗ 0 for the existence of eigenfunctions. Since A ∗ 0, (13) gives
sin 29Ο = 0 so that 29Ο = n9,   n = 1, 2, 3, ...

Thus, Ο = n/2, n = 1, 2, 3, .. ...(14)
n = 0 is not being considered because n = 0 8 Ο = 0 8 ϑ = 0, which has already been

considered in case I. Using B = 0 and (14), (10) reduces to
y(x) = A cos {(n/2) × log x}, with ϑ = Ο2 = n2/4,   n = 1, 2, 3, ....
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So the required eigenfunctions yn(x) (taking A=1) with the corresponding eigenvalues ϑn are
yn(x) = cos {(n/2) × log x}, n = 1, 2, 3, ..., ϑn = n2/4, n = 1, 2, 3, ...;  and y(x) = 1 with ϑ = 0.

Ex. 7. Find all the eigenvalues and eigenfunctions of the Strum–Liouville problem
(x3yΙ)Ι + ϑxy = 0, y(1) = 0, y(e) = 0.

Sol. Re–writing the given equation x3yΙΙ + 3x2yΙ + ϑxy = 0
or x2yΙΙ + 3xyΙ + ϑy = 0    or (x2D2 + 3xD + ϑ)y = 0,   D Ρ d/dx   ...(1)

This is a homogeneous differential equation. To solve it, we take
x = ez         so that z = log x ...(2)

We know that, if  D1 Ρ d/dz Ρ x(d/dx),  then   xD = D1   and    x2D2 = D1(D1 – 1) ...(3)
Using (3), (1) reduces to  {D1(D1 – 1) + 3D1 + ϑ}y = 0  or   (D1

2 + 2D1 + ϑ)y = 0   ...(4)
Also, given that  y(1) = 0 and       y(e) = 0 ...(5)
Case I. Let ϑ = 0. Then (4) reduces to D1(D1 + 2)y = 0 whose solution is

y = Ae0.z + Be–2z     or y(x) = A + B/x2 ...(6)
Putting x = 1 in (6) and using (5),    A + B = 0 ...(7)
Putting x = e in (6) and using (5), A + B/e2 = 0 ...(8)
Solving (7) and (8), we get A = B = 0 and so (6) gives y(x) = 0, which is not an eigenfunction.
Case II. Let ϑ = –Ο2, where µ ∗ 0. Then (4) reduces to (D1

2 + 2D1 – Ο2)y = 0 ...(9)
whose auxiliary equation is       D1

2 + 2D1 – Ο2 = 0
Solving it, D1 = {–2 ± (4 + 4Ο2)1/2}/2 = –1 ± (1 + Ο2)1/2

or D1 = –1 ± k, where k = (1 + Ο2)1/2 ...(10)
Hence solution of (9) is y(x) = Ae(–1 + k)z + Be(–1 – k)z

or y(x) = Ax(–1 + k) + Bx(–1 – k)      or         y(x) = x–1(Axk + B/xk) ...(11)
Putting x = 1 in (11) and using (5), A + B = 0 ...(12)
Putting x = e in (11) and using (5),           Aek – 1 + Be–k – 1 = 0 ...(13)
Solving (12) and (13), we get A = B = 0. Hence (11) gives y(x) = 0, which is not an eigenfunction.
Case III. Let ϑ = Ο2, where Ο ∗ 0. Then (4) reduces to (D1

2 + 2D1 + Ο2)y = 0  ...(14)
whose auxiliary equation is D1

2 + 2D1 + Ο2 = 0 ...(15)
Solving it,      D1 = {–2 ± (4 – 4Ο2)1/2}/2 = –1 ± i(Ο2 – 1)1/2

or D1 = –1 ± ip, where p = (Ο2 – 1)1/2 and Ο2 > 1 ...(16)
Hence solution of (14) is   y(x) = e–z(A cos pz + B sin pz)

i.e., y(x) = (1/x) × {A cos (p log x) + B sin (p log x)} ...(17)
Putting x = 1 in (17) and using (5), we get A = 0.
Putting x = e and A = 0 in (17) and using (5), we get (B/e) sin (p) = 0. But we must take

B ∗ 0 for non–trivial solution (and hence for getting eigenfunction).
6 sin p = 0 so that p = n9 or (Ο2 – 1)1/2 = n9, by (16)

or Ο2 – 1 = n292 or Ο2 = 1 + n292  or ϑ = 1 + n292

Hence the required eigenfunctions are yn(x) = (1/x) × sin (n9 log x) (taking B = 1) and the
corresponding eigenvalues are ϑn = n292, where n = 1, 2, 3, ...

Ex. 8. Find the eigenvalues and the corresponding eigenfunctions of the boundary value
problem : yΙΙ + 2yΙ + (1 + ϑ)y = 0, y(0) = 0, yΙ(a) = 0

Sol. Given (D2 + 2D + 1 + ϑ)y = 0, D Ρ d/dx ...(1)
with y(0) = 0, yΙ(a) = 0 ...(2)

Case I. Let ϑ = 0. Then solution of (1) is y(x) = (A + Bx)e–x ...(3)
From (3), yΙ(x) = Be–x – (A + Bx)e–x ...(4)
Using (2), (3) and (4) reduce to 0 = A and Be–a – (A + Ba)e–a = 0,
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i.e., A = 0   and Be–a(1 – a) = 0. These give A = B = 0.
So (3) reduces to y(x) = 0, which is not an eigenfunction.
Case II. Let ϑ = –Ο2, where Ο ∗ 0. Then (1) reduces to

[D2 + 2D + 1 – Ο2]y = 0 ...(5)
whose auxiliary equation is D2 + 2D + (1 – Ο2) = 0.

This gives D = [–2 ± {4 – 4(1 – Ο2)}1/2]/2 = – 1 ± µ
Hence solution of (5) is y(x) = Ae(–1 + Ο)x + Be–(1 + Ο)x ...(6)

so that yΙ(x) = A(–1 + Ο) e(–1 + Ο)x – B(1 + Ο)e–(1 + Ο)x ...(7)
Using (2), (6) and (7) reduce to

0 = A + B and 0 = A(–1 + Ο) e(–1 + Ο)a – B(1 + Ο)e–(1 + Ο)a,
i.e., A + B = 0 and A(Ο – 1)eΟa – B(Ο + 1)e–Οa = 0.

These give A = B = 0. So (6) reduces to y(x) = 0, which is not an eigenfunction.
Case III. Let ϑ = Ο2, where Ο ∗ 0. Then (1) reduces to

(D2 + 2D + 1 + Ο2)y = 0 ...(8)
whose auxiliary equation is   D2 + 2D + 1 + Ο2 = 0.

This gives D = [–2 ± {4 – 4(1 + Ο2)}1/2]/2 = –1 ± iΟ.
Hence solution of (8) is y(x) = e–x (A cos Οx + B sin Οx) ...(9)
From (9),     yΙ(x) = –e–x (A cos Οx + B sin Οx) + e–x (–AΟ sin Οx + BΟ cos Οx) ...(10)
Using (2), (9) and (10) reduce to
0 = A,            0 = –e–a (A cos Οa + B sin Οa) + Οe–a (–A sin Οa + B cos Οa)
6 A = 0   and      B(Ο cos Οa – sin Οa) = 0 ...(11)
Consider B(Ο cos Οa – sin Οa) = 0 ...(12)
If B = 0, then with A = 0, (9) reduces to y(x) = 0, which is not an eigenfunction. So we take B

∗ 0 for the existence of eigenfunctions. Since B ∗ 0, (12) reduces to
Ο cos Οa – sin Οa = 0 or tan Οa = Ο, ...(13)

which is a trigonometrical equation in Ο. Let Οn (n = 1, 2, 3, ...) be positive roots of (13). With
A = 0, (9) reduces to y(x) = Be–x sin Οx

Hence the required eigenfunctions yn(x) with the corresponding eigenvalues ϑn are given by
(taking B = 1) yn(x) = e–x sin Οn x and ϑn = Οn

2, n = 1, 2, 3, ...,
where Οn (n = 1, 2, 3, ...) are positive roots of (13).

EXERCISE 15(B)
1.  For the Strum–Liouville problem XΠ + ϑX = 0, X(0) = 0, X(9) = 0, obtain the eigenfunctions

and the corresponding eigenvalues. [Nagpur 2005; Bilaspur 2004; Bhopal 2004; Meerut 2005, 11;
Ravishaker 2004; Vikram 2004; Lucknow] Ans. Xn(x) = sin nx, ϑn = n2, n = 1, 2, 3, ...

2. Find all eigenvalues and eigenfunctions of the Strum–Liouville problem X ΙΙ + ϑX = 0,
X(0) = 0, X Ι(9/2) = 0.  [Jabalpur 2004]   Ans. Xn(x) = sin (2n – 1)x, ϑn = (2n – 1)2, n = 1, 2, 3,
...

3. Find all eigenvalues and eigenfunctions of the problem XΙΙ + ϑX = 0, X Ι(–9)= 0, X Ι(9) = 0
Ans. Xn = cos[(n/2) × (9 + x)], n = 0, 1, 2, ..., ϑn = n2/4, n = 1, 2, 3, ...

4. Find the eigenvalues and the corresponding eigenfunctions of the boundary value problem
yΙΙ + ϑy = 0, y(0) + 9 yΙ(0) = 0, y(9) = 0.

Ans. yn(x) = sin Οnx – 9Οn cos Οnx,  ϑn = Οn
2, n = 1, 2, 3, ... where Οn are +ve roots of tan Ο9

= Ο9; y(x) = x – 9 is eigenfunction corresponding to eigenvalue ϑ = 0.
5. Find all the eigenvalues and eigenfunctions of Strum-Liouville problem :
2 0, (0) ( ) 0, 0y y y y l x lΙΙ Ι Ι5 ϑ � � � ! !    [Nagpur 2005]
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Hint. Refer case III of Ex. 2 Art 15.13. Here take X = y, Ο � ϑ  and L = l. Then eigenvalues

/n n l� ϑ � 9  and the corresponding eigenfunctions cos( / ), 1, 2, 3,...ny n x l n� � 9 �

6. Find the eigenvalues and eigenfunctions of the Strum-Liouville problem
0, (0) 0, ( ) 0.y y y yΙΙ Ι Ι5 ϑ � � 9 �         [CDVU 2004; M.D.U. Rohtak 2005]

[Hint : This is a particular case of Ex. 2 of Art 15.13. Here X = y and .L � 9

Ans. Eigenfunctions: ( ) cosny x nx�  and eigenvalues 2 ,n nϑ �  where n = 0, 1, 2, ....]
7. Find the eigenvalues and the corresponding eigenfunctions of the eigen value problem

X ΙΙ + ϑX = 0, X(0) = 0, X(1) – X Ι(1) = 0.
Ans. Xn = sin Οnx, ϑn = Οn

2, n = 1, 2, 3, ... where Οn are positive roots of tan Ο = Ο. Again
X(x) = x is eigen function corresponding to the eigen value ϑ = 0.

8. Find the eigenvalues and eigenfunctions of the Strum Liouville problem yΙΙ + ϑy = 0,
y(0) = y(9) = 0. Ans. ϑn = n2, yn = sin n9, n = 1, 2, ..., ...

9. Solve the Strum–Liouville problem (xX Ι)Ι + ϑ(1/x)X = 0, X Ι(1) = 0, X(b) = 0 (b > 1) and

normalize the eigen functions. Ans. ϑn = (2 1)
2 log

n
b

7 9 , Xn =
(2 1) logcos

2 log
n x

b
7 9∃ %

& ∋
( )

, n = 1, 2, 3, ...

10. Find the eigenvalues and eigenfunctions of 24 4 0, (0) 0, (2) 2 (2) 0.y y y y y yΙΙ Ι Ι Ι7 ϑ 5 ϑ � � 5 �

[Purvanchal 2006]
15.14. Orthogonality of Legendre polynomials

We know that Legendre’s differential equation is      (1 – x2)yΙΙ – 2xyΙ + n(n + 1)y = 0
which can be re–written in the form  [(1 – x2)yΙ]Ι + ϑy = 0, where ϑ = n(n + 1) ...(1)
and is therefore in the form of Strum–Liouville equation  [r(x) yΙ]Ι + [q(x) + ϑ p(x)]y = 0    ...(2)

Comparing (1) with (2), here r(x) = 1 – x2,  q(x) = 0       and p(x) = 1.
Since r(–1) = r(1) = 0, we need no boundary conditions to form a Strum–Liouville problem.

Further, we know that Pn(x) for n = 0, 1, 2, 3, ... are solutions of (1) and so they are eigenfunctions.
Again they have continuous derivatives and hence it follows that Legendre polynomials Pn(x), n =
0, 1, 2, ... are orthogonal on the interval –1 ! x ! 1 with respect to the weight function p(x) = 1,

i.e.,
1

1
( ) ( ) 0m nP x P x dx

7
�# ,  when m ∗ n

Remark. For alternative proof, refer Art. 9.8 of chapter 9.
15.15. Orthogonality of Bessel functions

The Bessel functions Jn(u) with fixed integer n Σ 0 satisfies Bessel’s equation (refer equation
(1) of Art. 11.1 of chapter 11, by taking u as independent variable in place of x)

u2(d2y/du2) + u(dy/du) + (u2 – n2)y = 0

6
2

2 2 2
2
( ) ( )

( ) ( )n n
n

d J u d J uu u u n J u
dudu

5 5 7 = 0 ...(1)

Let      u = ϑx, where ϑ is a constant. ...(2)

Then,
( )nd J u

du =
( ) 1 ( )n

n
d J x dx J x

dx du
ϑ Ι4 � ϑ

ϑ
, using (2) ...(3)

and
2

2
( )nd J u

du
=

( ) ( )n nd J u J xd d
du du du

Ι ϑΧ ∆ Χ ∆�Ε Φ Ε ΦϑΓ Η Γ Η
, by (3)
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 = 2
( ) 1 ( )n

n
J xd dx J x

dx du
Ι ϑΧ ∆ ΙΙ4 � ϑΕ Φϑ ϑΓ Η

, by (2) ...(4)

Using (2), (3) and (4), (1) reduces to

x2
nJ ΙΙ  (ϑx) + x nJ Ι (ϑx) + (ϑ2x2 – n2) Jn(ϑx) = 0

which can be re–written in the form [x nJ Ι (ϑx)]Ι + (–n2/x + ϑ2x) Jn(ϑx) = 0 ...(5)
and is therefore in the form of Strum–Liouville equation for each fixed n

[r(x) yΙ]Ι + [q(x) + ϑ p(x)]y = 0 ...(6)
Comparing (5) with (6), here r(x) = x, q(x) = –n2/x and p(x) = x and the parameter is ϑ2 in place

of ϑ.
Since r(x) = 0 for x = 0, it follows from Art. 15.11 that solutions of (5) on an interval

0 ! x ! a satisfying the boundary condition    Jn(ϑa) = 0, (n fixed)      ...(7)
form an orthogonal set with respect to the weight function p(x) = x.

We know that Jn(u) has infinitely many real zeros, say, u = Κ1 < Κ2 < .... Hence (7) gives
ϑa = Κi and so ϑ = ϑi = Κi/a,     i = 1, 2, 3, ... ...(8)

Further ( )nJ xΙ ϑ  is continuous at x = 0. Hence for each fixed non–negative integer n the
sequence of Bessel functions of the first kind Jn(ϑ1x), Jn(ϑ2x), Jn(ϑ3x), ..., with ϑi as in (8), forms an
orthogonal set on the interval 0 ! x ! a with respect to the weight function p(x) = x, that is

0
( ) ( ) 0

a

n i n jx J x J x dxϑ ϑ �# , for i ∗ j.

Remark. From the above discussion, it follows that we obtain infinitely many orthogonal
sets, each corresponding to one of the fixed values of n.
15.16. Orthogonality on an infinite interval

(i) Orthogonality of Hermite Polynomial Hn(x). Hermite polynomials are orthogonal over

]–≅, ≅[ with respect to the weight function 
2 / 2xe7 , that is,

2 ( ) ( ) 0x
m ne H x H x dx

≅
7

7≅
�# ,  for m ∗ n.

For proof, refer Art. 12.7 of chapter 12.
(ii) Orthogonality of Laguerre’s polynomial Ln(x). Laguerre polynomials are orthogonal

over [0, ≅[ with respect to the weight function e–x, that is,

0
( ) ( ) 0,x

m ne L x L x dx
≅ 7 �#  for m ∗ n.

For proof, refer Art. 13.6 of chapter 13.
15.17. Orthogonal expansion or genralized Fourier series

Let {yn(x)}, n = 0, 1, 2, 3, ... be an orthogonal set of functions with respect to weight function
p(x) on the interval a ! x ! b and f(x) a function that can be represented by a convergent series

f(x) = C0 y0(x) + C1 y1(x) + C2 y2(x) + ... =
0

( )n n
n

C y x
≅

�
Τ ...(1)

This is called an orthogonal expansion or generalised Fourier series. Coefficients C0, C1,
C2, C3, ... are called Fourier Constants. Since {yn(x)} is an orthogonal set with respect to weight
function p(x), we get
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( ) ( ) ( ) 0,
b

n ma
p x y x y x dx �#  when m ∗ n. ...(2)

Again, || yn(x) || = Norm of yn(x) = 2( ) ( )
b

na
p x y x dx# ...(3)

Multiply both sides of (1) by p(x) yn(x) (n fixed). Then integrating over a ! x ! b and assuming
that term–by–term integration is permissible, we get

0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b b

n n na a a
p x f x y x dx C p x y x y x dx C p x y x y x dx� 5# # #

2
1 1 1 1... ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...

b b b

n n n n n n n na a a
C p x y x y x C p x y x dx C p x y x y x dx7 7 5 55 5 5 5# # #

or 2( ) ( ) ( ) || ( ) || ,
b

n n na
p x f x y x dx C y x�#  using (2) and (3)

or Cn = 2
1 ( ) ( ) ( ) ,

|| ( ) ||

b

nan

p x f x y x dx
y x #  n = 0, 1, 2, 3, ... ...(4)

We now discuss two particular cases of the generalised Fourier series.
Particular Case I. Fourier–Legendre Series. We know that the set {Pn(x)}, n = 0, 1, 2, 3,

... of Legendre polynomials is an orthogonal set on the interval –1 ! x ! 1. Hence, we get

f(x) =
0

( )n n
n

C P x
≅

�
Τ , –1 ! x ! 1 ...(i)

where Cn =
1

2 1

1 ( ) ( ) ,
|| ( ) || n

n

f x P x dx
P x 7#  n = 0, 1, 2, ... ...(ii)

But, || Pn(x) ||2 =
1 2

1

2( ) ,
2 1nP x dx

n7
�

5#  by Art 9.8, chapter 9.

So (ii) becomes Cn = Α Β 1

1

1 ( ) ( )
2 nn f x P x dx

7
5 # ...(iii)

Expansion (i) of f(x) in a series of Legendre’s polynomials is known as Fourier–Legendre
series. The constants Cn are given by (iii).

Note : For altenative proof refer, Art. 9.15, of chapter 9.
Particular Case II : Fourier–Bessel series. From Art. 15.15, we know that for a fixed n, the

set of Bessel functions of first kind Jn(ϑ1x), Jn(ϑ2x), Jn(ϑ3x), ..., with ϑi given by
ϑi = Κi/a,   where   i = 1, 2, 3, ...,   (n fixed) ...(i)

form an orthogonal set on the internal 0 ! x ! a with respect to the weight function p(x) = x.

6 f(x) =
1

( )i n i
i

C J x
≅

�

ϑΤ ...(ii)

where Ci = 2 0

1 ( ) ( )
|| ( ) ||

a

n i
n i

x f x J x dx
J x

ϑ
ϑ # ,   i = 1, 2, 3, ... ...(iii)

But, || Jn(ϑix) ||2 =
2

2 2
10

( ) ( )
2

a

n i n i
ax J x dx J a5ϑ � ϑ# , by Art. 11.10
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6 (iii) becomes,    Ci = 2 2 0
1

2 ( ) ( )
( )

a

n i
n i

x f x J x dx
a J a5

ϑ
ϑ # , n = 1, 2, 3, ... ...(iv)

Expansion (ii) of f(x) in a series of Bessel functions is known as Fourier–Bessel series. The
constants Ci are given by (iv).

Note. For alternative proof refer, Art. 11.11, of chapter 11.
Ex. 1. Obtain the formal expansion of the function f(x) = 9x – x2, 0 ! x ! 9, in the series of

orthonormal characteristic functions {−n} of Strun–Liouville problem yΙΙ +ϑy = 0, y(0) = y(9) = 0.
Sol. Proceed as usual to show that −n(x) = (2/9)1/2 sin nx. Then the orthogonal expansion or

generalised Fourier series of f(x) is given by (refer Art. 15.17)

f(x) =
1

( )n n
n

C x
≅

�

−Τ , where Cn =
0

( ) ( )nf x x dx
9

−# , ...(1)

noting that || −n(x) || = 1,    p(x) = 1,    a = 0,    b = 9.

Now, Cn =
2 1/ 2

0
( ) (2 / ) sinx x nx dx

9
9 7 9#

= Α Β Α Β Α Β
1/ 2

2
2 3

0

2 1 1 1( ) cos 2 sin ( 2) cosx x nx x nx nx
n n n

9
. /Χ ∆ Χ ∆9 7 7 7 9 7 7 5 7Ε Φ Ε Φ0 19 Γ Η Γ Η2 3

(By chain rule of integration by parts)

= Α Β1/ 2 1/ 2 3

3
2 2 (2 / ) (4 / ),  if  is odd(1 cos )

0, if  is even
n nn nn

Χ ∆ ∃ 9 >4 7 9 � &Ε Φ9 Γ Η (

Hence the required expansion of f(x) is given by

9x – x2 = Α Β Α Β1/ 2 1/ 2

3
1

2 4 2 sin (2 1) ,
(2 1)n

n x
n

≅

�

4 4 7
9 97Τ       i.e.,        2

3
1

sin (2 1)8
(2 1)n

n xx x
n

≅

�

79 7 �
9 7Τ , 0 ! x ! 9

Ex. 2. Obtain the formal expansion of f(x) = log x, 1 ! x ! e29 in a seies of orthogonal eigen
functions of Strum–Liouville problem [xyΙ]Ι + (l/x)y = 0, y(0) = y(e29) = 0.

Sol. Do as in Ex. 1. Ans. log x = + :2
1

8 1 2 1cos log | |
2(2 1)n

n x
n

≅

�

77
9 7Τ

OBJECTIVE PROBLEMS ON CHAPTER 15
Write (a), (b), (c) or (d) whichever is correct

1. For the Strum-Liouville problem 2 2(1 ) 2 0x y xy x yΙΙ Ι5 5 5 ϑ �  with (1) 0yΙ �  and

(10) 0,yΙ �  the eigenvalues, ,ϑ satisfy
(a) 0ϑ Σ (b) 0ϑ Υ (c) 0ϑ ∗ (d) 0ϑ ! [GATE 2003]

2. Let n be non-negative integer. The eigenvalues of the Strum-Liouville problem 0y yΙΙ 5 ϑ �

with boundary conditions (0) (2 ), (0) (2 )y y y yΙ Ι� 9 � 9  are

(a) n (b) 2 2n 9 (c) n9 (d) n2 [GATE 2002]
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3.The eigenvalues of the Strum-Liouville problem 0,y yΙΙ 5 ϑ � 0 , (0) 0, ( ) 0x y yΙ! ! 9 � 9 �

are (a) n2/4 (b) 2 2(2 1) / 4n 7 9 (c) 2(2 1) / 4n 7 (d) 2 2 / 4n 9 [GATE 2001]

4. The eigenvalues of the boundary value problem 0, (0) 0, ( ) ( ) 0x x x x xΙΙ Ι5 ϑ � � 9 5 9 �

satisfy (a) tan 0ϑ 5 ϑ9 �   (b) tan 0ϑ 5 ϑ9 �

(c) tan 0ϑ 5 ϑ9 �   (d) tan 0.ϑ 5 ϑ9 � [GATE 2000]

ANSWERS
1. (a) 2. (d) 3. (c)        4. (b)

MISCELLANEOUS PROBLEM ON CHAPTER 15
1. Show that the set {1, cos (2n9;T)x, n = 1, 2, 3, ... in orthogonal set of functions on an

interval 0 .x T! ! [Lucknow 2010]
2. Find eigenfunctions of the system uΙΙ + ϑu = 0, – x9 9! ! with the boundary condition

u (– 9) = u (9), uΙ (– 9) = uΙ (9).
Ans. {1, cos nx, sin nx}, n = 1, 2, 3 ....   [Nagpur 2010]

3. Prove that the set of eigenfunctions of strum-Liouville problem ( ) ( ) 0,d dyp x q x
dx dx

∃ % 5 �& ∋
( )

ϑ

y(0) = 0, y(1) = 0, q(x) > 0, form a set of orthogonal functions [Himanchal 2008]
4. Define norm of a function. [Meerut 2011]
Hints. Refer Art. 15.1 and 15.4.
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MISCELLANEOUS PROBLEMS BASED ON THIS PART OF THE BOOK
Ex. 1. The value of Pn (– 1) is
(a) 1 (b) 0   (c) – 1 (d) (–1)n [Agra 2008]
Sol. Ans. (d). Refer part (ii) of Ex. 2, page 9.6
Ex. 2. The value of P0 (x) is
(a) 0 (b) !   (c) 1 (d) None of these       [Agra 2007]
Sol. Ans. (c). Refer Art. 9.2
Ex. 3. Rodrigue’s formula for Pn(x) is

(a) 21( ) ( 1)
2 !

n
n

n n n
dP x x

n dx
� #   (b) 21

( ) ( 1)
2 !

n
n

n n n
d

P x x
n dx

#� #   (c) 21( ) ( 1)
2 !

n
n

n n n
dP x x

n dx
� ∃

(d) None of these [Agra 2007]
Sol. Ans. (a). Refer Art-9.14
Ex. 4. Statement for the following linked questions 14 (i) and 14 (ii).
Let n 3%  be an integer. Let y be the polynomial solution of

                     (1 – x2) y&& – 2xy&  + n(n – 1) y = 0           satisfying        y(1) = 1.
4. (i): Then the degree of y is
(a) n   (b) n – 1   (c) less than n – 1 (d) greater than n + 1

4. (ii): If I =
1 3

1
( ) ny x x dx#

#∋         and        J =
1

1
( ) ,ny x x dx

#∋  then

(a) 0I ( , 0J ( (b) 0, 0I J( � (c) 0, 0I J� ( (d)  I = 0, J = 0 [GATE 2008]
Sol: 4. (i): Ans. (a). Refer Ex. 2 (i), page 9.6
     4. (ii): Ans. (c). Refer Ex. 5, page 9.29
5. Using Rodrigue’s formula, find  value of  P4 (x)  at x = 1. [Kanpur 2008]

[Hint. Do as in Ex. 1, page 9.37 to get 4 2
4 ( ) (35 30 3) /8P x x x� # ∃ and so the value of

4( ) 1�P x at x  is (35 – 30 + 3)/8, i.e. 1.

6. Show that the condition of integrability of (i) Pdx + Qdy + Rdz = 0 implies the orthoganality
of any pair of intersecting curves of the families (ii) (dx)/P =  (dy)/Q = (dz)/R and

(iii) .
/ / / / / /

dx dy dz
Q z R y R x P z P y Q x

� �
) ) # ) ) ) ) #) ) ) ) # ) )

 Hence show that the curves of (iii) all lie

on the surfaces of (i). Verify this conclusion for P = ny – mz, Q = lz – nx, R = mx – ly.     [I.A.S. 2001]
7. If f1, f2, f3 are homogeneous functions of the same degree in x, y and z and if

xf1 + yf2 + zf3 = 0, then show that the equation f1dx + f2dy + f3dz = 0 is integrable.
[Himanchal 2000; Kerla 2001, 07, Pune 2010]

8. If the equation x1 dx1 + x2 dx2 + ..... + xn dxn = 0 has integrating factor, show that it has
infinitely many. If n = 2, prove that the equation always has an integrating factor.

[Himanchal 2002; I.A.S. 2002; Calicut 2004, 05; Osmania 2000, 06; U.P.(P.C.S.) 2003]
  9.  xdx + ydy + zdz = 0 is the first order differential equation of

(a) sphere    (b) ellipsoid    (c) right circular cone   (d) hyperboloid. [I.A.S. (Prel) 2001]
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M.2 Miscellaneous problems based on this part of the book

Sol.  Ans. (a). Integrating the given differential equation, x2/2 + y2/2 + z2/2 = a2/2, where
a2/2 is an arbitrary constant of integration. Thus, we get x2 + y2 + z2 = a2, which is a sphere.

10. Show that 
1

1 1 0 1
0

1
( ; ; ) ( ; ; )

( )
t aF a b z e t F b z t dt

a

!
# #� #

∗ ∋   [Kanpur 2009]

Sol. Using Art. 14.3 for the value of 0F1 (–; b; zt), we get

R.H.S. = 
1

0
0

1 ( )
( ) ( ) !

!! # #

�

+ ,
− .∗ / 0
1∋

r
t a

rr

zt
e t dt

a b r

= 
1

0
0 0

1 1 ( )
( ) ( ) ! ( ) ( ) !

! !! # ∃ #

� �

� ∗ ∃
∗ ∗1 1∋

r r
t a r

r rr r

z z
e t dt a r

a b r a b r

[Using definition of Gamma function 6.2 page 6.1]

= 
0

( )
( ) !

r
r

rr

a z
F

b r

!

�
�1  (a; b; z), using art-14.3

11. Apply the method of Frobenius to the equation xy” + 2y& + xy = 0 to derive its general
solution y = c0 {(cos x)/x} + c1 {(sin x)/x}              [Delhi B.Sc. (Hons.) II 2011, Nagpur 1996]

Sol. Given xy&& + 2y& + xy = 0 ... (1)

Let the series solution of (1) be y =
0

,kem
m

m
c x

!

�
1  where 0 0c ( ... (2)

From (2),            y& = 
1

0
( ) k m

m
m

k m c x
!

∃ #

�

∃1  and y&& = 
2

0
( )( 1) k m

m
m

c k m k m x
!

∃ #

�

∃ ∃ #1 ... (3)

Substituting the values of y, y& and y&& given by (2) and (3) in (1), we get

          
2 1

0 0 0
( )( 1) 2 ( ) 0k m k m k m

m m m
m m m

x c k m k m x c k m x x c x
! ! !

∃ # ∃ # ∃

� � �

∃ ∃ # ∃ ∃ ∃ �1 1 1

or                
1 1 1

0 0 0
( )( 1) 2 ( ) 0k m k m k m

m m m
m m m

c k m k m x c k m x c x
! ! !

∃ # ∃ # ∃ ∃

� � �
∃ ∃ # ∃ ∃ ∃ �1 1 1

or                 
1 1

0 0
( ){( 1) 2} 0k m k m

m m
m m

c k m k m x c x
! !

∃ # ∃ ∃

� �
∃ ∃ # ∃ ∃ �1 1

or                  
1 1

0 0
( ) ( 1) 0k m k m

m m
m m

c k m k m x c x
! !

∃ # ∃ ∃

� �

∃ ∃ ∃ ∃ �1 1 ... (4)

Equating to zero the hcoefficient of the smallest power of x, namely xk–1, the above identity
(4) yields the indicial equation

c0 k (k + 1) = 0        or       k (k + 1) = 0,      as 0 0c (      so that       k = 0 or k = – 1y,,

which are uequal and differ by an integer. Next, equations the coefficient of xk + m–1, we arrive at the
recurrence relation.

2( ) ( 1) 0m mc k m k m c #∃ ∃ ∃ ∃ �    so that 2{1/ ( )( 1)}m mc k m k m c #� # ∃ ∃ ∃ ... (5)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Miscellaneous problems based on this part of the book M.3

Finally, we equate to zero the coefficient of xk in the identity (4) and get

1( 1) ( 2) 0.c k k∃ ∃ � ... (6)
If we take k = –1, (6) shows that c1 is ideterminate. With k = –1 and using (5), we now

proceed to express c2, c4, c6 in terms of c0 and c3, c5, c7, ... in terms of c1 if c1 is assume to be finite.
Setting k = – 1 in (5), we have

cm = –{1/m (m – 1)} cm–2 ... (7)
Putting m = 3, 5, 7, ... in (7) by turn, we obtain

c3 = 1
1

1
,

3 2 3!
c

c# � #
2

c5 = 1
3 1

1 1
5 4 1 2 3 4 5 5!

c
c c# � # �

2 2 2 2 2
 and so on

Putting m = 2, 4, 6, ... in (7) by turn, we obtain

c2 = 0
0

1
,

2 1 2!
c

c# � #
2

c4 = 0
2 0

1 1
4 3 1 2 3 4 4!

c
c c� �

2 2 2 2
 and so on

With k = –1 and substituting the above values of c2, c3, c4, c5, ... in (1) the required solution
is

y = x–1 (c0 + c1x + c2x
2 + c3x

3 + ...) = x–1 (c0 + c2x
2 + c4x

4 + ...) + x–1 (c1x + c3x
3 + c5x

5 + ...)
or                 y = c0x

–1(1 – x2/2! + x4/4! ...) + c1x
–1 (x – x3/3! + x5/5! – ...)

or                y = c0 {(cos x)/x} + c1 {(sin x)/x},
                                       [�  cos x = 1– x2/2! + x4/4! – ..., sin x = x – x3/3! + x5/5 – ....]

Ex. 12. If 
0

r m
m

m
y c x

!
∃

�
� 1  is assumed to be a solution of the differential equation

2 23(1 ) 0x y xy x y&& &# # ∃ � , then the value of  r are

(a) 1 and 3           (b) –1 and 3        (c) 1 and – 3      (d) –1 and –3 [GATE 2012]

Hint. Ans. (b). As usual find indicial equation 2 2 3 0r r# # �  giving 1,3r � #
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1
Origin of Partial Differential Equations

1.1 INTRODUCTION
Partial differential equations arise in geometry, physics and applied mathematics when the

number of independent variables in the problem under consideration is two or more. Under such a
situation, any dependent variable will be a function of more than one variable and hence it possesses
not ordinary derivatives with respect to a single variable but partial derivatives with respect to
several independent variables. In the present part of the book, we propose to study various methods
to solve partial differential equations.
1.2 PARTIAL DIFFERENTIAL EQUATION (P.D.E.) [Delhi Maths (H) 2001]

Definition. An equation containing one or more partial derivatives of an unknown frunction
of two or more independent variables is known as a partial differential equation.

For examples of partial differential equations we list the following:

/ /z x z y z xy! ! � ! ! # � ... (1) 2 3 3( / ) / 2 ( / )z x z y x z x! ! � ! ! # ! ! ... (2)

( / ) /z z x z y x! ! � ! ! # ... (3) / / /u x u y u z xyz! ! � ! ! � ! ! # ... (4)

2 2 1/ 2/ (1 / )z x z y! ! # � ! ! ... (5) ∃ %2 2( / ) ( / ) ( / )y z x z y z z y! ! � ! ! # ! ! ... (6)

1.3 ORDER OF A PARTIAL DIFFERENTIAL EQUATION [Delhi Maths (H) 2001]
Definition. The order of a partial differential equation is defined as the order of the highest

partial derivative occuring in the partial differential equation.
In Art. 1.2, equations (1), (3), (4) and (6) are of the first order, (5) is of the second order and

(2) is of the third order.
1.4 DEGREE OF A PARTIAL DIFFERENTIAL EQUATION [Delhi Maths (H) 2001]

The degree of a partial differential equation is the degree of the highest order derivative
which occurs in it after the equation has been rationalised, i.e., made free from radicals and fractions
so far as derivatives are concerned.

In 1.2, equations (1), (2), (3) and (4) are of first degree while equations (5) and (6) are of
second degree.
1.5 LINEAR AND NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Definitions. A partial differential equation is said to be linear if the dependent variable and
its partial derivatives occur only in the first degree and are not multiplied. A partial differential
equation which is not linear is called a non-linear partial differential equation.

In Art. 1.2, equations (1) and (4) are linear while equations (2), (3), (5) and (6) are non-
linear.
1.6 NOTATIONS

When we consider the case of two independent variables we usually assume them to be x and
y and assume z to be the dependent variable.  We adopt the following notations throughout the
study of partial differential equations

2 2 2 2 2/ , / , / , / and /p z x q z y r z x s z x y t z y# ! ! # ! ! # ! ! # ! ! ! # ! !

1.3
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1.4 Origin of partial differential equations

In case there are n independent variables, we take them to be x1, x2....., xn and z is then
regarded as the dependent variable.  In this case we use the following notations :

p1 ! !z/!x1,            p2 ! !z/!x2,            3 3/ ,p z x# ! ! and pn ! !z/!xn.
Sometimes the partial differntiations are also denoted by making use of suffixes.  Thus we

write   2 2 2/ , / , / , /x y xx xyu u x u u y u u x u u x y# ! ! # ! ! # ! ! # ! ! !    and so on.

1.7 Classification of first order partial differential equations into linear, semi-linear,
quasi-linear and non-linear equations with examples.  [Delhi Maths (H) 2001; 2004]

Linear equation. A first order equation f (x, y, z, p, q) = 0 is known as linear if it is linear in
p, q and z, that is, if given equation is of the form   P(x, y) p + Q(x, y) q ! R(x, y) z + S(x, y).

For examples,          yx2p + xy2q ! xyz + x2y3              and p + q ! z + xy
are both first order linear partial differential equations.

Semi-linear equation. A first order partial differential equation f (x, y, z, p, q) ! 0 is known
as a semi-linear equation, if it is linear in p and q and the coefficients of p and q are functions of
x and y only i.e. if the given equation is of the form    P(x, y) p + Q(x, y) q ! R(x, y, z)

For examples, xyp + x2yq ! x2y2z2  and yp + xq ! (x2z2/y2)
are both first order semi-linear partial differential equations.

Quasi-linear equation. A first order partial differential equation f(x, y, z, p, q) = 0 is known
as quasi-linear equation, if it is linear in p and q, i.e., if the given equation is of the form

P(x, y, z) p + Q(x, y, z) q ! R(x, y, z)
For examples, x2zp + y2zp ! xy            and   (x2 – yz) p + (y2 – zx) q ! z2 – xy

are first order quasi-linear partial differential equations.
Non-linear equation. A first order partial differential equation f(x, y, z, p, q) ! 0 which does

not come under the above three types, in known as a non-liner equation.
For examples, p2 + q2 ! 1, p q ! z and x2 p2 + y2 q2 ! z2

are all non-linear partial differential equations.
1.8 Origin of partial differential equations. We shall now examine the interesting question of
how partial differential equations arise.  We show that such equations can be formed by the
elimination of arbitrary constants or arbitrary functions.
1.9 Rule I. Derivation of a partial differential equation by the elimination of arbitrary
constants.

Consider an equation F(x, y, z, a, b) ! 0, ...(1)
where a and b denote arbitrary constants. Let z be regarded as function of two independent variables
x and y.  Differentiating (1) with respect to x and y partially in turn, we get

/ ( / ) 0F x p F z! ! � ! ! #  and / ( / ) 0F y q F z! ! � ! ! # ..(2)
Eliminating two constants a and b from three equations of (1) and (2), we shall obtain an

equation of the form
f(x, y, z, p, q) ! 0, ...(3)

which is partial differential equation of the first order.
In a similar manner it can be shown that if there are more arbitrary constants than the number

of independent variables, the above procedure of elimination will give rise to partial differential
equations of higher order than the first.
Working rule for solving problems: For the given relation F(x, y, z, a, b) ! 0 involving variables
x, y, z and arbitrary constants a, b, the relation is differentiated partially with respect to
independent variables x and y. Finally arbitrary constants a and b are eliminated from the relations
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Origin of partial differential equations 1.5

  F(x, y, z, a, b) ! 0, / 0F x! ! # and / 0.F y! ! #
The equation free from a and b will be the required partial differential equation.
Three situations may arise :
Situation I. When the number of arbitrary constants is less than the number of independent

variables, then the elimination of arbitrary constants usually gives rise to more than one partial
differential equation of order one.

For example, consider z ! ax + y, ... (1)
where a is the only arbitrary constant and x, y are two independent variables.

Differentiating (1) partially w.r.t. ‘x’, we get /z x a! ! # ... (2)

Differentiating (1) partially w.r.t. ‘y’, we get / 1z y! ! # ... (3)

Eliminating a between (1) and (2) yields    ( / )z x z x y# ! ! � ... (4)
Since (3) does not contain arbitrary constant, so (3) is also partial differential under

consideration. Thus, we get two partial differential equations (3) and (4).
Situation II. When the number of arbitrary constants is equal to the number of independent

variables, then the elimination of arbitrary constants shall give rise to a unique partial differential
equation of order one.

Example: Eliminate a and b from az + b ! a2x + y ... (1)
Differentiating (1) partially w.r.t ‘x’ and ‘y’, we have

2( / )a z x a! ! # ... (2) ( / ) 1a z y! ! # ... (3)

Eliminating a from (2) and (3), we have              ( / ) ( / ) 1,z x z y! ! ! ! #

which is the unique partial differential equation of order one.
Situation III. When the number of arbitrary constants is greater than the number of

independent variables, then the elimination of arbitrary constants leads to a partial differential
equation of order usually greater than one.

Example: Eliminate a, b and c from z = ax + by + cxy ... (1)
Differentiating (1) partially w.r.t., ‘x’ and ‘y’, we have

/z x a c y! ! # �             ... (2)        /z y b c x! ! # �     ... (3)

From (2) and (3), 2 2/ 0,z x! ! # 2 2/ 0z y! ! # ... (4)

and 2 /z x y c! ! ! # ... (5)

Now, (2) and (3) & ( / ) and ( / )x z x ax cxy y z y by cxy! ! # � ! ! # �

∋ ( / ) ( / )x z x y z y ax by cxy cxy! ! � ! ! # � � �

or 2( / ) ( / ) ( / ),x z x y z y z xy z x y! ! � ! ! # � ! ! !  using (1) and (5) ... (6)

Thus, we get three partial differential equations given by (4) and (6), which are all of order
two.
1.10 SOLVED EXAMPLES BASED ON RULE I OF ART 1.9

Ex. 1. Find a partial differential equation by eliminating a and b from z ! ax + by + a2 + b2.
Sol. Given z ! ax + by + a2 + b2. ...(1)
Differentiating (1) partially with respect to x and y, we get

!z/!x ! a and !z/!y ! b.
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1.6 Origin of partial differential equations

Substituting these values of a and b in (1) we see that the arbitrary constants a and b are
eliminated and we obtain,

z ! x(!z/!x) + y(!z/!y) + (!z/!x)2 + (!z/!y)2,
which is the required partial differential equation.

Ex. 2. Eliminate arbitrary constants a and b from z ! (x ( a)2 + (y ( b)2 to form the partial
differential equation.        [Jiwaji 1999;
Banglore 1995]

Sol. Given z ! (x ( a)2 + (y ( b)2. ...(1)
Differentiating (1) partially with respect to a and b, we get
!z/!x ! 2(x – a) and !z/!y ! 2(y – b).
Squatring and adding these equations, we have

      (!z/!x)2 + (!z/!y)2 ! 4(x ( a)2 + 4(y ( b)2 ! 4 [(x ( a)2 + (y ( b)2]
or   (!z/!x)2 + (dz/!y)2 ! 4z,  using (1).

Ex. 3. Form partial differential equations by eliminating arbitrary constants a and b from
the following relations :

(a)  z ! a(x + y) + b. (b)  z ! ax + by + ab.     [Bhopal 2010, Rewa 1996]
(c)  z ! ax + a2y2 + b. [Agra 2010] (d)  z ! (x + a) (y + b). [Madurai  Kamraj 2008]
Sol. (a)  Given      z ! a(x + y) + b ...(1)
Differentiating (1) partially with respect to x and y, we get
!z/!x ! a and !z/!y ! a.
Eliminating a between these, we get  !z/!x ! !z/!y,

which is the required partial differential equation.
(b) Given z ! ax + by + ab. ...(1)
Differentiating (1) partially with respect to x and y, we get
!z/!x ! a and !z/!y ! b ....(2)
Substituting the values of a and b from (2) in (1), we get

z ! x(!z/!x) + y(!z/!y) + (!z/dx)(!z/!y),
which is the required partial differential equation.

(c)  Try yourself. Ans.  !z/!y ! 2y(!z/!x)2.
(d) Try yourself. Ans. z ! (!z/!y) (!z/!x).
Ex. 4. Eliminate a and b from z ! axey + (1/2) × a2e2y + b. [Meerut 2006]
Sol. Given   z ! axey + (1/2) × a2ey + b. ...(1)
Differentiating (1) partially with respect to x and y, we get

!z/!x ! aey ...(2)
and !z/!y ! axey + a2e2y ! x(aey) + (aey)2. ...(3)

Substituting the value of aey from (2) in (3), we get !z/!y ! x(!z/!x) + (!z/!x)2.
Ex. 5(a). Form the partial differential equation by eliminating h and k from the equation

(x ( h)2 + (y ( k)2 + z2 ! )2.        [Gulbarga 2005; I.A.S. 1996]
Sol. Given (x ( h)2 + (y ( k)2 + z2 ! )2. ...(1)
Differentiating (1) partially with respect to x and y, we get

2(x – h) + 2z(!z/!x) ! 0          or (x – h) ! –z(!z/!x) ...(2)
and   2(y – k) + 2z(!z/!y) ! 0         or (y – k) ! –z(!z/!y). ...(3)

Substituting the values of (x ( h) and (y ( k) from (2) and (3) in (1) gives
z2(!z/!x)2 + z2(!z/!y)2 + z2 ! )2     or          z2[(!z/!x)2 + (!z/!y)2 + 1] ! )2,

which is the required partial differential equation.
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Ex. 5(b). Find the differential equation of all spheres of radius ), having centre in the xy-
plane.  [M.D.U. Rohtak 2005; I.A.S. 1996, K.U. Kurukshetra 2005]

Sol. From the coordinate geometry of three-dimensions, the equation of any sphere of radius
), having centre (h, k, 0) in the xy-plane is given by

(x – h)2 + ( y – k)2 + (z – 0)2 ! )2     or (x – h)2 + (y – k)2 + z2 ! )2, ...(1)
where h and k are arbitray constants. Now, proceed exactly in the same way as in Ex. 5(a).

Ex. 6. Form the differential equation by eliminating a and b from  z ! (x2 + a) (y2 + b).
[Madras 2005; Sagar 1997, I.A.S. 1997]

Sol. Given  z ! (x2 + a) (y2 + b). ...(1)
Differentiating (1) partially with respect to x and y, we get

!z/!x ! 2x(y2 + b)                or           (y2 + b) ! (1/2x) × (!z/!x) ...(2)
and   !z/!y ! 2y(x2 + a)            or (x2 + a) ! (1/2y) × (!z/!y).    ...(3)

Substituting the values of (y2 + b) and (x2 + a) from (2) and (3) in (1) gives
z ! (1/2y) × (!z/!y) × (1/2x) × (!z/!x)       or                4xyz ! (!z/!x)(!z/!y),

which the required partial differential equation.
Ex. 7. Form differential equation by eliminating constants A and p from z ! A ept sin px.
Sol. Given  z ! A ept sin px. ...(1)
Differentiating (1) partially with respect to x and t, we get

!z/!x ! Ap ept cos px   ...(2)         !z/!t ! Ap ept sin px. ...(3)
Differentiating (2) and (3) partially with respect to x and t respectively gives

!2z/!x2 ! ( Ap2ept sin px.   ...(4)         !2z/!t2 ! Ap2ept sin px. ...(5)
Adding (4) and (5),  !2z/!x2 + !2z/!t2 ! 0,

which is the required partial differential equation.
Ex. 8. Find the differential equation of the set of all right circular cones whose axes coincide

with z-axix.       [I.A.S. 1998]
Sol. The general equation of the set of all right circular cones whose axes coincide with z-

axis, having semi-vertical angle ∗ and vertex at (0, 0, c) is given by

x y z c2 2 2 2� # (( ) tan ,∗ ... (1)

in which both the constants c and ∗ are arbitrary.
Differentiating (1) partially, w.r.t. x and y, we get

22 2( ) ( / ) tanx z c z x# ( ! ! ∗ and 22 2( ) ( / ) tany z c z y# ( ! ! ∗

& 2( ) ( / ) tany z c z x xy( ! ! ∗ # and 2( ) ( / ) tanx z c z y xy( ! ! ∗ #

&                                   2 2( ) ( / ) tan ( ) ( / ) tany z c z x x z c z y( ! ! ∗ # ( ! ! ∗

Thus,  ( / ) ( / ),y z x x z y! ! # ! ! which is the required partial differential equation.
Ex. 9.  Show that the differential equation of all cones which have their vertex at the origin is

px + qy ! z.  Verify that yz + zx + xy ! 0 is a surface satisfying the above equation.
[I.A.S. 1979, 2009]

Sol. The equation of any cone with vertex at origin is
ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy ! 0, ...(1)

where a, b, c, f, g, h are parameters.  Differentiating (1) partially w.r.t. ‘x’ and ‘y’ by turn, we have
(noting that p ! !z/!x and q ! !z/!y)
2ax + 2czp + 2fyp + 2g(px + z) + 2hy ! 0       or         ax + gz + hy + p(cz + gx + fy) ! 0 ...(2)
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1.8 Origin of partial differential equations

and   2by + 2czq + 2f(yq + z) + 2gxq + 2hx ! 0    or     by + fz + hx + q(cz + fy + gx) ! 0. ...(3)
Multiplying (2) by x and (3) by y and adding, we have

(ax2 + by2 + gzx + fyz + 2hxy) + (cz + fy + gx) (px + qy) ! 0.
– (cz2 + fyz + gxz) + (cz + fy + gx) (px + qy) ! 0,  using (1)

or     (cz + fy + gx) (px + qy – z) ! 0           or  px + qy – z ! 0, ...(4)
which is required partial differential equation.

Second Part : Given surface is yz + zx + xy ! 0 ...(5)
Differentiating (5) partially w.r.t. ‘x’ and ‘y’ by turn, we get
yp + px + z + y ! 0 and z + qy + xq + x ! 0. ...(6)
Solving (6) for p and q,     p ! ( (z + y)/(x + y)  and q ! ( (z + x)/(x + y).

∋ px + qy ( z ! ( x z y
x y

y z x
x y

( ) ( )�
�

( �
�

( z ! ( 2( )xy yz zx
x y
� �

�
! 0, using (5)

Hence (5) is a surface satisfying (4).
Ex. 10.  Form partial differential equations by eliminating arbitrary constants a and b from

the following relations:
(a) 2z ! x2/a2 + y2/b2 [Nagpur 1995; M.D.U. Rohtak 2006]
(b) 2z ! (ax + y)2 + b [Nagpur 1996; Delhi Maths (G) 2006; Pune 2010]
Sol. (a) Given       2z ! x2/a2 + y2/b2 ... (1)
Differentiating (1) partially w.r.t. ‘x’ and ‘y’, we get

22( / ) 2 /z x x a! ! # ... (2) + , 22 / 2 /z y y b! ! # ... (3)

From (2) and (3), p ! x/a2,    q ! y/b2 &   a2 ! x/p, b2 ! y/q
Substituting these values of a2 and b2 in (1), we get

2z ! px + qy, which is the required partial differential equation
(b) Given 2z ! (ax + y)2 + b ... (1)
Differentiating (1) partially w.r.t. ‘x’ and ‘y’, we get

2p ! 2a(ax + y) ... (2) 2q ! 2(ax + y) ... (3)

where /p z x# ! !  and / .q z y# ! !  Dividing (2) by (3) yields p/q ! a.
Substituting this value of a in (3), we get     q ! (p/q) x + y or      px + qy ! q2.

Ex. 11.  Eliminate a, b and c from z = a(x + y) + b(x – y) + abt + c [I.A.S. 1998]
Sol. Given       z = a(x + y) + b(x – y) + abt + c ... (1)
Differentiating (1) partially w.r.t. ‘x’, ‘y’ and ‘t’, we get

/z x a b! ! # �   ... (2) /z y a b! ! # (  ... (3)     /z t ab! ! #  ... (4)
We have the identity: (a + b)2 – (a – b)2 ! 4ab

∋ 2 2( / ) ( / ) 4( / ),z x z y z t! ! ( ! ! # ! !  using (2), (3) and (4)

Ex. 12.  Form the partial differential equation by eliminating the arbitrary constants a and
b from log (az – 1) ! x + ay + b.       [I.A.S. 2002]

Sol. (a) Given log (az – 1) ! x + ay + b ... (1)

Differentiating (1) partially w.r.t. ‘x’, we get 1
1

a z
az x

!
#

( !
... (2)

Differentiating (1) partially w.r.t. ‘y’, we get 1
a z a

az y
!

#
( ! ... (3)
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From (3),   1 zaz
y

!
( #

!
             so that         

1 ( / )z ya
z

� ! !
# ... (4)

Putting the above values of az – 1 and a in (2), we have

1 ( / ) 1
( / )

z y z
z z y x
� ! ! !

#
! ! ! or 1 .z z zz

y x y
− .! ! !

� #/ 0! ! !1 2
Ex. 13.  Find a partial differential equation by eliminating a, b, c, from x2/a2 + y2/b2 + z2/c2!1.

[Bhopal 2004; Jabalpur 2000, 03, Jiwaji 2000, Vikram 2002, 04; Ravishanker 2010]
Sol. Given x2/a2 + y2/b2 + z2/c2 ! 1. ... (1)
Differentiating (1) partially with respect to x and y, we get

2 2
2 2 0x z dz

dxa c
� #          or 2 2 0dzc x a z

dx
� # ... (2)

and   
2 2

2 2 0y x z
yb c

!
� #

!
        or 2 2 0.zc y b z

y
!

� #
!

... (3)

Differentiating (2) with respect to x and (3) with respect to y, we have
2 2

2 2 2
2 0z zc a a z

x x
! !− .� � #/ 0! !1 2

... ( 4)         
2 2

2 2 2
2 0.z zc b b z

x y
! !− .� � #/ 0! !1 2

   ... (5)

From (2),          2 2( / ) ( / )c a z x z x# ( 3 ! ! ... (6)
Putting this value of c2 in (4) and dividing by a2, we obtain

2 2

2 0z z z zz
x x x x

! ! !− .( � � #/ 0! ! !1 2
or

22

2 0.z z zzx x z
x xx

! ! !− .� ( #/ 0! !! 1 2
... (7)

Similarly, from (3) and (5),     
22

2 0.z z zzy y z
y yy

− .! ! !
� ( #/ 0! !! 1 2

... (8)

Differentiating (2) partially w.r.t. y,         ∃ %2 20 ( / ) ( / ) ( / ) 0a z y z x z z x y� ! ! ! ! � ! ! ! #

or     2( / ) ( / ) ( / ) 0z x z y z z x y! ! ! ! � ! ! ! # ... (9)

(7), (8) and (9) are three possible forms of the required partial differential equations.
Ex. 14.  Find the partial differential equation of all planes which are at a constant distance

‘a’ from the origin.
Sol. Let      lx + my + nz ! a ... (1)

be the equation of the given plane where l, m, n are direction colines of the normal to the plane so
that l2 + m2 + n2 ! 1, l, m, n being parameters     ... (2)

Differentiating (1) partially w.r.t. ‘x’ and ‘y’, we have
l + np ! 0 ...(3)   m + nq ! 0, ... (4)

where /p z x# ! !  and / .q z y# ! !  From (3) and (4), l ! – np and m ! – nq. Substituting these
values in (2), we have

n2(p2 + q2 + 1) ! 1 so that n ! (p2 + q2 + 1)–1/2 ... (5)
       ∋   l ! – np ! – p(p2 + q2 + 1)–1/2 and m ! – nq ! – q(p2 + q2 + 1)–1/2 ... (6)

Substituting the values of l, m, n given by (5) and (6) in (1), we get
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1.10 Origin of partial differential equations

– px (p2 + q2 + 1)–1/2 – qy (p2 + q2 + 1)–1/2 + z(p2 + q2 + 1)–1/2 ! a
or z ! px + qy + a (p2 + q2 + 1)1/2, which is the required partial differential equation.

Ex. 15.  Show that the partial differential equation obtained by eliminating the arbitrary
constants a and c from z ! ax + g(a) y + c, where g (a) is an arbitrary function of a, is free of the
variables x, y, z.

Sol. Differentiating z ! ax + g(a) y + c partially w.r.t. ‘x’ and ‘y’ yields p ! a and q ! g(a).
Eliminating a between them leads to q ! g(p) or f(p, q) ! 0, where f is an arbitrary function of p and
q. Clearly, the resulting partial differential equation contains p and q but none of the variables x, y, z.

Ex. 16.  Show that the partial differential equation obtained by eliminating the arbitrary
constants a and b from z ! ax + by + f (a, b) is given by z ! px + qy + f(p, q).

Sol. Differentiating z ! ax + by + f (a, b) ... (1)
partially with respect to ‘x’ and ‘y’, we get p ! a and          q ! b ... (2)

Eliminating a and b from (1) and (2) yields           z ! px + qy + f (p, q)
Ex. 17.  Form a partial differential equation by eliminating a, b and c from the relation

ax2 + by2 + cz2 = 1.    [Mysore 2004]
Sol. Given        ax2 + by2 + cz2 ! 1. ... (1)
Differentiating (1) partially w.r.t. ‘x’ and ‘y’, we have

2 2 ( / ) 0ax cz z x� ! ! #          ... (2)             2 2 ( / ) 0by cz z y� ! ! #    ... (3)
Differentiating (2) partially w.r.t. ‘y’, we get

∃ %20 2 ( / ) ( / ) ( / 0c z y z x z z y x� ! ! ! ! � ! ! ! #   or       2( / ) ( / ) ( / ) 0z x z y z z x y! ! ! ! � ! ! ! # , ... (4)

since c is an arbitrary constant. (4) is the desired partial differential equation.
Again, differentiating partially (2) w.r.t. x and (3) w.r.t. y, we get

∃ %2 2 22 2 ( / ) ( / ) 0a c z x z z x� ! ! � ! ! #   ... (5) ∃ %2 2 22 2 ( / ) ( / ) 0b c z y z z y� ! ! � ! ! #   ... (6)

From (2), ( / ) ( / ).a cz x z x# ( 3 ! !  Putting this in (5), we get

∃ %2 2 2( / ) ( / ) ( / ) ( / 0cz x z x c z x z z x( 3 ! ! � ! ! � ! ! #  or  2 2 2( / ) ( / ) ( / ) 0zx z x x z x z z x! ! � ! ! ( ! ! # ... (7)

Similarly, from (3) and (6), we get    2 2 2( / ) ( / ) ( / ) 0zy z y y z y z z y! ! � ! ! ( ! ! # . ... (8)

(4), (7) and (8) are three possible forms of the required partial differential equations.

EXERCISE 1 (A)
Eliminate the arbitrary constants indicated in brackets from the following equations and

form corresponding partial differential equations.

1. z ! A ept sin px, (p and A). Ans. 2 2 2 2/ / 0.z x z t! ! � ! ! #

2. 
2

cos ,p tz A e px(# (p and A) (Sagar 1999; Ranchi 2010) Ans. 2 2/ /z x dz t! ! # !

3. z ! ax3 + by3; (a, b) Ans. ( / ) ( / ) 3x z x y z y z! ! � ! ! #

4. 4z ! [ax + (y/a) + b]2; (a, b). (Delhi B.A. (Prog) II 2011) Ans. ( / ) ( / )z dz x z y# ! ! !

5. z ! ax2 + bxy + cy2, (a, b,c) Ans. 2 2 2 2 2 2 2( / ) 2 ( / ) ( / ) 2x z x xy z x y y z y z! ! � ! ! ! � ! ! #

6. z2 ! ax3 + by3 + ab, (a, b)

Ans. 2 2 3 2 2 39 6 ( / ) 6 ( / ) 4 ( / ) ( / )x y z x y z x x y z y z z x z y# ! ! � ! ! � ! ! ! !
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7.
2 2

1/{ ( / )}
2 , ( , )z x y ax be a b

yy
( # � Ans. 2 22 2( / )

z z
x y z x y

x y
! !

� # (
! !

8. Find the differential equation of the family of spheres of radius 4 with centres on the xy-

plane. Ans. 2 2 2 2( ) [( / ) ( / ) 1] 16( / / )x y z x z y z x z y( ! ! � ! ! � # ! ! ( ! !

9. Find the P.D.E of planes having equal x and y intercepts. Ans. p – q ! 0
      10. Find the partial differential equation of the family of spheres of radius 7 with centres on
the plane x – y ! 0.      Ans. (p2 + q2 + 1) (x – y)2 ! 49 (p – q)
      11. Find the partial differential equation of all spheres whose centres lie on z-axis.

Ans. x q – y p ! 0
1.11  Rule II.  Derivation of partial differential equation by the elimination of arbitrary
function 4 from the equation 4(u, v) ! 0, where u and v are functions of x, y and z.

[Meerut 1995]
Proof. Given 4(u, v) ! 0. ...(1)
We treat z as dependent variable and x and y as independent variables so that
!z/!x ! p, !z/!y ! q, !y/!x ! 0 and !x/!y ! 0.
Differentiating (1) partially with respect to x, we get

!4
!

!
!

!
!

� !
!

!
!

� !
!

!
!

F
HG

I
KJu

u
x

x
x

u
y

y
x

u
z

z
x

 + !4
!

!
!

!
!

� !
!

!
!

� !
!

!
!

F
HG

I
KJv

v v v
x

x
x y

y
x z

z
x

! 0

or !4
!

!
!

� !
!

FH IK �
!4
!

!
!

� !
!

FH IKu
u
x

p u
z x

p
zv

v v ! 0

or !4
!

!4
!u v ! ( !

!
� !

!
FH IK !

!
� !

!
FH IKv v

x
p

z
u
x

p u
z

. ...(3)

Similarly, differentiating (1) partially w.r.t. ‘y’, we get

!4
!

!4
!u v   !  ( !

!
� !

!
F
HG

I
KJ

!
!

� !
!

F
HG

I
KJ

v v
y

q
z

u
y

q u
z ...(4)

Eliminating 4 with the help of (3) and (4), we get

!
!

� !
!

FH IK !
!

� !
!

FH IKv v
x

p
z

u
x

p u
z

!
!
!

�
!
!

F
HG

I
KJ

!
!

�
!
!

F
HG

I
KJ

v v u
y

q
z

u
y

q
z

or !
!

� !
!

F
HG

I
KJ

!
!

� !
!

FH IKu
y

q u
z x

p
z

v v ! !
!

�
!
!

F
HG

I
KJ

!
!

�
!
!

F
HG

I
KJ

u
x

p u
z y

q
z

v v

or        Pp + Qq ! R, ...(5)

where    P ! !
!

!
!

( !
!

!
!

u
y z

u
z y

v v ,            Q ! !
!

!
!

( !
!

!
!

u
z x

u
x z

v v ,             R ! !
!

!
!

( !
!

!
!

u
x y

u
y x

v v .

Thus we obtain a linear partial differntial equation of first order and of first degree in  p and q.
Note.  If the given equation between x, y, z contains two arbitrary functions, then in general,

their elimination gives rise to equations of higher order.
1.12 SOLVED EXAMPLES BASED ON RULE II OF ART. 1.11.

Ex. 1. Form a partial differential equation by eliminating the arbitrary function 4 from
4(x + y + z, x2 + y2 ( z2) ! 0.  What is the order of this partial differential equation ?

[Bilaspur 2003; Indore 2003; Jiwaji 2003; Vikram 2001]
Sol. Given   4(x +  y + z, x2 + y2 ( z2) ! 0. ...(1)
Let u ! x + y + z      and v ! x2 + y2 ( z2. ...(2)
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Then (1) becomes 4(u, v) ! 0. ...(3)
Differentiating (3) w.r.t., ‘x’ partially, we get

          !4
!

!
!

� !
!

FH IK �
!4
!

!
!

� !
!

FH IKu
u
x

p u
z x

p
zv

v v ! 0. ...(4)

From (2), !
!
u
x ! 1,     !

!
u
z ! 1,     !

!
v
x ! 2x,     !

!
v
z ! (2z,     !

!
u
y

! 1,   !
!
v
y ! 2y.  ..(5)

From (4) and (5), (!4/!u)(1 + p) + 2(!4/!v)(x ( pz) ! 0
or (!4/!u)/(!4/!v) ! (2(x ( pz)/(1 + p). ...(6)

Again, differentiating (3) w.r.t., ‘y’ partially, we get
u u

q q
u y z y z

− . − .!4 ! ! !4 ! !
� � �/ 0 / 0! 1 ! ! 2 ! 1 ! ! 2

v v
v ! 0

or (!4/!u)(1 + q) + 2(!4/!v)(y ( zq) ! 0,  by (5)
or (!4/!u)/(!4/!v) ! (2(y ( qz)/(1 + q). ...(7)

Eliminating 4  from (6) and (7), we obtain
(x ( pz)/(1 + p) ! (y ( qz)/(1 + q)        or              (1 + q)(x ( pz) ! (1 + p) (y ( qz)

or   (y + z)p ( (x + z)q ! x ( y, which is the desired partial differential equation of first order.
Ex. 2. Form a partial differential equation by eliminating the arbitrary function f from the

equation  x + y + z ! f(x2 + y2 + z2). (Kanpur 2011)
Sol. Given x + y + z ! f(x2 + y2 + z2). ...(1)
Differentiating partially w.r.t. ‘x’ and ‘y’, (1) gives

1 + p ! f 5(x2 + y2 + z2).(2x + 2zp). ...(2)
and 1 + q ! f 5(x2 + y2 + z2).(2y + 2zq). ...(3)

Eliminating f 5(x2 + y2 + z2) from (2) and (3), we obtain
(1 + p)/(2x + 2zp) ! (1 + q)/(2y + 2zq)        or            (1 + p) (y + zq) ! (1 + q) (x + zp)

or   (y ( z)p + (z ( x)q ! x ( y, which is the required partial differential equations.
Ex. 3. Eliminate the arbitrary functions f and F from y ! f(x ( at) + F(x + at).

(Sagar 1997; Vikram 1995; Jabalpur 2002)
Sol. Given       y ! f(x ( at) + F(x + at). ...(1)
From (1),  !y/!x ! f 5(x ( at) + F5(x + at)

and   hence         !2y/!x2 ! f 6(x ( at) + F6(x + at). ...(2)
Also, !y/!t ! f 5(x ( at) . ((a) + F 5(x + at) . (a)

and   hence         !2y/!t2 ! f 6(x ( at) . ((a)2 + F6(x + at) . (a)2

or         !2y/!t2 ! a2[ f 6(x ( at) + F6(x + at)]. ...(3)
Then, (2)   and   (3)       & !2y/!t2 ! a2(!2y/!x2).
Ex. 4.  Eliminate arbitrary function f from
(i) z ! f(x2 ( y2). [Bilaspur 1996; Sagar 1996; Bangalore 1995]
(ii) z ! f(x2 + y2). [Meerut 1995; Pune 2010]
Sol. (i) Given z ! f (x2 ( y2). ...(1)
Differentiating (1) partially with respect to x and y, we get
!z/!x ! f 5(x2 ( y2) × 2x so that         f 5(x2 ( y2) ! (1/2x) × (!z/!x) ...(2)

and   !z/!y ! f 5(x2 ( y2) × ((2y) so that        f 5(x2 ( y2) ! ( (1/2y) × (!z/!y).  ...(3)
Eliminating f 5(x2 ( y2) between (2) and (3), we have
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1
2

1
2x

z
x y

z
y

!
!

# ( !
!

or y z
x

x z
y

!
!

� !
!

! 0.

(ii) Proceed as in part (1). Ans. y(!z/!x) ( x(!z/!y) ! 0
Ex. 5.  Form a partial differential equation by eliminating the function f from
(i) z ! f(y/x). [Sagar 2000] (ii) z ! xn f(y/x).
Sol. Given z ! f(y/x). ...(1)
Differentiating (1) partially with respect to x and y, we get

  !z/!x ! f 5(y/x) × ((y/x2) or     f 5(y/x) ! ((x2/y) × (!z/!x)  ...(2)
and   !z/!y ! f 5(y/x) × (1/x)            or                 f 5(y/x) ! x(!z/!y). ...(3)

Eliminating f 5(y/x) between (2) and (3), we have

– x
y

z
x

x z
y

2 !
!

# !
!

or      x !
!

z
x  + y !

!
z
y ! 0.

which is the required partial differential equation.
(ii) Given z ! xn f(y/x). ...(1)
Differentiating (1) partially with respect to x and y, we get

!z/!x ! n xn ( 1 f(y/x) + xn f 5(y/x) × ((y/x2) ...(2)
and !z/!y ! xn f 5(y/x) × (1/x). ...(3)

Multiplying both sides of (2) by x, we have       x(!z/!x) ! n xnf (y/x) ( yxn ( 1 f 5(y/x). ...(4)
Multiplying both sides of (3) by y, we have            y(!z/!y) ! y xn ( 1 f 5(y/x). ...(5)
Adding (4) and (5), x(!z/!x) + y(!z/!y) ! n xn f (y/x)

or     x(!z/!x) + y(!z/!y) ! nz, by (1)
Ex. 6. Form a partial differential equation by eliminating the function 4 from lx + my + nz

! 4(x2 + y2 + z2). [Ravishankar 2003; Vikram 2003]
Sol. Given lx + my + nz ! 4(x2 + y2 + z2). ...(1)
Differentiating (1) partially with respect to x and y, we get

l + n(!z/!x) ! 45(x2 + y2 + z2) × {2x + 2z(!z/!x)} ...(2)
and m + n(!z/!y) ! 45(x2 + y2 + z2) × {2y + 2z(!z/!y)} ...(3)

Dividing (2) by (3), we get           
l n z x
m n z y

� ! !
� ! !
b g
b g !

2
2
{ }
{ }
x z z x
y z z y

� ! !
� ! !
b g
b g

or (ny ( mz)(!z/!x) + (lz ( nx) (!z/!y) !mx ( ly, which is the required partial differential equation.
Ex. 7. Form partial differential eqn. by eliminating the function f from z ! eax + by f(ax ( by).
Sol. Given     z ! eax + by f(ax ( by). ...(1)
Differentiating (1) partially with respect to x and y, we get

      !z/!x ! eax + by a f 5(ax ( by) + a eax + by f(ax ( by) ...(2)
and       !z/!y ! eax + by {(b f 5(ax ( by)} + b eax + by f(ax ( by). ...(3)

Multiplying (2) by b and (3) by a and adding, we get
b(!z/!x) + a(!z/!y) ! 2ab eax + by f (ax ( by) or b(!z/!x) + a(!z/!y) ! 2abz, by (1)

Ex. 8. Form a partial differential equation by eliminating the arbitrary functions f and F
from z ! f(x + iy) + F(x ( iy), where i2 ! (1. [Bilaspur 2004; Jiwaji 1998; Meerut 2010]

Sol. Given z ! f(x + iy) + F(x ( iy). ...(1)
Differentiating (1) partially with respect to x and y, we get

!z/!x ! f 5(x + iy) + F 5(x ( iy) ...(2)
and !z/!y ! i f 5(x + iy) ( iF5(x ( iy). ...(3)
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Differentiating (2) and (3) partial w.r.t. x and y respectively, we get
!2z/!x2 ! f 6(x + iy) + F6(x ( iy) ...(4)

and !2z/!y2 ! i2f 6(x + iy) + i2F 6(x ( iy) ! ({f 6(x + iy) + F 6(x + iy)}. ...(5)
Adding (4) and (5), !2z/!x2 + !2z/!y2 ! 0, which is the required equation.
Ex. 9.  Form partial differential equation by eliminating arbitrary functions f and g from

z ! f(x2 ( y) + g(x2 + y). [Nagpur 1996 ; I.A.S. 1996; Kanpur 2011]
Sol. Given z ! f(x2 ( y) + g(x2 + y). ...(1)
Differentiating (1) partially with respect to x and y, we get

!z/!x  !  2xf 5(x2 ( y) + 2xg5(x2 + y) ! 2x{f 5(x2 ( y) + g5(x2 + y)}. ...(2)
and !z/!y !  (f 5(x2 ( y) + g5(x2 + y). ...(3)

Differentiating (2) and (3) w.r.t. x and y respectively, we get
!2z/!x2  ! 2{f 5(x2 ( y) + g5(x2 + y)} + 4x2{f 6(x2 ( y) + g6(x2 + y)} ...(4)

and !2z/!y2  !  f 6(x2 ( y) + g6(x2 + y). ...(5)
Again, (2) & f 5(x2 ( y) + g5(x2 + y) ! (1/2x) × (!z/!x). ...(6)
Substituting the values of f 6(x2 ( y) + g6(x2 + y) and f 5(x2 ( y) + g5(x2 + y) from (5) and (6)

in (4), we have

!
!

2

2
z

x
! 2 × 1

2x
z
x

FH IK !
!  + 4x2 !

!

2

2
z

y              or x !
!

# !
!

� !
!

2

2
3

2

24z
x

z
x

x z
y

,

which is the required partial differential equation.
Ex. 10.  Find the differential equation of all surfaces of revolution having z-axis as the axis

of rotation.       [I.A.S. 1997]
Sol. From coordinate geometry of three dimensions, equation of any surface of revolution

having z-axis as the axis of rotation may be taken as
    z ! 4[(x2 + y2)1/2], where 4 is an arbitrary function. ...(1)

Differentating (1) partially with respect to x and y, we get
!z/!x ! 45[(x2 + y2)1/2] × (1/2) × (x2 + y2)(1/2 × 2x ...(2)

and !z/!y ! 45[(x2 + y2)1/2] × (1/2) × (x2 + y2)(1/2 × 2y. ...(3)

Dividing (2) by (3), ! !
! !

#z x
z y

x
y

or y !
!

# !
!

z
x

x z
y

.

Ex. 11. Form a partial differential equation by eliminating the arbitrary functions f and g
from z ! y  f(x) + x g(y). (Guwahati 2007)

Sol. Given z ! y f(x) + x g(y). ...(1)
Differentiating (1) partially w.r.t. ‘x’ and ‘y’, we get
!z/!x ! y f 5(x) + g(y) ...(2) !z/!y ! f(x) + x g 5(y). ...(3)
Differentiating (3) with respect to x,         !2z/!x!y ! f 5(x) + g 5(y). ...(4)

From (2) and (3), f 5(x) !
1 ( )z g y
y x

!7 8(9 :!; <
and

1( ) ( )zg y f x
x y

7 8!5 # (9 :!; <
.

Substituting these values in (4), we have

!
! !

2z
x y ! 1 1

y
z
x

g y
x

z
y

f x!
!

(LNM
O
QP �

!
!

(LNM
O
QP( ) ( )

or     xy !
! !

2z
x y

!  x z
x

y z
y

!
!

� !
!

 – {x g(y) + y f(x)}  or    xy !
! !

2z
x y ! x z

x
y z

y
!
!

� !
!

 – z, by (2)
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Ex. 12. Form a partial differential equation by eliminating the arbitrary function 4 from
4(x2 + y2 + z2, z2 ( 2xy) ! 0.        [Nagpur 1996; 2002]

Sol. Given  4(x2 + y2 + z2, z2 ( 2xy) ! 0. ...(1)
Let    u ! x2 + y2 + z2 and v ! z2 – 2xy. ...(2)
Then, (1) becomes 4(u, v) ! 0. ...(3)
Differentiating (3) partially w.r.t. ‘x’, we get

!4
!

!
!

� !
!

FH IK �
!4
!

!
!

� !
!

FH IKu
u
x

p u
z x

p
zv

v v ! 0, ...(4)

where p ! !z/!x and q ! !z/!y. Now, from (2), we have
!u/!x ! 2x,    !u/!y ! 2y,       !u/!z ! 2z,       !v/!x ! (2y,      !v/!y ! (2x,    !v/!z ! 2z. ...(5)

Using (5), (4) reduces to (!4/!u) (2x + 2pz) + (!4/!v) ((2y + 2pz) ! 0
or (x + pz) (!4/!u) ! (y ( pz) (!4/!v). ...(6)

Again, differentiating (3) partially w.r.t. ‘y’, we get

!4
!

!
!

� !
!

F
HG

I
KJ �

!4
!

!
!

� !
!

F
HG

I
KJu

u
y

q u
z y

q
yv

v v
! 0

or (!4/!u) (2y + 2qz) + (!4/!v) ((2x + 2qz) ! 0, by (5)
or (y � qz) (!4/!u) ! (x ( qz) (!4/!v). ...(7)

Dividing (6) by (7), (x + pz)/(y + qz) ! (y ( pz)/(x ( qz)
or pz(y + x) ( qz(y + x)  !  y2 ( x2 or (p ( q)z  ! y ( x.

Ex. 13.  Eliminate the arbitrary function f and obtain the partial differential equation from
z = ey f(x + y)    [Madras 2005]

Sol. Given z ! ey f(x + y) ... (1)
Differentiating (1) partially w.r.t. x and y, we get

/ ( )yz x e f x y5! ! # �           and / ( ) ( )y yz y e f x y e f x y5! ! # � � � ... (2)

From (1) and (2), we have / /z y z z x! ! # � ! !

Ex. 14.  If ( ) ( ),z f x ay x ay# � � 4 (  prove that  2 2 2 2 2/ ( / )z y a z x! ! # ! !

Hint. Refer solved Ex. 3. [Madurai Kamraj 2008; Jabalpur 2002]

Ex. 15.  Equation of any cone with vertex at P (a, b, c) is of the form , 0.x a y bf
z c z c

( (− . #/ 0( (1 2
Find the differential equation of the cone.

Sol. Let (x – a) / (z – c) ! u   and   (y – b) / (z – c) ! v ... (1)
Then, the equation of the given cone becomes f(u, v) ! 0 ... (2)
Differentiating (2) partially with respect to ‘x’, we have

0f u f
u x x

! ! ! !
� #

! ! ! !
v

v
  or     2 2

1 0 0,
( ) ( )

f x a z f y b z
u z c x v xz c z c

− . − .! ( ( ! ! ( !
( � ( #/ 0 / 0/ 0 / 0! ( ! ! !( (1 2 1 2

 using (1)

or
2 2

1 0
( ) ( )

f x a f y bp p
u z c vz c z c

− . − .! ( ! (
( ( #/ 0 / 0/ 0 / 0! ( !( (1 2 1 2

,        where         zp
x

!
#

!
... (3)

Differentiating (2) partially with respect to ‘y’, we have

0f u f
u y y

! ! ! !
� #

! ! ! !
v

v
     or     2 2

1 0 0
( ) ( )

f x a z f y b z
u y v z c yz c z c

− . − .! ( ! ! ( ( !
( � ( #/ 0 / 0/ 0 / 0! ! ! ( !( (1 2 1 2

, using (1)
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or
2 2

1 0,
( ) ( )

f x a f y bq q
u v z cz c z c

− . − .! ( ! (
( � ( #/ 0 / 0/ 0 / 0! ! (( (1 2 1 2

   where     zq
y

!
#

!
... (4)

Eliminating /f u! !  and /f v! !  from (3) and (4), we have

2 2

2 2

1
( ) ( )

0
1

( ) ( )

x a y bp p
z c z c z c

x a y bq q
z cz c z c

( (
( (

( ( (
#

( (
( (

(( (

or      
( ) ( )

0
( ) ( )

z c p x a p y b
q x a z c q y b

( ( ( ( (
#

( ( ( ( (
or {z – c – p (x – a)} {z – c – q(y – b)} – pq(x – a) (y – b) ! 0
or (z – c)2 – p(x – a) (z – c) – q (y – b) (z – c) ! 0           or (x – a)p + (y – b)q ! z – c.
which in the required partial differential equation of the given cone.

EXERCISE 1 (B)
Eliminate the arbitrary functions and hence obtain the partial differential equations:

1. ( ).mxz e x y# 4 � Ans. p – q ! mz

2. z ! f(x + ay)  [Bilaspur 1997; Jabalpur 1999] Ans. q ! ap
3. z ! xy + f (x2 + y2) [Delhi B.A./B.Sc. (Maths) (Prog.) 2007]   Ans. py – qx ! y2 – x2

4. z ! x + y + f(xy)  [Delhi B.A. (Prog) II 2010] Ans. px – qy ! x – y
5. z ! f(xy/z)  [Nagpur 1995 KU Kurukshetra 2004] Ans. px – qy ! 0
6. z = f(x – y)  [Delhi B.A. (Prog.) II 2011] Ans. p + q ! 0

7. 2 2( ) ( )z x y x y# ( 4 � Ans. (x – y)yp – (x – y)xq ! (x + y)z

8. z ! f(x2 + 2y2) Ans. xq – yp ! x2 – y2

9. x ! f(z) + g(y) Ans. ps – qr ! 0

10. z ! f(y + ax) + g(y + bx), .a b= Ans. r – (a + b)s + abt ! 0
11. f (x + y + z) ! xyz Ans. x(y – z)p + y(z – x)q ! z (x – y)
12. z ! (x + y) f (x2 – y2) Ans. yp + xq ! z
13. z ! f(x) + ey g(x) Ans. t – q ! 0
14. f(x + y + z, x2 + y2 – z2) ! 0 (CDLU 2004) Ans. p(y + z) – (x + z)q ! x – y

15. z ! f(xy) + g(x/y) Ans. 2 2 2 2 2 2( / ) ( / ) ( / ) ( / ) 0x z x y z y x z x y z y! ! ( ! ! � ! ! ( ! ! #

16. z ! f(x – z) + g(x + y) Ans.
2 2 2

2 21 1 0z z z z z z z
y x y x y xx y

− .! ! ! ! ! ! !− .� ( ( ( ( #/ 0 / 0! ! ! ! ! !! !1 21 2

17. ( cos sin ) ( cos sin ).z f x y at x y at# ∗ � ∗ ( � 4 ∗ � ∗ �

Ans. 2 2 2 2 2 2 2/ / (1/ ) ( / )z x z y a z t! ! � ! ! # 3 ! !

18. y ! f(x + at) + xg(x + at) Ans. 2 2 2 2 2 2( / ) 2 ( / ) ( / ) 0a z x a z x t z t! ! ( ! ! ! � ! ! #

19. y ! f(x – at) + xg(x – at) + x2h(x – at). (Jabalpur 1994)

Ans. 3 3 3 2 2 3 2 3 3 3/ 3 ( / ) 3 ( / ) ( / ) 0y t a y x t a y x t a y x! ! � ! ! ! � ! ! ! � ! ! #

20. z ! f(xy) + g(x + y) Ans. x (y – x)r – (y2 – x2)s + y (y – x)t + (p – q) (x + y) ! 0
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1.13 CAUCHY’S PROBLEM FOR FIRST ORDER EQUATIONS
The aim of an existence theorem is to establish conditions under which we can decide whether

or not a given partial differential equation has a solution at all; the next step of proving that the
solution, when it exists, is unique requires a uniqueness theorem. The conditions to be satisfied in
the case of a first order partial differential equation are easily contained in the classic problem of
Cauchy, which for the two independent variables can be stated as follows:

Cauchy’s problem for first order partial differential equation
If (a) 0 0 0( ), ( ) and ( )x y z> > >  are functions which, together with their first derivatives, aree

continuous in the interval I defined by 1 2> ? > ? > .
(b) And if f (x, y, z, p, q) is a continuous function of x, y, z, p and q in a certain region U of

the xyzpq space, then it is required to establish the existence of a function ( , )x y≅  with the following
properties :

(i) ( , )x y≅  and its partial derivatives with respect to  x and y are continuous functions of x
and y in a region R of the xy space.

(ii) For all values of x and y lying in R, the point {x, y, ( , ), ( , ), ( , )x yx y x y x y≅ ≅ ≅ } lies in

U
x

 and [ , , ( , ), ( , ), ( , )]x yf x y x y x y x y≅ ≅ ≅ = 0.

(iii) For all >  belonging to the interval I, the point > >0 0{ ( ), ( )}x y  belongs to the region R,
and 0 0 0{ ( ), ( )}x y z≅ > > #

Stated geometrically, what we wish to prove is that there exists a surface ( , )z x y# ≅  which
passes through the curve C whose parametric equations are given by 0 0 0( ), ( ), ( )x x y y z z# > # > # >
and at every point of which the *direction (p, q, – 1) of the normal is such that ( , , , , ) 0f x y z p q #

Problem 1. State the properties of ( , )x y≅  if there exists a surface ( , )z x y# ≅  which passes
through the curve C with parametric equations 0 0 0( ), ( ), ( )x x y y z z# > # > # >  and at every point of
which the direction ( , , 1)p q (  of the normal is such that ( , , , , ) 0f x y z p z # .  (Delhi B.Sc. (H) 2002)

Sol. Hint. Refer conditions (i), (ii) and (iii) of the above Art. 1.13
Problem 2. Solve the Cauchy’s problem for 1zp q� # , when the initial data curve is

0 0 0, , / 2, 0 1x y z# > # > # > Α > Α . [Bangalore 2003; I.A.S. 2004]
Sol. Given ( , , , , ) 1 0f x y z p q zp q# � ( # ... (1)

Given inital data curve           # > # > # > Α > Α0 0 0, , / 2, 0 1x y z     ... (2)
From (1), ! ! # ! ! #/ , / 1f p z f q ,

and ! !
( # 3 ( 3 # ( > =

! > ! >
0 0 1

1 1 1 1 0
2

dx dyf f
z

q d p d
, for 0 1Α > Α .

Now, we have the following ordinary differential equations :

*Let ( , )z x y# ≅ ... (1)
be the equation of the given surface
Let ( , , ) ( , )F x y z x y z# ≅ ( . ... (2)

From (1) and (2),          
! !4 ! ! !4 ! !

# # # # # # # (
! ! ! ! ! ! !

, , 1
F z F z F

p q
x x x y y y z

Since FΒ  is normal to the surface ( , , ) 0, / , /F x y z F x F y# ! ! ! ! , /F z! !  i.e., p, q – 1 are direction

ratios of the normal to F (x, y, z) = 0 or ( , )z x y# ≅ .
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! ! ! !

# # # �
! ! ! !

, and
dx f dy f dz z dx z dy

dt p dt q dt x dt y dt
or /dx dt z# , / 1dy dt # ... (3)
and             / ( / ) ( / ) 1, (1)dz dt p f p q f q pz q by# ! ! � ! ! # � # ... (4)

Integrating (3) and (4),                         1y t C# �      and         2z t C# � ... (5)
From (2), at # > # > > # > > #>0, ( , 0) , ( ,0) and ( ,0) /2t x y z ... (6)
Using (6), (5) reduces to y t# � >      and         / 2z t# � >    ... (7)
Then, from (3) and (7),   / / 2dx dt t# � >    so that   # 3 � 3 > �2

3(1/ 2) (1/ 2)x t t C ... (8)

Using (6), (8) reduces to # 3 � 3 > � >2(1/ 2) (1/ 2)x t t ... (9)
Solving y t# � >  with (9) for >  and t in terms of x and y, we get

              
(

#
(1 ( / 2)

y x
t

y and
(

> #
(

2( / 2)
1 ( / 2)
x y

y

Putting these values in / 2z t# � > , the required solution passing through the initial data
curve is 2{2( ) / 2}/(2 )z y x x y y# ( � ( ( .

OBJECTIVE PROBLEMS ON CHAPTER 1
Indicate the correct answer by writing (a), (b), (c) or (d)
  1. Equation p tan y + q tan x ! sec2 z is of order
  (a) 1 (b) 2 (c) 0 (d) none of these [Agra 2005, 2008]

  2. Equation 2 2 2 2/ 2( / ) ( / ) 0z x z x y z y! ! ( ! ! ! � ! ! #  is of order
(a) 1 (b) 2 (c) 3 (d) none of these [Agra 2005, 2006]

  3. The equation (2x + 3y)p + 4xq – 8pq ! x + y is
(a) linear  (b) non-linear (c) quasi-linear (d) semi-linear [Agra 2005, 06]

  4. ( ) ( / ) (3 2 ) ( / ) 2x y z z x x y z y z x y� ( ! ! � � ! ! � # �  is
  (a) linear (b) quasi-linear (c) semi-linear (d) non-linear

Answers 1. (a) 2. (b) 3. (b) 4. (b)

MISCELLANEOUS EXAMPLES ON CHAPTER 1
Ex.1. Formulate a partial differential equation by eliminating arbitrary constants a and b

from the equation 2 2 2( ) ( ) 1x a y b z� � � � # . Examine whether the partial differential equation is
linear or non-linear. Also, find its order and degreee. [Delhi Maths (H) 2008]

Hint. Proceed as in Ex. 5(a), page 1.6 with ) ! 1. Thus we get the partial differential

equation ∃ %2 2 2( / ) ( / ) 1 1z z x z y! ! � ! ! � # , which is non-linear partial differential equation of order

one and degree two.
Ex. 2. Eliminate arbitrary constants a and b from the following equations :

(i) ax2 + by2 + z2 ! 1 (Delhi B.A. (Prog.) II 2010)
(ii) z ! ax + (1 – a) y + b (Lucknow 2010)

Ans. (i) z (z – px – qy) ! 1        (ii) p + q ! 1, where / , /p z x q z y# ! ! # ! !

Ex. 3. (i) Eliminate the arbitrary function 4 from p + x – y = 4 (q – x + y) (Ranchi 2010)
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(ii) State true or false with justification. Eliminating arbitrary function f from z = f
(x2 + y2), we get first order non-linear partial differential equation. (Pune 2010)

Ans. (i) 2 2 2 2 2 2(1 / ) (1 / ) ( / 1)z x z y z x y� ! ! � ! ! # ! ! ! (   (ii) False. see Ex. 4 (ii), page 1.21.

Ex. 4. (i) Obtain the partial differential equation by eliminating arbitrary function of f and
g from the equation    v ! {f (r – at) + g (r + at)}/r (Nagpur 2010)

Ans. Given                          v ! (1/r) × {f (r – at) + g (r + at)} ...(1)
(1) & /v t! ! ! (1/r) × {–a f 5(r – at) + ag5 (r + at)} ! – (a/r) × {f 5(r – at) – g5 (r + at)} ...( 2)

(2) & 2 2/v t! ! ! – (a/r)×{–af 55 (r – at) –ag55 (r + at)} ! (a2/r)×{f 55(r – at)+g55 (r + at)} ...(3)

(1) & /v r! ! ! (1/r)×{(f 5 (r – at) + g5 (r + at)} – (1/r2)×{f (r – at) + g (r + at)} ...(4)

(4) & 2 2/v r! ! ! (1/r)×{f 55 (r – at) + g55 (r + at)} – (1/r2) × {f 5 (r – at) + g5 (r + at)}
! –(1/r2) ×{f 5 (r – at) + g5 (r + at)} + (2/r3) × {f  (r – at) + g (r + at)}

! (1/a2) × 2 2( / )v t! ! – (2/r2) × {f5 (r – at)} + g5 (r + at)} + (2/r2) × v, using (1) and (3)

! (1/a2) × 2 2( / )v t! ! – (2/r) × 2[ / (1/ )v r r! ! � × {f (r – at)} + g (r + at)} + (2/r2)× v

   [Since from (4), (1/r)×{f5 (r – at) + g5 (r + at)} ! /v r! ! +(1/r2)× {f (r – at) + g (r + at)}]

Thus, 2 2/v r! ! ! (1/a2) × 2 2( / )v r! ! –(2/r) ×{ / (1/ ) }v r r v! ! � 3 +(2/r2)× v, using (1)

or    2 2/v r! ! ! (1/a2) × 2 2( / )v t! ! – (2/r) × 2( / ),r! ! which is the required equation
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Linear Partial differential equations

of order one
2.1. LAGRANGE’S EQUATION

A quasi–linear partial differential equation of order one is of the form Pp + Qq = R, where P,
Q and R are functions of x, y, z. Such a partial differential equation is known as Lagrange equation.

For Example xyp + yzq = zx is a Lagrange equation.
2.2. Lagrange’s method of solving Pp + Qq = R, when P, Q and R are functions of
x, y, z (Delhi Maths (H) 2009; Meerut 2003; Poona 2003, 10; Lucknow 2010)

Theorem. The general solution of Lagrange equation
Pp + Qq = R, ... (1)

is ( , ) 0u v! � ... (2)

where !  is an arbitrary function and
u(x, y, z) = c1 and v(x, y, z) = c2 ... (3)

are two independent solutions of
(dx)/P = (dy)/Q = (dz)/R ... (4)

Here, c1 and c2 are arbitrary constants and at least one of u, v must contain z. Also recall
that u and v are said to be independent if u/v is not merely a constant.

Proof. Differentiating (2) partially w.r.t. ‘x’ and ‘y’, we get

0
u u v v

p p
u x z v x z

#! # # #! # #∃ % ∃ %& & & �∋ ( ∋ () ∗ ) ∗# # # # # # ... (5)

and 0u u v v
q q

u y z v y z
∃ % ∃ %#! # # #! # #

& & & �∋ ( ∋ (# ) # # ∗ # ) # # ∗ ... (6)

Eliminating / u#! #  and / v#! #  between (5) and (6), we have

/ ( / ) / ( / )
0

/ ( / ) / ( / )
u x p u z v x p v z
u y q u z v y q v z

# # & # # # # & # #
�

# # & # # # # & # #

or 0u u v v u u v vp q q p
x z y z y z x z

∃ % ∃ %# # # # # # # #∃ % ∃ %& & + & & �∋ ( ∋ (∋ ( ∋ (# # # # # # # #) ∗ ) ∗) ∗ ) ∗

or     0u v u v u v u v u v u v
p q

z y y z x z z x x y y x
∃ %# # # # # # # # # # # #∃ %+ & + & + �∋ (∋ ( ) ∗) # # # # ∗ # # # # # # # #

,     
u v u v u v u v u v u vp q
y z z y z x x z x y y x

∃ %# # # # # # # # # # # #∃ %+ & + � +∋ ( ∋ (# # # # # # # # # # # #) ∗) ∗
... (7)

Hence (2) is a solution of the equation (7)
Taking the differentials of u(x, y, z) = c1 and v(x, y, z) = c2, we get

( / ) ( / ) ( / ) 0u x dx u y dy u z dz# # & # # & # # � ... (8)
2.1
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2.2 Linear Partial differential equations of order one

and ( / ) ( / ) ( / ) 0v x dx v y dy v z dz# # & # # & # # � ... (9)
Since u and v are independent functions, solving (8) and (9) for the ratios dx : dy : dz, gives

dx dy dz
u v u v u v u v u v u v
y z z y z x x z x y y x

� �
# # # # # # # # # # # #+ + +
# # # # # # # # # # # #

... (10)

Comparing (4) and (10), we obtain

,

u v u v u v u vu v u v
y z z y x y y xz x x z k

P Q R

# # # # # # # ## # # #+ ++# # # # # # # ## # # #� � �  say

− ,u v u v
kP

y z z y
# # # #

+ �
# # # #

u v u v kQ
z x x z

# # # #
+ �

# # # # and       
u v u v

kR
x y y x

# # # #
+ �

# # # #
Substituting these values in (7), we get   k(Pp + Qq) = kR        or Pp + Qq = R,

which is the given equation (1).
Therefore, if u(x, y, z) = c1 and v(x, y, z) = c2 are two independent solutions of the system of

differential equations (dx)/P = (dy)/Q = (dz)/R, then ( , ) 0u v! �  is a solution of Pp + Qq = R,

!  being an arbitrary function. This is what we wished to prove.
Note.  Equations (4) are called Lagrange’s auxillary (or subsidiary) equations for (1).

2.3. Working Rule for solving Pp + Qq = R by Lagrange’s method.
[Delhi Maths Hons. 1998]

Step 1.  Put the given linear partial differential equation of the first order in the standard form
Pp + Qq = R. ...(1)

Step 2.  Write down Lagrange’s auxiliary equations for (1) namely,
(dx)/P = (dy)/Q = (dz)/R ...(2)

Step 3.  Solve (2) by using the well known methods (refer Art. 2.5, 2.7, 2.9 and 2.11). Let
u(x, y, z) = c1 and v(x, y, z) = c2 be two independent solutions of (2).

Step 4.  The general solution (or integral) of (1) is then written in one of the following three
equivalent forms :
!(u, v) = 0, u = !(v) or v = !(u),  ! being an arbitrary function.
2.4. Examples based on working rule 2.3. In what follows we shall discuss four rules for
getting two independent solutions of (dx)/P = (dy)/Q = (dz)/R. Accordingly, we have four types of
problems based on Pp + Qq = R.
2.5.  Type 1 based on Rule I for solving          (dx)/P = (dy)/Q = (dz)/R. ...(1)

Suppose that one of the variables is either absent or cancels out from any two fractions of
given equations (1).  Then an integral can be obtained by the usual methods.  The same procedure
can be repeated with another set of two fractions of given equations (1).
2.6. SOLVED EXAMPLES BASED ON ART. 2.5

Ex. 1. Solve (y2z/x)p + xzq = y2. [Indore 2004; Sagar 1994]
Sol. Given (y2z/x)p + xzq = y2. ...(1)

The Lagrange’s auxiliary equations for (1) are            dx
y z x( )2 =

dy
xz

dz
y

� 2 . ..(2)

Taking the first two fractions of (2), we have
  x2zdx = y2zdy or 3x2dx – 3y2dy = 0, ...(3)
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Integrating (3), x3 – y3 = c1, c1 being an arbitrary constant ...(4)
Next, taking the first and the last fractions of (2), we get
xy2dx = y2zdz         or 2xdx – 2zdz = 0. ...(5)
Integrating (5), x2 – z2 = c2, c2 being an arbitrary constant   ...(6)
From (4) and (6), the required general integral is

!(x3 – y3, x2 – z2) = 0, !  being an arbitrary function.
Ex. 2. Solve (i)  a(p + q) = z.   [Bangalore 1997]    (ii) 2p + 3q = 1.    [Bangalore 1995]
Sol. (i)  Given ap + aq = z. ...(1)
The Lagrange’s auxiliary equation for (1) are         (dx)/a = (dy)/a = (dz)/1. ...(2)
Taking the first two members of (1),   dx – dy = 0. ...(3)
Integrating (3), x – y = c1, c1 being an arbitrary constant ...(4)
Taking the last two members of (1),  dy – adz = 0. ...(5)
Integrating (5), y – az = c2, c2 being an arbitrary constant. ...(6)
From (4) and (6), the required solution is given by

!(x – y, y – az) = 0, ! being an arbitrary function.
Ex. 3.  Solve p tan x + q tan y = tan z. [Madras 2005 ; Kanpur 2007]
Sol. Given (tan x)p + (tan y)q = tan z. ...(1)

The Lagrange’s auxiliary equations for (1) are    dx
x

dy
y

dz
ztan tan tan

� � . ...(2)

Taking the first two fractions of (2), cot x dx – cot y dy = 0.
Integrating,     log sin x – log sin y = log c1     or              (sin x)/(sin y) = c1. ...(3)
Taking the last two fractions of (2), cot y dy – cot z dz = 0.
Integrating,     log sin y – log sin z = log c2     or               (sin y)/(sin z) = c2. ...(4)
From (3) and (4), the required general solution is

sin x/sin y = !(sin y/sin z), ! being an arbitrary function.
Ex. 4.  Solve zp = –x.
Sol. Given zp + 0.q = –x. ...(1)
The Lagrange’s subsidiary equations for (1) are     (dx)/z = (dy)/0 = (dz)/(–x) ...(2)
Taking the first and the last members of (2), we get
– xdx = zdz         or 2xdx + 2zdz = 0. ...(3)
Integrating (3), x2 + z2 = c1, c1 being an arbitrary constant.  ...(4)
Next, the second fraction of (2) implies that dy = 0 giving   y = c2   ...(3)
From (4) and (5), the required solution is x2 + z2 = !(y), ! being an arbitrary function.
Ex. 5.  Solve y2p – xyq = x(z – 2y) [Delhi Maths Hons. 1995, Delhi Meths(G) 2006]

Sol. Here Lagrange’s auxiliary equations are      dx
y2 =

dy
xy

dz
x z y+

�
+( )2

.     ...(1)

Taking the first two fractions of (1) and re–writing, we get
2xdx + 2ydy = 0 so that x2 + y2 = c1. ...(2)
Now, taking the last two fractions of (1) and re–writing, we get
dz
dy = – z y

y
+ 2          or dz

dy y
& 1  z = 2 ...(3)

which is linear in z and y.  Its I.F. = e e
y dy y( / ) log1z � = y.  Hence solution of (3) is
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2.4 Linear Partial differential equations of order one

z . y = 2 2ydy c&z or zy – y2 = c2. ...(4)
Hence !(x2 + y2, zy – y2) = 0 is the desired solution, where ! is an arbitrary function.
Ex. 6.  Solve (x2 + 2y2)p – xyq = xz [K.U. Kurukshetra 2005]
Sol. The Lagrange’s auxiliary equation for the given equation are

2 22
dx dy dz

xy xzx y
� �

+& ... (1)

Taking the last two fractions of (2) and re–writing, we get
(1/y) dy + (1/z)dz = 0 so that log y + log z = log c1 or     yz = c1  ... (2)
Taking the first two fractions of (1), we have

2 22dx x y
dy xy

&
�

+ or 2
2

22 4dx
x x y

dy y

∃ %
& � +∋ (∋ (

) ∗
... (3)

Putting x2 = v and 2x(dx/dy) = dv/dx, (3) yields
    dv/dx + (2/y) v = – 4y, which is a linear equation.

Its integrating factor (2 / ) 2log 2y dy ye e y� � �.  and hence its solution is

/ 02 2
2( 4 )yv y xy dy c� + &. or y2x2 + y4 = c2 ... (4)

From (2) and (4), the required solution is 2 2 4( , ) 0,yz y x y! & � !  being an arbitrary function.

EXERCISE 2 (A)
Solve the following partial differential equations

1. (–a + x)p + (–b + y)q = (–c + z). Ans. {( ) /( ), ( ) /( )} 0x a y b y b z c! + + + + �

2. xp + yq = z (Kanpur 2011) Ans. ( / , / ) 0x z y z! �

3. p + q = 1 Ans. ( , ) 0x y x z! + + �

4. x2p + y2p = z2 [Bilaspur 2001, Jabalpur 2000, Sagar 2000, Vikram 1999]
Ans. (1/ 1/ , 1/ 1/ ) 0x y y z! + + �

5. x2p + y2q + z2 = 0 Ans. (1/ 1/ ,1/ 1/ ) 0x y y z! + & �

6. / / sinz x z y x# # & # # � [Meerut 1995] Ans. ( , cos ) 0x y z x! + & �

7. yzp + 2xq = xy [Nagpur 1996] Ans. 2 2 2( , 4 ) 0x z y z! + + �

8. xp + yq = z  [Bangalore 1995] Ans. ( / , / ) 0x y x z! �

9. yzp + zxq = xy [M.S. Univ. T.N. 2007, Lucknow 2010, Revishankar 2004]

Ans. 2 2 2 2( , ) 0x y x z! + + �

10. zp = x Ans. 2 2( , ) 0y x z! + �

11. y2p2 + x2q2 = x2y2z2 Ans. 3 3 3 1( , 3 ) 0x y y z+! + & �

2.7.  Type 2 based on Rule II for solving           (dx)/P = (dy)/Q = (dz)/R.   ...(1)
Suppose that one integral of (1) is known by using rule I explained in Art 2.5 and suppose

also that another integral cannot be obtained by using rule I of Art. 2.5. Then one integral known to
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Linear Partial differential equations of order one 2.5

us is used to find another integral as shown in the following solved examples.  Note that in the
second integral, the constant of integration of first integral should be removed later on.
2.8. SOLVED EXAMPLES BASED ON ART. 2.7

Ex. 1.  Solve  p + 3q = 5z + tan (y – 3x).
[Agra 2006; Meerut 2003; Indore 2002; Ravishankar 2003]

Sol. Given p + 3q = 5z + tan (y – 3x). ...(1)

The Lagrange’s subsidary equations for (1) are        dx
1

= dy dz
z y x3 5 3

�
& +tan( )

. ...(2)

Taking the first two fractions, dy – 3dx = 0. ...(3)
Integrating (3), y – 3x = c1, c1 being an arbitrary constant. ...(4)

Using (4), from (2) we get dx dz
z c1 5 1

�
& tan . ...(5)

Integrating (5), x – (1/5) × log (5z + tan c1) = (1/5) × c2, c2 being an arbitrary constant.
or 5x – log [5z + tan (y – 3x)] = c2,  using (4) ...(6)

From (4) and (6), the required general integral is
5x – log [5z + tan (y – 3x)] = !(y – 3x), where ! is an arbitrary function.

Ex. 2.  Solve z(z2 + xy) (px – qy) = x4.
Sol. Given xz(z2 + xy)p – yz(z2 + xy)q = x4. ...(1)

The Lagrange’s subsidiary equations for (1) are    dx
xz z xy( )2 &

=
dy

yz z xy
dz
x+ &

�
( )2 4 . ...(2)

Cancelling z(z2 + xy), the first two fractions give

(1/ ) (1/ )x dx y dy� + or (1/ ) (1/ ) 0x dx y dy& � . ...(3)
Integrating (3), log x + log y = log c1       or xy = c1. ...(4)

Using (4), from (2) we get    dx
xz z c

dz
x( )2

1
4&

�

or x3dx = z(z2 + c1)dz or x3dx – (z3 + c1z)dz = 0. ...(5)
Integrating (5),  x4/4 – z4/4 – (c1z

2)/2) = c2/4      or              x4 – z4 – 2c1z
2 = c2

or x4 – z4 – 2xy z2 = c2, using (4) ...(6)
From (4) and (6), the required general integral is

         !(xy, x4 – z4 – 2xy z2)  =  0,  ! being an arbitrary function.
Ex. 3.  Solve  xyp + y2q = zxy – 2x2. [Garhwal 2005]
Sol. Given xyp + y2q = zxy – 2x2. ...(1)

The Lagrange’s subsidiary equations for (1) are               dx
xy

=
dy
y

dz
zxy x2 22

�
+

. ...(2)

Taking the first two fractions of (2), we have
(dx)/xy = (dy)/y2 or    (1/x)dx – (1/y)dy = 0 ...(3)
Integrating (3), log x – log y = log c1 or x/y = c1.    ...(4)
From (4), x = c1y.  Hence from second and third fractions of (2), we get

dy
y

dz
c zy c y2

1
2

1
2 22

�
+

or c1dy – dz
z c+ 2 1

2 = 0. ...(5)

Integrating (5),  c1y – log (z – 2c1
2) = c2      or   x – log [z – 2(x2/y2)] = c2, using (4). ...(6)

From (4) and (6), the required general solution is
   x – log [z – 2(x2/y2)] = !(x/y), ! being an arbitrary function.
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2.6 Linear Partial differential equations of order one

Ex. 4.  Solve xzp + yzq = xy. [Bhopal 1996; Jabalpur 1999; Jiwaji 2000; Punjab 2005;
Agra 2007; Ravishanker 1996; Vikram 2000]

Sol. Given xzp + yzq = xy. ...(1)

The Lagrange’s subsidiary equations for (1) are                dx
xz

= dy
yz

dz
xy

� . ...(2)

Taking the first two fractions of (2), (1/x)dx – (1/y)dy = 0 ...(3)
Integrating (3), log x – log y = log c1 or        x/y = c1.    ...(4)
From (4), x = c1y.  Hence, from second and third fractions of (2), we get
(1/yz)dy = (1/c1y

2)dz or 2c1y dy – 2z dz = 0. ...(5)
Integrating (5), c1y

2 – z2 = c2 or   xy – z2 = c2, using (4). ...(6)
From (4) and (6), the required solution is !(xy – z2, x/y) = 0, ! being an arbitrary function.
Ex. 5.  Solve py + qx = xyz2 (x2 – y2).
Sol. Given        py + qx = xyz2 (x2 – y2). ...(1)

The Lagrange’s auxiliary equations for (1) are              dx
y

= dy
x

dz
xyz x y

�
+2 2 2( )

. ...(2)

Taking the first two fractions of (2), 2xdx – 2ydy = 0. ...(3)
Integrating. x2 – y2 = c1, c1 being an arbitrary constant.    ...(4)
Using (4), the last two fractions of (2) give
(dy)/x = (dz)/(xyz2c1) or 2c1y dy – 2z–2dz = 0. ...(5)
Integrating (5), c1 y

2 + (2/z) = c2, c2 being an arbitrary constant.
or y2 (x2 – y2) + (2/z) = c2, using (4). ...(6)

From (4) and (6), the required general solution is
y2 (x2 – y2) + (2/z) = !(x2 – y2), where ! is an arbitrary function.

Ex. 6.  Solve xp – yq = xy [Madras 2005]
Sol. The Lagrange’s auxiliary equations for the given equation are

(dx)/x = (dy)/(–y) = (dz)/(xy) ... (1)
Taking the first two fractions of (1), (1/x)dx + (1/y)dy = 0
Intergrating, log x + log y = c1 so that xy = c1   ... (2)
Using (2), (1) yields (1/x)dx = (1/c1) dz so that   log x – log c2 = z/c1

or log (x/c2) = z/c1 or log (x/c2)= z/(xy), by (2)
Thus,  x/c2 = ez/(xy)  or  xe–z/(xy) = c2, c2 being an arbitrary constant. ... (3)

From (2) and (3), the required solution is /( ) ( ),z xyx e xy+ � ! ! being an arbitrary function

Ex. 7.  Solve p + 3q = z + cot (y – 3x). [M.D.U Rohtak 2006]
Sol. The Lagrange’s auxiliary equation for the given equation are

1 3 cot ( 3 )
dx dy dz

z y x
� �

& + ... (1)

Taking the first two fractions of (1),      dy – 3 dx = 0    so that       y – 3x = c1  ... (2)
Taking the first and last fraction of (1), we have

cot ( 3 )
dz

dx
z y x

�
& + or

1
,

cot
dz

dx
z c

�
&  using (2)

Intergrating,    x = log | z + cot c1| + c2, c1 and c2 being an arbitrary constants.
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or x – log | z + cot (y – 3x)| = c2, using (2) ... (3)
From (2) and (3), the required general solution is

log | cot ( 3 ) | ( 3 ),x z y x y x+ & + � ! + !  being an arbitrary function.
Ex. 8.  Solve px (z – 2y2) = (z – qy) (z – y2 – 2x3)[Delhi B.Sc. II 2008; Delhi B.A. II 2010]
Sol. Re–writing the given equation, we have

x(z – 2y2) p + y (z – y2 – 2x3) q = z(z – y2 – 2x3) ... (1)
The Lagrange’s subsidiary equations for (1) are

2 2 3 2 3( 2 ) ( 2 ) ( 2 )
dx dy dz

x z y y z y x z z y x
� �

+ + + + + ... (2)

Taking the last two fraction, we get (1/z)dz = (1/y)dy
Integrating, log z = log y + log a or z/y = a ... (3)

where a is an arbitrary constant. Using (3), (2) yields

2 2 3( 2 ) ( 2 )
dx dy

x ay y y ay y x
�

+ + +
        so that (ay – y2 – 2x3) dx + x (2y – a) dy = 0 ... (4)

Comparing (4) with Mdx + Ndy = 0, here M = ay – y2 – 2x3 and N = x (2y – a). Then
/ 2 and / 2 .M y a y N x y a# # � + # # � +  Now, we have

1 1 22( 2 ) ,
(2 )

M N a y
N y x x y a x

∃ %# #
+ � 1 + � +∋ (# # +) ∗

 which is a function of x alone.

Hence, by usual rule, integrating factor of (1) 
2( 2/ ) 2log 2x dx x xe e e x

++ + +� � � �.
Multiplying (4) by x–2, we get exact equation (ayx–2 – y2x–2 – 2x)dx + x–1(2y – a) dy = 0
By the usual rule of solving an exact equation, its solution is

    / 02 2 1( ) 2 (2 )ay y x x dx x y a dy+ ++ + & +. .     = b

(Treating y as constant)      (Integrating terms free from x)
or     (ay – y2) × (–1/x) – x2 = b or   (y2 – ax)/x – x2 = b
or   (y2 – ax – x3)/x = b, where b is an arbitrary constant. ... (5)

From (3) and (5), required solution is 2 3( ) / ( / ),y ax x x z y+ + � ! !  being an arbitrary function

EXERCISE 2 (B)
Solved the following differential equations:

1. p – 2q = 3x2 sin (y + 2x). Ans. 2 sin( 2 ) ( 2 )x y x z y x& + � ! &

2. p – q = z/(x + y). Ans. ( ) log ( )x x y z x y+ & � ! &

3. xy2p – y3q + axz = 0. Ans. 2log ( /3 ) ( )z ax y xy& � !

4. (x2 – y2 – z2)p + 2xyq = 2xz. Ans. 2 2 2( ) / ( / )x y z z y z& & � !

5. (a) z(p – q) = z2 + (x + y)2. (Meerut 2011) Ans. 2 2 2[ ( ) ] ( )ye z x y x y& & � ! &

(b) 2 2( ) ( )z p q z x y& � & + Ans. 2 2 2[ ( ) ] ( )ye z x y x y& + � ! +

6. p – 2q = 3x2 sin (y + 2x). Ans. 3 sin( 2 ) ( 2 )x y x z y x& + � ! &

7. p – q = z/(x + y). Ans. ( ) log ( )x x y z x y+ & � ! &
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2.8 Linear Partial differential equations of order one

8. zp – zq = x + y. Ans. 22 ( ) ( )x x y z x y& + � ! &

9. xyp + y2q + 2x2 – xyz = 0. Ans. log | (2 / ) | ( / )x z x y x y+ + � !

2.9.  Type 3 based on Rule III for solving           (dx)/P = (dy)/Q = (dz)/R.  ...(1)
Let P1, Q1 and R1 be functions of x, y and z.  Then, by a well–known principle of algebra,

each fraction in (1) will be equal to              1 1 1 1 1 1( ) /( )P dx Q dy R dz P P Q Q R R& & & & . ...(2)
If P1P + Q1Q + R1R = 0, then we know that the numerator of (2) is also zero. This gives

P1dx + Q1dy + R1dz = 0 which can be integrated to give u1(x, y, z) = c1. This method may be
repeated to get another integral u2(x, y, z) = c2.  P1, Q1, R1 are called multipliers.  As a special case,
these can be constants also.  Sometimes only one integral is possible by use of multipliers.  In such
cases second integral should be obtained by using rule I of Art. 2.5 or rule II of Art. 2.7 as the case
may be.
2.10. SOLVED EXAMPLES BASED ON ART. 2.9

Ex.1. Solve {(b – c)/a}yzp + {(c – a)/b}zxq = {(a – b)/c}xy.
Sol. Given      {(b – c)/a}yzp + {(c – a)/b}zxq = {(a – b)/c}xy. ...(1)

The Lagrange’s subsidiary equations of (1) are       a dx
b c yz( )+

=
b dy

c a zx
c dz

a b xy( ) ( )+
�

+
. ...(2)

Choosing x, y, z as multipliers, each fraction for (2)

=
a xdx by dy cz dz

xyz b c c a a b
& &

+ & + & +[( ) ( ) ( ) ]
=

ax dx by dy cz dz& &
0 .

,  ax dx + by dy + cz dz = 0 or 2axdx + 2bydy + 2czdz = 0.
Integrating, ax2 + by2 + cz2 = c1, c1 being an arbitrary constant. ...(3)
Again, choosing ax, by, cz as multipliers, each fraction of (2)

= a xdx b ydy c zdz
xyz a b c b c a c a b

2 2 2& &
+ & + & +[ ( ) ( ) ( )]

= a xdx b ydy c zdz2 2 2

0
& & .

,a2xdx + b2ydy + c2zdz = 0 or 2a2xdx + 2b2ydy + 2c2zdz = 0.
Integrating, a2x2 + b2y2 + c2z2 = c2, c2 being an arbitrary constant. ...(4)
From (3) and (4), the required general solution is given by

! (ax2 + by2 + cz2, a2x2 + b2y2 + c2z2) = 0, where !  is an arbitrary function.
Ex. 2.  Solve z(x + y)p + z(x – y)q = x2 + y2.
Sol. Given z(x + y)p + z(x – y)q = x2 + y2. ...(1)

The Langrange’s subsidiary equations for (1) are        dx
z x y( )&

= dy
z x y

dz
x y( )+

�
&2 2 . ...(2)

Choosing x, –y, –z, as multipliers, each fraction

= 2 2( ) ( ) ( )
x dx y dy z dz

xz x y yz x y z x y
+ +

& + + + +
=

0
x dx y dy z dz+ + .

,   x dx – y dy – z dz or 2x dx – 2y dy – 2z dz = 0.
Integrating,  x2 – y2 – z2 = c1, c1 being an arbitrary constant. ...(3)
Again, choosing y, x, –z as multipliers, each fraction

= 2 2( ) ( ) ( )
y dx x dy z dz

yz x y xz x y z x y
& +

& & + + &
=

0
y dx x dy z dz& +

.

,    y dx + x dy – z dz = 0   or 2d(xy) – 2zdz = 0.
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Integrating, 2xy – z2 = c2, c2 being an arbitrary constant. ...(4)
From (3) and (4), the required general solution is given by

   ! (x2 – y2 – z2, 2xy – z2) = 0,  !  being an arbitrary function.
Ex. 3.  Solve (mz – ny)p + (nx – lz)q = ly – mx. [Patna 2003; Madras 2005; Delhi Maths Hons.

1 9 9 1 ;
                Bhopal 2004; Meerut 2008, 10;  Sagar 2002; I.A.S. 1977; Kanpur 2005,

06]
Sol. The Lagrange’s auxiliary equations for the given equation are

dx
mz ny+

=
dy

nx lz
dz

ly mx+
�

+
. ...(1)

Choosing x, y, z as multipliers, each fraction of (1)

=
xdx ydy zdz

x mz ny y nx lz z ly mx
& &

+ & + & +( ) ( ) ( )
= xdx ydy zdz& &

0
,  xdx + ydy + zdz = 0 or 2xdx + 2ydy + 2zdz = 0
Integrating, x2 + y2 + z2 = c1, c1 being an arbitrary constant. ...(2)
Again, choosing l, m, n as multipliers, each fraction of (1)

=
( ) ( ) ( )

ldx mdy n dz
l mx ny m nx lz n ly mx

& &
+ & + & +

=
0

ldx mdy n dz& & .

,    ldx + mdy + n dz = 0 so that    l x + m y + n z = c2. ...(3)
From (2) and (3), the required general solution is given by

! (x2 + y2 + z2, l x + m y + n z) = 0, !  being an arbitrary function.
Ex. 4.  Solve x(y2 – z2)q – y(z2 + x2)q = z(x2 + y2).
Sol. The lagrange’s auxiliary equations for the given equation are

dx
x y z( )2 2+

=
dy

y z x
dz

z x y+ &
�

&( ) ( )2 2 2 2 . ...(1)

Choosing x, y, z, as multipliers, each fraction of (1)

=
xdx ydy zdz

x y z y z x z x y
& &

+ + & & &2 2 2 2 2 2 2 2 2( ) ( ) ( )
=

xdx ydy zdz& &
0

− xdx + ydy + zdz = 0 so that x2 + y2 + z2 = c1. ...(2)
Choosing 1/x, –1/y, –1/z as multipliers, each fraction of (1)

=  
1 1 1

2 2 2 2 2 2
/ / /

( )
x dx y dy z dz

y z z x x y
a f a f a f+ +

+ & & + &
=

1 1 1
0

/ / /x dx y dy z dza f a f a f+ +

−   (1/x)dx – (1/y)dy – (1/z)dz = 0      so that log x – log y – log z = log c2

− log {x/(yz)} = log c2 − x/yz = c2. ...(3)

,  The required solution is ! (x2 + y2 + z2, x/yz) = 0, !  being an arbitrary function.
Ex. 5.  Solve (y – zx)p + (x + yz)q = x2 + y2.
Sol. The Lagrange’s auxiliary equations for the given equation are

dx
y zx+

=
dy

x yz
dz

x y&
�

&2 2 . ...(1)

Choosing x, –y, z as multipliers, each fraction of (1)
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2.10 Linear Partial differential equations of order one

= xdx ydy zdz
x y zx y x yz z x y

+ &
+ + & & &( ) ( ) ( )2 2 = xdx ydy zdz+ &

0
−      2xdx – 2ydy + 2zdz = 0 so that x2 – y2 + z2 = c1. ...(2)
Choosing y, x, –1 as multipliers, each fraction of (1)

=
ydx xdy dz

y y zx x x yz x y
& +

+ & & + &( ) ( ) ( )2 2 =
d xy dz( ) +

0
−     d(xy) – dz = 0       so that xy – z = c2. ...(3)

,  From (2) and (3) solution is ! (x2 – y2 + z2, xy – z) = 0, !  being an arbitrary function.
Ex. 6.  Solve x(y2 + z)p – y(x2 + z)q = z(x2 – y2). [I.A.S. 2004; Agra 2005 ; Delhi Maths

(H) 2006; M.S. Univ. T.N. 2007; Indore 2003; Meerut 2009; Purvanchal 2007]
Sol. Here Lagrange’s subsidiary equations for given equation are

dx
x y z( )2 &

=
dy

y x z
dz

z x y+ &
�

+( ) ( )2 2 2 . ...(1)

Choosing 1/x, 1/y, 1/z as multipliers, each fraction of (1)

=
( / ) ( / ) ( / )

( )
1 1 1

2 2 2 2
x dx y dy z dz

y z x z x y
& &

& + & & +
=

( / ) ( / ) ( / )1 1 1
0

x dx y dy z dz& &

− (1/x)dx + (1/y)dy + (1/z)dz = 0 so that log x + log y + log z = log c1

− log (xyz) = log c1 − xyz = c1. ...(2)
Choosing x, y, –1 as multipliers, each fraction of (1)

=
xdx ydy dz

x y z y x z z x y
& +

& + & + +2 2 2 2 2 2( ) ( ) ( )
=

xdx ydy dz& +
0

−    x dx + y dy – z dz = 0 so that x2 + y2 – 2z = c2. ...(3)

,  From (2) and (3), solution is ! (x2 + y2 – 2z, xyz) = 0, !  is being an arbitrary function.
Ex. 7.  Solve (x + 2z)q + (4zx – y)q = 2x2 + y. [Meerut 2005]

Sol. Here Lagrange’s auxiliary equations are   dx
x z&2

= dy
zx y

dz
x y4 2 2+

�
&

. ...(1)

Choosing y, x, –2z as multipliers, each fraction of (1)

=  ydx xdy zdz
y x z x zx y z x y

& +
& & + + &

2
2 4 2 2 2( ) ( ) ( )

=
d xy zdz( ) + 2

0
−     d(xy) – 2zdz = 0  so that   xy – z2 = c1. ...(2)
Choosing 2x, –1, –1 as multipliers, each fraction of (1)

= 2
2 2 4 2 2

xdx dy dz
x x z zx y x y

+ +
& + + + &( ) ( ) ( )

= 2
0

xdx dy dz+ +

−     2xdx – dy – dz = 0 so that x2 – y – z = c2. ...(3)

,  From (2) and (3), solution is ! (xy – z2, x2 – y – z) = 0, !  being an arbitrary function.
Ex. 8.  Solve (z2 – 2yz – y2)p + (xy + zx)q = xy – zx. [Ranchi 2010; Meerut 1994]
If the solution of the above equation represents a sphere, what will be the coordinates of

its centre.
Sol. Here Lagrange’s auxiliary equations for given equation are

dx
z yz y2 22+ +

=
dy

x y z
dz

x y z( ) ( )&
�

+
. ...(1)
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Linear Partial differential equations of order one 2.11

Taking the last two fractions of (1), we have
(y – z)dy = (y + z)dz or 2ydy – 2zdz – 2(zdy + ydz) = 0.
Integrating, y2 – z2 – 2yz = c1, c1 being an arbitrary constant. ...(2)
Choosing x, y, z as multipliers, each fractrion of (1)

= xdx ydy zdz
x z yz y xy y z xz y z

& &
+ + & & & +( ) ( ) ( )2 22

=
xdx ydy zdz& &

0

−    2xdx + 2ydy + 2zdz = 0 so that x2 + y2 + z2 = c2. ...(3)

From (2) and (3), solution is ! (y2 – z2 – 2yz, x2 + y2 + z2) = 0, !  being an arbitrary function.
From the solution of the given equation, it follows that if it represents a sphere, then its

centre must be at (0,0,0), i.e., origin.
Ex. 9.  Solve (y3x – 2x4)p + (2y4 – x3y)q = 9z(x2 – y3). [Jabalpur 2004; M.S. Univ. T.N. 2007]
Sol. Here Lagrange’s auxiliary equations for the given equation are given by

dx
y x x3 42+

= dy
y x y

dz
z x y2 94 3 3 3+

�
+( )

. ...(1)

Taking first two fractions of (1), we have (2y4 – x3y)dx = (y3x – 2x4)dy

  Dividing both sides by x3y3 gives 2 1
3 2
y

x y
dx+

F
HG

I
KJ = 1 2

2 3x
x

y
dy+

F
HG

I
KJ

or      
1 2 1 2
2 3 2 3x

dy y
x

dx
y

dx x
y

dy+F
H

I
K & +
F
HG

I
KJ = 0          or 2 2

y x
d d

x y

∃ %∃ % & ∋ (∋ ( ∋ () ∗ ) ∗
= 0.

Integrating,  (y/x2) + (x/y2) = c1, c1 being an arbitrary constant. ...(2)
Choosing 1/x, 1/y, 1/3z as multipliers, each fraction of (1)

=
( / ) ( / ) ( / )

( ) ( ) ( )
1 1 1 3

2 2 33 3 3 3 3 3
x dx y dy z dz

y x y x x y
& &

+ & + & +
= ( / ) ( / ) ( / )1 1 1 3

0
x dx y dy z dz& &

−   (1/x)dx + (1/y)dy + (1/3z)dz = 0       so that     log x + log y + (1/3) × log z = log c2

− log (xy z1/3) = log c2 − xyz1/3 = c2. ...(3)

From (2) and (3) solution is ! (xyz1/3, y/x2 + x/y2) = 0, !  being an arbitrary function.
Ex. 10.  Solve x2p + y2q = nxy. [Ravishankar 1998; Bhopal 1998; Jabalpur 2002]
Sol. Here Lagrange’s auxiliary equations are        (dx)/x2 = (dy)/y2 = (dz)/nxy ... (1)
Taking the first two fractions of (1), we get               x–2dx – y–2dy = 0.
Integrating, –1/x + 1/y = – c1 so that    (y – x)/xy = c1.  ...(2)
Choosing 1/x, –1/y, c1/n as multipliers, each fraction of (2)

   =
( / ) ( / ) ( / )1 1 1

1

x dx y dy c n dz
x y c xy

+ &
+ &

=
( / ) ( / ) ( / )1 1 1x dx y dy c n dz

x y y x
+ &

+ & +
, by (2)

=
( / ) ( / ) ( / )1 1

0
1x dx y dy c n dz& & so that 1 1 1

x
dx

y
dy c

n
dz+ & = 0.

Integrating,                log x – log y + (c1/n) z = (c1/n)c2, c2 being an arbitrary constant.
or     z – (n/c1) (log y – log x) = c2 or z – (n/c1)log (y/x) = c2

or z – nxy
y x+

 log y
x

= c2, using (2). ...(3)
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2.12 Linear Partial differential equations of order one

From (2) and (3), the required general solution is

! y x
xy

z nxy
y x

y
x

+ +
+

F
HG

I
KJ, log = 0,  !  being an arbitrary function.

Ex. 11.  Solve (x – y)p + (x + y)q = 2xz.

Sol. Here the Lagrange’s subsidiary equations are dx
x y+

= dy
x y

dz
xz&

�
2

. ...(1)

Taking the first two fractions of (1), dy
dx

=
x y
x y

y x
y x

&
+

� &
+

1
1

( / )
( / )

. ...(2)

Let y/x = v i.e., y = xv. ...(3)
From (3), (dy/dx) = v + x(dv/dx). ...(4)

Using (3) and (4), (2) gives  v + x d
dx
v

=
1
1
+v
v+

or x d
dx
v = 1

1
+v
v+

– v =
1 1

1
1
1

2& + +
+

�
&
+

v v v
v

v
v

( )

or      1
1

+
&
v
v2

 dv = dx
x

or                   
2

1
2

1
2

2 2&
+

&
F
HG

I
KJ �

v
v
v

vd dx
x

Integrating, 2tan–1 v – log (1 + v2) = 2 log x – log c1
or log x2 – log (1 + v2) – log c1 = 2 tan–1 v

or log {x2(1 + v2)/c1} = 2 tan–1v or x2(1 + v2) = c e1
2 1tan+ v

or x2[1 + (y2/x2)] = c e y x
1

2 1tan ( / )+
, as v = y/x by (3)

or (x2 + y2) e y x+ +2 1tan ( / )
= c1, c1 being an arbitrary constant. ...(5)

Choosing 1, 1, –1/z as multipliers, each fraction of (1)

   = (1/ )
( ) ( ) (1/ ) (2 )

dx dy z dz
x y x y z xz

& +
+ & & + 1

=
dx dy z dz& + ( / )1

0

− dx + dy – (1/z)dz = 0 so that x + y – log z = c2. ...(6)
From (5) and (6), the required general solution is

! (x + y – log z, (x2 + y2) e y x+ +2 1tan ( / ) ) = 0,  where !  is an arbitrary function.
Ex. 12.  Solve y2p + x2q = x2y2z2.
Sol. Here Lagrange’s auxiliary equations are (dx)/y2 = (dy)/x2 = (dz)/x2y2z2. ...(1)
Taking the first two fractions of (1), we have
3x2dx – 3y2dy = 0 so that x3 – y3 = c1. ...(2)

Choosing x2, y2, –2/z2 as multipliers, each fraction of (1) 2 2 2{ (2 / ) }/ 0x dx y dy z dz� & +

so that 3x2dx + 3y2dy – (6/z2)dz = 0.
Integrating, x3 + y3 + (6/z) = c2, c2 being an arbitrary constant. ...(3)
From (2) and (3), the required general solution is

! [x3 – y3, x3 + y3 + (6/z)] = 0,  !  being an arbitrary function.
Ex. 13.  Solve (3x + y – z)p + (x + y – z)q = 2(z – y). [Bangalore 1992]

Sol. Here Lagrange’s auxiliary equations are         dx
x y z3 & +

=
dy

x y z
dz
z y& +

�
+2( )

...(1)
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Linear Partial differential equations of order one 2.13

Choosing 1, –3, 1 as multipliers, each ratio of (1) { 3 }/ 0dx dy dz� + +

so that dx – 3dy – dz = 0.
Integrating, x – 3y – z = c1, c1 being an arbitrary constant. ...(2)
From (2), z = c1 – x + 3y. ...(3)
Substituting the above value of z, the first two fractions of (2) reduce to

dx
x y c x y3 31& + + &( ) =  dy

x y c x y& + + &( )1 3
        or        dx

x y c2 4 1& &
=

dy
y c4 1&

. ...(3)

Let u =4y + c1       so that dy = (1/4) × du. ...(4)

Then, (3) −   dx
x u2 &

=
( / )1 4 du

u  or  dx
du

x u
u

� &1
4

2   or  dx
du u

+ 1
2

 x = 1
4

, which is linear.. ...(5)

Integrating factor of (5)  =
1/ 2(1/ 2 ) (1/ 2)log log ( ) 1/ 2 1/

u du u ue e e u u
++ + +� � � �. .

Hence solution of (5) is x × 1
u

=
1
4

1 1
2 2u

du c u cz & � &

or     2x u
u
+ = c2 or 2 4

4
1

1

x y c
y c

+ &
&

( )
= c2, by (4)

or 2 4 3
4 3

x y x y z
y x y z

+ + + +
& + +

( )
= c2, using (2) or 2

x y z c
x y z
+ &

�
& +    ...(6)

From (2) and (6), the required general solution is

! 2 33 , ( ) /x y z x y z x y z+ + + & & + = 0, !  being an arbitrary function.

Ex. 14.  Solve x(x2 + 3y2)p – y(3x2 + y2)q = 2z(y2 – x2).        [Delhi Maths Hons 95, 2000]
Sol. Here the Lagrange’s auxiliary equations for the given equation are

dx
x x y( )2 23&

= dy
y x y

dz
z y x+ &

�
+( ) ( )3 22 2 2 2 . ...(1)

Choosing 1/x, 1/y, –1/z as multipliers, each fraction of (1)

=
( / ) ( / ) ( / )1 1 1

0
x dx y dy z dz& + so that 1 1 1

x
dx

y
dy

z
dz& + = 0.

Integrating,        log x + log y – log z = log c1        so that (xy)/z = c1. ...(2)

Taking the first two ratios of (1),        dy
dx

=
2 3
2 3

22 2

2 2 2

3(3 )
( 3 ) 1 3

y xy x y y
xx x y y x

&& ∃ %+ � + ∋ (& ) ∗ &
. ...(3)

Put y/x = v    or    y = xv   so that (dy/dx) = v + x(dv/dx). ...(4)

Using (4), (3) reduces to v + x d
dx
v

= – v 3+ v
v

2

21 3&
 or  x d

dx
v

= – v 
3+ v

v

2

21 3
1

&
&

L
NM

O
QP

or    x d
dx
v

= – 4 +( )1
1 3

2

2
v v
v&

or 4 dx
x

+
2

2
1 + 3
(1 )

d
&

v
v

v v
= 0

or 4 
2

1 2
1

dx
d

x
∃ %

& &∋ (∋ (&) ∗v
v

v
v

,  on resolving into partial fractions

Integrating, 4 log x + log v + log (1 + v2) or   x4v(1 + v2) = c24
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2.14 Linear Partial differential equations of order one

4 2 2 2 2 2
2 2 1 2( / )[1 ( / ) ] or ( ) or ( ) ,x y x y x c xy x y c c z x y c4 4 4& � & � & �  by (2)

or 2 2 2 2
2 1 2 2 2 1( ) / or ( ) , where / .z x y c c z x y c c c c& � & � �4 4 ... (5)

, From (2) and (5) solution is ! (z(x2 + y2), xy/z) = 0, !  being an arbitrary function.
Ex. 15.  Solve (y – z)p + (z – x)q = x – y. [Agra 2010; Delhi Maths Hons. 1992]

Sol. Here the Lagrange’s auxiliary equations are           dx
y z+

= dy
z x

dz
x y+

�
+

. ...(1)

Choosing 1, 1, 1 as multipliers, each fraction of (1)

            = dx dy dz
y z z x x y

& &
+ & + & +( ) ( ) ( )

=
dx dy dz& &

0 .

,  dx + dy + dz = 0 so that x + y + z = c1. ...(2)
Choosing x, y, z as multipliers, each fraction of (1)

         ( ) ( ) ( ) 0
x dx y dy z dz x dx y dy z dz

x y z y z x z x y
& & & &

� �
+ & + & +

, 2x dx + 2y dy + 2z dz = 0 so that x2 + y2 + z2 = c2 ...(3)

,  From (2) and (3) solution is 2 2 2( , ) 0,x y z x y z! & & & & � !  being an arbitrary of function.

Ex. 16.  Solve the general solution of the equation      (y + zx)p – (x + yz)q + y2 – x2 = 0.
[Delhi B.Sc. (Prog) II 2011; GATE 2001; Delhi Math Hons. 1997, 98]

Sol. Given          (y + zx)p – (x + yz)q = x2 – y2. ...(1)

Here the Lagrange’s auxiliary equations are dx
y zx& =

dy
x yz

dz
x y+ &

�
+( ) 2 2 .  ...(2)

Choosing x, y, –z as multipliers, each fraction of (2)

=
xdx ydy zdz

x y zx y x yz z x y
& +

& + & + +( ) ( ) ( )2 2 =
xdx ydy zdz& +

0
, xdx + ydy – zdz = 0 so that 2xdx + 2ydy – 2zdz = 0.
Integrating, x2 + y2 – z2 = c1, c1 being an arbitrary constant. ...(3)
Choosing y, x, 1 as multipliers, each fraction of (2)

=
ydx xdy dz

y y zx x x yz x y
& &

& + & & +( ) ( ) 2 2 =
ydx xdy dz& &

0
,  ydx + xdy + dz = 0 or d(xy) + dz = 0.
Integrating, xy + z = c2, c2 being an arbitrary constant. ...(4)

,  The required solution is ! (x2 + y2 – z2, xy + z) = 0,  !  being an arbitrary function.
Ex. 17.  Solve x(y – z) p + y (z – x)q = z(x – y), i.e., {(y – z)/(yz)}p + {(z – x)/(zx)}q

= (x – y)/(xy).         [Delhi B.A (Prog) II 2010; I.A.S. 2005, M.S. Univ. T.N. 2007; Vikram 2003]
Sol. Given x(y – z)p + y(z – x)q = z(x – y) ... (1)

The Lagrange’s auxiliary equations for (1) are        
( ) ( ) ( )

dx dy dz
x y z y z x z x y

� �
+ + +

... (2)

Choosing 1/x, 1/y, 1/z as multipliers each fraction of (1)

(1/ ) (1/ ) (1/ ) (1/ ) (1/ ) (1/ )
( ) ( ) ( ) 0

x dx y dy z dz x dx y dy z dz
y z z x x y

& & & &
� �

+ & + & +
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Linear Partial differential equations of order one 2.15

−  (1/x)dx + (1/y)dy + (1/z)dz = 0   so that log x + log y + log z = log c1

,   log (xyz) = c1 or xyz = c1 ... (3)
Choosing 1, 1, 1 as multipliers, each fraction of (1)

( ) ( ) ( ) 0
dx dy dz dx dy dz

xy xz yz yx zx zy
& & & &

� �
+ & + & +

−   dx + dy + dz = 0 so that x + y + z = c2 ... (4)

From (3) and (4), solution is ( , ) 0,x y z xyz! & & � !  being an arbitrary function.
Ex. 18.  Solve 2y(z – 3)p + (2x – z)q = y(2x – 3) [Delhi Math (H) 1999]
Sol. The Lagrange’s auxiliary equations for given equation are

2 ( 3) 2 (2 3)
dx dy dz

y z x z y x
� �

+ + + ... (1)

Taking the first and third fractions,    (2x – 3)dx = 2(z – 3)dz.
Integrating, x2 – 3x = z2 – 6z + C1 or      x2 – 3x – z2 + 6z = C1 ... (2)
Choosing 1, 2y, –2 as multipliers, each fraction of (1)

2 2 2 2
2 ( 3) 2 (2 ) 2 (2 3) 0

dx ydy dz dx ydy dz
y z y x z y x

& + & +
� �

+ & + + +
,   dx + 2ydy – 2dz = 0 so that x + y2 – 2z = C2 ... (3)

From (2) and (3), solution is 2 2 2( 3 6 , 2 ) 0,x x z z x y z! + + & & + � !  being an arbitrary
function.

Ex. 19.  Solve 2 2( / ) ( / ) ( ) .x z x y z y x y z# # & # # � & [Delhi Maths (H) 2001]

Sol. Re-writing the given equation x2p + y2q = (x + y)z ... (1)

The Lagrange’s auxiliary equations for (1) are     
2 2 ( )

dx dy dz
x y zx y

� �
&

... (2)

Taking the first two fractions of (2),         (1/x2)dx – (1/y2)dy = 0.
Integrating, –(1/x) + (1/y) = C1 or      1/y – 1/x = C1 ... (3)
Choosing 1/x, 1/y, –1/z as multipliers, each fraction of (2)

(1/ ) (1/ ) (1/ ) (1/ ) (1/ ) (1/ )
( ) 0

x dx y dy z dz x dx y dy z dz
x y x y
& + & +

� �
& + &

, (1/ ) (1/ ) (1/ ) 0x dx y dy z dz& + �                  so that xy/z = C2 ... (4)

From (3) and (4), solution is (1/ 1/ , / ) 0,y x xy z5 + � 5  being an arbitrary function.
Ex. 20.  Solve z(x + 2y) p – z(y + 2x) q = y2 – x2 [Vikram 1999]

Sol. The Lagrange’s subsidiary equations are     
2 2( 2 ) ( 2 )

dx dy dz
z x y z y x y x

� �
& + & +

 ... (1)

Taking the first two fraction of (1), we have
(y + 2x) dx + (x + 2y) dy = 0        or 2xdx + 2y dy + d (xy) = 0
Integrating, x2 + y2 + xy = C1, C1 being an arbitrary constant ... (2)
Choosing x, y, z as multipliers, each fraction of (1)

2 2 2 2 0( 2 ) ( 2 ) ( )
xdx ydy zdz xdx ydy zdz

x z xyz y z xyz zy zx
& & & &

� �
& + & & +
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2.16 Linear Partial differential equations of order one

−  2x dx + 2y dy + 2z dz = 0 so that x2 + y2 + z2 = C2 ... (3)

From (2) and (3), solution is 2 2 2 2 2( , ) 0,x y z x y xy! & & & & � !  being an arbitrary function

EXERCISE 2(C)
Solve the following partial differential equations:

1. x(y2 – z2)p + y(z2 – x2)q = z(x2 – y2) Ans. 2 2 2( , ) 0x y z xyz! & & �

[Mysore 2004, Delhi B.Sc. (Prog). II 2007, M.S. Unit. T.N. 2007]

2. z(xp – yq) = y2 – x2 Ans. 2 2 2( , ) 0x y z xy! & & �

3. 2 2( ) 0y z p xyq xz& + & � [I.A.S. 1990] Ans. 2 2 2( , / ) 0x y z y z! & & �

4. yp – xq = 2x – 3y [M.S. Univ. T.N. 2007] Ans. 2 2( , 3 2 ) 0x y x y z! & & & �

5. x2(y – z)p + y2(z – x)q = z2(x – y) Ans. ( ,1/ 1/ 1/ ) 0xyz x y z! & & �

[Meerut 2007, Bilaspur 2004, Rewa 2003]
2.11.  Type 4 based on Rule IV for solving (dx)/P = (dy)/Q = (dz)/R. ...(1)

Let P1, Q1 and R1 be functions of x, y and z.  Then, by a well–known principle of algebra,
each fraction of (1) will be equal to        1 1 1 1 1 1( ) /( )P dx Q dy R dz P P Q Q R R& & & & .    ...(2)

Suppose the numerator of (2) is exact differential of the denominator of (2).  Then (2) can be
combined with a suitable fraction in (1) to give an integral.  However, in some problems, another
set of multipliers P2, Q2 and R2 are so chosen that the fraction

2 2 2 2 2 2( ) /( )P dx Q dy R dz P P Q Q R R& & & & ...(3)
is such that its numerrator is exact differential of denominator.  Fractions (2) and (3) are then
combined to given an integral.  This method may be repeated in some problems to get another
integral. Sometimes only one integral is possible by using the above rule IV. In such cases second
integral should be obtained by using rule 1 of Art. 2.5 or rule 2 of Art. 2.7 or rule 3 of Art. 2.9.
2.12. SOLVED EXAMPLES BASED IN ART. 2.11

Ex. 1.  Solve (y + z)p + (z + x)q = x + y. [Indore 2000; Jabalpur 2000, Jiwaji 2002,
Kanpur 2008; Purvanchal 2007, Ravishankar 2002, 2005; Delhi BA (Prog.) II 2011]

Sol. Here the Lagrange’s auxiliary equations are dx
y z&

= dy
z x

dz
x y&

�
&

. ...(1)

Choosing 1, –1, 0 as multipliers, each fraction of (1) = dx dy
y z z x

d x y
x y

+
& + &

� +
+ +( ) ( )

( )
( )

. ...(2)

Again, choosing 0, 1, –1 as multipliers, each fraction of (1)  = dy dz
z x x y

d y z
y z

+
& + &

� +
+ +( ) ( )

( )
( )

. ...(3)

Finally, choosing 1, 1, 1 as multipliers, each fraction of (1)

= dx dy dz
y z z x x y

d x y z
x y z

& &
& & & & &

� & &
& &( ) ( ) ( )

( )
( )2

. ...(4)

(2), (3) and (4) −
d x y

x y
( )
( )

+
+ +

= d y z
y z

d x y z
x y z

( )
( )

( )
( )

+
+ +

� & &
& &2

. ...(5)

Taking the first two fractions of (5), d x y
x y
( )+

+
= d y z

y z
( )+

+
.

Integrating, log (x – y) = log (y – z) + log c1, c1 being an arbitrary constant.
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Linear Partial differential equations of order one 2.17

or     log {(x – y)/(y – z)} = log c1 or (x – y)/(y – z) = c1. ...(6)

Taking the first and the third fractions of (5), 2 d x y
x y
( )

( )
+

+
 + d x y z

x y z
( )& &

& &
= 0

Integrating, 2 log (x – y) + log (x + y + z) = log c2    or   (x – y)2 (x + y + z) = c2. ...(7)
From (6) and (7), the required general solution is

! [(x – y)2(x + y + z), (x – y)/(y – z)] = 0,  !  being an arbitrary function.
Ex. 2.  Solve y2(x – y)p + x2(y – x)q = z(x2 + y2) [Delhi Maths Hons 1997; Nagpur 2010]
Sol. Here the Lagrange’s auxiliary equations for the given equation are

dx
y x y2 ( )+

=
dy

x x y
dz

z x y+ +
�

&2 2 2( ) ( )
. ...(1)

Taking the first two fractions of (1),    x2dx = –y2dy             or 3x2dx + 3y2dy = 0.
Integrating, x3 + y3 = c1, c1 being an arbitrary as constant. ...(2)
Choosing 1, –1, 0 as multipliers, each fraction of (1)

= dx dy
y x y x x y

dx dy
x y x y

+
+ & +

� +
+ &2 2 2 2( ) ( ) ( ) ( )

. ...(3)

Combining the third fraction of (1) with fraction (3), we get

dx dy
x y x y

+
+ &( )( )2 2 = dz

z x y( )2 2&
or

d x y
x y

dz
z

( )+
+

+ = 0.

Integrating, log (x – y) – log z = log c2         or (x – y)/z = c2. ...(4)

From (3) and (4), solution is ! (x3 + y3, (x – y)/z) = 0,   !  being an arbitrary function.
Ex. 3.  Solve (x2 – y2 – z2)p + 2xyq = 2xz or (y2 + z2 – x2)p – 2xyq = –2xz.

[Bangalore 1993, I.A.S. 1973; P.C.S. (U.P.) 1991; Bhopal 2010]
Sol. Here the Lagrange’s auxiliary equations for the given equation are

dx
y z x2 2 2& +

= dy
xy

dz
xz+

�
+2 2

. ...(1)

Taking the last two fractions of (1), we have
(1/y)dy = (1/z)dz so that (1/y)dy – (1/z)dz = 0.
Integrating, log y – log z = log c1 or y/z = c1. ...(2)
Choosing x, y, z as mnultipliers, each fraction of (1)

=  2 2 3 2 2 2 2 22 2 ( )
x dx y dy z dz x dx y dy z dz

xy xz x xy xz x x y z
& & & &

�
& + + + + & &

. ...(3)

Combining the third fraction of (1) with fraction (3), we have

       2 2 2( )
x dx y dy z dz

x x y z
& &

+ & &
= dz

xz+2
or 2 2 2

2 2 2x dx y dy z dz dz
zx y z

& &
+

& &
= 0.

Integrating,  log (x2 + y2 + z2) – log z = log c2       or        (x2 + y2 + z2)/z = c2. ... (4)

From (2) and (4) solution is ! (y/z, (x2 + y2 + z2)/z) = 0,  !  being an arbitrary function.
      Ex. 4.  Solve (1+ y)p + (1 + x)q = z.        [M.S. Univ. T.N. 2007; Kanpur 2011]

Sol. Here the Lagrange’s auxiliary equations are             dx
y1&

= dy
x

dz
z1&

� . ...(1)

Taking the first two fractions of (1), we have
       (1 + x)dx = (1 + y)dy or     2(1 + x)dx – 2(1 + y)dy = 0.
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2.18 Linear Partial differential equations of order one

Integrating, (1 + x)2 – (1 + y)2 = c1, c1 being an arbitrary constant. ...(2)

Taking 1, 1, 0 as multipliers, each fraction of (1)        = dx dy
y x

&
& & &1 1

= d x y
x y

( )2
2

& &
& &

. ...(3)

Combining the last fraction of (1) with fraction (3), we get
d x y

x y
( )2
2

& &
& &

=
dz
z or    d x y

x y
dz
z

( )2
2

& &
& &

+ = 0.

Integrating,   log (2 + x + y) – log z = log c2           or               (2 + x + y)/z = c2.  ...(4)
From (2) and (4), the required general solution is given by

! [(1 + x)2 – (1 + y2), (2 + x + y)/z] = 0,  !  being an arbitrary function.
Ex. 5.  Find the general integral of xzp + yzq = xy.
Sol. Here the Lagrange’s auxiliary equations are     (dx)/xz = (dy)/yz = (dz)/xy ... (1)
From the first two fractions of (1), (1/x)dx = (1/y)dy.
Integrating,  log x = log y + log c1                  or   x/y = c1. ...(2)

Choosing 1/x, 1/y, 0 as multipliers, each fraction of (1) = ( / ) ( / )
( / ) ( / )
1 1
1 1

x dx y dy
x xz y yz

&
&

=
ydx xdy

xyz
&

2 ...(3)

Combining the last fraction of (1) with fraction (3), we have
ydx xdy

xyz
&

2
= dz

xy
or ydx + xdy = 2zdz    or      d(xy) = 2zdz  or d(xy) – 2zdz = 0

Integrating, xy – z2 = c2, c2 being an arbitrary constant. ...(4)

From (2) and (4) solution is ! (x/y, xy – z2) = 0,  !  being an arbitrary function.
Ex. 6.  Solve (x2 – yz)p + (y2 – zx)q = z2 – xy.          Delhi Math (H) 2005, 11, M.D.U.

Rohtak 2005; Agra 2008, 09; Guwahati 2007; Meerut 2006; Sagar 2000;
Ravishankar 2000; Lucknow 2010]

Sol. Here the Lagrange’s auxiliary equations are dx
x yz2 +

= dy
y zx

dz
z xy2 2+

�
+

. ...(1)

Choosing 1, –1, 0 and 0, 1, –1 as multipliers in turn, each fraction of (1)

= dx dy
x y z x y

+
+ & +2 2 ( )

=
dy dz

y z y z x
+

+ & &( )( )

so that dx dy
x y x y z

+
+ & &( )( )

= dy dz
y z y z x

+
+ & &( )( )

or   d x y
x y

d y z
y z

( ) ( )+
+

+ +
+

= 0.

Integrating,  log (x – y) – log (y – z) = log c2 or        (x – y)/(y – z) = c1.    ...(2)
Choosing x, y, z as multipliers, each fraction of (1)

=
xdx ydy zdz

x y z xyz
& &

& & +3 3 3 3
= xdx ydy zdz

x y z x y z xy yz zx
& &

& & & & + + +( )( )2 2 2 . ...(3)

Again, choosing 1, 1, 1 as multipliers, each fraction of (1)

=
dx dy dz

x y z xy yz zx
& &

& & + + +2 2 2 . ...(4)

From (3) and (4), xdx ydy zdz
x y z
& &
& &

= dx + dy + dz

or 2(x + y + z) d(x + y + z) – (2xdx + 2ydy + 2zdz) = 0.
Integrating, (x + y + z)2 – (x2 + y2 + z2) = 2c2

or (x2 + y2 + z2 + 2xy + 2yz + 2zx) – (x2 + y2 + z2) = 2c2
or   xy + yz + zx = c2, c2 being an arbitrary constant. ...(5)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Linear Partial differential equations of order one 2.19

From (2) and (5), the required general solution is given by
! [xy + yz + zx, (x – y)/(y – z)] = 0,  !  being an arbitrary function.

Ex. 7.  Solve (x2 – y2 – yz)p + (x2 – y2 – zx)q = z(x – y).
Sol. Here Lagrange’s auxiliary equations for the given equation are

dx
x y yz2 2+ +

= dy
x y zx

dz
z x y2 2+ +

�
+( )

...(1)

Choosing 1, –1, 0 as multipliers, each fraction of (1)

= dx dy
x y yz x y zx

+
+ + + + +( ) ( )2 2 2 2 =

dx dy
z x y

+
+( )

. ...(2)

Choosing x, –y, 0 as multipliers each fraction of (1)

=
xdx ydy

x x y yz y x y zx
+

+ + + + +( ) ( )2 2 2 2 =
xdx ydy

x y x y
+

+ +( )( )2 2 . ...(3)

From (1), (2), (3) we have

dz
z x y

dx dy
z x y( ) ( )+

� +
+ =

xdx ydy
x y x y

+
+ +( )( )2 2 or dz

z
dx dy

z
� +

=
2 2
2 2 2
xdx ydy

x y
+
+( )

. ...(4)

Taking the first two fractions of (4), we have
dz = dx – dy so  that z – x + y = c1 ...(5)

Again , taking the first and third fractions of (4),   d x y x y z dz( ) / ( ) ( / )2 2 2 2 2 0+ + + �

Integrating,  log (x2 – y2) – 2 log z = c2             or (x2 – y2)/z2 = c2. ...(6)

From (5) and (6), solution is ! (z – x + y, (x2 + y2)/z2) = 0,  !  being an arbitrary function.
Ex. 8.  Solve (x2 + y2 + yz)p + (x2 + y2 – xz)q = z(x + y).

Sol. Here the Lagrange’s, auxiliary equations are   dx
x y yz2 2& &

= dy
x y xz

dz
z x y2 2& +

�
&( )

. ...(1)

Choosing 1, –1, 0 as multipliers, each fraction of (1)

=
dx dy

x y yz x y xz
+

& & + & +( ) ( )2 2 2 2 =
dx dy
z x y

+
&( )

. ...(2)

Choosing x, y, 0 as multipliers, each fraction of (1)

=
xdx ydy

x x y yz y x y xz
&

& & & & +( ) ( )2 2 2 2 =
xdx ydy

x y x y
&

& &( )( )2 2 . ...(3)

From (1), (2) and (3), we have
dz

z x y
dx dy
z x y( ) ( )&

� +
&

= xdx ydy
x y x y

&
& &( )( )2 2     or   dz

z
dx dy

z
� +

= xdx ydy
x y

&
&2 2 . ...(4)

Taking the first two fractions of (4), we have
dz = dx – dy or dz – dx + dy = 0.
Integrating, z – x + y = c1, c1 being an arbitrary constant. ...(5)
Taking the first and third fractions of (4), we have

2 2
2 2

xdx ydy
x y

&
&

= 2 dz
z or

d x y
x y

dz
z

( )2 2

2 2 2&
&

+ = 0.

Integrating, log (x2 + y2) – 2log z = log c2    or      (x2 + y2)/z2 = c2. ...(6)

From (5) and (6), solution is ! (z – x + y, (x2 + y2)/z2) = 0,  !  being an arbitrary function.
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Ex. 9.  Solve cos (x + y)p + sin (x + y)q = z.  [Garhwal 2010, Vikram 1998; Meerut 2007;
Delhi Maths (H) 2007; Rajasthan 1994; Delhi B.A./B.Sc. (Prog.) Maths 2007]

Sol. Here the Lagrange’s auxiliary equations are         dx
x ycos( )&

= dy
x y

dz
zsin( )&

� . ...(1)

Choosing 1, 1, 0 as multipliers, each fraction of (1)

= dx dy
x y x y

&
& & &cos( ) sin ( )

= d x y
x y x y

( )
cos( ) sin ( )

&
& & &

. ...(2)

Choosing 1, –1, 0 as multipliers, each fraction of (1)        = dx dy
x y x y

+
& + &cos( ) sin ( )

. ...(3)

From (1), (2) and (3),          dz
z

d x y
x y x y

� &
& & &

( )
cos( ) sin ( )

=
dx dy

x y x y
+

& + &cos( ) sin ( ) .   ...(4)

Taking the first two fractions of (4),     dz
z

= d x y
x y x y

( )
cos( ) sin ( )

&
& & &

.  ...(5)

Putting x + y = t so that d(x + y) = dt,  (5) reduces to

dz
z

dt
t t

�
&cos sin

= dt
t t2 1 2 1 2d i d i{ }cos sin&

= dt
t t2 4 4sin( / )cos cos( / )sin6 6&l q =

2 sin ( / 4)
dt
t & 6

Thus, ( 2 / )z dz = cosec ( / 4)t & 6 dt.

Integrating, 2  log z = log tan 1
2 4

t &FH IK6  + log c1,           or z 2 = c1 tan t
2 8

&FH IK6

or z 2  cot 
x y& &FH IK2 8

6 = c1. as t = x + y ...(6)

Taking the last two fraction of (4), dx – dy = cos( ) sin ( )
cos ( ) sin ( )

x y x y
x y x y

& + &
& & &

d(x + y). ...(7)

On R.H.S. of (7), putting x + y = t,  so that d(x + y) = dt, (7) reduces to

dx – dy =
cos sin
cos sin

t t
t t
+
& dt. so that x – y = log (sin t + cos t) – log c2

or     (sin t + cos t)/c2 = ex – y or e–(x – y) (sin t + cos t) = c2
or ey – x [sin (x + y) + cos (x + y)] = c2, as t = x + y. ...(8)

From (6) and (8), the required general solution is

! z
x y

e x y x yy x2

2 8
cot , sin ( ) cos( )

&
&F

HG
I
KJ & & &

L
NM

O
QP

+6 l q = 0, where !  is an arbitrary function.

Ex. 10.  Solve cos (x + y)p + sin (x + y)q = z + (1/z). [Delhi B.A. (Prog.) 2011]

Sol. Do like Ex. 9. Ans.  ! ( ) tan , cos( ) sin( )/z x y e x y x yy x2 1 21 3
8 2

& + &FH IK & & &L
NM

O
QP

+6 l q = 0

Ex. 11.  Solve xp + yq = z – a ( )x y z2 2 2& & . [Meerut 1997; Jiwaji 1997; Rawa 1999]

Sol. Here the lagrange’s auxiliary equations are       dx
x

= dy
y

dz
z a x y z

�
+ & &( )2 2 2

. ...(1)

Taking the first two fractions of (1), we have
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(1/x)dx = (1/y)dy or (1/x)dx – (1/y)dy = 0.
Integrating, log x – log y = log c1 or x/y = c1. ...(2)

Choosing x, y, z as multipliers, each fraction of (1)  = xdx ydy zdz

x y z az x y z

& &

& & + & &2 2 2 2 2 2( )
...(3)

Combining first and third fractions of (1) with fraction (3), we get

dx
x

dz
z a x y z

�
+ & &( )2 2 2

=
xdx ydy zdz

x y z az x y z

& &

& & + & &2 2 2 2 2 2( )
. ...(4)

Putting x2 + y2 + z2 = t2 so that xdx + ydy + zdz = tdt,  (4) gives
dx
x

dz
z at

�
+

= tdt
t azt2 +

  or dx
x

dz
z at

�
+

= dt
t az+

. ...(5)

Choosing 0, 1, 1 as multipliers, each fraction of (5) =
dz dt

z t a t z
&

& + &( ) ( ) =
d z t

a z t
( )

( )( )
&

+ &1
. ...(6)

Combining the first fraction of (5) with fraction (6), we get

dx
x

d z t
a z t

� &
+ &

( )
( )( )1

or (1 – a) dx
x

d z t
z t

+ &
&

( )
= 0.

Integrating, (1 – a) log x – log (z + t) = log c2, c2 being an arbitrary constant.

or     x
z t

a+

&

1
= c2 or x

z x y z

a+

& & &

1

2 2 2( )
= c2,   as t = (x2 + y2 + z2)1/2 ...(7)

From (2) and (7), the required general solution is

! [xa – 1/{z + ( )x y z2 2 2& & }, x/y] = 0, !  being an arbitrary function.

Ex. 12.  Solve (x3 + 3xy2)p + (y3 + 3x2y)q = 2z(x2 + y2). [I.A.S. 1993]

Sol. Here the Lagrange’s subsidiary equations are dx
x xy3 23&

= dy
y x y

dz
z x y3 2 2 23 2&

�
&( )

. ...(1)

Choosing 1, 1, 0 as multipliers, each fraction of (1) = dx dy
x xy x y y

&
& & &3 2 2 33 3

= d x y
x y
( )

( )
&

& 3 . ...(2)

Choosing 1, –1, 0 as multipliers, each fraction of (1) = dx dy
x xy y x y

+
& + +3 2 3 23 3

= d x y
x y
( )

( )
+

+ 3 . ...(3)

From (2) and (3), (x + y)–3 d(x + y) = (x – y)–3 d(x – y)
or                            u–3du – v–3dv = 0, on putting u = x + y and v = x – y.

Integrating,       u–2/(–2) – v–2/(–2) = c1/2  or              v–2 – u–2 = c1
or (x – y)–2 – (x + y)–2 = c1, as  u = x + y  and  v = x – y. ...(4)

Choosing 1/x, 1/y, 0 as multipliers, each fraction of (1)

=
2 3 2 3

2 3 2 33 2 3 2

1 1
1 ( 3 ) 1 ( 3 )

x dx y dy

x x xy y y x y

&

1 & & 1 &
=

1 1
4 2 2
x dx y dy

x y
b g b g&

&( )
. ...(5)

Combining the last fraction of (1) with fraction (5), we have

        dz
z x y2 2 2( )&

=
1 1

4 2 2
x dx y dy

x y
b g b g&

&( )
or dx

x
dy
y

dz
z

& + 2 = 0.

Integrating,     log x + log y – 2 log z = log c2     or    (xy)/z2 = c2. ...(6)
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2.22 Linear Partial differential equations of order one

From (4) and (6), the required general solution is given by
! [(x – y)–2 – (x + y)–2, (xy)/z2] = 0,  !  being an arbitrary function.

Ex. 13.  Solve p + q = x + y + z.    [Bhopal 2010, Bilaspur 2000, 02; I.A.S. 1975; Gulberge 2005]

Sol. Here Lagrange’s auxiliary equations are dx
1

=
dy dz

x y z1
�

& &
. ...(1)

Taking the first two fractions of (1),      dx – dy = 0            so that          x – y = c1. ...(2)

Choosing 1, 1, 1 as multipliers, each fraction of (1)    = dx dy dz
x y z

& &
& & & &1 1 ( )

=
d x y z

x y z
( )2
2

& & &
& & &

... (3)

Combining the first fraction of (1) with fraction (3), (2 ) /(2 ) .d x y z x y z dx& & & & & & �

Integrating,  log (2 + x + y + z) – log c2 = x or (2 + x + y + z)/c2 = ex

or e–x(2 + x + y + z) = c2, c2 being arbitrary function ...(4)
From (2) and (4), the required general solution is

![x – y, e–x(2 + x + y + z)] = 0,  ! being an arbitrary function.
Ex. 14.  Solve (2x2 + y2 + z2 – 2yz – zx – xy)p + (x2 + 2y2 + z2 – yz – 2zx – xy)q = x2 + y2

+ 2z2 – yz – zx – 2xy.      [Meerut 1996 ; I.A.S. 1992]
Sol. Here Lagrange’s auxiliary equations are

    dx
x y z yz zx xy2 22 2 2& & + + +

= dy
x y z yz zx xy2 2 22 2& & + + +

= dz
x y z yz zx xy2 2 22 2& & + + +

. ...(1)

Choosing 1, –1, 0 ; 0, 1, –1 and –1, 0, 1 as multipliers in turn, each fraction of (1)

                          =
dx dy

x y yz zx
+

+ + &2 2 =
dy dz

y z zx xy
dz dx

z x xy yz
+

+ + &
� +

+ + &2 2 2 2

,
dx dy

x y x y z
+

+ & &( ) ( ) =
dy dz

y z x y z
dz dx

z x x y z
+

+ & &
� +

+ & &( ) ( ) ( ) ( )
. ...(2)

Taking the first two fractions of (2), we have
(dx – dy)/(x – y) – (dy – dz)/(y – z) = 0.

Integrating,      log (x – y) – log (y – z) = log c1        or            (x – y)/(y – z) = c1. ...(3)
Taking the last two fractions of (2), (dy – dz)/(y – z) – (dz – dx)/(z – x) = 0.
Integrating,   log (y – z) – log (z – x) = log c2      or         (y – z)/(z – x) = c2. ...(4)
From (3) and (4), the required general solution is

![(x – y)/(y – z), (y – z)/(z – x)] = 0,  ! being an arbitrary function.
Ex. 15.  Find the general solution of the partial differential equation px(x + y) – qy(x + y)

+ (x – y) (2x + 2y + z) = 0.        [Delhi B.Sc. II (Prog) 2009; Delhi Maths Hons. 2006, 09, 11]
Sol. Given x(x + y)p – y(x + y)q = – (x – y) (2x + 2y + z). ...(1)

Lagrange’s auxiliary equations are     dx
x x y( )&

=
dy

y x y
dz

x y x y z+ &
�

+ + & &( ) ( ) ( )2 2 . ...(2)

Taking the first two fractions,   (1/x)dx = – (1/y)dy or  (1/x)dx + (1/y)dy = 0.
Integrating,            log x + log y = log c1          or      xy = c1.  ...(3)
Again, each fraction of (2)

= dx dy
x x y y x y

&
& + &( ) ( )

= dx dy dz
x x y y x y x y x y z

& &
& + & + + & &( ) ( ) ( ) ( )2 2

=
dx dy

x y x y
&

+ &( )( )
= dx dy dz

x y x y x y x y z
& &

+ & + + & &( )( ) ( )( )2 2
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Thus, dx dy
x y

&
&( )

=
dx dy dz

x y x y z
dx dy dz

x y z
& &

& + & &
� + & &

& &( )2 2

Thus,   dx dy
x y

&
&

 + dx dy dz
x y z
& &
& &

= 0,  so that log (x + y) + log (x + y + z) = log c2

or (x + y) (x + y + z) = c2, c2 being an arbitrary constant. ...(4)
From (3) and (4), solution is ![xy, (x + y) (x + y + z)] = 0,  ! being an arbitrary function.

Ex. 16. Solve 2 2{ ( ) } ( / ) { ( ) } ( / )my x y nz z x lx x y nz z y& + # # + & + # # ( )lx my z� + [I.A.S. 2001]

Sol. Re-writing the given equation, 2 2{ ( ) } { ( ) } ( )my x y nz p lx x y nz q lx my z& + + & + � + ...(1)

Lagrange’s auxiliary equations for (1) are 2 2 ( )( ) ( )

dx dy dz

lx my zmy x y nz lx x y nz
� �

+& + + & &
...(2)

Each fraction of (2) =
( )( ) ( )

dx dy dz

my lx x y my lx z

&
�

+ & + +
     so that ( )d x y dz

x y z

&
� +

&

Integrating, log (x + y) = – log z + log C1 or       (x + y)z = C1 ... (3)
Taking lx, my, nz as multipliers, each fraction of (2)

=
2 2 2( ) ( ) ( )

lxdx mydy nzdz

lx my x y lx nz mylx x y mynz nz lx my

& &
& + + & & & +

=
0

lx dx mydy nz dz& &

, 2 2 2 0lx dx mydy nzdz& & �   so that 2 2 2
2lx my nz C& & � ...(4)

From (3) and (4), solution is 2 2 2( , ) 0,xz yz lx my nz5 & & & � 5  being an arbitrary function.

Ex. 17. Solve 2 2 2( 2 ) ( ) ( 2 )px z y z qy z y x+ � + + + . [Delhi Maths (H) 2002]

Sol. Re-writing the given equation     2 2 2 2 2( 2 ) ( 2 ) ( 2 )x z y p y z y x q z z y x+ & + + � + +  ... (1)

Lagrange’s auxiliary equations for (1) are 
2 2 2 2 2( 2 ) ( 2 ) ( 2 )

dx dy dz

x z y y z y x z z y x
� �

+ + + + +
...(2)

Taking the last two fractions, (1/ ) (1/ ) 0y dy z dz+ �       so that          /y z �  C1 ...(3)
Taking 0, – 2y, 1 as multipliers, each fraction of (2)

=
2

2 2 2 2 2 2 2 2

2 ( )

2 ( 2 ) ( 2 ) ( 2 )( 2 )

ydy dz d z y

y z y x z z y x z y z y x

+ & +
�

+ + + & + + + + +
... (4)

Combining fraction (4) with first fraction of (2), we get

  
+ + + +

� �
+ + + +

2 2 2 2

2 2 2 2

( ) ( ) 2
or

( 2 ) ( 2 ) ( 2 )

dx d z y d z y z y x
dx xx z y z y z y x

or du/dx = (u – 2x2)/x, taking 2z y u+ � ... (5)

or ( / ) (1/ ) 2du dx x u x+ � +  which is an ordinary linear differential equation

whose I.F. =
1(1/ ) log log 1 1/

x dx x xe e e x x
++ + +� � � �.  and solution is

2
1 1

. ( 2 )u x dx C
x x

∃ %� + &∋ (
) ∗.     or

2

22
z y

x C
x

+
� + & , using (5)
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or    2
2( ) / 2z y x x C+ & �   or 2 2

2( 2 ) /z y x x C+ & � ... (6)
From (3) and (6), the required general solution of (1)

   2 2( / , ( 2 ) / ) 0y z z y x x5 + + � , 5  being an arbitrary function.

Ex. 18. Solve 2 2 3( 2 ) ( ) ( 2 )px z y z qy z y x+ � + + + . [I.A.S. 2006]

Sol. Do like Ex. 17, Ans. 2 3( / , ( ) / ) 0y z z y x x5 + & �

For another method of solution, refer solved Ex. 8 of Art. 2.8.
Ex. 19. Solve ( 2 ) ( 2 2 ) ( )x z a p xz yz ay q z z a& & & & � & .
Sol. The Lagrange’s auxiliary equations for given equation are

( 2 ) 2 2 ( )

dx dy dz

x z a xz yz ay z z a
� �

& & & & ... (1)

Each fraction of (1) =
2( )( ) ( )

dx dy dz

x y z a z z a

&
�

& & &
    or

( ) 2d x y
dz

x y z
&

�
&

Integrating, log (x + y) = 2 log z + log C1 or 2
1( ) /x y z C& � ...(2)

Taking the first and third ratios of (4),   
2

( )
dx z a

dz
x z z a

&
�

& or     
2 1dx

dz
x z z a

∃ %� +∋ (&) ∗

Integrating, log x = 2 log z – log (z + a) + log C2 or 2
2( ) /x z a z C& � ... (3)

From (2) and (3), solution is 2 2{( ) / , ( ) / )} 0x y z x z a z5 & & � . !  being an arbitrary function.

Ex. 20. Solve 2 2 32 ( ) (2 )x y z p y y z q z& & & � [Delhi Maths (Hans.) 2007]

Sol. The Lagrange’s auxiliary equations for the given equation are

2 2 32 ( ) (2 )

dx dy dz

x y z y y z z
� �

& & ...(1)

Each fraction of (1) =
&

� �
& & &2 2 2

( )

2 ( ) 2 ( ) 2 ( )

dx zdy ydz d yz

x y z yz y z yz y z

,   (1/ ) (1/ ) ( ) 0x dx yz d yz& � so that 1/( )x yz C� ...(2)

From the last two fractions of (1), 
2 2

3 3

(2 ) 2dy y y z y y

dz zz z

&
� � &   or 2 1

3

1 2dy
y y

dz z z
+ ++ � ...(3)

Putting 1y u++ �  and 1 �2(1/ ) ( / ) /y dy dz du dz  in (3), we get

                 3( / ) (1/ ) 2 /du dz z u z& � , which is an ordinary linear equation.

Its  I.F. =
(1/ ) logz dz ze e z� �.  and solution is +� + � + +. 3 1

2 2(2 / ) 2u z z z dz C z C

or    + ++ + � +1 1
22y z z C or 2/ 2 /z y z C+ � ... (4)

From (3) and (4), solution is ( / , / 2 / ) 0x yz z y z5 + � , !  being arbitrary function.
Ex. 21. xp + zq + y = 0. [M.D.U. Rohtak 2004]
Sol. Given equation is xp + zq = – y
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Its Lagrange’s auxiliary equation are dx dy dz
x z y

� �
+

... (1)

Taking the last two fractions of (2),   2ydy + 2zdz = 0       so that       y2 + z2 = C1   ... (2)
Choosing 0, z, –y as multipliers, each fraction of (1)

2

2 2 2 2
(1/ ) ( / ) ( / )

1 ( / ) 1 ( / )
zdy ydz z dy y z dz d y z
z y y z y z

+ +
� � �

& & &
... (3)

Combining the first faction of (1) with fraction (3), we get

2
( / )

1 ( / )
dx d y z
x y z

�
&

or 1tan 0dx y
d

x z
+∃ %+ �∋ (

) ∗

Integrating,  log | x | – tan–1 (y/z) = C2, c2 being an arbitrary constant. ... (4)
From (2) and (4), the required general solution is

1 2 2log | | tan ( / ) ( ),x y z y z++ � ! & !  being an arbitrary function.

Ex. 22. Find the general solution of the differential equation
2 2( / ) ( / ) ( ) .x z x y z y x y z# # & # # � & [Delhi B.A./B.Sc. (Prog.) Maths 2007)

Sol. Let /p z x� # #  and / .q z y� # #  Then, the given equation takes the form
x2p = y2q = z (x + y) ... (1)

The Lagrange’s auxiliary equations for (1) are
(dx)/x2 = (dy)/y2 = (dz)/z (x + y) ... (2)

Taking the first two fractions of (2), (1/x2)dx – (1/y2)dy = 0
Integrating, – (1/x) + (1/y) = c1 or  (x – y)/xy = c1 ... (3)

Chossing 1, –1, 0 as multipliers, each fraction of (2)  2 2
dx dy
x y

+
�

+
... (4)

Combining the last fraction of (2) with fraction (4), we have

( )( ) ( )
dx dy dz

x y x y z x y
+

�
+ & & or 0

dx dy dz
x y z

+
+ �

+

Integrating, log (x – y) – log z = sin c2 or (x – y)/z = c2 ... (5)
From (5), x – y = c2 z ... (6)
using (6), (3) becomes (c2z)/xy = a or     (xy)/z = c2/c1 = c3 say   ... (7)

From (5) and (7), the required solution is        2 3( , ) / , ( ) / 0.x y z x y z! + �

EXERCISE 2(D)
Solve the following partial differential equations:

1. (x2 + y2)p + 2xy q = z(x + y) Ans. 2 32 2( ) / /( )x y z y x y& � ! +

2. {y (x + y) + az} p + {x (x + y) – az}q = z(x + y) Ans. 2 2( ) / ( 2 )x y z x y az& � ! + +

3. (y2 + yz + z2)p + (z2 + zx + x2)q = x2 + xy + y2 Ans. , 0y z x z
x y x y

∃ %+ +
! �∋ (+ +) ∗
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2.26 Linear Partial differential equations of order one

2.13. Miscellaneous Examples on Pp + Qq = R
Ex. 1.  Solve (x + y – z) (p – q) + a (px – qy + x – y) = 0.
Sol.  Let u = x + y and   v = x – y. ...(1)

Then p = #
#

z
x = #

#
#
#

& #
#

#
#

� #
#

& #
#

z
u

u
x

z
x

z
u

z
v
v

v , using (1) ...(2)

and q =
#
#

z
y =

#
#

#
#

& #
#

#
#

� #
#

+ #
#

z
u

u
y

z
y

z
u

z
v
v

v , using (1) ...(3)

From (2) and (3), we get 2( / ).p q z v+ � # # ...(4)

and       px – qy = x z
u

x z y z
u

y z#
#

& #
#

+ #
#

& #
#v v

or px – qy = (x – y) #
#

z
u  + (x + y) #

#
z
v = v #

#
z
u  + u #

#
z
v ,using (1) ...(5)

Using (1), (4) and (5),  the given equation reduces to

2(u – z) #
#

z
v  + a v

v
v#

#
& #

#
&FH IK

z
u

u z = 0

or av(#z/#u) + (2u – 2z + au)(#z/#v) = – av, ...(6)
which is Lagrange’s linear equation. Its Lagrange’s auxiliary equations are

du
av = d

u z au
dz
a

v
v2 2+ &

�
+

. ...(7)

Taking the first and third fractions of (7), we have
                  du + dz = 0 so that          u + z = c1. ...(8)
Considering the first two fractions of (7) and eliminating z with help of (8), we have
du
av

=  d
u c u au

v
2 2 1+ + &( ) or avdv = (4u – 2c1 + au)du.

Integrating, (1/2) × av2 = 2u2 – 2c1u + (1/2) × au2 + c2/2
av2 = 4u2 – 4u(u + z) + au2 + c2,  or    av2 + 4uz – au2 = c2 (using (8) ....(9)

From (8) and (9), the required general solution is given by
 !(u + z, av2 + 4uz – au2) = 0,       where ! is an arbitrary function and u and v are given by (1).

Ex. 2 (a).  Find the surface whose tangent planes cut off an intercept of constant length k
from the axis of z.

(b) Formulate partial differential equation for surfaces whose tangent planes form a
tetrahedrom of constant volume with the coordinate planes.       [I.A.S. 2005]

Sol. (a) We know that the equation of the tangent plane at point (x, y, z) to a surface is given
by p(X – x) + q(Y – y) = Z – z,  ...(1)
where X, Y, Z denote current coodrinates of any point on the plane (1).  Since (1) cuts an intercept k on
the z–axis, it follows that (1) must pass through the point (0, 0, k).  Hence putting X = 0, Y = 0 and
Z = k in (1), we obtain

px + qy = z – k, ...(2)
which is well known Lagrange’s linear equation.  For (2), the Lagrange’s auxiliary equations are

(dx)/x = (dy)/y = (dz)/(z – x). ...(3)
Taking the first two fractions of (3),  (1/x)dx – (1/y)dy = 0.    so that   x/y = c1. ...(4)
Again, taking the first and third fraction of (3), [1/(z – k)]dz – (1/x)dx = 0
Integrating, log (z – k) – log x = log c2 or (z – k)/x = c2. ...(5)
From (4) and (5), the required surface (solution) is given by

![y/x, (z – k)/x] = 0,  ! being an arbitrary function.
(b) Left as an exercise.
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EXERCISE 2 (E)
Solve the following partial differential equations :

1. p – qy log y = z log y. Ans. !(yz, ex log y) = 0
2. (p + q)(x + y) = 1. Ans. !(y – x, e–2zy + x) = 0
3. x2p + y2q = x + y. Ans. ![(1/y) – (1/x), e–z(x – y)] = 0
4. (x2 + 2y2)p – xyq = xz. Ans. !(x2y2 + y4, yz) = 0
5. px – qy = (z – xy)2. Ans. ![xy, xe1/(z – xy)] = 0
6. zp + zq = z2 + (x – y)2. Ans. log [z2 + (x – y)2] – 2x = !(x – y).
7. x(yn – zn)p + y(zn – xn)q = z(xn – yn). Ans. xn + yn + zn = !(xyz).
8. (xz + y2)p + (yz – 2x2)q + 2xy + z2 = 0. Ans. !(yz + x2, 2xz – y2) = 0.
9. xyp + y(2x – y)q = 2xz. Ans. !(xy – x2, z/xy) = 0.

2.14. Integral surfaces passing through a given curve.  In the last article we obtained
general integral of Pp + Qq = R.  We shall now present two methods of using such a general
solution for getting the integral surface which passes through a given curve.

Method I.  Let Pp + Qq = R ...(1)
be the given equation.  Let its auxiliary equations give the following two independent solutions

u (x, y, z) = c1    and    v (x, y, z) = c2. ...(2)
Suppose we wish to obtain the integral surface which passes through the curve whose equation

in parametric form is given by
x = x(t), y = (t), z = z(t), ...(3)

where t is a parameter.  Then (2) may be expressed as
u[x(t), y(t), z(t)] = c1    and v[x(t), y(t), z(t)] = c2. ...(4)
We eliminate single parameter t from the equations of (4) and get a relation involving c1 and

c2.  Finally, we replace c1 and c2 with help of (2) and obtain the required integral surface.
2.15. SOLVED EXAMPLES BASED ON ART. 2.14.

Ex. 1.  Find the integral surface of the linear partial differential equation x(y2 + z)p – y(x2

+ z)q = (x2 – y2)z which contains the straight line x + y = 0,  z = 1.  [Delhi 2008; Pune 2010]
Sol. Given x(y2 + z)p – y(x2 + z)q = (x2 – y2)z. ...(1)

Lagrange’s auxiliary equations of (1) are          dx
x y z( )2 &

=
dy

y x z
dz

x y z+ &
�

+( ) ( )2 2 2 . ...(2)

Proceed as in solved Ex. 6, Art. 2.10 and show that
xyz = c1 and   x2 + y2 – 2z = c2. ...(3)
Taking t as parameter, the given equation of the straight line x + y = 0, z = 1 can be put in

parametric form x = t,       y = –t, z = 1.   ...(4)
Using (4), (3) may be re–written as – t2 = c1 and 2t2 – 2 = c2. ... (5)
Eliminating t from the equations of (5), we have
2(–c1) – 2 = c2      or           2c1 + c2 + 2 = 0. ... (6)
Putting values of c1 and c2 from (3) in (6), the desired integral surface is

2xyz + x2 + y2 – 2z + 2 = 0.
Ex. 2.  Find the equation of the integral surface of the differential equation 2y(z – 3)p + (2x

– z)q = y(2x – 3), which pass through the circle z = 0, x2 + y2 = 2x.  [Meerut 2007]
Sol. Given equation is 2y(z – 3)p + (2x – z)q = y(2x – 3). ...(1)
Given circle is x2 + y2 = 2x, z = 0. ...(2)

Lagrange’s auxiliary equations for (1) are         dx
y z2 3( )+

= dy
x z

dz
y x2 2 3+

�
+( )

. ...(3)
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Taking the first and third fractions of (3),               (2x – 3)dx – 2(z – 3)dz = 0.
Integrating, x2 – 3x – z2 + 6z = c1, c1 being an arbitrary constant. ...(4)
Choosing 1/2, y, –1 as multipliers, each fraction of (3)

=
( / )

( ) ( ) ( )
1 2
3 2 2 3

dx ydy dz
y z y x z y x

& +
+ & + + + =

( / )1 2
0

dx ydy dz& +

Hence (1/2)dx + ydy – dz = 0 or dx + 2ydy – 2dz = 0.
Integrating, x + y2 – 2z = c2, c2 being an arbitrary constant. ...(5)
Now, the parametric equations of given circle (2) are  x = t,    y = (2t – t2)1/2,   z = 0. ...(6)
Substituting these values in (4) and (5), we have

t2 – 3t = c1 and 3t – t2 = c2. ...(7)
Eliminating t from the above equations (7), we have        c1 + c2 = 0. ...(8)
Substituting the values of c1 and c2 from (4) and (5) in (8), the desired integral surface is
x2 – 3x – z2 + 6z + x + y2 – 2z = 0     or x2 + y2 – z2 – 2x + 4z = 0.
Method II.  Let Pp + Qq = R ...(1)

be the given equation.  Let is Lagrange’s auxiliary equations give the following two independent
integrals u(x, y, z) = c1     and v(x, y, z) = c2. ...(2)

Suppose we wish to obtain the integral surface passing though the curve which is determined
by the following two equations

!(x, y, z) = 0 and 7(x, y, z) = 0. ...(3)
We eliminate x, y, z from four equations of (2) and (3) and obtain a relation between c1 and

c2.  Finally, replace c1 by u(x, y, z) and c2 by v(x, y, z) in that relation and obtain the desired integral
surface.

Ex. 3.  Find the integral surface of the partial differential equation (x – y)p + (y – x – z)q
= z through the circle z = 1, x2 + y2 = 1.    (Nagpur 2002)

Sol. Given (x – y)p + (y – x – z)q = z. ...(1)

Lagrange’s auxiliary equations for (1) are dx
x y+

= dy
y x z

dz
z+ +

� . ...(2)

Choosing 1, 1, 1 as multipliers, each fraction on (2) = (dx + dy + dz)/0
, dx + dy + dz = 0 so that x + y + z = c1. ...(3)
Taking the last two fractions of (2) and using (3) we get

dy
y c y

dz
z+ +

�
( )1

or 2
2

2
1

dy
y c

dz
z+

+ = 0.

Integrating it, log   (2y – c1) –2 log z = log c2 or (2y – c1)/z
2 = c2

or     (2y – x – y – z)/z2 = c2 or (y – x – z)/z2 = c2. ....(4)
The given curve is given by  z = 1    and          x2 + y2 = 1. ...(5)
Putting z = 1 in (3) and (4), we get    x + y = c1 – 1       and          y – x = c2 + 1. ...(6)
But 2(x2 + y2) = (x + y)2 + (y – x)2. ...(7)
Using (5) and (6), (7) becomes
2 = (c1 – 1)2 + (c2 + 1)2 or  c1

2 + c2
2 – 2c1 + 2c2 = 0.  ...(8)

Putting the values of c1 and c2 from (3) and (4) in (8), required integral surface is
(x + y + z)2 + (y – x – z)2/z4 – 2(x + y + z) + 2(y – x – z)/z2 = 0

or z4(x + y + z)2 + (y – x – z)2 – 2z4(x + y + z) + 2z2(y – x – z) = 0.
Ex. 4.  Find the equation of the integral surface of the differential equation (x2 – yz)p

+ (y2 – zx)q = z2 – xy which passes through the line x = 1, y = 0.
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Sol. Given (x2 – yz)p + (y2 – zx)q = z2 – xy. ...(1)
Proceed as in solved Ex. 6, Art. 2.12 and show that

(x – y)/(y – z) = c1 ...(2)
and xy + yz + zx = c2. ...(3)

The given curve is represented by   x = 1    and   y = 0. ...(4)
Using (4) in (2) and (3), we obtain    –1/z = c1    and    z = c2

so that (–1/z) × z = c1c2    or    c1c2 + 1 = 0. ...(5)
Putting the values of c1 and c2 from (2) and (3) in (5), the required integral surface is
[(x – y)/(y – z)] (xy + yz + zx) + 1 = 0 or (x – y) (xy + yz + zx) + y – z = 0
Ex. 5.  Find the equation of surface satisfying 4yzp + q + 2y = 0 and passing through

y2 + z2 = 1, x + z = 2.       [I.A.S. 1997]
Sol. Given 4yzp + q = –2y. ...(1)
Given curve is given by y2 + z2 = 1, and            x + z = 2.   ...(2)

The Lagrange’s auxiliary equations for (1) are dx
yz4

= dy dz
y1 2

�
+

. ...(3)

Taking the first and third fractions of (3),    dx + 2zdz = 0     so that      x + z2 = c1.  ...(4)
Taking the last two fractions of (3),     dz + 2ydy = 0      so that        z + y2 = c2. ...(5)
Adding (4) and (5), (y2 + z2) + (x + z) = c1 + c2

or 1 + 2 = c1 + c2,  using (2) ...(6)
Putting the values of c1 and c2 from (4) and (5) in (6), the equation of the required suface is

given by 3 = x + z2 + z + y2 or y2 + z2 + x + z – 3 = 0.
Ex. 6.  Find the general integral of the partial differential equation (2xy – 1)p + (z – 2x2)q =

2(x – yz) and also the particular integral which passes through the line x = 1, y = 0. [I.A.S. 2008]
Sol. Given (2xy – 1)p + (z – 2x2)q = 2(x – yz). ...(1)
Given line is given by x = 1 and y = 0. ...(2)

Lagrange’s auxiliary equations of (1) are dx
xy2 1+

=
dy

z x
dz

x yz+
�

+2 2 22 . ...(3)

Taking z, 1, x as multipliers, each fraction of (3) = (zdx + dy + x dz)/0
so that zdx + dy + xdz = 0 or d(xz) + dy = 0

Integrating, xz + y = c1. ...(4)
Again, taking x, y, 1/2 as multipliers, each fraction of (3) = {xdx + ydy + (1/2)dz}/0

so that x dx + ydy + (1/2) × dz = 0 or     2xdx + 2ydy + dz = 0
Integrating, x2 + y2 + z = c2. ...(5)
Since the required curve given by (4) and (5) passes through the line (2), so putting x = 1 and

y = 0 in (4) and (5), we get
z = c1 and 1 + z = c2 so that 1 + c1 = c2. ...(6)
Substituting the values of c1 and c2 from (4) and (5) in (6), the eqution of the required

surface is given by
1 + xz + y = x2 + y2 + z or x2 + y2 + z – xz – y = 1.
Ex. 7.  Find the integral surface of x2p + y2q + z2 = 0, p = #z/#x, q = #z/#y which passes

through the hyperbola xy = x + y, z = 1.           [I.A.S. 1994, 2009]
Sol. Given x2p + y2q + z2 = 0 or x2p + y2q = –z2. ...(1)
Given curve is given by xy = x + y and     z = 1. ...(2)
Here Lagrange’s auxiliary equations for (1) are (dx)/x2 = (dy)/y2  =  (dz)/(–z2).    ...(3)
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2.30 Linear Partial differential equations of order one

Taking the first and third fractions of (1),    x–2dx + z–2dz = 0.
Integrating, – (1/x) – (1/z) = –c1 or  1/x + 1/z = c1. ...(4)
Taking the second and third fractions of (1), y–2dy + z–2dz = 0.
Integrating,  – (1/y) – (1/z) = –c2 or   1/y + 1/z = c2.      ...(5)

Adding (4) and (5), 1 1 2
x y z

& & = c1 + c2 or x y
xy z
& & 2 = c1 + c2

or (xy)/(xy) + 2 = c1 + c2,  using (2) or  c1 + c2 = 3.  ...(6)
Substituting the values of c1 and c2 from (4) and (5) in (6), we get

       1/x + 1/z + 1/y + 1/z = 3 or yz + 2xy + xz = 3xyz.
Ex. 6. Find the integral surface of the linear first order partial differential equation

1yp xq z& � +  which passes through the curve 2 2 , 2z x y z y x� & & �

Sol. Given equation is 1yp xq z& � + ... (1)
and the given curve is given by   z = x2 + y2 + 1 and      y = 2x ... (2)

Lagrange’s auxiliary equations for (1) are
1

dx dy dz

y x z
� �

+
... (3)

Taking the first two fractions, 2 2 0ydy xdx+ �

Integrating, it, 2 2
1y x C+ � , C1 being an arbitrary constant ... (4)

Taking the first and the last fractions of (3) and using (4), we get

2 1/ 2
1 1( )

dx dz

zx C
�

+& so that 2 1/ 2
1 2log( 1) log{ ( ) } logz x x C C+ + & & �

or     log(z – 1) – log (x + y) = log C2, by (4)     or        (z – 1)/(x + y) = C2 ... (5)
The parametric form of the given curve (2) is      � � � &2, 2 , 5 1x t y t z t ... (6)

Substituting these values in (4) and (5), we get    2
13t C�       and        � 25 / 3t C ... (7)

Eliminating t from the above equations (7), we get     1 25 / 3 3C C�  ... (8)
Substituting the values of C1 and C2 from (4) and (5) in (8), the required surface is given by

2 2 1/ 25( ) / 3 3 ( 1) /( )y x z x y+ � + & .
Ex. 7. Find the integral surface of the partial differential equation (x –y)y2p + (y – x)x2q

= (x2 + y2)z  passing through the curve 3, 0xz a y� � .

Sol. Given equation is 2 2 2 2( ) ( ) ( )x y y p y x x q x y z+ & + � & ... (1)
and the given curve is given by xz = a3    and     y = 0 ... (2)

Lagrange’s auxiliary equations for (1) are       
2 2 2 2( ) ( ) ( )

dx dy dz

x y y y x x x y z
� �

+ + &
... (3)

Each fraction of (3) = 2 2 2 2( ) ( ) ( )

dx dy dz

x y y x x y z

+
�

+ & &
so   that ( )

0
d x y dz

x y z

+
+ �

+

Integrating it, 1( ) /x y z C+ � , C1 being an arbitrary contant ... (4)

Taking the first two fractions, 2 23 3 0x dx y dy& �

Integrating it, 3 3
2x y C& � , C2 being an arbitrary constant. ... (5)

The parameteric form of the given curve (2) is      � � �3, / , 0z t x a t y ... (6)
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Substituting these values in (4) and (5), we get
3 2

1/a t C� so that 2 3
1/t a C� ... (7)

and 3 3
2( / )a t C� so that 3 9

2/t a C� ... (8)

Squaring both sides of (8), 6 18 2
2/t a C� or 2 3 18 2

2( ) /t a C�

or 3 3 18 2
1 2( / ) /a C a C� , since 2 3

1/t a C� , by (7)

or    9 3 18 2
1 2/ / ,a C a C� or    2 9 3

2 1C a C� ... (9)
Substituting the values of C1 and C2 from (4) and (5) in (9), the required integral surface

of (1) is given by
3 3 2 9 3 3( ) ( ) /x y a x y z& � + or    3 3 3 2 9 3( ) ( )z x y a x y& � + .

EXERCISE 2(F)
1. Find particular integrals of the following partial differential equations to represent surfaces

passing through the given curves :
(i) p + q = 1 ; x = 0, y2 = z. Ans. (y – x)2 = z – x.

(ii) xp + yq = z ; x + y = 1, yz = 1. Ans. yz = (x + y)2.
(iii) (y – z)p + (z – x)q = x – y ; z = 0, y = 2x Ans. 5(x + y + z)2  = 9(x2 + y2 + z2).
(iv) x(y – z)p + y(z – x)q = z(x – y) ; x = y ; x = y = z. Ans. (x + y + z)3 = 27xyz.
(v) yp – 2xyq = 2xz ; x = t, y = t2, z = t3. Ans. (x2 + y2)5 = 32y2z2.

(vi) (y – z) [2xyp + (x2 – y2)q] + z(x2 – y2) = 0 ; x = t2, y = 0, z = t3.
Ans. x3 – 3xy2 = z2 – 2yz.

2. Find the general solution of the equation 2x(y + z2)p + y(2y + z2)q = z2 and deduce that
yz(z2 + yz – 2y) = x2 is a solution.

3. Find the general solution of  x(z + 2a)p + (xz + 2yz + 2ay)q = z(z + a).
Find also the integral surfaces which pass through the curves :

(i) y = 0,  z2 = 4ax. (ii) y = 0, z3 + x(z + a)2 = 0.
4. Solve xp + yq = z.  Find a solution representing a surface meeting the parabola

y2 = 4x, z = 1. Ans. General solution ! (x/2, y/2) = 0 ; surface y2 = 4xz.

2.16. SURFACES ORTHOGONAL TO A GIVEN SYSTEM OF SURFACES
Let f(x, y, z) = C ...(1)

represents a system of surfaces where C is parameter.  Suppose we wish to obtain a system of
surfaces which cut each of (1) at right angles.  Then the direction ratios of the normal at the point
(x, y, z) to (1) which passes through that point are #f/#x, #f/#y, #f/#z.

Let the surface z = !(x, y) ...(2)
cuts each surface of (1) at right angles.  Then the normal at (x, y, z) to (2) has direction ratios
#z/#x, #z/#y, –1 i.e., p, q, –1.  Since normals at (x, y, z) to (1) and (2) are at right angles, we have

( / ) ( / ) ( / ) 0p f x q f y f z# # & # # + # # �      or     ( / ) ( / ) /p f x q f y f z# # & # # � # # ...(3)
which is of the form Pp + Qq = R.

Conversely, we easily verify that any solution of (3) is orthogonal to every surface of (1).
2.17.SOLVED EXAMPLES BASED ON ART. 2.16.

Ex. 1.  Find the surface which intersects the surfaces of the system  z(x + y) = c(3z + 1)
orthogonally and which passes through the circle x2 + y2 = 1, z = 1.       [I.A.S. 1999]

Sol. The given system of surfaces is / 0( , , ) ( / (3 1) .f x y z z x y z C8 & & � ...(1)
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,
#
#

f
x = z

z3 1&
, #

#
f
y

=
z

z3 1& , #
#
f
z = 2 2

(3 1) 3( )
(3 1) (3 1)
z z x y

x y
z z

& + 1 &
& �

& &
.

The required orthogonal surface is solution of

p f
x

q f
y

#
#

& #
#

=
#
#
f
z or z

z
p z

z
q

3 1 3 1&
&

&
= x y

z
&
&( )3 1 2

or              z(3z + 1)p + z(3z + 1)q = x + y. ...(2)

Lagrange’s auxiliary equations for (2) are                 dx
z z( )3 1&

=
dy

z z
dz

x y( )3 1&
�

&
.  ...(3)

Taking the first two fractions of (3), we get    dx – dy = 0    so that     x – y = C1. ...(4)
Choosing x, y, –z(3z + 1) as multipliers, each fraction of (3) = [xdx + ydy – z(3z + 1)dz]/0
, xdx + ydy – 3z2dz – zdz = 0 or 2xdx + 2ydy – 6z2dz – 2zdz = 0

Integrating,  x2 + y2 – 2z3 – z2 = C2, C2 being an arbitrary constant. ...(5)
Hence any surface which is orthogonal to (I) has equation of the form

x2 + y2 – 2z3 – z2 = !(x – y), ! being an arbitrary function ...(6)
In order to get the desired surface passing through the circle x2 + y2 = 1, z = 1 we must

choose !(x – y) = –2.  Thus, the required particular surface is      x2 + y2 – 2z3 – z2 = –2.
Ex. 2. Write down the system of equations for obtaining the general equation of surfaces

orthogonal to the family given by 2 2 2 2
1( )x x y z C y& & � .       [I.A.S. 2001]

Sol. Given family of surfaces is 2 2 2 2
1( ) /x x y z y C& & �

Let 2 2 2 2
1( , , ) ( ) /f x y z x x y z y C� & & � ... (1)

Then the surfaces orthogonal to the system (1) are the surfaces generated by the integral
curves of the equations

/ / /

dx dy dz

f x f y f z
� �

# # # # # #
or 2 2 2 2 2 2 3 2(3 ) / 2 ( ) / 2 /

dx dy dz

x y z y x x z y x y z
� �

& & + &

or
2 2 2 2 2 2(3 ) 2 ( )

dx dy dz

xyzy x y z x x z
� �

& & + &
... (2)

Taking x, y, z as multipliers, each fraction of (2)

=
2 2 2 2 2 2 2 2(3 ) 2 ( ) 2 ( )

xdx ydy zdz xdx ydy zdz

xy x y z xy x z xyz xy x y z

& & & &
�

& & + & & & &
... (3)

Combining this fraction (3) with the last fraction of (2), we get

2 2 2 2( )

xdx ydy zdz dz

xyzxy x y z

& &
�

& &
  or 2 2 2

2 2 2 dz
z

xdx ydy zdz

x y z

& &
�

& &

Integrating, 2 2 2
2log( ) log logx y z z C& & � &      or            2 2 2

2( ) /x y z z C& & � ...(4)
Taking 4x, 2y, 0 as multipliers, each fraction of (2)

=
2 2 2 2 2 2 2

4 2 4 2

4 (3 ) 4 ( ) 4 (2 )

xdx ydy xdx ydy

xy x y z xy x y xy x y

& &
�

& & + & &
... (5)

Combining this fraction (5) with the last fraction of (2), we get

   2 2

4 2
24 (2 )

xdx ydy dz

xyzxy x y

&
�

&
or 2 2

4 2 2

2

xdx ydy dz

zx y

&
�

&

Integrating, 2 2
3log(2 ) 2 log logx y z C& � & or 2 2 2

3(2 ) /x y y C& � ... (6)
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From (4) and (5), the required general equation of the surfaces which are orthogonal to the
given family of surfaces (1) is of the form 2 2 2 2 2 2( ) / {(2 ) / }x y z z x y z& & � ! & , i.e.,

or     2 2 2 2 2 2{(2 ) / }x y z z x y z& & � ! & , where ! is an arbitrary function.

Ex. 3. Find the surface which is orthogonal to the one parameter system 2 2( )z cxy x y� &
which passes through the hyperbola 2 2 2 , 0x y a z+ � �

Sol. The given system of surfaces is      3 3( , , ) /( )f x y z z x y xy C� & � ... (1)

# & # & #
� + � + �

# # #& & &

2 3 2 3

3 3 2 3 3 2 3 3

(3 ) (3 ) 1
, ,

( ) ( )

f z x y y f z y x x f
x y zx y xy x y xy x y xy

The required orthogonal surface is solution of ( / ) ( / ) /p f x q f y f z# # & # # � # #

or
2 3 2 3

3 3 2 3 3 2 3 3

(3 ) (3 ) 1

( ) ( )

z x y y z y x x
p q

x y xy x y xy x y xy

& &
+ + �

& & &

or 2 2 2 2 2 2{(3 ) / } {(3 ) / } ( ) /x y x p y x y q x y z& & & � + & ... (2)
Lagrange’s auxiliary equations for (2) are

2 2 2 2 2 2(3 ) / (3 ) / ( ) /

dx dy dz

x y x y x y x y z
� �

& & + & ... (3)

Taking the first two fractions of (3), 2 2 0xdx ydy+ � so that 2 2
1x y C+ �

Choosing x, y, 4z as multipliers, each fraction of (3) = ( 4 ) / 0xdx ydy zdz& &

, 2 2 8 0xdx ydy zdz& & � so that     2 2 2
24x y z C& & �

Hence any surface which is orthogonal to (1) is of the form
2 2 2 2 24 ( )x y z x y& & � 5 + , 5  being an arbitrary function. ... (4)

For the particular surface passing through the hyperbola 2 2 2 , 0x y a z+ � �  we must take
2 2 4 2 2 2 2 2( ) ( ) /( )x y a x y x y5 + � & + . Hence, the required surface is given by

2 2 2 2 2 2 2 4 2 2( 4 ) ( ) ( )x y z x y a x y& & + � &
Ex. 4. Find the equation of the system of surfaces which cut orthogonally the cones of the

system x2 + y2 + z2 = cxy.
2.18 (a).  Geometrical description of the solutions of Pp + Qq = R and of the system of
equations dx/P = dy/Q = dz/R and to establish relationship between the two.

[G.N.D.U. Amritsar 1998; Meerut 1997; Kanpur 1996]
Proof.  Consider Pp + Qq = R. ....(1)

and (dx)/P = (dy)/Q = (dz)/R, ...(2)
where P, Q and R are functions of x.

Let z = !(x, y) ...(3)
represent the solution of (1).  Then (3) represents a surface whose normal at any point
(x, y, z) has direction ratios #z/#x, #z/#y, –1 i.e., p, q, –1.  Also we know that the simultaneous
equations (2) represent a family of curves such that the tangent at any point has direction ratios P,
Q, R.  Rewriting (1), we have

Pp + Qq + R(–1) = 0, ...(4)
showing that the normal to surface (3) at any point is perpendicular to the member of family of
curves (2) through that point.  Hence the member must touch the surface at that point.  Since this
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holds for each point on (3), we conclude that the curves (2) lie completely on the surface (3) whose
differential equation is (1).

2.18 (b).  Another geomertical interpretation of Lagrange’s equation Pp + Qq = R.
To show that the surfaces represented by Pp + Qq = R are orthogonal to the surfaces

represented by Pdx + Qdy + Rdz = 0.
We know that the curves whose equations are solutions of

(dx)/P = (dy)/Q = (dz)/R ...(1)
are orthogonal to the system of the surfaces whose equation satisfies

Pdx + Qdy + Rdz = 0. ...(2)
Again from Art 2.18 (a) the curves of (1) lie completely on the surface represented by

Pp + Qq = R. ...(3)
Hence we conclude that surfaces represented by (2) and (3) are orthogonal.

2.19.SOLVED EXAMPLES BASED ON ART 2.18(a) AND ART. 2.18 (b)
Ex. 1.  Find the family orthogonal to ! [z(x + y)2, x2 – y2] = 0.
Sol. Given ![z(x + y)2, x2 – y2] = 0. ...(1)
Let u = z(x + y)2 and v = x2 – y2 ...(2)
Then (1) becomes !(u, v) = 0. ...(3)
Differentiating (3) w.r.t. x and y partially by turn, we get

#
#

#
#

& #
#

FH IK &
#
#

#
#

& #
#

FH IK
! !
u

u
x

p u
z x

p
zv

v v
= 0 ...(4)

and
#
#

#
#

& #
#

F
HG

I
KJ &

#
#

#
#

& #
#

F
HG

I
KJ

! !
u

u
y

q u
z y

q
zv

v v
= 0. ...(5)

From (2),   (#u/#x) = 2z(x + y), (#u/#y) = 2z(x + y), (#u/#z) = (x + y)2,
(#v/#x) = 2x,    (#v/#y) = –2y, (#v/#z) = 0.

Putting these values in (4) and (5), we get

   ( / ) ( ) ( ) ( / ) ( )#! # & & & & #! # &u z x y p x y x2 2 02 v = 0 ...(6)

and ( / ) ( ) ( ) ( / ) ( )#! # & & & & #! # + &u z x y q x y y2 2 02 v = 0 ...(7)

Evaluating the values of + #! #
#! #

/
/

u
v

 from (6) and (7) and then equating these, we get

+ #! #
#! #

/
/

u
v

=
2

2
2

22 2
x

z x y p x y
y

z x y q x y( ) ( ) ( ) ( )& & &
� +

& & &
or  x(x + y)[2z + q(x + y)] = –y(x + y)[2z + p(x + y)]   or 2xz + qx(x + y) + 2yz + py(x + y) = 0
or py(x + y) + qx(x + y) = –2z(x + y) or py + qx = –2z ...(8)
which is differential equation of the family of surfaces given by (1).  So the differential equation of
the family of surfaces orthogonal to (8) is given by [use Art. 2.18 (b)]

ydx + xdy – 2zdz = 0 or d(xy) – 2zdz = 0. ...(9)
Integrating (9), xy – z2 = C,

which is the desired family of orthogonal surfaces, C being parameter
Ex. 2.  Find the family of surfaces orthogonal to the family of surfaces given by the differential

equation  (y + z)p + (z + x)q = x + y.
Sol. Let P = y + z, Q = z + x and R = x + y. ...(1)
Then, the given differential equation can be written as  Pp + Qq = R. ...(2)
Now, the differential equation of the family of surfaces orthogonal to the given family is
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Pdx + Qdy + Rdz = 0 or (y + z)dx + (z + x)dy + (x + y)dz = 0
or (ydx + xdy) + (ydz + zdy) + (zdx + xdz) = 0.

Integrating, xy + yz + zx = C,
which is the required family of surfaces, C being a parameter.

2.20. The linear partial differential equation with n independent variables and its
solution. Let x1, x2 ..., xn be the n independent variables and let p1 = #z/#x1, p2 = #z/#x2, ..., pn = #z/#xn,
where z is the dependent variable.  Consider the general linear partial differential equation with n
independent variables P1 p1 + P2 p2 + .. + Pn pn = R,    ...(1)
where P1, P2,.., Pn are functions of x1, x2..., xn.  Let u1 = c1, u2 = c2, ..., un = cn be any n independent
integrals of the auxiliary equations

(dx1)/P1 = (dx2)/P2 = ... = (dxn)/Pn. ...(2)
Then the general solution of (1) is given by    !(u1, u2, ...un) = 0. ...(3)
Note that the above procedure is generalization of Lagrange’s method.

2.21.SOLVED EXAMPLES BASED ON ART. 2.20
Ex. 1.  Solve x2x3 p1 + x3x1 p2 + x1x2 p3 + x1x2x3 = 0.
Sol. Re–writing the given equation in standard form, we have

x2x3 p1 + x3x1 p2 + x1x2 p3 = –x1x2x3. ...(2)

The auxiliary equations for (2) are
dx
x x

dx
x x

1

2 3

2

3 1
� =

dx
x x

dz
x x x

3

1 2 1 2 3
�

+ . ...(3)

Taking the first and the fourth fractions of (3),   x1dx1 + dz = 0   so that     x1
2 + 2z = c1. ...(4)

Taking 1st and 2nd fractions of (3),      x1dx1 = x2dx2        so that       x1
2 – x2

2 = c2. ...(5)
Finally, 2nd and 3rd fractions of (3) give   x2dx2 = x3dx3     so that      x2

2 – x3
2 = c3. ...(6)

Hence the required general integral is
!(x1

2 + 2z, x1
2 – x2

2, x2
2 – x3

2) = 0,   ! being an arbitrary function.

Ex. 2.  Solve x z
x

y z
y

t z
t

#
#

& #
#

& #
#

= az + xz
t

Sol. Here auxiliary equations for the given equation are
dx
x

dy
y

dt
t

� � = dz
az xy t&

. ...(1)

From the first two fractions of (1),     (1/x)dx – (1/y)dy = 0     so that        x/y = C1. ...(2)
From the first and third fractions of (1),    (1/x)dx – (1/t)dt = 0    so that     x/t = C2. ...(3)
Dividing (3) by (2), we have y/t = C2/C1. ...(4)
Taking the first and third fractions of (1) and using (4), we get

dx
x

dz
az C C x

�
& ( )2 1

or dz
dx

az C C x
x

�
& ( )2 1

or dz
dx

a
x

z+ FH IK = C
C

2

1

F
HG
I
KJ , which is linear.. ...(5)

I.F. of (5) =
( / ) log log aa x dx a x xe e e

++ +� �. = x–a and so solution of (5) is given by

zx–a = C3 + 
C
C

x dx C C
C

x
a

C y
t

x
a

a
a a

2

1
3

2

1

1

3

1

1 1
+

+ +z � &
+

� &
+ , using (4)

, zx–a –
y
t

x
a
a1

1
+

+ = C3, C3 being an arbitrary constant. ...(6)
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From (2), (3) and (6), the required general solution is

! x
y

x
t

zx y
t

x
a

a
a

, , +
+

+
+

F
HG

I
KJ

1

1
= 0,  ! being an arbitrary function.

Ex. 3.  Solve x(#u/#x) + y(#u/#y) + z(#u/#z) = xyz. [Bhopal 1995, 98; I.A.S. 1999]
Sol. Here the auxiliary equations for the given equation are

     dx
x

dy
y

� = dz
z

du
xyz

� . ...(1)

Taking the first two fractions of (1),     (1/x)dx – (1/y)dy = 0.
Integrating it, log x – log y  = log C1 or          x/y = C1. ...(2)
Taking the first and third fractions of (1),      (1/x)dx – (1/z)dz = 0
Integrating it, log x – log z = log C2 or          x/z = C2. ...(3)

Choosing yz, zx, xy as multipliers, each fraction of (1) =
yzdx zxdy xydz

xyz xyz xyz
& &
& & =

d xyz
xyz

( )
3 . ...(4)

Combining the fourth fraction of (1) with fraction (4), we get

du
xyz

d xyz
xyz

� ( )
3

or d(xyz) – 3du = 0    so that        xyz – 3u = C3. ...(5)

From (2), (3) and (5), the required general solution is
!(x/y, x/z, xyz – 3u) = 0,  ! being an arbitrary function.

Ex. 4.  Solve (y + z + w) (#w/#x) + (z + x + w) (#w/#y) + (x + y + w) (#w/#z) = (x + y + z).
[Ravishanker 2004 ; I.A.S. 1995; Indore 1998, Kanpur 2004]

Sol. Here the auxiliary eqautions of the given equation are
dx

y z w
dy

z x w& &
�

& & = dz
x y w

dw
x y z& &

�
& & . ...(1)

Each fraction of (1) = dw dx
w x

dw dy
w y

+
+ +

� +
+ +( ) ( )

=
dw dz

w z
dw dx dy dz

w x y z
+

+ +
� & & &

& & &( ) ( )3
. ...(2)

Taking the first and the fourth fractions of (2),          dw dx dy dz
w x y z

dw dz
w x

& & &
& & &

& +
+3( )

= 0.

Integrating, (1/3) × log (w + x + y + z) + log (w – x) = log C1
or (w + x + y + z)1/3 (w – x) = C1. ...(3)

Similarly, (w + x + y + z)1/3 (w – y) = C2. ...(4)
and (w + x + y + z)1/3 (x – z) = C3. ...(5)

From (3), (4) and (5), the required general solution is
![(w + x + y + z)1/3 (w – x), (w + x + y + z)1/3 (w – y), (w + x + y + z)1/3 (w – z)] = 0,
where ! is an arbitrary function.

Ex. 5.  Solve p1 + p2 + p3 = 4z. Ans.  ! ( , , )ze ze zex x x+ + +4 4 41 2 3 = 0
Ex. 6.  Solve x2 x3 p1 + x3 x1 p2 + x1x2 p3 + x1x2x3 = 0.
Sol. Putting the given equation in standard form, we have

x2 x3 p1 + x3 x1 p2 + x1 x2 p3 = –x1 x2 x3. ...(1)

Here the auxiliary equations for (1) are       dx
x x

dx
x x

1

2 3

2

3 1
�   = dx

x x
dz

x x x
3

1 2 1 2 3
�

+
. ...(2)

Taking the first and second fractions of (2), we have
2x1dx1 – 2x2dx2 = 0 so that x1

2 – x2
2 = C1. ...(3)
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Taking the first and third fractions of (2), we have
2x1dx1 – 2x3dx3 = 0 so that x1

2 – x3
2 = C2. ...(4)

Taking the first and fourth fractions of (2), we have
2x1dx1 + 2dz = 0 so that x1

2 + 2z = C3. ...(5)
From (3), (4) and (5), the required general solution is

!(x1
2 – x2

2, x1
2 – x3

2, x1
2 + 2z) = 0,  ! being an arbitrary function.

Ex. 7.  Solve p1 + x1p2 + x1x2p3 = x1x2x3 z .  Ans. ! (x1
2 – 2x2, x2

2 – 2x3, x3
2 – 4 z ) =  0

Ex. 8.  Solve (x3 – x2)p1 + x2 p2 – x3 p3 + x2
2 – (x2x1 + x2x3) = 0.

Sol. Re–writing the given equation in the standard form, we get
(x3 – x2)p1 + x2 p2 – x3 p3 = x2 x1 + x2 x3 – x2

2. ...(1)

Here the auxiliary equations for (1) are       dx
x x

dx
x

1

3 2

2

2+
� = dx

x
dz

x x x x x
3

3 2 1 2 3 2
2+

�
& +

. ...(2)

Taking the second and the third fractions of (2), we have
(1/x2)dx + (1/x3)dx2 = 0      so that       log x2 + log x3 = log C1     or       x2x3 = C1....(3)

Each fraction of (2) = dx dx dx
x x x x

dx dx dx1 2 3

3 2 2 3

1 2 3
0

& &
+ & +

�
& &

( )
.

, dx1 + dx2 + dx3 = 0         so that x1 + x2 + x3 = C2.  ...(4)

Each fraction of (2) = x dx x dx
x x x x x

d x x
x x x x x

2 1 1 2

2 3 2 1 2

1 2

1 2 2 3 2
2

&
+ &

�
& +( )
( ) . ...(5)

Combining the last fraction of (2) with fraction (5), we have
dz

x x x x x1 2 2 3 2
2& + =

d x x
x x x x x

( )1 2

1 2 2 3 2
2& +

or dz – d(x1x2) = 0.

Integrating, z – x1x2 = C3, C3 being an arbitrary constant. ...(6)
From (3), (4) and (5), the required general solution is

!(x2 x3, x1 + x2 + x3, z – x1x2) = 0,  ! being an arbitrary function.
Ex. 9.  If u is a function of x, y and z which satisfies (y – z)(#u/#x) + (z – x) (#u/#y)

+ (x – y) (#u/#z) = 0, show that u contains x, y, z only in combinations of x + y + z and
x2 + y2 + z2. (Nagpur 2002, 05)

Sol. Here auxiliary equations for given equation are       dx
y z

dy
z x+

�
+ = dz

x y
du

+
�

0 . ...(1)

Each fraction of (1) = dx dy dz
y z z x x y

& &
+ & + & +( ) ( ) ( )

=
xdx ydy zdz

x y z y z x z x y
du& &

+ & + & +
�

( ) ( ) ( ) 0

=
dx dy dz& &

0 =
xdx ydy zdz du& & �

0 0 .

, dx + dy + dz = 0,     2xdx + 2ydy + 2zdz = 0 and du = 0
Integrating,     x + y + z = C1,      x2 + y2 + z2 = C2 and u = C3.
Hence the required general solution is

u = f(x + y + z, x2 + y2 + z2),  f being an arbitrary function.

Ex. 10. Prove that if 3 3 3
1 2 3 1x x x& & �  when z = 0, the solution of the equation (s – x1) p1

+ (s – x2)p2 + (s – x2)p2 + (s – x3)p3 = s – z can be given in the form s3{(x1 – z)3 + (x2 – z)3 + (x3 – z)3}4

= (x1 + x2 + x3 – 3z)3, where s = x1 + x2 + x3 + z  and  / , 1,2,3.i ip z x i� # # � [I.A.S. 2000]

Sol. Given 1 1 2 2 3 3( ) ( ) ( )s x p s x p s x p s z+ & + & + � + ... (1)

where 1 2 3s x x x z� & & & ... (2)
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2.38 Linear Partial differential equations of order one

The auxiliary equations for (2) are    31 2

1 2 3

dxdx dx dz

s x s x s x s z
� � �

+ + + +

or 31 2

2 3 3 1 1 2 1 2 3

dxdx dx dz

x x z x x z x x z x x x
� � �

& & & & & & & &
, using (2) ... (3)

Each fraction of (3) = 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

3 ( 3 )

2( ) 3 3( ) ( 3 )

dx dx dx dz d x x x z

x x x z x x x x x x z

& & + & & +
�

& & & + & & + & & +
... (4)

Again, each fraction of (3) = 1 2 3 1 2 3

1 2 3 1 2 3

( )

3( ) 3( )

dx dx dx dz d x x x z

x x x z x x x z

& & & & & &
�

& & & & & &
... (5)

Then, (4) and (5) give 1 2 3 1 2 3

1 2 3 1 2 3

( 3 ) ( )

( 3 ) 3( )

d x x x z d x x x z

x x x z x x x z

& & + & & &
�

+ & & + & & &
... (5)

or   
1 2 3 1 2 3

1 2 3 1 2 3

( ) ( 3 )
3 0

3

d x x x z d x x x z

x x x z x x x z

& & & & & +
& �

& & & & & +
Integrating, 1 2 3 1 2 3log( ) 3log( 3 ) logx x x z x x x z a& & & & & & + �

or 3
1 2 3 1 2 3( ) ( 3 ) ,x x x z x x x z a& & & & & + � where a is an arbitrary constant. ... (6)

Given that 3 3 3
1 2 3 1x x x& & � when z = 0 ... (7)

Hence (6) gives 4
1 2 3( )a x x x� & & . Then (6) reduces to

3 4
1 2 3 1 2 3 1 2 3( ) ( 3 ) ( )x x x z x x x z x x x& & & & & + � & & ... (8)

Now, each fraction of (3) =
2 3

1 1 1 1
3 3

1 1 1

3( ) ( ) ( )

( ) 3( ) 3( )

dx dz x z d x z d x z

x z x z x z

+ + + +
� �

+ + + + +
... (9)

By symmetry, each fraction of (3) is also =
33

32
3 3

2 3

( )( )

3( ) 3( )

d x zd x z

x z x z

++
�

+ + + +
...(10)

Using (9) and (10), we find that each fraction of (3)

=
33 3

31 2
3 3 3

1 2 3

( )( ) ( )

3( ) 3( ) 3( )

d x zd x z d x z

x z x z x z

++ +
� �

+ + + + + +

3 3 3
1 2 3

3 3 3
1 2 3

[( ) ( ) ( ) ]

3[( ) ( ) ( ) ]

d x z x z x z

x z x z x z

+ & + & +
�

+ + & + & +
... (11)

Then, from (4) and (11), we have
3 3 3

1 2 3 1 2 3
3 3 3

1 2 3 1 2 3

3 ( 3 ) [( ) ( ) ( ) ]

( 3 ) [( ) ( ) ( ) ]

d x x x z d x z x z x z

x x x z x z x z x z

& & + + & + & +
�

& & + + & + & +

Integrating it, 3 3 3
1 2 3 1 2 33log ( 3 ) log log {( ) ( ) ( ) }x x x z b x z x z x z& & + & � + & + & +

or    3 3 3 3
1 2 3 1 2 3( ) ( ) ( ) ( 3 )x z x z x z b x x x z+ & + & + � & & +  where b is an arbitrary constant. ...(12)

Putting z = 0,  (12) gives 3 3 3 3
1 2 3 1 2 3( )x x x b x x x& & � & &

or 3
1 2 31 ( )b x x x� & & , using  (7)  so that    3

1 2 31/( )b x x x� & &

,  (12) − 3 3 3 3 3
1 2 3 1 2 3 1 2 3( ) ( ) ( ) ( 3 ) /( )x z x z x z x x x z x x x+ & + & + � & & + & & ... (13)

Raising both sides of (8) to power 3, we have
3 9 12

1 2 3 1 2 3 1 2 3( ) ( 3 ) ( )x x x z x x x z x x x& & & & & + � & & ... (14)
Raising both sides of (13) to power 4, we have

3 3 3 4 12 12
1 2 3 1 2 3 1 2 3{( ) ( ) ( ) } ( 3 ) /( )x z x z x z x x x z x x x+ & + & + � & & + & & ... (15)

Multiplying the corresponding sides of (14) and (15), we have

& & & + & + & + � & & +3 3 3 3 4 3
1 2 3 1 2 3 1 2 3( ) {( ) ( ) ( ) } ( 3 )x x x z x z x z x z x x x z

or + & + & + � & & +3 3 3 3 4 3
1 2 3 1 2 3{( ) ( ) ( ) } ( 3 )s x z x z x z x x x z , using (2)
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Linear Partial differential equations of order one 2.39

EXERCISE 2 (H)
Ex. 1. Solve p2 + p3 = 1 + p1. Ans. !(x1 + x2, x1 + x3, x1 + z) = 0
Ex. 2. Solve zx2x3p1 + zx3x1p2 + zx1x2p3 = x1x2x3.   Ans. !(x1

2 – x2
2, x1

2 – x2
2, x1

2 – z2) = 0]
Ex. 3. Solve x1p1 + 2x2p2 + 3x3p3 + 4x4p4 = 0. Ans. !(x1

2/x2, x1
3/x3, x1

4/x4, z) = 0
Ex. 4. Solve p1 + p2 + p3 {1 – (z – x1 – x2 – x3)

1/2} = 3.
Ans. ![z – 3x1, z – 3x2, z + 6(z – x1 – x2 – x3)

1/2] = 0
Ex. 5. p1 + p2 + p3 {1 + (z + x1 + x2 + x3)

1/2} + 3 = 0.
Ans.  ![z + 3x1, z + 3x2, z + 6(z + x1 + x2 + x3)

1/2] = 0
Ex. 6. x1 p1 + x2 p2 + x3 p3 = az + (x1x2)/x3. [Delhi Maths (H) 1998]

[Hint. This is same as Ex. 2 of Art. 2.21. Here x = x1, y = x2, t = x3, 1/ / ,z x z x p# # � # # �

2 2/ / ,z y z x p# # � # # � 3 3/ /z t z x p# # � # # � ]

OBJECTIVE PROBLEMS ON CHAPTER 2
Select correct answer by writing (a), (b), (c) or (d).
1. The equation Pp + Qq = R is known as   (a) Charpit’s equation
(b) Lagrange’ equation   (c) Bernoulli’s equation   (d) Clairaut’s equation.

[Agra 2005, 06, 08]
2. The Lagrange’s auxiliary equations for the partial differential equation Pp + Qq = R are (a)

(dx)/P = (dy)/Q = (dz)/R (b) (dx)/P = (dy)/Q (c) (dx)/P = (dz)/R. (d) none of these. [Garhwal 2005]
3. The general solution of (y – z) p + (z – x) q = x – y is

(a) 2 2 2( , ) 0,x y z x y z! & & & & � (b) ( , ) 0xyz x y z! & & �

(c) 2 2 2( , ) 0xyz x y z! & & � (d) 2 2 2( , ) 0x y z x y z! + + + + � [M.S. Univ. T.N. 2007]

[Hint : Refer Ex. 15, Art 2.10]
4. Subsidiary equations for equation (y2z/x) + zxy = y2 are

(a) (dx)/y2z = (dy)/(zx) = (dz)/y2 (b) (dx)/x2 = (dy)/y2 = (dz)/zx
(c) (dx)/x2 = (dy)/y2 = (dz)/zx (d) (dx)/(1/x2) = (dy)/(1/y2) = (dz)/(1/zx)

[Kanpur 2004]
5. The general solution of the linear partial differential equation Pp Qq R& �  is
    (a) ( , ) 1u v! �   (b) ( , ) 1u v! � + (c) ( , ) 0u v! � (d) None of these [Agra 2007]
Answers. 1. (b) 2. (a) 3. (a) 4. (d) 5. (c)

MISCELLANEOUS EXAMPLES ON CHAPTER 2
Ex. 1. Tranform the equation yzx –  xzy = 0 into one in polar coordinates and thereby show

that the solution of the given equation represents surfaces of revolution. (I.A.S. 2007)

Sol.  Let 2 2 2 1cos and sin and tan ( / )x r y r r x y y x!" # " # $ " % # " ... (1)

2 ( / ) 2 , 2 ( / ) 2 / cos , / sinr r x x r r y y r x r y$ & & " & & " $ & & " # & & " # ... (2)

2 2 2 2 2 3 2
1 sin sin 1 1 cos cos

,
1 / 1 /

y r r
x r y x ry x x r y x r

&# # # &# # #' ( ' (" ! " ! " ! " " ") *) * + ,+ ,& &% % ... (3)

Now,                  
sincosx

z z r z z z
z

x r x x r r
& & & & &# & # &" " % " # !
& & & &# & & &#

, using (2) and (3) ...(4)
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2.40 Linear Partial differential equations of order one

and                   
cossiny

z z r z z zz
y r y y r r
& & & & &# & # &" " % " # %
& & & &# & & &#  using (2) and (3) ...(5)

Using (1), (4) and (5), the given equation yzx – xzy = 0 reduce to

sin cossin cos cos sin 0 or 0z z z z z
r r

r r r r
& # & & # & &' ( ' (# # ! ! # # % " ") * ) *+ , + ,& &# & &# &#  ... (6)

Integrating (6) w.r.t. ‘9’, z = f (r), where f is an arbitrary function .... (7)
Clearly (7) represents surfaces of revolution, as required.
Ex.2. Solve (y + z ) p – (x + z) q = x – y (Agra 2010)

Hint. Do like Ex. 15, page 2.14.     Ans.  2 2 2( , ) 05 & & & + �x y z x y z

Ex. 3. The integral surface satisfying equation 2 2( / ) ( / )y z x x z y x y# # + # # � &  and passing
through the curve x = 1 – t, y = 1 + t,  z = 1 + t2 is

(a) 2 2( ) / 2� & +z xy x y (b) 2 2 2( ) / 8� & +z xy x y

(c) 2 2 2( ) / 4� & +z xy x y  (d) 2 2 2( ) /16� & +z xy x y (GATE 2009]

Ex. 4. Find the partial differential equation whose surfaces are orthogonal to the surface
z (x + y) = 3z + 1  [Pune 2010]  Ans. z (p + q) = x + y – 3

Ex. 5. if u (x, y, z) = c1 and v (x, y, z) = c2 are integral curves of (dx)/P = (dy)/Q = (dz)/R, then
show that F (u, v) = 0 is general solution of Pp + Qq = R, where F is an arbitrary function.

[Pune 2010]
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3
Non–linear partial differential

equations of order one
3.1. Explanation of terms : complete integral (or complete solution), particular

integral, singular integral (or singular solution), and general integral (or general
solution) as applied to solutions of first order partial differential equations

[I.A.S. 1995; Meerut 1997; Delhi Maths Hons. 1995]
A solution or integral of a differential equation is a relation between the variables, by means

of which and the derivatives obtained there from the equation is satisfied.  Let us now discuss
various classes of integrals of a partial differential equation of order one.

Complete Integral (C. I.). or complete solution (C.S.) [Sagar 1995]
Let us consider a relation !(x, y, z, a, b) = 0 ...(1)

in which x, y, z are variables such that z is dependent on x and y.  Differentiating (1) partially w.r.t
x and y respectively, we obtain

�
�

# �
�

! !
x z

p = 0 and                   �
�

# �
�

! !
y z

q = 0, ...(2)

Since there are two arbitrary constants (namely a and b) connected by the above three
equations, these can be eliminated and there will appear a relation of the form

     f(x, y, z, p, q) = 0, ...(3)
which is a partial differential equation of order one.

Suppose, now, that (1) has been derived from (3), by using some method; then the integral
(1), which has as many arbitrary constants as there are independent variables, is called the complete
integral of (3).

Particular Integral : A particular integral of (3) is obtained by giving particular values to a
and b in (1) which is the complete integral of (3).

Singular Integral (S.I.) or singular solution (S.S.) [Delhi 2009; Sagar 1995]
We know that the locus of all the points whose co–ordinates along with the values of p and

q satisfy (3), represent the doubly infinite system of surfaces given by (1).  The system is doubly
infinite, since there are two constants a and b and each of these can take an infinite number of
values.  Since the envelope of all the surfaces given by (1) is touched at each of its points by some
one of these surfaces, the coordinates of any point on the envelope along with the values of p and
q belonging to the envelope at that point must also satisfy (3).  Hence we conclude that the equation
of the envelope is a solution of (3).  The envelope of the surfaces given by (2) is obtained by
eliminating a and b between the equations

!(x, y, z, a, b) = 0,        � ! /�a = 0     and      � ! /�b = 0. ...(4)
The relation between x, y, and z so obtained is called the singular integral.  In general, it is

distinct from the complete integral.  However, in exceptional cases it may be contained in the

3.1
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3.2 Non-Linear Partial Differential Equations of Order One

complete integral, that is, singular integral may be obtained by giving particular values to the
constants in the complete integral.  Since other relations may appear in the process of getting the
singular integral, it is necessary to test that the equation of singular integral satisfies the given
differential equation.

General Integral (G.I.) or General Solution (G.S.).
Assume that in (1), one of the constants is a function of the other, say b = F(a), then (1)

becomes        !(x, y, z, a, F(a)) = 0.      ...(5)
Now (5) represents one of the families of surfaces given by the system (1). As before, the

equation of the envelope of the family of surfaces given by (5) must also satisfy (3).  Again the
equation so obtained will be distinct from that of the envelope of the surfaces, and it is not a
particular integral.  It is known as the general integral and is obtained by eliminating a between

!(x, y, z, a F(a)) = 0 and � ! /�a = 0. ...(6)
Since other relations may appear in the process of getting the singular integral, it is necessary

to test that the equation of general integral satisfies the given differential equation.
Important Note. While solving a non–linear equation, we must not only obtain the complete

integral but should also find the singular and general integrals. In absence of details of singular and
general integrals, merely the complete solution is considered to be incomplete solution of the given
partial differential equation. However, for reason of space, we have found complete integral only in
some problems. The students are advised to find singular and general integrals also for such problems.
Note that there is always a simple routine method for the same.

Also, if you are asked to find complete integral of a given equation, then you need not give
singular and general integrals. Again, if examiner wants singular integral/general integral, then you
must find them.
3.2. Geometrical interpretation of three types of integrals of f(x, y, z, p, q) = 0.

(i) Complete integral.
A complete integral, being a relation between x, y and z represents equation of a surface.

Since it involves two arbitrary parameters, it belongs to a double infinite system of surfaces or to a
single infinite system of family of surfaces.

(ii) General integral.
Let a complete solution of f(x, y, z, p, q) = 0 be

!(x, y, z, a, b) = 0. ...(1)
A general integral is obtained by eliminating ‘a’ between (1) and the equations

b = ∃(a) ...(2)
(�!/�a) + (�!/�b) ∃%(a) = 0. ...(3)

where ∃ is an arbitrary function.
The operation of elimination is equivalent to selecting from the system of families of surfaces

a representative family and finding the envelope.  Equations (1), (2) and (3) together represent a
curve drawn on the surface of the family whose parameter is ‘a’ whereas the equation obtained by
eliminating ‘a’ between them is the envelope of the family.  It follows that the envelope touches the
surface represented by (1) and (2) along the curve represented by (1),  (2) and (3).  This curve is
known as characteristic of the envelope and the general integral thus represents the envelope of a
family of surfaces considered as composed of its characteristics.

(iii) Singular Integral.
The singular integral is obtained by eliminating ‘a’ and ‘b’ between equation (1)

               � ! /�a = 0 ...(4)

and � ! /�b = 0. ...(5)
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Non-Linear Partial Differential Equations of Order One 3.3

The operation of elimination is equivalent to finding the envelope of all the surfaces included
in the complete integral. (1), (4) and (5) give the point of contact of the particular surfaces represented
by (1) with the general envelope.  It follows that the singular integral represents the general envelope
of all surfaces included in the complete integral.
3.3. Method of getting singular integral directly from the partial differential equation
of first order.

Let the given partial differential equation be f(x, y, z, p, q) = 0, ...(1)
whose complete integral is of the form !(x, y, z, a, b) = 0, ...(2)
where ‘a’ and ‘b’ are arbitrary constants.

The singular integral of (1) is obtained by eliminating ‘a’ and ‘b’ between equation (2)
�!/�a = 0 ...(3)  and           �!/�b = 0. ...(4)

The values of z, p, q derived from (2) when substituted in (1) will reduce it into an identity
and the substitution of the values of p and q (but not of z) will in general render (1) equivalent to
the integral equation.  By using this substitution p and q are replaced by functions of x, y, z, a and
b in (1).  It follows that the singular integral is given by (1) and the equations obtained on
differentiating (1) partially w.r.t. ‘a’ and ‘b’, namely the equations

�
�

�
�

# �
�

�
�

f
p

p
a

f
q

q
a

= 0 ...(5) �
�

�
�

# �
�

�
�

f
p

p
b

f
q

q
b

= 0.   ...(6)

If f
p

�
�

& 0 and 
f
q

�
�

& 0, (5) and (6) hold if �
�

�
�

∋ �
�

�
�

p
a

q
b

p
b

q
a

= 0,

showing that there exists a functional relation between p and q which does not contain a and b
explicitly.  Let this functional relation be

        ∃(p, q) = 0. ...(7)
If both the constants a and b occur in p and q (which does nolt always happen), then (7)

shows that one of them is a function of the other and the equations using them give general integral
which is not now required.

Equations (5) and (6) are also true if
�f/�p = 0 ...(8)           and                  �f/�q = 0. ... (9)
Elimination of p and q from (1), (7) and (8) will yield a relation between x, y, z free from ‘a’

and ‘b’.  If this relation satisfies the given differential equation (1), it must be the singular integral.
3.4. COMPATIBLE SYSTEM OF FIRST–ORDER EQUATIONS

[Delhi Maths (H) 2007; Pune 2010]
Consider first order partial differential equations

f(x, y, z, p, q) = 0 ...(1)
and g(x, y, z, p, q) = 0. ...(2)

Equations (1) and (2) are known as compatible when every solution of one is also a solution
of the other.

To find condition for (1) and (2) to be compatible. [Delhi 2008; Pune 2011]

Let J = Jacobian of f and g ( � �( , ) / ( , )f g p q & 0. ...(3)
Then (1) and (2) can be solved to obtain the explicit expressions for p and q given by
p = !(x, y, z) and q = ∃(x, y, z). ...(4)
The condition that the pair of equations (1) and (2) should be compatible reduces then to the

condition that the system of equations (4) should be completely integrable, i.e., that the equation
dz = pdx + qdy or    ! dx + ∃dy – dz = 0, using (4) ...(5)
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3.4 Non-Linear Partial Differential Equations of Order One

should be integrable.  (5) is integrable if*

0 0 ( 1)
z z y x

) ∗�∃ �! �! �∃) ∗ ) ∗! ∋ # ∃ ∋ # ∋ ∋+ ,+ , + ,� � � �− . − . − .
= 0

which is equivalent to    �∃
�

# �∃
�x z

! =
�!
�

# �!
�y z

∃ . ...(6)

Substituting from equations (4) in (1) and differentiating w.r.t. ‘x’ and ‘z’ respectively, we get
�
�

# �
�

�!
�

# �
�

�∃
�

f
x

f
p x

f
q x = 0 ...(7)

and �
�

# �
�

�!
�

# �
�

�∃
�

f
z

f
p z

f
q z

= 0. ...(8)

From (7) and (8),    �
�

# �
�

# �
�

�!
�

# �!
�

F
H

I
K #

�
�

�∃
�

# �∃
�

F
H

I
K

f
x

f
z

f
p x z

f
q x z

! ! ! = 0. ...(9)

Similarly (2) yields    �
�

# �
�

# �
�

�!
�

# �!
�

F
H

I
K #

�
�

�∃
�

# �∃
�

F
H

I
K

g
x

g
z

g
p x z

g
q x z

! ! ! = 0.   ...(10)

Solving (9) and (10), �∃
�

# �∃
�x z

! = 1
J

f g
x p

f g
z p

�
�

# �
�

RST
UVW

( , )
( , )

( , )
( , )

! . ...(11)

Again, substituting from equations (4) in (1) and differentiating w.r.t. ‘y’ and ‘z’ and proceeding

as before, we obtain �!
�

# �!
�y z

∃ = ∋ �
�

# �
�

RST
UVW

1
J

f g
y q

f g
z q

( , )
( , )

( , )
( , )

∃ ...(12)

Substituting from equations (11) and (12) in (1) and replacing !, ∃ by p, q respectively, we
obtain

1
J

f g
x p

p f g
z p

�
�

# �
�

RST
UVW

( , )
( , )

( , )
( , )

= – 1
J

f g
y q

q f g
z q

�
�

# �
�

RST
UVW

( , )
( , )

( , )
( , )

   or          [f, g] = 0, ...(13)

where        [f, g] ( �
�

# �
�

# �
�

# �
�

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

f g
x p

p f g
z p

f g
y q

q f g
z q

...(14)

3.5. A PARTICULAR CASE OF ART. 3.4.
To show that first order partial differential equations p = P(x, y) and q = Q(x, y) are compatible

if and only if / / .P y Q x� � / � � [Delhi Maths (H) 2009; Pune 2010]

Proof. Given / ( , )z x p P x y� � / / and / ( , )z z q Q x y� � / / ... (1)

Since          ( / ) ( / ) ,dz z x dx z y dy pdx qdy/ � � # � � / # ... (2)
it follows that the given partial differential equations (1) are compatible if and only if the single
differential equation

dz = Pdx + Qdy ... (3)
is integrable.

Since P and Q are functions of two variables x and y, hence Pdx + Qdy is an exact differential
if and only if / / .P y Q x� � / � �  Therefore (3) is integrable if and only if / /P y Q x� � / � �

Remark 1. If / / ,P y Q x� � / � �  then the system of two given partial differential equations
(1) is compatible and hence these will possess a common solution.

*Pdx + Qdy + Rdz = 0 is integrable if 0.
Q R R P P Q

P Q R
z y x z y x

� � � � � �
∋ # ∋ # ∋ /

� � � � � �

) ∗ ) ∗) ∗
+ ,+ , + ,
− .− . − .

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Non-Linear Partial Differential Equations of Order One 3.5

Remark 2. If / / ,P y Q x� � & � �  then the system of two given partial differential equations
(1) is not compatible and hence these equations possess no solution.
3.6. SOLVED EXAMPLES BASED ON ART. 3.4 AND ART. 3.5.

Ex. 1. (a) Show that the differential equations / 5 7z x x y� � / ∋  and / 6 8z y x y� � / #  aree
not compatible.

(b) / 5 7 ,z x x y� � / ∋ / 6 8z y x y� � / # possess (i) common solution (ii) No common solution
(iii) No solution (iv) None of these. Point out correct choice. [Agra 2005, 06]

(c)Show that the differential equations p = x2 – ay, q = y2 – ax are compactible and find
their common solution.

(d) Show that the differential equations 2/ ( ) ,z x x y� � / # 2 2/ 2z y x xy y� � / # ∋  aree
compatible and solve them

(e)Show that p = x – y/(x2 + y2), q = y + x/(x2 + y2) are compatible and find their solution.
(f) Show that p = 1 + ex/y, q = ex/y(1 – x/y) are compatible and find their solution.
Sol. (a) Given dz/dx = p = 5x – 7y and dz/dy = q = 6x + 8y ...(1)
Comparing (1) with p = P(x, y) and q = Q(x, y) ... (2)

here p = 5x – 7y      and Q = 6x + 8y ... (3)

We know that p = P(x, y) and q = Q(x, y) are compatible if / / .P y Q x� � / � �  Hence the

system (1) is compatible if / / .P y Q x� � / � �

From (3), / 7P y� � / ∋  and / 6Q x� � /  and so / /P y Q x� � & � �

Therefore, the given system (1) is not compatible.
(b) Ans. (iii) As in part (a), the given system is not compatible. Hence the given equations

have no solution (refer Art. 3.5).
(c)We known that the system of equations p = P(x, y),      q = Q(x, y) ... (1)

is compatible if and only if / / .P y Q x� � / � �
Comparing  p = x2 – ay,   and   q = y2 – ax ... (2)

with (1), here P = x2 – ay,   and      Q = y2 – ax ... (3)
From (3), / /P y a Q dx� � / ∋ / �  and so equations (2) are compatible
To find the common solution of (2).
Substituting the values of p and q given by (2) in dz = pdx + qdy, we get

dz = (x2 – ay) dx + (y2 – ax) dy = x2dx + y2dy – a d(xy)
Integrating, z = (x3 + y3)/3 – axy + c, c being an arbitrary contant ... (4)
(4) is the required common solution of the given equation (2).
(d) We know that the system of equations         p = P(x, y), q = Q(x, y)  ...(1)

is compatible if and only if / / .P y Q x� � / � �

Comparing 2 2 2/ ( ) , and / 2z x p x y z y q x xy y� � / / # � � / / # ∋   ... (2)

with (1), here P = (x + y)2 = x2 + 2xy + y2  and Q = x2 + 2xy – y2 ... (3)

From (3), / 2 2 /P y x y Q y� � / # / � �  and hence equations (2) are compatible.
The find the common solution of (2).
Substituting the values of p and q given by (2) in dz = pdx + qdy, we get

dz = (x2 + 2xy + y2)dx + (x2 + 2xy – y2) dy ... (4)
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3.6 Non-Linear Partial Differential Equations of Order One

Integrating (4) and noting that R.H.S. of (4) must an exact differential, we have, by method
of solving an exact equation

2 2 2 2

(Treating y as a constant) (Integrating terms free from )
( 2 ) ( 2 )

x
z x xy y dx x xy y c/ # # # # ∋ #0 0

or 3 2 2 3/ 3 /3 ,z x x y y x y c/ # # ∋ # c being an arbitrary constant

(e)We know that the system of equation p = P(x, y), q = Q(x, y) ... (1)

is compatible if and only if / / .P y Q x� � / � �

Comparing p = x – y/(x2 + y2), and q = y + x/(x2 + y2) ... (2)
with (1), here P = x – y/(x2 + y2) and Q = y + x/(x2 + y2) ... (3)

From (3),
2 2 2 2

2 2 2 2 2 2
1 ( ) 20

( ) ( )
P x y y y y x
y x y x y

� 1 # ∋ 1 ∋
/ ∋ /

� ∋ # ... (4)

and
2 2 2 2

2 2 2 2 2 2
1 ( ) 20

( ) ( )
Q x y x x y x
x x y x y

� 1 # ∋ 1 ∋
/ # /

� # ∋ ... (5)

(4) and (5) 2 / /P y Q x� � / � � 2 The system (2) is compatible.
To find the solution of the system (2).
Substituting the values of p and q given by (2) in dz = pdx + qdy, we get

dz = {x – y/(x2 + y2)}dx + {y + x/(x2 + y2)}dy ... (6)
Integrating (6) and noting that R.H.S. of (6) must be an exact differential, we obtain

3 4 3 42 2 2 2

(Treating  as a constant) (Integrating terms free from )

/( ) /( )
y x

z x y x y dx y x x y dy c/ ∋ # # # # #0 0
or z = x2/2 – y × (1/y) × tan–1 (x/y) + y2/2 + c = (x2 + y2)/2 – tan–1 (x/y) + c,
which is the required solution, c being an arbitrary constant.

(f) We know that the system of equations        p = P(x, y), and      q = Q(x, y) ... (1)

is compatible if and only if / / .P y Q x� � / � �

Comparing p = 1 + ex/y and q = ex/y(1 – x/y) ... (2)
with (1), here P = 1 + ex/y and Q = ex/y (1 – x/y) ... (3)

(3)  2 / 2 2 // 0 ( / ) ( / )x y x yP y e x y x y e� � / # ∋ / ∋ ... (4)

and / / 2 // (1/ ) (1 / ) ( 1/ ) ( / )x y x y x yQ x e y x y e y x y e� � / 5 5 ∋ # 5 ∋ / ∋ ... (5)

(4) and (5)     2 / /P y Q x� � / � � 2 The system (2) is compatible.
To find the solution of (2). Substituting the values of p and q given by (2) in dz = pdx + qdy,

we get dz = (1 + ex/y)dx + ex/y(1 – x/y)dy     ... (6)
Integrating (6) and noting that R.H.S. of (6) must be an exact differential, we obtain

/ /

(Treating as constant) (Integrating terms free from )
(1 ) (1 / )x y x y

y x
z e dx e x y dy c/ # # ∋ #0 0

or z = x + y ex/y + c, c being an arbitrary constant.
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Non-Linear Partial Differential Equations of Order One 3.7

Ex. 2.  Show that the equations xp = yq and z(xp + yq) = 2xy are compatible and solve them.
[Delhi Maths (Hons) 2005, 07, 11]

Sol. Let f(x, y, z, p, q) = xp – yq = 0 ...(1)
and g(x, y, z, p, q) = z(xp + yq) – 2xy = 0 ...(2)

6
�
�

/ � � � �
� � � �

( , )
( , )

f g
x p

f x f p
g x g p =

p x
zp y xz∋2 = 2xy,

�
�

/ � � � �
� � � �

( , )
( , )
f g
z p

f z f p
g z g p =

0 x
xp yq xz# = – x2p – xyq,

�
�

/ � � � �
� � � �

( , )
( , )
f g
y q

f y f q
g y g q = 2

q y
zq x zy

∋ ∋
∋ = –2xy

and �
�

/ � � � �
� � � �

( , )
( , )
f g
z q

f z f q
g z g q =

0 ∋
#

y
xp yq zy =  xyp + y2q.

6  [f, g] = �
�

# �
�

# �
�

# �
�

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

f g
x p

p f g
z p

f g
y q

q f g
z q = 2xy – x2p2 – xyqp – 2xy + xypq + y2q2

       = – xp(xp + yq) + yq(xp + yq) = – (xp – yq) (xp + yq) = 0,  using (1)
Hence (1) and (2) are compatible.
Solving (1) and (2) for p and q, p = y/z    and q = x/z. ... (3)
Using (3) in dz = pdx + qdy, we have       dz = (y/z)dx + (x/z)dy        or        z dz = d(xy).
Integrating,    z2/2 = xy + c/2 or z2 = 2xy + c, where c is an arbitrary constant.
Ex. 3.  Show that the equations xp – yq = x and x2p + q = xz are compatible and find their

solution. [Delhi B.Sc. II (Prog) 2009; Delhi Maths Hons. 2007]
Sol. Let f(x, y, z, p, q) = xp – yq – x = 0. ...(1)

and g(x, y, z, p, q) = x2p + q – xz = 0. ...(2)

6
�
�

/ � � � �
� � � �

( , )
( , )

f g
x p

f x f p
g x g p =

p x
xp z x

∋
∋
1

2 2 = (p – 1)x2 – x(2xp – z).

Similarly, �
�

( , )
( , )
f g
z p

= x2,
�
�

( , )
( , )
f g
y q

= – q,                      
�
�
( , )
( , )
f g
z q

= –xy.

6  [f, g] = �
�

# �
�

# �
�

# �
�

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

f g
x p

p f g
z p

f g
y q

q f g
z q

= (p – 1)x2 – x(2xp – z) – px2 – q – xyq

  = – x2 + zx – q – xyq = –x2 + x2p – qxy, by (2)
  = x(– x + xp – yq) = 0, by (1)

Hence (1) and (2) are compatible.
Solving (1) and (2) for p and q,  p =  (1 + yz)/(1 + xy)   and   q = x(z – x)/(1 + xy). ...(3)
Using (3) in dz = pdx + qdy, dz = [(1 + yz)/(1 + xy)] dx + [x(z – x)/(1 + xy)]dy

or (1 + xy)dz = (1 + yz)dx + x(z – x)dy       or (1 + xy)dz – z(ydx + xdy) = dx – x2dy

or ( ) ( )
( )

1
1 2

# ∋
#

xy dz z d xy
xy

=
dx x dy

xy
dx x dy

y x
∋
#

/ ∋
#

2

2

2

21 1( )
( )

( )
   or      

1
zd
xy

) ∗
+ ,#− .

= 2
( 1 )

( 1 )
d y x
y x

∋ #
#

.

Integrating it, z
xy1#

= 1
1( )y x c

#
#   or   z

xy
x
xy c

1 1#
/

#
#

or z – x = c(1 + xy),  c being an arbitrary constant.
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3.8 Non-Linear Partial Differential Equations of Order One

Ex. 4.  Show that the equation z = px + qy is compatible with any equation f(x, y, z, p, q)
= 0 which is homogeneous in x, y, z.            [Delhi Maths, Hons. 2001, 06, 10]

Sol. Given that differential equation        f(x, y, z, p, q) = 0 ...(1)
is homogeneous in x, y, z. Then, clearly f(x, y, z, p, q) will be a homogeneous function in variables
x, y, z ; say of degree n. Then, by Euler’s theorem on homogeneous function, we have

( / ) ( / ) ( / )x f x y f y z f z nf� � # � � # � � /    so that  ( / ) ( / ) 0,x f x z f z� � # � � /  by (1) ... (2)
We take g(x, y, z, p, q) = px + qy – z = 0 ... (3)
Then, using (3), we have

/ / / /( , ) ,
/ /( , )

f x f p f x f pf g f fx p
g x g p p xx p x p

� � � � � � � �� � �
/ / / ∋

� � � �� � �

/ / / /( , ) ,
/ / 1( , )

f z f p f z f pf g f fx
g z g p xz p z p

� � � � � � � �� � �
/ / / #

� � � � ∋� � �

/ / / /( , )
/ /( , )

f y f q f y f qf g f fy q
g y g q q yy q y q

� � � � � � � �� � �
/ / / ∋

� � � �� � �

and
/ / / /( , )
/ / 1( , )

f z f q f z f qf g f fy
g z g q yz q z q

� � � � � � � �� � �
/ / / #

� � � � ∋� � �

6
( , ) ( , ) ( , ) ( , )

[ , ]
( , ) ( , ) ( , ) ( , )
f g f g f g f q

f g p q
x p z p y q z q

� � � �
/ # # #

� � � �

         
f f f f f f f fx p p x y q q y
x p z p y q z q

) ∗ ) ∗� � � � � � � �
/ ∋ # # # ∋ # #+ , + ,� � − � � . � � − � � .

         7 8 ,
f f f f f f

x y px qy x y z
x y y x y z

� � � � � �
/ # # # / # #

� � � � � �  using (3)

         = 0, using (2)
Hence, the differential  equation z = px + qy is compatible with any differential equation

f(x, y, z, p, q) that is homogeneous in x, y, z.
Ex. 5.  If u1 = �u/�x, u2 = �u/�y, u3 = �u/�z, show that the equations f(x, y, z, u1, u2, u3) = 0 and

g(x, y, z, u1, u2, u3) = 0 are compatible if �
�

# �
�

# �
�

( , )
( , )

( , )
( , )

( , )
( , )

f g
x u

f g
y u

f g
z u1 2 3

= 0. (Delhi Maths (H) 2004)

Sol. Treating z as constant, given equations are compatible if
�
�

# �
�

# �
�

# �
�

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

f g
x u

u f g
u u

f g
y u

u f g
u u1

1
1 2

2
2

= 0. ...(1)

Since f and g do not contain u, we have �f/�u = 0 and     �g/�u = 0. ...(2)

6
�
�

( , )
( , )

f g
u u1

= 0 and �
�

( , )
( , )

f g
u u2

= 0. ...(3)

6 (1) reduces to �
�

# �
�

( , )
( , )

( , )
( , )

f g
x u

f g
y u1 2

= 0. ...(4)

Similarly treating x and y constant respectively, given equtions are compatible if
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Non-Linear Partial Differential Equations of Order One 3.9

�
�

# �
�

( , )
( , )

( , )
( , )

f g
y u

f g
z u2 3

= 0 ...(5) �
�

# �
�

( , )
( , )

( , )
( , )

f g
x u

f g
z u1 3

= 0. ...(6)

We know that the given equations are compatible when they remain compatible even when
any variable is taken as constant, i.e., (4), (5) and (6) hold simultaneously.  Hence adding (4), (5)
and (6), the required condition for given equations to be compatible is

�
�

# �
�

# �
�

( , )
( , )

( , )
( , )

( , )
( , )

f g
x u

f g
y u

f g
z u1 2 3

= 0.

Ex. 6. Show that the equations ( , , , ) 0f x y p q / , ( , , , ) 0g x y p q /  are compatible if

( , ) / ( , ) ( , ) / ( , ) 0f g x p f g y q� � # � � /

Verify that the equations ( , ), ( , )p P x y q Q x y/ /  are compatible if / /P y Q x� � / � � .

Sol. We know that ( , , , , ) 0f x y z p q / and ( , , , , ) 0g x y z p q / ... (1)

are compatible if   ( , ) ( , ) ( , ) ( , )
0

( , ) ( , ) ( , ) ( , )

f g f g f g f g
p q

x p z p y q z q

� � � �
# # # /

� � � �
... (2)

First part: Comparing the given equations ( , , , ) 0f x y p q /   and ( , , , ) 0g x y p q /  with (1), we
find that z is absent in given equations and so

/ 0f z� � / and / 0g z� � / ... (3)

Now,
/ / 0 /( , )

0
/ / 0 /( , )

f z f p f pf g

g z g p g pz p

� � � � � ��
/ / /

� � � � � ��

and
/ / 0 /( , )

0
/ / 0 /( , )

f z f q f qf g
g z g q g qz q

� � � � � ��
/ / /

� � � � � ��
Substituting these values in (2), the required condition is

( , ) / ( , ) ( , ) / ( , ) 0f g x p f g y q� � # � � /

Second Part. Let    ( , )f P x y p/ ∋ and    ( , )g Q x y q/ ∋ ... (4)
Comparing (4) with (1), we find that z and q are absent in f and z and p are absent in g and

so � � / � � / � � / � � // 0, / 0, / 0 and / 0f z f q g z g p   ... (5)

6
/ / / 1( , )
/ / / 0( , )

f x f p P xf g Q

g x g p Q xx p x

� � � � � � ∋� �
/ / /

� � � � � �� �

� � � � ∋�
/ / /

� � � ��
/ / 0 1( , )

0
/ / 0 0( , )

f z f pf g

g z g pz p

� � � � � �� �
/ / / ∋

� � � � � � ∋� �
/ / / 0( , )

/ / / 1( , )

f y f q P yf g P

g y g q Q yy q y

/ / 0 0( , )
0

/ / 0 1( , )

f z f qf g

g z g qz q

� � � ��
/ / /

� � � � ∋�
Substituting these values in (2), the required condition is

/ / 0Q x P y� � ∋ � � /   or / /P y Q x� � / � � .

Ex. 7. Show that 2 2 1p q# /  and 2 2( )p q x pz# /  are compatible and solve them.

Hint. Proceed as in solved Ex. 1 Ans. 2 2 2( )z x y c/ # # .
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3.10 Non-Linear Partial Differential Equations of Order One

Ex. 8. Solve completey the simultaneous equations: z = px + qy and 2xy(p2 + q2)
= z(yp + xq). [Delhi Math (H) 2006, 10]

Sol. Given z px qy/ # ... (1)

and 2 22 ( ) ( ) 0xy p q z yp xq# ∋ # / ... (2)

Let 2 2( , , , , ) 2 ( ) ( )f x y z p q xy p q z yp xq/ # ∋ # = 2 2 2{2( / ) ( / ) ( ) ( / ) ( / ) }z x z y z p q y z p x z q# ∋ ∋ ,

showing that ( , , , , )f x y z p q  is homogeneous in x, y, z.

We know that (refer solved example 4) the equation z px qy/ #  is compatible with any

equation ( , , , , ) 0f x y z p q /  which is homogenous in x, y, z. Hence (1) and (2) are compatible.

From (1), we have ( ) /q z px y/ ∋ ... (3)

Using (3), (2) gives 2 2 2 2 2 22 ( ) (3 ) 0x x y p z x y p xz# ∋ # # /

or            2 2(2 ) {( ) } 0xp z x y p xz∋ # ∋ /

so that / 2p z x/ , 2 2/( )xz x y# ... (4)

Using (4), (3) gives   / 2q z y/ , 2 2/( )yz x y# ... (5)

Using the corresponding values / 2 , / 2p z x q z y/ /  in / #dz px qdy , we get
dz = (z/2x)dx + (z/2y)dy   or                       / #2(1/ ) (1/ ) (1/ )z dz x dx y dy

Integrating, 12 log log log logz x y C/ # #     or              2
1z C xy/  ...(6)

Similarly, using the corresponding values 2 2/( )p xz x y/ #  and 2 2/( )q yz x y/ # in dz = pdx
+ qdy, we get

2 2 2 2

xzdx yzdy
dz

x y x y
/ #

# # or 2 2

2 2( )dz xdx ydy

z x y

#
/

#

Integrating, 2 2
22 log log( ) logz x y C/ # # or 2 2 2

2( )z C x y/ # ... (7)

(6) and (7) give two two common solutions of (1) and (2)

EXERCISE 3(A)
1. Show that / 7 / 8 1z x x y� � / # ∋  and / 9 11 2z y x y� � / # ∋  are not compatible.
2. Show that the partial differential equations p = 6x – 4y + 1 and q = 4x + 6y + 1 do not

possess any common solution.
3. Show that the following system of partial differential equations are compatible and hence

solve them
(i) p = 6x + 3y, q = 3x – 4y Ans. z = 3x2 + 3xy – 2y2 + c

(ii) p = ax + hy + g, q = hx + by + f Ans. z = (ax2 + by2)/2 + hxy + gx + fy + c

(iii) / (2 ), / ( 2 )z x y ax by z y x ax by� � / # � � / # Ans. z = ax2y + bxy + c
(iv) p = x4 – 2xy2 + y4, q = 4xy3 – 2x2y – sin y Ans. z = x5/5 – x2y2 + xy4 + cos y + c
(v) p = (ey + 1) cos x, q = ey sin x Ans. z = (ey + 1) sin x + c

(vi) p = y (1 + 1/x) + cos y, q = x + log x – x sin y Ans. z = y (x + log x) + x cos y + c
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Non-Linear Partial Differential Equations of Order One 3.11

(vii) 2 22 3 24 , 2 3xy xyp y e x q xy e y/ # / ∋ Ans. 2 4 3xyz e x y c/ # ∋ #

(viii)  p = sin x cos y + e3x, q = cos x sin y + tan y
Ans. x = (1/3) × e3x – cos x cos y + log sec x + c

3.7. Charpit’s method.* (General method of solving partial differential equations of
order one but of any degree.      [Agra 2003; Delhi Maths (H) 2000, 05, 06,
       08-11; Kanpur 1998; Meeerut 2003, 05; Nagpur 2002, 04, 06, 08; Rohilkhand 2001, 04]

Let the given partial equation differential of first order and non–linear in p and q be
f(x, y, z, p, q) = 0. ...(1)

We know that dz = p dx + q dy. ...(2)
The next step consists in finding another relation F(x, y, z, p, q) = 0 ...(3)

such that when the values of p and q obtained by solving (1) and (3), are substituted in (2), it
becomes integrable. The integration of (2) will give the complete integral of (1).

In order to obtain (3), differentiate partially (1) and (3) with respect to x and y and get
�
�

# �
�

# �
�

�
�

# �
�

�
�

f
x

f
z

p f
p

p
x

f
q

q
x = 0, ... (4)

�
�

# �
�

# �
�

�
�

# �
�

�
�

F
x

F
z

p F
p

p
x

F
q

q
x = 0, ... (5)

�
�

# �
�

# �
�

�
�

# �
�

�
�

f
y

f
z

q f
p

p
y

f
q

q
y = 0 ... (6)

and �
�

# �
�

# �
�

�
�

# �
�

�
�

F
y

F
z

q F
p

p
y

F
q

q
y = 0. ... (7)

Eliminating �p/�x from (4) and (5), we get

�
�

# �
�

# �
�

�
�

F
HG

I
KJ

�
�

∋ �
�

# �
�

# �
�

�
�

F
HG

I
KJ

�
�

f
x

f
z

p f
q

q
x

F
p

F
x

F
z

p F
q

q
x

f
p

= 0

or �
�

�
�

∋ �
�

�
�

F
HG

I
KJ #

�
�

�
�

∋ �
�

�
�

F
HG

I
KJ

f
x

F
p

F
x

f
p

f
z

F
p

F
z

f
p

p f F F f q
q p q p x

) ∗� � � � �
# ∋+ ,− � � � � . �

= 0. ...(8)

Similarly, eliminating �q/�y from (6) and (7), we get

f F F f f F F f q
y q y q z q z q

) ∗ ) ∗� � � � � � � �
∋ # ∋+ , + ,� � � � � � � �− . − .

# �
�

�
�

∋ �
�

�
�

F
HG

I
KJ

�
�

f
p

F
q

F
p

f
q

p
y = 0. ...(9)

Since �q/�x = �2z/�x�y = �p/�y, the last term in (8) is the same as that in (9), except for a
minus sign and hence they cancel on adding (8) and (9).

Therefore, adding (8) and (9) and rearranging the terms, we obtain

�
�

# �
�

F
H

I
K

�
�

# �
�

# �
�

F
HG

I
KJ

�
�

# ∋ �
�

∋ �
�

F
HG

I
KJ

�
�

f
x

p f
z

F
p

f
y

f
z

q F
q

p f
p

q f
q

F
z

# ∋ �
�
F
HG
I
KJ

�
�

# ∋ �
�
F
HG
I
KJ

�
�

f
p

F
x

f
q

F
y = 0. ...(10)

This is a linear equation of the first order to obtain the desired function F. As in Art 2.20 of
chapter 2, integral of (10) is obtained by solving the auxiliary equations

   dp
f x p f z( ) ( )� � # � �

= dq
f y q f z

dz
p f p q f q( ) ( ) ( ) ( )� � # � �

#
∋ � � ∋ � �

= dx
f p∋ � �

= dy
f q

dF
∋ � �

/
0

. ...(11)

*This is general method for solving equations with two independent variables. Since the solution by
this method is generally more complicated, this method is applied to solve equations which cannot be reduced
to any of the standard forms which will be discussed later on. Thus, Charpit’s method is used in two situations
 (i) When you are asked to solve a problem by Charpit’s method (ii) when the given equation is not of any
four standard forms given in Articles 3.10, 3.12, 3.14 and 3.17.
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3.12 Non-Linear Partial Differential Equations of Order One

Since any of the integrals of (11) will satisfy (10), an integral of (11) which involves p or q
(or both) will serve along with the given equation to find p and q. In practice, however, we shall
select the simplest integral.

Note. In what follows we shall use the following standard notations:

/ ,xf x f� � / / ,yf y f� � / / ,zf z f� � / ,/ pf p f� � / ./ qf q f� � /

Therefore, Charpit’s auxiliary equations (11) may be re–written as

0x z y z p q p q

dp dq dz dx dy dF
f p f f q f p f q f f f

/ / / / /
# # ∋ ∋ ∋ ∋ ... (11)%

3.8A. WORKING RULE WHILE USING CHARPIT’S METHOD
Step 1.  Transfer all terms of the given equation to L.H.S. and denote the entire expression by f.
Step 2.  Write down the Charpit’s auxiliary equations (11) or (11)%.
Step 3.  Using the value of f in step 1 write down the values of �f/�x, �f/�y ..., i.e., fx, fy, ... etc.

occuring in step 2 and put these in Charpit’s equations (11) or (11)%.
Step 4.  After simplifying the step 3, select two proper fractions so that the resulting integral may

come out to be the simplest relation involving at least one of p and q.
Step 5.  The simplest relation of step 4 is solved along with the given equation to determine p and

q.  Put these values of p and q in dz = p dx + q dy which on integration gives the complete integral of
the given equation.

The Singular and General integrals may be obtained in the usual manner.
Remark. Sometimes Charpit’s equations give rise to p = a and q = b, where a and b are constants.

In such cases, putting p = a and q = b in the given equation will give the required complete integral.
3.8.B. SOLVED–EXAMPLES BASED ON ART. 3.8A.

Ex. 1. Find a complete integral of z = px + qy + p2 + q2.
[Bilaspur 2000l; Bhopal 1996, I.A.S. 1996; Indore 2000; Jabalpur 2000;

K.U. Kurukshetra 2005; Ravishankar 2000; 04; Meerut 2010; Garhwal 2010]
Sol. Let  f(x, y, z, p, q) ( z – px – qy – p2 – q2 = 0 ... (1)

Charpit’s auxiliary equations are    
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

... (2)

From (1),     fx = –p,     fy = –q,     fz = 0,     fp = –x – 2p     and      fq = –y – 2q ... (3)
Using (3), (2) reduces to

0 0 ( 2 ) ( 2 ) 2 2
dp dq dz dx dy

p x p q y q x p y q
/ / / /

# # # # # ... (4)

Taking the first fraction of (4), dp = 0 so that p = a ... (5)
Taking the second fraction of (4), dq = 0 so that q = b ... (6)
Putting p = a and q = b in (1), the required complete integral is

z = ax + by + a2 + b2, a, b being arbitrary constants.
Ex. 2.  Find a complete integral of q = 3p2. [Agra 2006]
Sol. Here given equation is f(x, y, z, p, q) ( 3p2 – q = 0. ...(1)

6Charpit’s auxiliary equations are   dp
f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

= dz
p f

p q f
q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�
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Non-Linear Partial Differential Equations of Order One 3.13

or
dp
p

dq
q0 0 0 0#

/
#. .

= dz
p q

dx
p

dy
∋ #

/
∋

/
6 6 12 , using (1) ...(2)

Taking the first fraction of (1), dp = 0 so that  p = a. ...(3)
Substituting this value of p in (1), we get q = 3a2. ...(4)
Putting these values of p and q in dz = pdx + qdy, we get
dz = adx + 3a2dy so that z = ax + 3a2y + b,

which is a complete integral, a and b being arbitrary constants.
Ex. 3.  Find the complete integral of zpq = p + q              [Nagpur 2010; Meerut 2006]
Sol. Let f(x, y, z, p, q) = zpq – p – q = 0 ... (1)

Here Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

... (2)
From (1), fx = 0,     fy = 0,       fz = pq,       fp = zq – 1      and      fq = zp – 1 ... (3)
Using (3), (2) reduces to

2 2 ......dp dq
p q pq

/ / or
dp dq
p q

/ so that p = aq ... (4)

Solving (1) and (2), p = (1 + a)/z  and                     q = (1 + a)/az.
6 dz = pdx + qdy = [(1 + a)/z]dx + [(1 + a)/az]dy     or     2zdz = 2(1 + a) [dx + (1/a)dy]
Integrating, z2 = 2(1 + a) [x + (1/a)y] + b, a, b being arbitrary constants
Ex. 4.  Find a complete integral of p2 – y2q = y2 – x2. [M.D.U. Rohtak 2006]
Sol. Here given equation is        f(x, y, z, p, q) = p2 – y2q – y2 + x2 = 0. ...(1)

Charpit’s auxiliary equations are dp
f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

= dz
p f

p q f
q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�

or dp
x

dq
qy y2 2 2

/
∋ ∋

= dz
p p q q

dx
p

dy
y∋ ∋ ∋

/
∋

/
( ) ( )2 22 2 , using (1) ...(2)

Taking the first and fourth fractions,    pdp + xdx = 0        so that       p2 + x2 = a2  ... (3)
Solving (1) and (3) for p and q, p = (a2 – x2)1/2,           q = a2y–2 – 1.
6 dz = pdx + qdy = (a2 – x2)1/2dx  + (a2y–2 –1)dy.
Integrating, z = (x/2) × (a2 – x2)1/2 + (a2/2) × sin–1 (x/a) – (a2/y) – y + b.
Ex. 5.  Find a complete integral of z2(p2z2 + q2) = 1. [I.A.S. 1997; Meerut 2007]
Sol. Here given equation is f(x, y, z, p, q) = p2z4 + q2z2 – 1 = 0. ...(1)

Charpit’s auxiliary equations are        
x z y z p q p q

dp dq dz dx dq
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
p p z zq( )4 22 3 2#

=
dq

q p z zq( )4 22 3 2#
= dz

p z q z∋ ∋2 22 4 2 2 = dx
pz

dy
qz∋

/
∋2 24 2 , by (1)  ... (2)

Taking the first two fractions,    (1/p)dp = (1/q)dq       so that   p = aq.

Solving (1) and (2) for p and q,   p = 2 2 1/ 2( 1)
a

z a z #
,      q = 2 2 1/ 2

1
( 1)z a z #

.

6   dz = pdx + qdy = (a dx + dy)/z (a2z2 + 1)1/2 or adx + dy = z(a2z2 + 1)1/2dz.
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3.14 Non-Linear Partial Differential Equations of Order One

Integrating, ax + y = ( ) .a z zdz2 2 1 21#z . ...(3)
Putting  a2z2 + 1 = t2 so that 2a2zdz = 2tdt,  (3) becomes

ax + y = ( ) .1 2a t t dtz or ax + y + b = (1/3a2)t3,  where t = (a2z2 + 1)1/2

or   ax + y + b = (1/3a2) × (a2z2 + 1)3/2 or 9a4(ax + y + b)2 = (a2z2 + 1)3,
which is a complete integral, a and b being arbitrary constants.

Ex. 6.  Find a complete integral of px + qy = pq.  [Kurukshetra 2006 Rajasthan 2000, 01,
Gulbarga 2005; Meerut 2002; Kanpur 2004; Jiwaji 2004; Rewa 2001;

Vikram 2000, 03, 04; Bhopal 2010]
Sol. Here given equation is f(x, y, z, p, q) ( px + qy – pq = 0. ...(1)

Charpit’s auxiliary equations are          
x z y z p q p q

dp dq dz dx dq
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
x q

dy
y q∋ ∋

/
∋ ∋( ) ( )

= dz
p x q q y p

dp
p p

dq
q q∋ ∋ ∋ ∋

/
#

/
#( ) ( ) . .0 0

, by (1) ...(2)

Taking the last two fractions of (2),          (1/p)dp = (1/q)dq.
Integrating, log p = log q + log a or p = aq. ...(3)
Substituting this value of p in (1), we have
aqx + qy – aq2 = 0 or aq = ax + y,  as q & 0 ...(4)
6 From (3) and (4), q = (ax + y)/a      and p = ax + y. ...(5)
Putting these values of p and q in dz = pdx + qdy, we get
dz  =  (ax + y)dx + [(ax + y)/a] dy or adz = (ax + y) (adx + dy)

or adz = (ax + y) d(ax + y) = udu, where u = ax + y.
Integrating,                       az = u2/2 + b = (ax + y)2/2 + b,

which is a complete integral, a and b being arbitrary constants.
Ex. 7.  Find the complete integrals of following equations:

(i) q = (z + px)2 [Indore 2004; Ravishanker 2005]
(ii) p = (z + qy)2       [Meerut 2008, 09; Agra 2001; Delhi B.Sc. (Prog) 2008;

        Kurukshetra 2005]
Sol. (i). Here given equations is f(x, y, z, p, q) = (z + px)2 – q = 0 ... (1)

Charpit’s auxiliary equations are          
x z y z p q p q

dp dq dz dx dq
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or     dp
p z px p z px2 2( ) ( )# # #

=
dq

q z px2 ( )#
= dz

px z px q∋ # #2 ( ) = dx
x z px∋ #2 ( )

=
dy
0 , by (1)

Taking the second and fourth fractions,     (1/q)dq = – (1/x)dx.
Integrating, log q = log a – log x so that q = a/x. ...(2)
Substituting the above value of q in (1), we have
(z + px)2 = a/x  or        px = a x – z or p = a x x z x∋ . ...(3)

6 dz = pdx + qdy = a
x x

z
x

∋F
HG

I
KJ dx + a

x dy,  by (2) and (3)

or xdz = a x–1/2dx – zdx + ady or xdz + zdx = a x–1/2dx + ady
or d(xz) = a x–1/2dx + ady.

Integrating,    xz = 2 a x  + ay + b, a, b being arbitrary constants

(ii) Sol.  Do as in part (1). Ans. yz = ax + ay  + b.
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Ex. 8.  Find a complete integral of yzp2 – q = 0.
Sol. Here f(x, y, z, p, q) = yzp2 – q = 0.

Charpit’s uxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
p yp

dq
zp q yp0 2 2 2#

/
#( ) ( )

= dz
yzp q

dx
yzp

dy
∋ #

/
∋

/
2 2 12 , by (1) ...(2)

Taking the first and fifth fractions, (1/yp3) dp = dy
or      p–3dp = ydy or –2p–3dp = –2ydy.

Integrating,    p–2 = a2 – y2 so that p = 1/(a2 – y2)1/2. ...(3)
Using (3),  (1) 2 q = yzp2 2 q = yz/(a2 – y2). ...(4)

6 dz = pdx + qdy = 2 2 1/ 2 2 2( ) ( )
dx yzdy

a y a y
#

∋ ∋

or  2 2 1/ 2
2 2 1/ 2( )

( )
yzdya y dz

a y
∋ ∋

∋
= dx or d [z 2 2 1/ 2( )a y∋ ] = dx.

Integrating, z 2 2 1/ 2( )a y∋ = x + b   or    z2(a2 – y2) = (x + b)2, a, b being arbitrary constants.
Ex. 9.  Find a complete integral of 16p2z2 + 9q2z2+ 4z2 – 4 = 0. [I.A.S. 1994]
Sol. Given equation is f(x, y, z, p, q) = 16p2z2 + 9q2z2 + 4z2 – 4 = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or      dp
p p z q z z∋ # #( )32 18 82 2 =

dq
q p z q z z( )32 18 82 2# #

= dz
p pz q qz∋ ∋( ) ( )32 182 2 = dx

pz
dy
qz∋

/
∋32 182 2 .

        Taking the first and second fractions, (1/p)dp = (1/q)dq so that p = aq ... (2)
Solving (1) and (2) for p and q, we have

q =
2 1/ 2

2 1/ 2
2(1 )
(16 9)

z
z a

∋
#

and p =
2 1/ 2

2 1/ 2
2 (1 )
(16 9)
a z

z a
∋

#
. ...(3)

Hence, dz = pdx + qdy =
2 1/ 2

2 1/ 2
2(1 )
(16 9)

z
z a

∋

#
 (adx + dy), using (3)

or 2 1/ 2(1/ 2) (16 9)a5 # (1 – z2)–1/2 (–2zdz) = – 2(adx + dy). ...(4)

Putting 1 – z2 = t so that –2zdz = dt,  (4) becomes
or (1/2) × (16a2 + 9)1/2 t–1/2 dt = – 2 (adx + dy).

Integrating,     (16a2 + 9)1/2 t1/2 = – 2(ax + y) + b, a, b being arbitrary constants.

or 2 1/ 2 2(16 9) (1 )a z# ∋ + 2(ax + y) = b,  as  t = 1 – z2.

Ex. 10(a).  Find a complete integral of (p2 + q2)x = pz.
[Agra 2003; Rajasthan 2005; Ravishankar 2001; Delhi Maths (Hons) 2004, 05]

(b).  Find the complete integral of the partial differential equation (p2 + q2)x = pz and
deduce the solution which passes through the curve x = 0, z2 = 4y.    [Meerut 2007]

Sol. Let f(x, y, q, p, q) = (p2 + q2)x – pz = 0. ...(1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



3.16 Non-Linear Partial Differential Equations of Order One

Charpit’s auxiliary equations are       
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

giving dp/q2 = dq/(–pq), by (1) or 2pdp + 2qdq = 0.
Integrating,  p2 + q2 = a2, where a is an arbitrary constant. ...(2)

Solving (1) and (2), p = a2x/q and q = (a/z) × ( )z a x2 2 2∋ . ...(3)

6 dz = pdx + qdy =  a xdx
z

a z a x dy
z

2 2 2 2
#

∋( )
      or        

zdz a xdx
z a x

∋

∋

2

2 2 2( )
= ady.

Putting  z2 – a2x2 = t so that 2(zdz – a2xdx) = dt, we get

(1/ 2 )t dt = ady or 1/ 2(1/ 2) t∋5 = ady.

Integrating,        t1/2 = ay + b or ( )z a x2 2 2∋ = ay + b,   as    2 2 2t z a x/ ∋
or           z2 – a2x2 = (ay + b)2          or z2 = a2x2 + (ay + b)2. ... (4)

(b) Proceeding as in part (a), (4) is the complete integral.
The parametric equations of the given curve x = 0, z2 = 4y are given by

x = 0, y = t2, z = 2t ... (5)
Therefore the intersections of (1) and (2) are determined by
4t2 = (at2 + b)2 or a2t4 + 2(ab – 2)t2 + b2 = 0 ... (6)
Equation (6) has equal roots if its discriminant = 0, i.e., if
4(ab – 2)2 – 4a2b2 = 0 or a2b2 = 1 so that b = 1/a
Hence from (4), the appropriate one paremeter sub–system is given by
z2 = a2x2 + (ay + 1/a)2 or a4(x2 + y2) + a2(2y – z2) + 1 = 0,

which is a quatratic equation in parameter ‘a’. Therefore, this has for its envelope surface
(2y – z2)2 – 4(x2 + y2) = 0 or (2y – z2)2 = 4(x2 + y2) ... (7)
The desired solution is given by the function z defined by equation (7).
Ex. 10(c).  Find a complete, singular and general integrals of (p2 + q2)y = qz.
[Guwahati 2007; Agra 2001; Bilaspur 1998; Delhi Maths (H) 2003, 05; Garhwal 2005;
Meerut 2010, 11; K.V. Kurukshetra 2004; Kanpur 2005; Rohilkhand 2001; Pune 2010]
Sol. Here the given equation is  f(x, y, z, p, q) = (p2 + q2)y – qz = 0. ...(1)

Charpit’s auxiliary equations are         
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
pq

dq
p∋

/ 2 = dz
p y qz q y∋ # ∋2 22 2 = dx

py
dy
qy z∋

/
∋ #2 2

, by (1) ...(2)

Taking the first two fractions, we get 2pdp + 2qdq = 0     so that      p2 + q2 = a    ... (3)
Using (3), (1) gives a2y = qz or           q = a2y/z.
Putting this value of q in (3), we get

p = ( )a q2 2∋ = 2 4 2 2 2 2 2( / ) ( )aa a y z z a y
z

∋ / ∋ .

Now putting these values of p and q in dz = pdx + qdy, we have

dz =  a
z

z a y( )2 2 2∋ dx + a y dy
z

2
dy or     zdz a y dy

z a y
∋

∋

2

2 2 2( )
= a dx.
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Non-Linear Partial Differential Equations of Order One 3.17

Integrating, (z2 – a2y2)1/2 = ax + b or z2 – a2y2 = (ax + b)2, ...(4)
which is a required complete integral, a, b being arbitrary constants.

Singular Integral.  Differentiating (4) partially w.r.t. a and b, we have
0 = 2ay2 + 2 (ax + b)x ...(5)

and 0 = 2(ax + b). ...(6)
Eliminating a and b between (4), (5) and (6), we get z = 0 which clearly satisfies (1) and hence

it is the singular integral.
General Integral.  Replacing b by !(a) in (4), we get

z2 – a2y2 = [ax + !(a)]2. ...(7)
Differentiating (7) partially w.r.t. a, –2ay2 = 2[ax + !(a)] . [x + !%(a)]. ...(8)
General integral is obtained by eliminating a from (7) and (8).
Ex. 11.  Find a complete integral of p (1 + q2) + (b – z)q = 0. [Agra 1996]
Sol. Here given equation is f(x, y, z, p, q) ( p(1 + q2) + (b – z)q = 0. ...(1)

Charpit’s auxiliary equations are dp
f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

= dz

p f
p q f

q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�

or dp
pq

dq
p

/ 2 =
dz

p q b z q∋ # ∋ ∋( ) ( )1 2 =
dx

q
dy

pq b z∋ #
/

∋ ∋ ∋( ) ( )2 1 2
, by (1)

First two fractions give (1/p)dp = (1/q)dq     so that              q = pc.

Putting q = pc  in (1), we have p = [ ( ) ]c z b c∋ ∋1 .

6 q = pc gives q = [ ( ) ]c z b∋ ∋1 .
Putting these values of p and q in dz = pdx + qdy, we get

dz = [ ( ) ]c z b∋ ∋1 dx
c

dy#FH IK or cdz
c z b[ ( ) ]∋ ∋1

= dx + c dy.

Integrating,   2 [ ( ) ]c z b∋ ∋1 = x + cy + a or  4{c(z – b) – 1} = (x + cy + a)2

which is a complete integral, a and c being arbitrary constants.
Ex. 12.  Find a complete and singular integrals of 2xz – px2 – 2q xy + pq = 0. [I.A.S. 1991,

93, 2007, 2008; Delhi Hons. 2001, 01, 05; Kanpur 2001, 03; Meerut 2005; Bhopal 2004, 10;
Indore 1999; M.D.U. Rohtak 2004, Ravishanker 2004; Rajasthan 2000, 03, 05, 10]

Sol. Here given equation is f (x, y, z, p, q) = 2xz – px – 2qxy + pq = 0. ...(1)

Charpit’s auxiliary equations are    
dp

f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

=
dz

p f
p q f

q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�

or        dp
z qy

dq
2 2 0∋

/ = dx
x q

dy
xy p

dz
px xyq pq2 22 2 2∋

/
∋

/
# ∋

, by (1)

The second fraction gives dq = 0 so that q = a
Putting q = a in (1),  we get p = 2x(z – ay)/(x2 – a)
Putting values p and q in dz = p dx + q dy, we get

dz = 2
2

x z ay
x a
( )∋

∋
dx + a dy or dz ady

z ay
xdx

x a
∋
∋

/
∋

2
2 .

Integrating, log (z – ay) = log (x2 – a) + log b
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3.18 Non-Linear Partial Differential Equations of Order One

or z – ay = b(x2 – a) or z = ay + b(x2 – a), ...(2)
which is the complete integral, a and b being arbitrary constants.

Differentiating (2) partially with respect to a and b, we get
0 = y – b and  0 = x2 – a. ...(3)

Solving (3) for a and b, a = x2 and b = y. ...(4)
Substituting the values of a and b given by (4) in (2), we get z = x2y, which is the required

singular integral.
Ex. 13.  Find a complete integrals of the following partial differential equations:

(i) q = px + p2. [Sagar 2003; Meerut 1994]
(ii) q = – px + p2.

Sol. (i)  Here given equation is f(x, y, z, p ,q) ( q – px – p2 = 0. ... (1)

Charpit’s auxiliary equations are        
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or            
dp

p
dq

∋
/

0 = dz
p x p q∋ ∋ ∋ ∋( )2 =

dx
x p

dy
∋ ∋ ∋

/
∋( )2 1 , by (1)

The 2nd fraction gives dq = 0 so that q = a.

Putting q = a in (1) gives  p2 + px – a = 0 so that     p = 2 1/ 2(1/ 2) ( 4 )x x a9 :5 ∋ ; #< =
Putting these values of p and q in  dz = pdx + qdy, we get

dz = – (x/2) × dx 2 1/ 2(1/ 2) ( 4 )x a; 5 # dx + a dy..
Integrating, the required complete integral is

z = –
2

2 1/ 2 2 1/ 21 ( 4 ) 2 log{ ( 4 ) }
4 2 2
x x x a a x x a9 :; # # # #> ?< =

 + ay + b,

Part (ii).  Proceed like part (i) yourself.  Complete integral is

z =
2

2 1/ 2 2 1/ 21 ( 4 ) 2 log{ ( 4 ) }
4 2 2
x x x a a x x a9 :; # # # #> ?< =

 + ay + b.

Ex. 14.  Find a complete integral of pxy + pq + qy = yz.         [Delhi B.A. (Prog) H 2010]
[Garhwal 2001; Rohilkhand 1999; Meerut 2001, 02; Kanpur 2005]

Sol. Given f(x, y, z, p, q) ( pxy + pq + qy – yz = 0. ...(1)

Charpit’s auxiliary equation are
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp dq
px q qy0

/
# #( )

=
dz

p xy q q p y∋ # ∋ #b g ( )
= dx

xy q
dy
p y∋ #

/
∋ #( ) ( )

, by (1)

The first fraction gives dp = 0 so that p = a.
Putting p = a in (1) gives axy + aq + qy = yz so that q = y(z – ax)/(a + y).
Putting these values of p and q in dz = p dx + q dy, we get

dz = adx + 
y z ax

a y
dy

( )∋
#

       or         dz adx
z ax

y dy
a y

∋
∋

/
#

= 1∋
#

F
HG

I
KJ

a
a y dy.

Integrating, log (z – ax) = y – a log (a + y) + log b, a, b, being arbitrary constants.
or log (z – ax) + log (a + y)a – log b = y  or (z – ax) (y + a)a = bey
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Non-Linear Partial Differential Equations of Order One 3.19

Ex. 15.  Find a complete integral p2 + q2 – 2px – 2qy + 1 = 0.
[Patna 2003; Meerut 99, 2003;  Delhi Maths Hons 91; Ravishanker 2010]

Sol. Given f(x, y, z, p, q) ( p2 + q2 – 2px – 2qy + 1 = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or
dp

p
dq

q∋
/

∋2 2 = dz
p p x q q y∋ ∋ ∋ ∋2 2 2 2b g ( ) = dx

p y
dy
q y∋ ∋

/
∋ ∋( ) ( )2 2 2 2 , by (1)

The first two fractions give (1/p)dp = (1/q)dq so that p = aq.
Putting p = aq in (1), a2q2 + q2 – 2aqx – 2qy + 1 = 0  or (a2 + 1)q2 – 2(ax – y)q + 1 = 0.

2 q =
2 4 4 1

2 1

2 2

2
( ) { ( ) ( )}

( )
ax y ax y a

a
# ; # ∋ #

#
,  p = aq  = a 

2 4 4 1
2 1

2 2

2
( ) { ( ) ( )}

( )
ax y ax y a

a
# ; # ∋ #

#
.

Putting these values of p and q in  dz = p dx + y dy, we get

dz  =  
( ) {( ) ( )}

( )
ax y ax y a

a
# ; # ∋ #

#

2 2

2
1

1
(adx + dy). ...(2)

Put ax + y = v  so that  a dx + dy = dv. Then (2) gives

(a2 + 1)dz = [v ± { ( )}v2 2 1∋ #a ]dv.

Integrating, (a2 + 1) z = v2/2 ±[ (v/2) × { ( )}v2 2 1∋ #a

– (1/2) × (a2 + 1) log (v + { ( )}v2 2 1∋ #a )] + b

is the complete integral, where v = ax + b and a, b are arbitrary constants.
Ex. 16.  Find a complete integral of p2 + q2 – 2px – 2qy + 2xy = 0. [PCS (U.P.) 2001;
 Garhwal 1993; Delhi 1997;  Kanpur 1996; I.A.S. 1999; Meerut 2003; Rohitkhand 1998]
Sol. Given equation is f(x, y, z, p, q) ( p2 + q2 – 2px – 2qy + 2xy = 0. ...(1)

Charpit’s auxiliary equations are  dp
f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

= dz

p f
p q f

q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�

or dp
p y

dq
q x∋ #

/
∋ #2 2 2 2 = dx

x p
dy

y q2 2 2 2∋
/

∋
, by (1)

which gives dp dq
x y p q

#
# ∋ ∋2( ) =

dx dy
x y p q

#
# ∋ ∋2( )

or dp + dq = dx + dy i.e.,             dp – dx + dq – dy = 0.
Integrating, (p – x) + (q – y)  = a ...(2)
Re–writing (1), (p – x)2 + (q – y)2 = (x – y)2. ...(3)
Putting the value of (q – y) from (2) in (3), we get

(p – x)2 + [a – (p – x)]2 = (x – y)2           or 2(p – x)2 – 2a(p – x) + {a2 – (x – y)2} = 0.

6 p – x =
2 2 22 [4 4.2.{ ( ) }]

4
a a a x y; ∋ ∋ ∋

2 p = x + 2 21 [ {2( ) }]
2

a x y a; ∋ ∋ ,

6 (2) gives q = a + y – p + x or q = y + 2 2(1/ 2) [ {2( ) }]a x y a5 ∋ ∋� .
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3.20 Non-Linear Partial Differential Equations of Order One

Putting these value of p and q in dz = p dx + q dy, we get

dz = x dx + y dy + (a/2) × (dx + dy) ± ( / ) { ( ) }( )1 2 2 2 2x y a dx dy∋ ∋ ∋

or dz = x dx + y dy + a
2 (dx + dy) ± 

2 21 ( ) / 2.( )
2

x y a dx dy∋ ∋ ∋ .

Integrating, the desired complete integral is

2 2
2 2( ) 1 ( ) / 2

2 2 22
x y a x y x yz x y a# # ∋)/ # ; ∋ ∋+

−

2
2 2log ( ) ( ) / 2

4
a x y x y a

∗9 :∋ ∋ # ∋ ∋ ,,> ?< = .
Ex. 17.  Find a complete integral of p2x + q2y = z.  [Gujarat 2005; K.U. Kurukshetra
2001; Meerut 2008; Agra 2004; I.A.S. 2004, 06 ; Delhi Maths Hons. 1997; Punjab 2001]
Sol. Given equation is            f (x, y, z, p, q) = p2x + q2y – z = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / ∋
# # ∋ ∋ ∋ ∋

or         
dp

p p
dq

q q∋ #
/

∋ #2 2 = dz
p x q y∋ #2 2 2( )

= dx
px

dy
qy∋

/
∋2 2 , by (1) ...(2)

Now, each fraction in (2) =
2

2 2
2

2 ( ) ( 2 )
px dp p dx

px p p p px
#

∋ # # ∋
=

2

2 2
2

2 ( ) ( 2 )
qy dq q dy

qy q q q qy
#

∋ # # ∋

or d p x
p x

d q y
qy

( ) ( )2

2

2

2 2∋
/

∋
i.e.,    d p x

p x
d q y

q y
( ) ( )2

2

2

2/ .

Integrating it, log (p2x)= log (q2y) +log a  or          p2x = q2ya.   ...(3)
Form (1) and (3), aq2y + q2y = z    or q = [z/(1 + a)]1/2.   ...(4)

Form (3) and (4), p = q ya
x

za
a x

FH IK /
#
RST

UVW
1 2 1 2

1( ) .

Putting the above values of p and q in dz = p dx + q dy, we get

dz =
za

a x
dx z

a y
dy

( ) ( )1 1

1 2 1 2

#
RST

UVW #
#
RST

UVW or (1 + a)1/2z–1/2 dz = ax dx y dy∋ ∋#1 2 1 2/ / .

Integrating, (1 + a)1/2 z = a x y b# # , a, b being arbitrary constants.
Ex. 18.  Find a complete integral of 2z + p2 + qy + 2y2 = 0.    [I.F.S. 2005; Meerut 2000;

 Rohilkhand 1993; Bilaspur 2004, M.D.U Rohtak 2005; Rawa 1999; Ranchi 2010]
Sol. Given equation is f(x, y, z, p, q) = 2z + p2 + qy2 + 2y2 = 0. ... (1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dp dq
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or
0 2 ( 4 ) 2

dp dq
p q y q

/
# # #

=
– (2 ) –

dz
p p qy5

= dx
p

dy
y∋

/
∋2 , by (1)

Taking the first and fourth fractions, dp = – dx.
Integrating, p = a – x or        p = –(x – a).  ...(2)
Using (2), (1) becomes 2z + (a – x)2 + qy + 2y2 = 0
6 q = –[2z + (x – a)2 + 2y2]/y. ...(3)
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Non-Linear Partial Differential Equations of Order One 3.21

6 dz = p dx + q dy = – (x – a) dx – [{2z + (x – a)2 + 2y2}/y]dy,  by (2) and (3)
Multiplying both sides by 2y2 and re–writing, we have

2y2dz = –2 (x – a)y2 dx – 4zydy – 2y(x – a)2dy – 4y3dy
or       2(y2dz + 2zy dy) + [2(x – a)2y2dx + 2y(x – a)2dy] + 4y3dy = 0
or 2d(y2z) + d[y2(x – a)2] + 4y3dy = 0.

Integrating, 2y2z + y2(x – a)2 + y4 = b, a, b being arbitrary constants
Ex. 19(a).  Find a complete integral of 2(z + px + qy) = yp2.

[Delhi B.A. (Prog.) II 2007, 10; CDLU 2004; Delhi Maths Hons. 1998, 2008]
Sol. Given equation is f(x, y, z, p, q) = 2(z + px + qy) – yp2 = 0 ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dp dq
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
p p

dq
q p q2 2 2 22#

/
∋ #

=
(2 2 ) 2

dz
p x yp q y∋ ∋ ∋ 5

= dx
x yp

dy
y∋ ∋

/
∋( )2 2 2

, by (1)

Taking the first and the last fractions, dp
p

dy
y4 2

/
∋

or dp
p

dy
y

# 2 = 0.

Integrating, log p + 2 log y = log a or py2 = a.     ...(2)

Solving (1) and (2) for p and q,           p =
2

a
y

          and                q = – z
y

ax
y

a
y

∋ #3

2

42
.

6 dz = p dx + q dy =
a
y

dx z
y

ax
y

a
y

dy2 3

2

42
# ∋ ∋ #
L
NM

O
QP

Multiplying both sides by y and re–arranging, we get

(ydz + zdy) – a
2

2 32
y dx x dy a

y y
) ∗∋

∋+ ,− .
dy = 0  or d(yz) – ad

x
y

a y
F
HG
I
KJ ∋

∋
2

3

2 dy = 0.

Integrating, yz – a(x/y) + (a2/4y2) = b, a, b being arbitrary constants. ... (3)
Ex. 19(b).  Find the complete integral, general integral and the singular integral of 2(z + xp

+ yq) = yp2          [Delhi B.Sc. (H) 1998, 2008]
Sol. Proceed as in solved Ex. 19(a) to get the complete integral (3).

General integral. Replacing b by ( )a!  in (3), we get
yz – a(x/y) + (a2/4y2) = !(a) ... (4)

Differentiating (4) partially w.r.t. ‘a’, –(x/y) + (a/2y2) = !%(a) ... (5)
Then the general integral is obtained by eliminating a from (4) and (5).
Singular integral. Differentiating (3) partially w.r.t. ‘a’ and ‘b’ by turn, we get
–(x/y) + (a/2y2) = 0 ... (6) 0 = 1 ... (7)
Relation (7) is absurd and hence there is no singular solution of the given equation.
Ex. 20.  Find a complete integral of z2 = pqxy.           [Delhi B.A. (Prog) II 2010]

[Delhi Maths (H) 2004 Jabalpur 2004; Meerut 2006; Lucknow 2010]
Sol. The given equation is f(x, y, z, p, q) = z2 – pqxy = 0. ...(1)

Charpits’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋
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3.22 Non-Linear Partial Differential Equations of Order One

or dp
pqy pz

dq
pqx qz∋ #

/
∋ #2 2

= dz
p qxy q pxy∋ ∋ ∋ ∋( ) ( )

= dx
qxy

dy
pxy

/ , by (1) ...(2)

Each fraction of (2)  =
( 2 )

x dp p dx
x pqy pz pqxy

#
∋ # #

=
( 2 )

y dq q dy
y pqx qz pqxy

#
∋ # #

or xdp pdx
pxz

ydq qdy
qyz

# / #
2 2

   or
d xp

xp
d yq

yq
( ) ( )/ .

Integrating, log (xp) = log (yq) + log a2        or xp = a2yq. ...(3)
Solving (1) and (2) for p and q,    p = (az)/x and   q = z/(ay).
6 dz = p dx + q dy = (az/x) dx + (z/ay) dy or (1/z) dz = (a/x) dx + (1/ay) dy.
Integrating, log z = a log x + (1/a) log y + log b or   z = xay1/a b.
Ex. 21.  Using Charpit’s method, find three complete integrals of pq = px + qy.

(Kanpur 2004; Meerut 2002; Rajasthan 2001)
Sol. Here given equation is f(x, y, z, p, q) = pq – px – qy = 0. ...(1)

Charpit’s auxiliary equations are       
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
p

dq
q∋

/
∋

= dz
p q x p p y∋ ∋ ∋ ∋( ) ( )

= dx
q x

dy
p y∋ ∋

/
∋ ∋( ) ( )

, by (1) ...(2)

To find first complete integral.  Taking the first two fractions of (2), we get
(1/p)dp = (1/q)dq so that log p = log q + log a or     p = aq. ...(3)
Using (3), (1)2 aq2 = q(ax + y) 2   q = (ax + y)/a. ...(4)
Hence, from (3), we have p = ax + y. ...(5)
6 dz = p dx + q dy = (ax + y)dx + [(ax + y)/a]dy = (1/a)(ax + y)(a dx + y).
Putting ax + y = t so that adx + dy = dt,  we get
dz = (1/a)× t dt  so that z = (1/2a) × t2 + b   or   z = (1/2a) × (ax + y)2 + b,  as t = ax + y.

To find second complete integral. Taking the second and the fourth ratios in (2), we get
dx/(q – x) = dq/q or q dx + x dq = q dq.
Integrating, qx = q2/2 + a/2                  or                      q2 – 2xq + a = 0.

6 q = [2x ± 2 1/ 22( )x a∋ ]/2 so that q = x + 2 1/ 2( )x a∋ . ...(6)

Using (6),  (1) 2 p[x + 2 1/ 2( )x a∋ ] – px – y[x + 2 1/ 2( )x a∋ ] = 0

so that p = 3 42 1/ 21 ( ) .x x a y# ∋ ...(7)

6 dz = p dx + q dy = 3 42 1/ 21 ( )x x a# ∋  ydx + [x + 2 1/ 2( )x a∋ ]dy

or dz = (y dx + x dy) + 2 1/ 2
2 1/ 2 ( )

( )
xy dy x a dy

x a
9 :# ∋> ?∋< =

    or    dz = d(xy) + d[y 2 1/ 2( )x a∋ ].

Integraing, z = xy + y 2 1/ 2( )x a∋  + b, a, b being arbitrary constants.
To find third complete integral.  Taking the first and the fifth ratios of (2) and proceeding

as above third complete integral is z = xy + x 2 1/ 2( )y a∋  + b.

Ex. 22.  Find complete integral of xp + 3yq = 2(z – x2q2). [Delhi B.Sc. (Prog) II 2009;
Delhi B.Sc. (Hons) II 2010; ]

Sol. Given equation is f(x, y, z, p, q) = xp + 3yq – 2z + 2x2q2 = 0.    ...(1)
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Non-Linear Partial Differential Equations of Order One 3.23

Charpit’s auxiliary equations are   
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
p xq

dq
q∋ #

/
4 2 = 2(3 4 )

dz
p x q y x q∋ ∋ #

= dx
x

dy
y x q∋

/
∋ ∋3 4 2 , by (1) ...(2)

(2)   2    dq
q

dx
x

/
∋

     2     log q = log a – log x   2    qx = a    2    q =
a
x . ...(3)

Using (3), (1)  2 xp + 3y(a/x) – 2z + 2x2(a2/x2) = 0   2 p =
2 32

2
( )z a

x
ay
x

∋ ∋ .   ...(4)

6 dz = p dx + q dy =
2 32

2
( )z a

x
ay
x

∋ ∋
RST

UVWdx + a
x dy

or    x2dz = 2x(z – a2)dx – 3ay dx + ax dy         or x2dz – 2x(z – a2) dx = –3ay dx + ax dy

or
x dz x z a dx

x

2 2

4
2∋ ∋( )

= 4 3
3ay dx a dy

x x
∋ #    or      

2

2
z ad

x
) ∗∋
+ ,+ ,
− .

= d ay
x3
F
H
I
K

Integrating, (z – a2)/x2 = (ay)/x3 + b or     z = a(a + y/x) + bx2.
Ex. 23.  Find complete integrals of the following equations :
(i) (p2 + q2)n (qx – py) = 1.
(ii) qx + py = (p2 – q2)n.
Sol. (i) Given equation is f(x, y, z, p, q) = (p2 + q2)n (qx – py) – 1 = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
q p q

dq
p p qn n( ) ( )2 2 2 2#

/
∋ #

  = ... or     dp
q

dq
p

/
∋

or pdp + qdq = 0.

Integrating, p2 + q2 = constant = (1/a2), say ...(2)
Using (2),  (1) 2 qx – py = a2n or qx = py + a2n. ...(3)
Using (3),    (2) 2    p2 + (p2y2 + a4n + 2a2nyp)/x2 = 1/a2

or p2(x2 + y2) + 2a2nyp + {a4n – (x2/a2)} = 0 so that

p =
∋ # ∋ # ∋

#

ya a y x y a x a

x y

n n n2 4 2 2 2 4 2 2

2 2

( ) /d i{ }
     =

∋ # # ∋

#

ya x x y a a

x y

n n2 2 2 2 4

2 2

( )o t
 ...(4)

6 (3) 2 q =
xa y x y a a

x y

n n2 2 2 2 4

2 2

# # ∋

#

( )o t
. ...(5)

Substituting these values in dz = p dx + q dy, we have

dz = a2n
2 2

4
2 2 2 2 2

nx dy y dx x dx y dy x y a
x y x y a

≅ Α) ∗) ∗∋ # #Β Β# ∋Χ ∆+ ,+ ,# #− . − .Β ΒΕ Φ
.

Integrating,        z + b = a2n tan–1 y
x u

ua a dunF
HG
I
KJ # ∋∋z12 1 2 4 1 2( ) / , where u = x2 + y2.
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3.24 Non-Linear Partial Differential Equations of Order One

Part (ii).  Proceed as in part (i).  If u = x2 + y2, then complete integral is

z + b = – 1
2

1
2

12 4 2a x y
x y u

a a u dun nlog ( )∋
#

∋ #z .

Ex. 24.  Find complete integral of p2 + q2 – 2pq tanh 2y = sech2 2y.
Sol. Given f(x, y, z, p, q) = p2 + q2 – 2pq tanh 2y – sech2 2y = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or 2 20 4 sech 2 4sech 2 tanh 2
dp dq

pq y y y
/

∋ #
= ····, by (1)

Then, first fraction 2 dp = 0    2 p = constant = a, say. ...(2)
Using (2), (1) 2 q2 – (2a tanh 2y)q + a2 – sech2 2y = 0

2 q = [2a tanh 2y ± 2 ( tanh sec )a y a y2 2 2 22 2∋ # h ]/2

2 q = a tanh 2y + ( )1 2∋ a  . sech 2y.. ...(3)

[Note that sech22y = 1 – tanh2 2y]
Using (2) and (3), dz = p dx + q dy reduces to

dz = a dx + {a tanh 2y + ( )1 2∋ a sech 2y}dy

Integrating, z + b  =  ax + a
2

 log cosh 2y + ( )1 22
2 2∋

# ∋za dy
e ey y

or z + b = ax + a
2  log cosh 2y + ( )

( )
1 2

1
2

2

2 2∋
#za e dy

e

y

y

or z + b = ax + a
2  log cosh 2y + ( ) tan ( )1 2 1 2∋ ∋a e y ,

�  on putting e2y = t    and    2e2y dy = dt,   
2

1 1 2
2 2 2

2 tan tan
1 ( ) 1

y
y

y
e dy dt t e

e t
∋ ∋ :

/ / / ?
# # =

0 0
Ex. 25.  Find complete integral of the equation q = {(1 + p2)/(1 + y2)}x + yp(z – px)2.
Sol. Let f(x, y, z, p, q) = {(1 + p2)/(1 + y2)}x + yp(z – px2) – q = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or     
dp

p y yp z px yp z px
dy

{( ) ( )} ( ) ( )1 1 2 2 12 2 2 2# # ∋ ∋ # ∋
/ = ........., by (1)

or
dp

p
dy

y1 12 2#
/

#
so that tan–1 p – tan–1 y = constant = tan–1 a

2 (p – y)/(1 + py) = a 2 p = (y + a)/(1 – ay).    ...(2)

Using (2), (1)  2  q =
1
1 1

2

2 3
#
∋

# #
∋

a
ay

x y y a
ay( )

( )
( )

{z (1– ay) – x(y + a)}2. ...(3)

Using (2) and (3),  dz = p dx + q dy reduces to

dz = y a
ay

dx a
ay

x y y a
ay

z ay x y a dy#
∋

# #
∋

# #
∋

∋ ∋ #
L
NM

O
QP1

1
1 1

1
2

2 3
2

( )
( )

( )
{ ( ) ( )}

!
"
#
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Non-Linear Partial Differential Equations of Order One 3.25

or   dz = d y a
ay

x y y a
ay

z ay x y a dy#
∋
F
HG

I
KJ #

#
∋

∋ ∋ #
1 1

13
2( )

( )
{ ( ) ( )}   or    dz = du + y y a

ay
( )#
∋1

(z – u)2dy,  ...(4)

where u = x(y + a)/(1 – ay). ...(5)

(4)   2 dz du
z u

∋
∋( )2 = y y a

ay
( )#
∋1

dy. or d z u
z u
( )

( )
∋

∋ 2 = ∋ ∋ # #
#

∋

RS|T|
UV|W|

1 1 1
1 1

12

2

2a
ay

a
a ay

( ) dy.

Integrating,  b – 1
z u∋

= – y – 1
2

1
2

2 2

3a
y ay a

a
#
F
HG

I
KJ ∋

#  log (1 – ay), where u is given by (5).

Ex. 26.  Find complete integral of xp – yq = xq f (z – px – qy).
Sol. Let F (x, y, z, p, q) = xp – yq – xq f (z – px – qy) = 0. ...(2)
Charpit’s auxiliary equations are

   / ( / ) / ( / ) ( / ) ( / ) ( / ) ( / )
dp dq dz dx dy

F x p F z F y q F z p F p q F q F p F q
/ / / /

� � # � � � � # � � ∋ � � ∋ � � ∋ � � ∋ � �

or
2 2

dp dq
p qf xqpf pqxf q xq f xq f

/
∋ # ∋% % ∋ # ∋% %

= ·····, by (2) ...(3)

Each ratio of (3) = x dp y dq
xp yq qxf

x dp y dq#
∋ ∋

/ #
0 , by (2)

2 x dp + y dq = 0 2    x dp + y dq + p dx + q dy = p dx + q dy
2 dz – d(xp) – d(yq) = 0,  as  dz = pdx + qdy
Integrating,      z – xp – yq = constant = a, say ...(4)
6 xp + yq = z – a. ...(5)
Using (4), (1) becomes x p – y q = x q f(a). ...(6)
Subtracting (6) from (5), 2yq = z – a – xqf(a)    2        q = (z – a)/{2y + xf(a)} ...(7)

Using (7), (5) 2 p =
( ){ ( )}

{ ( )}
z a y xf a
x y xf a
∋ #

#2 . ...(8)

Using (7) and (8), dz = p dx + q dy reduces to

dz = (z – a) { ( )}
{ ( )} ( )
y xf a dx

x y xf a
dy

y xf a
#

#
#

#
L
NM

O
QP2 2

or 2dz
z a∋

= 2
2 2 ( ) 2 2 ( ) 2 ( )

{2 ( )} 2 ( )
y dx xf a dx x dy d xy xf a dx

x y xf a xy x f a
# # #

/
# #

.

Integrating,  2 log (z – a) = log {2xy + x2f (a)} + log b   or (z – a)2 = b {2xy + x2f (a)}.
Ex. 27.  Find a complete integral of px + qy = z(1 + pq)1/2

[Meerut 2001, 02; Kanpur 1995, I.A.S. 1992]
Sol. Given f(x, y, z, p, q) = px + qy – z(1 + pq)1/2 = 0. ...(1)

Charpit’s auxiliary equation are
x z y z p q p q

dp dq dz dx dy
f p f f q f pf q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or dp
p p pq

dq
q q pq∋ #

/
∋ #( ) ( )/ /1 11 2 1 2 = .........   so that dp

p
dq
q

/ , by (1)

2 log p = log a + log q 2 p = aq. ...(2)
Using (2),   (1) 2 q(ax + y) = z (1 + aq2)1/2  or  q2 [(ax + y)2 – az2] = z2.
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3.26 Non-Linear Partial Differential Equations of Order One

6 q = z
ax y az[( ) ] /# ∋2 2 1 2 and p = aq = az

ax y az[( ) ] /# ∋2 2 1 2 .

Substituting these values in dz = p dx + q dy, we have

dz =
2 2

( )

{( ) }

z a dx dy

ax y az

#

# ∋
  or dz

z =
2 2{( ) }

a dx dy

ax y az

#

# ∋
. ... (3)

Let ax + y = a u so that a dx + dy = a du.

6 (3) 2
dz
z = adu

au az( )2 2∋
or du

dz
u z

z
u
z/

∋
/ FH IK ∋
RST

UVW
( )2 2 2

1 , ... (4)

which is linear homogeneus equation. To solve it, we put
u
z = v or u = vz   so that            du

dz
= v + z d

dz
v .

6   (4) yields  v + z d
dz
v

= 2 1/ 2( 1)∋v .            or dz
z = 2 1/ 2( 1)

d
∋ ∋
v

v v

or (1/z)dz = – 2 1/ 2( 1) d9 :∋ #< =v v v , on rationalization.

Integrating, log z = –
2

2 1/ 2 2 1/ 21( 1) log{ ( 1)
2 2 2

b9 :∋ ∋ # ∋ ∋ #> ?< =

v vv v v , where, u ax y
z z a

#
/ /v

Ex. 28.  Find complete integral of (x2 – y2) pq – xy(p2 – q2) = 1.
Sol. Let f(x, y, z, p, q) = (x2 – y2) pq – xy(p2 – q2) – 1 = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

or   dp
pqx z p q

dq
pqy x p q2 22 2 2 2∋ ∋

/
∋ ∋ ∋( ) ( )

= dx
x y y pxy∋ ∋ #( )2 2 2

=
dy

x y p pxy∋ ∋ ∋( )2 2 2
, by (1)

Using x, y, p, q as multipliers, each fraction =
0

x dp y dq p dx q dy# # #
=

d xp d yq( ) ( )#
0

2         d(xp + qy) = 0     2   xp + yq = a   2      p = (a – qy)/x. ...(2)

Using (2), (1) 2  (x2 – y2) a qx
x

q xy a qy
x

q∋FH IK ∋ ∋FH IK ∋
L
NM

O
QP

2
2 – 1 = 0

or     a qy
x

∋ { (x2 – y2)q – (a – qy)y} + xyq2 – 1 = 0  or  {(a – qy)/x} (x2q – ay) + xyq2 – 1 = 0

or      (a – qy) (x2q – ay) + x2yq2 – x = 0           or aq(x2 + y2) = a2y + x

6 q =
a y x

a x y

2

2 2
#
#( )

and p = 1 2

2 2

2

2 2x
a a y x y

a x y
a x y

a x y
∋ #

#
L
NM

O
QP/

∋
#

( )
( ) ( )

.

Substituting these values in dz = p dx + q dy, we have

dz =
2 2

2 2 2 2 2 2
( ) ( )

( ) ( )
a x y dx a y x dy x dx y dy x dy y dxa

a x y x y a x y
∋ # # # ∋

/ #
# # #

.

Integrating, z = (a/2) × log (x2 + y2) + (1/a) × tan–1 (y/x) + b.
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Ex. 29.  Find a complete integral of 2(pq + yp + qx) + x2 + y2 = 0. [Kanpur 1993]
Sol. Given equation is f(x, y, z, p, q) = 2(pq + yp + qx) + x2 + y2 = 0. ...(1)

Charpit’s auxiliary equations are    dp
f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

= dz

p f
p q f

q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�

or dp
q x

dq
p y2 2 2 2#

/
#

= dz
p q y q p x∋ # ∋ #( ) ( )2 2 2 2

= dx
q y

dy
p x∋ #

/
∋ #( ) ( )2 2 2 2

, by (1)

Each of these above fractions = dp dq dx dy
q x p y q y p x

# # #
# # # ∋ # ∋ #( ) ( ) ( ) ( )2 2 2 2 2 2 2 2

= (dp + dq + dx + dy)/0
This 2 dp + dq + dx + dy = 0 so that       (p + x) + (q + y) = a.   ...(2)
Re–writing (1),  2(p + x) (q + y) + (x – y)2 = 0   or     (p + x) (q + y) = – (x – y)2/2.  ...(3)

Now, (p + x) – (q + y) = {( ) ( )} ( )( )p x q y p x q y# # # ∋ # #2 2 4

6 (p + x) – (q + y) = a x y2 22# ∋( ) , using (2) and (3) ...(4)

Adding (2) and (4), 2(p + x) = a + a x y2 22# ∋( ) .

Substracting (4) from (2), 2(q + y) = a – a x y2 22# ∋( ) .

These give p = –x + a a x y
2

1
2

22 2# # ∋( ) , q = –y + a a x y
2

1
2

22 2∋ # ∋( )

Substituting the above values of p and q,  dz = p dx + q dy becomes

dz = –(x dx + y dy) + (a/2) × (dx + dy) + 2 2(1/ 2) 2( )a x y5 # ∋  (dx – dy)

or dz = – 1
2

d(x2 + y2) + a
2 d(x + y) + 2 1

2 2

2
25 # ∋a x y( )  d(x – y) ...(5)

Put x – y = t so that d(x – y) = dt.  Then (5) becomes

dz = –(1/2) × d(x2 + y2) + (a/2) × d(x + y) + (1 2 ) × a t2
2 2d i # dt.

6   
2 2

2 2
x y x yz a# #

/ ∋ # + 1
2 2

2
2 2t a td i #

L
NM

# # #
RST

UVW
O
QP

a
t a t

2
2

2
2

2 2d i d ilog  + b

Putting the value of t, the required complete integral is
2 2 ( )

2 2
x y a x yz # #

/ ∋ # # ∋ # ∋
L
N
MM

1
2 2 2

2
2( ) ( )x y a x y # ∋ # # ∋

R
S|
T|

U
V|
W|
O
Q
PP

a x y a x y
2 2

2

2 2
log ( )  + b.

Ex. 30. Solve / 5 # # ∋ ∋2 2(1/ 2) ( ) ( ) ( )z p q p x q y [I.A.S. 2002]

Sol. Given / 5 # # ∋ ∋2 2(1/ 2) ( ) ( )( )z p q p x q y

Re–writing (1),      / 5 # # ∋ ∋ # ∋ /2 2( , , , , ) (1/ 2) ( ) 0f x y z p q p q pq xq yp xy z  ... (2)

Charpit’s auxiliary equations are / / / /
# # ∋ ∋ ∋ ∋x z y z p q p q

dp dq dz dx dy

f p f f q f p f q f f f
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3.28 Non-Linear Partial Differential Equations of Order One

or
( ) ( )

dp dq dz

q z p p x q p p q y q p q x
/ /

∋ # ∋ ∋ # ∋ ∋ # ∋ ∋ # ∋ ( ) ( )

dx dy

p q y p q x
/ /

∋ # ∋ ∋ # ∋
Taking the first and the fourth fractions, we have
dp dx/ so that p x a/ # , a being an arbitratry constant. ... (3)
Taking the second and the fifth fractions, we have

dq = dy so that ,q y b b/ #  being an arbitrary constant ... (4)

Putting andp x a q y b/ # / #  in (1), the required solution is

/ 5 # # # #2 2(1/ 2) {( ) ( ) }z x a y b ab , a and b being arbitrary constants.

Ex. 31 Find a complete integral of z = pq. [Sagar 2004, Ravishankar 2003, Rewa 2003]

Sol. Here given equation is ( , , , , ) 0f x y z p q z pq/ ∋ / ... (1)

Charpit’s auxiliary equations are     / / / /
# # ∋ ∋ ∋ ∋x z y z p q p q

dp dq dz dx dy

f p f f q f p f q f f f

or
2

dp dq dz dx dy

p q pq q p
/ / / /

∋ ∋ ∋ ∋ ∋
, by (1) ... (2)

Taking the first and last fractions of (2), dp dy/

Integrating       p y a/ # , a being an arbitrary constant ... (3)
Similarly, taking the second and fourth fractions of (2), we get

dq = dx so that ,q x b b/ #  being an arbitrary constant. ... (4)
Putting values of p and q given by (3) and (4) in (1), we get

( )( )z x b x a/ # # ,  which is the required complete integral.

Ex. 32. Use Charpit’s method to find the complete integral of 2 22 { ( / ) 1} ( / )x z z y z z x� � # / � � .

[I.A.S. 1998]

Sol. Given 22 ( / ) 2 ( / ) 0x z z y x z z x� � # ∋ � � / ... (1)

Let /zdz dZ so that 2 2z Z/ ... (2)
Then (1) becomes 22 ( / ) 2 ( / ) 0x Z y x Z x� � # ∋ � � / or          # ∋ /22 2 0xQ x P

where / � �/P Z x and / � �/Q Z y ... (3)

Let     2( , , , , ) 2 2 0f x y Z P Q x Q x P/ # ∋ / ... (4)

Charpit’s auxiliary equations are / / / /
# # ∋ ∋ ∋ ∋x Z y Z P Q P Q

dP dQ dZ dx dy

f P f f Q f Pf Q f f f

giving 22 2

dP dQ

OQ
/

# = ..., by (4) so that dQ = 0.

Integrating, Q = a, a being an arbitrars constant ... (5)
Using Q = a, (4) gives    P = 2x (a2 + 1), Q = a ... (6)

6 / # / # #22 ( 1)dZ Pdx Qdy x a dx ady , by (5) and (6)

Integrating, 2 2( 1) / 2Z x a ay b/ # # # ,        or 2 2 2/ 2 ( 1) / 2z x a ay b/ # # # , using (2)
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or 2 2 22 ( 1) 2z x a ay b/ # # # , which is complete integral of (1)

Ex. 33. Solve by Charpit’s method the partial differential equation.
2 2 2( 1) 2 ( 1) 2 2 0p x x pqxy q y y pxz qyz z∋ # # ∋ ∋ ∋ # / . [I.A.S. 2000]

Sol. Let     / ∋ # # ∋ ∋ ∋ # /2 2 2( , , , , ) ( 1) 2 ( 1) 2 2 0f x y z p q p x x pqxy q y y pxz qyz z ...  (1)

Charpit’s auxiliary equations are / / / /
# # ∋ ∋ ∋ ∋x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

   ... (2)

From (1), / ∋ # ∋ / # ∋ ∋2 2(2 1) 2 2 , 2 (2 1) 2x yf p x pqy pz f pqx q y qz ,

/ ∋ ∋ # / ∋ # ∋2 2 2 , 2 ( 1) 2 2z pf px qy z f px x qxy xz ;          2 2 ( 1) 2qf pxy qy y yz/ # ∋ ∋

and so # / ∋ 2
x zf p f p , # / ∋ 2

y zf q f q . Then (2) becomes

2 2 {2 ( 1) 2 2 } {2 2 ( 1) 2 }
dp dq dz

p px x qxy xz q pxy qy y yzp q
/ /

∋ ∋ # ∋ ∋ # ∋ ∋∋ ∋

=
2 2(2 2 2 2 ) (2 2 2 2 )

dx dy

px px qxy xz pxy qy qy yz
/

∋ ∋ # ∋ ∋ # ∋ ∋
... (3)

               Each fraction of (3) =
(1/ ) (1/ ) (1/ ) (1/ )p dp q dq p dp q dq

p q p q

∋
/ /

∋ ∋ ∋ #
... (4)

Also, each fraction of (3) =
(1/ ) (1/ )

2 2 2 2 2 2 2 2

x dx y dy

px p qy z px qy q z

∋
∋ # ∋ # # # ∋ ∋

... (5)

6                  (4) and (5) 2
(1/ ) (1/ ) (1/ ) (1/ )

( ) 2( )

p dp q dq x dx y dy

p q p q

∋ ∋
/

∋ ∋ ∋

or 5 ∋ / ∋(1/ 2) {(1/ ) (1/ ) } (1/ ) (1/ )x dx y dy q dq p dp

Integrating, 5 ∋ / ∋ #(1/ 2) {log log } log log logx y q p a or 1/ 2( / ) /x y aq p/

or 1/ 2 1/ 2( ) /p ay q x/ , a being an arbitrary constant. ... (5)

Re–writing (1), 2 2 2( )px qy z p x q y# ∋ / #    or      2 2 1/ 2( )px qy z p x qy# ∋ / ; # ... (6)

Taking + ive sign in (7), 2 2 1/ 2( )px qy z p x q y# ∋ / # ... (7)

[The case of – ve sign in (7) can be discussed similarly]

Substituting the value of p given by (6) in (8),     1/ 2 1/ 2 2 2 2 1/ 2( )aqy x qy z a q y q y# ∋ / #

or    1/ 2 2 1/ 2 1/ 2{ ( ) (1 ) }q y a xy a y z# ∋ # /   so that   1/ 2 1/ 2 1/ 2 2 1/ 2/ { (1 ) }q z y y a x a/ # ∋ #       ... (9)

Then (6) gives 1/ 2 1/ 2 1/ 2 2 1/ 2/ { (1 ) }p az x y ax a/ # ∋ # ... (10)

Putting these values of p and q in / #dz pdx qdy , we get

    1/ 2 1/ 2 1/ 2 2 1/ 2 1/ 2 1/ 2 1/ 2 2 1/ 2{ (1 ) } { (1 ) }

az dx z dy
dz

x y ax a y y ax a
/ #

# ∋ # # ∋ #
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or
1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 2 1/ 2( ) { (1 ) }

dz ay dx x dy
z xy y ax a

#
/

# ∋ #

Integrating, 1/ 2 1/ 2 2 1/ 2log 2 log { (1 ) } logz y ax a b/ # ∋ # #

or 1/ 2 1/ 2 2 1/ 2 2{ (1 ) }z b y ax a/ # ∋ # , a and  b being an arbitrary constants.

Ex. 34. Find the complete integral of ( ) ( ) 1p q px qy# # / .
[Meerut 2007; Delhi Maths (H) 2007, Purvanchal 2007]

Sol. Let ( , , , , ) ( ) ( ) 1 0f x y z p q p q px qy/ # # ∋ / ... (1)

Charpit’s auxiliary equations / / / /
# # ∋ ∋ ∋ ∋x z y z p q p q

dp dq dz dx dy

f p f f q f p f q f f f

give
( ) ( )

dp dq

p p q q p q
/

# #
= ... so that     dp dq

p q
/ , using (1)

Integrating, p = aq, a being an arbitrary constant ... (2)

Putting p = aq in (2) gives ( ) ( ) 1 0aq q aqx qy# # ∋ /    or    q2 (1 + a) (ax + y) = 1  ... (3)

6  From (2) and (3), / # # / # #1/2 1/ 2 1/ 2 1/ 21/(1 ) ( ) , /(1 ) ( )q a ax y p a a ax y

Putting these values of p and q in / #dz pdx qdy , we get

#
/ # /

# # # # # #1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

( )

(1 ) ( ) (1 ) ( ) (1 ) ( )

a dx dy d ax y
dz

a ax y a ax y a ax y

Integrating, 1/ 2 1/ 2(1 ) 2( )z a ax y b# / # # , a, b being arbitrary constants.

Ex. 35. Find the complete integral of the following partial differential equations

(a) 5 2 2 24 6 2 0px q x x z∋ # ∋ / . [Delhi B.Sc. (H) 2002; Delhi B.A. (Proj) II 2011]

(b) 5 3 2 24 6 2 0px q x x z∋ # ∋ /

Sol. (a)  Let 5 2 2 2( , , , , ) 4 6 2 0f x y z p q px q x x z/ ∋ # ∋ / ... (1)

Charpit’s auxiliary equations are / / / /
# # ∋ ∋ ∋ ∋x z y y p q p q

dp dq dz dx dy

f p f f q f p f q f f f

or 4 2 2 2 5 2 25 8 12 6 6 8

dp dq dz

px q x xz px qx px q x
/ /

∋ # # ∋ # = 5 28

dx dy

x qx
/

∋ , by (1)

Taking the second and the last fractions, 4 3dq dy/

Integrating, 4 3 3q y a/ # or 3( ) / 4q y a/ # ... (2)

Using (2), (1) gives / 5 # ∋ #2 2 5{(9 / 4) ( ) 6 2}/p y a x z x ... (3)

Putting the above values of p and q in / #dz pdx qdy , we get

3 2 3 5(9 / 4 ) ( ) (6 / ) (2 / ) (3/ 4) ( )dz x y a dx z x dx x dx y a dy/ # ∋ # # #

or # / # # # #3 3 2 5(6 / ) {(9 / 4 ) ( ) (3/ 4) ( ) } (2 / )z x dx dz x y a dx y a dy x dx ... (4)
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The total differential equation (4) is always integrable. To solve (4), we first proceed to find
the integrating factor of the L.H.S. of (4). Comparing L.H.S. of (4) with M dx + N  dz (here on
L.H.S. we have variable x, z in place of usual variables x, y), we have M = 6z/x3 and N = 1.

3

1 6M N

N z x x

� �) ∗∋ /+ ,� �− .
 , which is function x alone and so  I.F. =

3 2(6 / ) 3/x dx xe e∋/0 .

Multiplying both sides of (4) by I.F. 23/ xe∋ , we get
2 23 3 / 3 /(6 / ) x xz x e dx e dz∋ ∋# ∋ ∋/ 5 # # #

2 23 2 3 / 3 /(3 / 8) {(6 / ) ( ) 2( ) }x xx y a e dx y a e dy + 
25 3/(2 / ) xx e dx∋

or ∋ ∋ ∋/ 5 # # 5
2 2 23/ 2 3/ 5 3/( ) (3 / 8) {( ) } (2 / )x x xd z e d y a e x e dx

Integrating, ∋ ∋ ∋/ 5 # # 0
2 2 23/ 2 3/ 2 3/ 3(3/ 8) ( ) 2 (1/ ) (1/ )x x xz e y a e x e x dx

or ∋ ∋/ 5 # ∋ 5 0
2 23 / 2 3 /(3 / 8) ( ) (1 / 9)x x uz e y a e u e du , putting 2( 3 / )x u∋ /  so that /3(6 / )x dx du

or ∋ ∋/ 5 # ∋ 5 ∋ #
2 23/ 2 3/(3 / 8) ( ) (1/ 9) ( )x x u uz e y a e ue e b

or ∋ ∋ ∋ ∋/ 5 # ∋ 5 ∋ # 5 #
2 2 2 23/ 2 3/ 2 3/ 3/(3 / 8) ( ) (1/ 9) ( 3 / ) (1/ 9)x x x xz e y a e x e e b

or / 5 # # # #
22 2 3/(3/ 8) ( ) (1/ 3 ) (1/ 9) xz y a x be , a, b being arbitrary constants.

(b) Proceed exacts as in part (a) Ans. / 5 # # # #
23/ 2 2 3/(2 / 3) ( ) (1/ 3 ) (1/ 9) xz y a x b e

Ex. 36. Find the complete integral of 2 2( ) ( ) 1p y q x# # # /

Sol. Let 2 2( , , , , ) ( ) ( ) 1 0f x y z p q p y q x/ # # # ∋ / ... (1)

Charpit’s auxiliary equations are / / / /
# # ∋ ∋ ∋ ∋x z y z p q p q

dp dq dz dx dy

f p f f q f pf q f f f

or 2 22( ) 2( ) 2( ) 2( )2( )

dp dq dz dx dy

q x p y p y q xp q py qx
/ / / /

# # ∋ # ∋ #∋ # # # , by (1)

Taking the first and the last fractions, 0dp dy# / so that p + y = a ... (2)

Using (2), (1) gives 2 2( ) 1 0a q x# # ∋ / or          2 1/ 2(1 )q x a# / ∋    ... (3)

Using (2) and (3) in / #dz pdx qdy  , we get

/ ∋ # ∋ ∋ / ∋ ∋ ∋ #2 1/2 2 1/ 2( ) {(1 ) } (1 ) ( )dz a y dx a x dy adx a dy ydx xdy

Integrating, 2 1/ 2(1 )z ax a y xy b/ ∋ ∋ ∋ # , a, b being arbitrary constants.

Ex. 37. Find the complete integral of 2 (y + zq) = q(xp + yq) [Nagpur 2003, 06;
 Delhi B.Sc. (Prog) II 2011; Delhi B.Sc. (Hons) 2011]

Sol. Let f(x, y, z, p, q) = 2y + 2zq – xpq – yq2 = 0 ... (1)

Charpit’s auxiliary equations are  
x z y z x y p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

  ... (2)
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2 22 2 2 2 2 22 2
dp dq dz dx dy

pq pq pqx qy qz qx xp yq zq q
/ / / /

∋ # # ∋ # ∋∋ # , by (1)

Taking the first and fourth fractions, (1/pq)dp = (1/qx)dx or (1/p)dp = (1/x)dx
Integrating, log p = log a + log x    or p = ax, ... (3)

where a is an arbitrary constant. Substituting the value of p given by (3) in (1), we have
2y + 2zq – ax2q – yq2 = 0            or  yq2 + q(ax2 – 2z) – 2y = 0.

2 2 2 2 2 1/ 2[ ( 2 ) {( 2 ) 8 } ]/(2 )q ax z ax z y y/ ∋ ∋ ; ∋ # ... (4)

Substituting the values of p and q given by (3) and (4) in dz = p dx + q dy, we obtain

         2 2 2 2 1/ 2(1/ 2 ) [2 {(2 ) 8 } ]dz axdx y z ax z ax y dy/ # 5 ∋ ; ∋ #

or 2 2 2 2 1/ 2
2 2

(2 ) {(2 ) 8 }
dz ax dx dy

yz ax z ax y
∋

/
∋ ; ∋ # ... (5)

Putting 2z – ax2 = u and 2dz – 2 ax dx = du, (5) yields

2 2 1/ 2( 8 )
du dy

yu u y
/

; #
     or

1/ 22

8du u u
dy y y

≅ Α) ∗Β Β/ ; #Χ ∆+ ,
− .Β ΒΕ Φ

, ... (6)

which is linear homogeneous differential equation. To solve it, we put u/y = v, i.e., u = yv so that
du/dy = v + y(dv/dy) and so (6) reduces to

2 1/ 2( 8)dvv y v v
dy

# / ; #          or 2 1/ 2 ,
( 8)

dv dy
yv

/
#

taking positive sign. Integrating it, we have
2 1/ 2log{ ( 8) } log logv v y b# # / #          or 2 1/ 2( 8)v v by# # /

or     3 41/ 22/ ( / ) 8u y u y by# # /             or 2 2 1/ 2 2( 8 )u u y by# # /

or 2 2 2 2 1/ 2 22 {(2 ) 8 } ,z ax z ax y by∋ # ∋ # /  as u = 2z – ax2; a, b being arbitrary constants

EXERCISE 3(B)
Using Charpit’s method, find a complete integral of the following equations :

1.  z = px + qy + pq. [Mysore 2004] Ans. z = ax + by + ab
2. pq = xz. Ans. z = (a + x2/2) (b + y)
3. p2 + px + q = z. Ans. z = ax + a2 + bey

4. (p + q) (z – px – qy) = 1. Ans. (a + b) (z – ax – by) = 1
5.  px + qy + pq = 0 Ans. az = – (1/2) × (y + ax)2 + b
6.  q = px + q2 Ans. z = (a – a2) log x + ay + b
7.  p – 3x2 = q2 – y Ans. z = x3 – (1/3) × (a – x)3 + ay – xy + b
8.  x2p2 + y2q2 = 4 Ans. z = a log x + (4 – a2)1/2 log y + b
9.  xpq + yq2 = 1 Ans. (z + b)2 = 4(ax + b)

10.  p + q = 3pq Ans. az = b – (1/2) × (y + ax)2

11.  pq + x (2y + 1)p + (y2 + y)q – (2y + 1)z = 0          Ans. z = ax + b(a + y + y2)
12.  z2(p2 + q2) = x2 + e2y.

Ans.
22 2

1 2 1( )
sinh ( ) tan

2 2 2

y
yx x az a x e ae a a b

aa
∋ ∋ ) ∗# ∋

/ # # ∋ ∋ #+ ,+ ,
− .
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13.  p2 – y2q = x2 – y2 [Madurai Kamraj 2008]

Ans.
2

1
2

( )
sinh log

2 2 2
x x b b x bz y c

b y
∋#

/ # ∋ # #

14. p2q (x2 + y2) = p2 + q Ans. 2 1log[ ( )] log
2

y az x x a b
a y a

∋
/ # # # #

#

15. yp $ 2xy + log q.   [Lucknow 2010]       [Ans. 2( 2 ) / 4 (1/ ) ayz a x a e b/ # # 5 # ]
3.9. Special methods of solutions applicable to certain standard forms:

We now consider equations in which p and q occur other than in the first degree, that is
non–linear equations.  We have already discussed the general method (i.e., Charpit’s method —
see Art. 3.7).  We now discuss four standard forms to which many equations can be reduced, and
for which a complete integral can be obtained by inspection or by other shorter methods.
3.10. Standard Form I.  Only p and q present. [Nagpur 2002; Bhopal 2010]

Under this standard form, we consider equations of the form f(p, q) = 0. ...(1)

Charpit’s auxiliary equations are
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

/ / / /
# # ∋ ∋ ∋ ∋

giving dp dq
0 0

/ , by (1)

Taking the first ratio, dp = 0 so that     p = constant = a, say  ...(2)
Substituting in (1), we get    f(a, q) = 0,      giving q = constant = b, say,  ... (3)

where b is such that f(a, b) = 0. ...(4)
Then, dz = p dx + q dy = adx + bdy, using (2) and (3).
Integrating, z = ax + by + c, ...(5)

where c is an arbitrary constant.  (5) together with (4) give the required solution.
Now solving (4) for b, suppose we obtain b = F(a), say.
Putting this value of b in (5), the complete integral of (1) is

z = ax + yF(a) + c, ...(6)
which contains two arbitrary constants a and c which are equal to the number of independent
variables, namely x and y.

The singular integral of (1) is obtained by eliminating a and c between the complete integral
(6) and the equations obtained by differentiating (6) partially w.r.t. a and c ; i.e., between

z = ax + yF(a) + c, 0 = x + yF%(a) and 0 = 1. ...(7)
Since the last equation in (7) is meaningless, we conclude that the equations of standard form

I have no singular solution.
In order to find the general integral of (1), we first take c = !(a) in (6), ! being an arbitrary

function and obtain z = ax + yF(a) + !(a).   ...(8)
Now, we differentiate (8) partially with respect to a and get

0 = x + yF%(a) + !%(a). ....(9)
Eliminating a between (8) and (9), we get the general solution of (1).
Remark.  Sometimes change of variables can be employed to transform a given equation to

standard form I.

2( 2 ) / 4 (1/ ) ayz a x a e b/ # # 5 #
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3.11. SOLVED EXAMPLES BASED ON ART. 3.10
Ex. 1. (a) Solve pq = k, where k is a constant. [M.S. Univ. T.N. 2007; Meerut 1995]
(b) Solve pq = 1 by standard from I [Bhopal 2010]
Sol. Given that         pq = k. ...(1)
Since (1) is of the form f(p, q) = 0, its solution is                     z = ax + by + c,       ...(2)

where ab = k or b = k/a, on putting a for p and b for q in (1).
6 From (2), the complete integral is                    z = ax + (k/a)y + c, ...(3)

which contains two arbitrary constants a and c.
For singular solution, differentiating (3) partially with respect to a and c, we get

0 = x – (k/a2)y  and 0 = 1. But 0 = 1 is absurd. Hence there is no singular solution of (1).
To find the general solution, put c = !(a) in (3).  Then, we get

z = ax + (k/a)y + !(a). ...(4)
Differentiating (4) partially with respect to ‘a’, we get        0 = x – (k/a2)y + !%(a). ...(5)
Eliminating a from (4) and (5), we get the required general solution.
(b) Do like part (a) taking k = 1
Ex. 2.  Solve (a) p2 + q2 = m2, where m is a constant. [Kanpur 1993]
(b) p2 + q2 = 1 [Meerut 2011]
Sol. (a) Given that        p2 + q2 = m2. ...(1)
Since (1) is of the form f(b, q) = 0, its solution is    z = ax + by + c, ...(2)

where  a2 + b2 = m2 or b = 2 2 1/ 2( )m a∋ , on putting a for p and b for b in (1).

6 From (2), the complete integral is    z = ax + y 2 2 ½( )m a∋ + c, ...(3)

which contains two arbitrary constants a and c.
For singular solution, differentiating (3) partially with respect to a and c, we get  0 = x

– ay/(m2 – a2)1/2 and 0 = 1.  But 0 = 1 is absurd.  Hence there is no singular solution of (1).
To find the general solution, put c = !(a) in (3).  Then, we get

z = ax + y(m2 – a2)1/2 + !(a). ...(4)
Differentiating (4) partially wit respect to ‘a’, we get

0 = a – ay/(m2 – a2)1/2 + !%(a). ...(5)
Eliminating a from (4) and (5), we get the required general solution.
(b) Hint. Do like part (a) by taking m = 1

EQUATIONS REDUCIBLE TO STANDARD FORM I
Ex. 3.  Find the complete integral of z2p2y + 6zpxy + 2zqx2 + 4x2y = 0.
Sol. The given equation can be rewritten as

z2y (�z/�x)2 + 6zxy(�z/�x) + 2zx2(�z/�y) + 4x2y = 0

or
2

6 2z z z z z z
x x x x y y

) ∗ ) ∗ ) ∗� � �
# #+ , + , + ,� � �− . − . − .

 + 4 = 0, dividing by x2y ...(1)

Put x dx = dX, y dy = dY and z dz = dZ.    ...(2)
so that x2/2 = X,  y2/2 = Y        and             z2/2 = Z.    ...(3)

Using (2), (1) becomes (�Z/�X)2 + 6 (�Z/�X) + 2(�Z/dY) + 4 = 0
or P2 + 6P + 2Q + 4 = 0, where P = �Z/�X,     Q = �Z/�Y.   ...(4)
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Equation (4) is of the form f(P, Q) = 0. Note that now we have P, Q, X, Y, Z in place of p, q,  x,
y, z in usual equations.  Accordingly, solution of (4) is

Z = aX + bY + c, ...(5)
where  a2 + 6a + 2b + 4 = 0  or  b = – (a2 + 6a + 4)/2, on putting a for P and b for Q in (4).
So, from (5), the required complete integral is

Z = aX – {(a2 + 6a + 4)/2}Y + c, where a and c are arbitrary constants.
or z2/2 = a(x2/2) – (a2 + 6a + 4) × (y2/4) + c,  using (3)
or z2 = ax2 – (2 + 3a + a2/2)y2 + c%, where c% = 2c.

Ex. 4.  Find the complete integral of
(i)  x2p2 + y2q2 = z [Delhi Maths (H) 2004]
(ii)  p2x + q2y = z. [Meerut 1994]
Sol. (i)  The given equation can be rewritten as

x
z

z
x

y
z

z
y

2 2 2 2
�
�
FH IK # �

�
F
HG
I
KJ = 1 or

2 2
x z y z
z x z y

) ∗ ) ∗� �
#+ , + ,+ , + ,� �− . − .

= 1. ...(1)

Put  (1/x)dx = dX,  (1/y)dy = dY    and    (1 z )dz = dZ ...(2)

so that log x = X,  log y = Y      and 2 z = Z. ...(3)
Using (2), (1) becomes (�Z/�X)2 + (�Z/�Y)2 = 1  or P2 + Q2 = 1, ...(4)

where P = �Z/�X and Q = �Z/�Y.  (4) is of the form f(P,Q) = 0.
6 solution of (4) is Z = aX + bY + c, ...(5)

where a2 + b2 = 1 or b = 1 2∋ a , on putting a for P and b for Q in (4).

6 from (5), the required complete integral is

Z  =  aX + Y 1 2∋ a  + c or 2 z = a log x + log y . 1 2∋ a  + c, by (3)

or log xa + log y a1 2∋ – log c% = 2 z , taking c = – log c%

or log {xa y a1 2∋ /c%} = 2 z or xa y a1 2∋ = c%e z2

where a and c% are two arbitrary constants.
(ii) The given equation can be re–written as

x
z

z
x

y
z

z
y

�
�
FH IK # �

�
F
HG
I
KJ

2 2

= 1 or
x
z

z
x

y
z

z
y

�
�

F
HG

I
KJ # �

�
F
HG

I
KJ

2 2

= 1. ...(1)

Put 1 xd idx = dX, 1 yd idy = dY         and          1 zd idz = dZ ...(2)

so that 2 x = X,  2 y = Y and 2 z = Z.    ...(3)
Using (2), (1) becomes     (�Z/�X)2 + (�Z/�Y)2 = 1    or       P2 + Q2 = 1,    ...(4)

where P = �Z/�X and Q = �Z/�Y.  (4) is of the form f(P, Q) = 0.
6 solution of (4) is z = aX + bY + c, ...(5)

where a2 + b2 = 1  or b = 1 2∋ a , putting a for P and b for Q in (4).

6 from (5), the required complete integral is

Z = aX + Y 1 2∋ a  + c or 2 z = 2a x y a# ∋2 1 2  + c, by (3)
where a and c are two arbitrary constants.
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3.36 Non-Linear Partial Differential Equations of Order One

Ex. 5.  Solve x2p2 + y2q2 = z2. [Jabalpur 2000, 03; Gulbarga 2005; Bilaspur 1997;
Meerut 2008, Sagar 2004, Vikram 1999; Ravi Shanker 1994, 96; Rohitkhand 2004]

Sol.  The given equation can be rewritten as

x
z

z
x

y
z

z
y

2

2

2 2

2

2
�
�
FH IK # �

�
F
HG
I
KJ = 1 or

2 2
x z y z
z x z y

) ∗ ) ∗� �
#+ , + ,� �− . − .

= 1. ...(1)

Put (1/x)dx = dX,    (1/y)dy = dY     and          (1/z) = dZ ...(2)
so that   log x = X,   log y = Y    and             log z = Z.

...(3)
Using (2), (1) becomes (dZ/dX)2 + (dZ/dY)2 = 1 or P2 + Q2 = 1, ... (4)

where P = dZ/dX and Q = dZ/dy.  (4) is of the form f(P, Q) = 0.
6 solution of (4) is Z = aX + bY + c, ... (5)

where a2 + b2 = 1 or b = 1 2∋ a , on putting a for P and b for Q in (4).

6 from (5), the required complete integral is

Z = aX + Y 1 2∋ a  + c  or  Z = X cos Γ + Y sin Γ + log c%Η taking a = cos Γ and c = log c%
or log z = cos Γ log x + sin Γ log y + log c%               or    z = c% xcos Γ ysin Γ.   ...(6)

To determine singular integral.  Differentiating (6) partially w.r.t. Γ and c% successively, we
obtain 0 = c% cos Γ . xcos Γ ysinΓ log y – c% sin Γ . xcos Γ ysin Γ log x      ...(7)
and 0 = xcos Γ ysin Γ. ...(8)

Eliminating Γ and c% from (6), (7) and (8), the singlar solution is  z = 0.
To determine general integral.  Putting c% = !(Γ), where ! is an arbitrary function, (4) gives

z = !(Γ) sin Γ xcos Γ ysin Γ. ...(9)
Differentiating (9), partially, w.r.t. ‘Γ’, we get

0 = !%(Γ) xcos Γ ysin Γ + !(Γ) {xcos Γ ysin Γ cos Γ – ysin Γ xcos Γ sin Γ}. ...(10)
The required general integral is obtained by eliminating Γ from (9) and (10).
Ex. 6.  Find a complete integral of (i)  pq = xmynz2l  [Delhi B.Sc. (Prog) II 2007]
(ii)  pq = xmynzl [I.A.S. 1989, 94]
Sol. (i)  The given equation can be rewritten as

z z
x y

z
x

z
y

l l

m n

∋ ∋ �
�

�
�

= 1 or z
x

z
x

z
y

z
y

l

m

l

n

∋ ∋�
�

F
HG
I
KJ

�
�

F
HG
I
KJ = 1. ...(1)

Put xmdx = dX, yndy = dY and        z–ldz = dZ ...(2)

so that x
m

m#

#

1

1 = X,  y
n

n#

#

1

1
= Y  and         z

l
l1

1

∋

∋
= Z. ...(3)

Using (2), (1) becomes (�Z/�X) (�Z/�Y) = 1        or PQ = 1, ...(4)
where  P = �Z/�X and Q = �Z/�Y.  (4) is of the form f(P, Q) = 0.

6 Solution of (4) is z = aX + bY + c, ... (5)
where ab = 1 or b = 1/a,  on putting a from P and b for Q in (4).

6 from (5), the required complete integral is

Z = aX + (1/a)Y + c or z
l
l1

1

∋

∋
= a x

m
y

a n

m n# #

#
#

#

1 1

1 1( )
 + c, using (3)
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Non-Linear Partial Differential Equations of Order One 3.37

where a and c are arbitrary constants.
(ii) The given equation can be rewritten as

z z
x y

z
x

z
y

l l

m n

∋ ∋ �
�

�
�

2 2
= 1 or z

x
z
x

z
y

z
y

l

m

l

n

∋ ∋�
�

F
HG

I
KJ

�
�

F
HG

I
KJ

2 2
= 1. ...(1)

Put xmdx = dX,  yndy = dY    and       z–l/2dz = dZ ...(2)

so that x
m

m #

#

1

1 = X, y
n

n #

#

1

1
= Y and z

l
l1 2

1 2

∋

∋

( / )

( / ) = Z. ...(3)

Using (2), (1) becomes (�Z/�X) (�Z/�Y) = 1 or   PQ = 1, ...(4)
where P = �Z/�X  and  Q = �Z/�Y.  (4) is of the form f(P, Q) = 0.

6 Solution of (4) is      z = aX + bY + c, ... (5)
where ab = 1 or b = 1/a,  on putting a for P and b for Q in (4).

6 from (5), the required complete integral is

Z  =  aX + (1/a)Y + c or z
l

l1 2

1 2

∋

∋

( / )

( / ) = a x
m

y
a n

m n# #

#
#

#

1 1

1 1( )  + c, using (3)

where a and c are arbitrary constants.
Ex. 7.  Find complete integral of pmsec2mx + zlqncosec2ny = zlm/(m – n)

Sol. The given equation can be re–written as

1 1 1
2 2z x

z
dx

z
z y

z
ylm m n

m l

lm m n

n

/( ) /( )cos sin∋ ∋
�F

H
I
K # �

�
F
HG

I
KJ = 1  or    z

x
z
x

z
y

z
y

l m n m l m n n∋ ∋ ∋ ∋�
�

F
HG

I
KJ # �

�
F
HG

I
KJ

/( ) /( )

cos sin2 2 = 1.  ...(1)

Put cos2x dx = dX,  sin2y dy = dY and z–l/(m – n)dz = dZ ...(2)
i.e., {(1 + cos 2x)/2}dx = dX,  {(1 – cos 2y)/2}dy = dY  and z–l/(m – n) dz = dZ

so that    1
2 (x + 1

2 sin 2x) = X,    1
2 (y – 1

2
sin 2y) = Y    and    ( ) ( )/ ( )m n z

m n l

m n l m n∋
∋ ∋

∋ ∋ ∋

= Z. ...(3)

Using (2), (1) becomes  (�Z/�X)m + (�Z/�Y)n = 1          or              Pm + Qn = 1, ...(4)
where  P = �Z/dX  and  Q = �Z/�Y.  (4) is of the form f(P, Q) = 0.

6 Solution of (4) is Z = aX + bY + c, ... (5)
where am + bn = 1 or b = (1 – am)1/n, on putting a for P and b for Q is (4).

6 from (5), the required complete integral is
Z = aX + (1 – am)1/nY + c,  a and c being two arbitrary constants.

or m n
m n l

∋
∋ ∋

z(m – n – l)/(m – n) = a
4 (2x + sin 2x) + 

( ) /1
4

1∋ am n

(2y – sin 2y) + c, by (3).

Ex. 8.  Find the complete integral of (1 – x2) yp2 + x2q = 0.
Sol. The given equation can be rewritten as

1 12

2

2∋ �
�
FH IK # �

�
x

x
z
x y

z
y

= 0 or
22 1/ 2(1 ) 1x z z

x x y y
) ∗ ) ∗∋ � �

#+ , + ,+ ,� �− .− .
= 0. ...(1)

Put {x/(1 – x2)1/2}dx = dX and y dy = dY ...(2)

so that X = 2 1/ 2
2 1/ 2

1 (1 ) ( 2 )
2(1 )

x dx x x dx
x

∋/ ∋ ∋ ∋
∋0 0 = – (1 – x2)1/2      and       Y = y2

2
...(3)

Using (2), (1) becomes  (�z/�X)2 + (�z/�Y) = 0  or P2 + Q = 0, ...(4)
where P = �z/�X and Q = �z/�Y.  Note carefully that here the old variable z remains unchanged
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3.38 Non-Linear Partial Differential Equations of Order One

even after transformation (2).  Here (4) is of the form f(P, Q) = 0.
6 Solution of (4) is z = aX + bY + c, ... (5)

where a2 + b = 0 or b = –a2, on putting a for P and b for Q in (4),
6  from (5),  the required complete integral is
z = aX – a2Y + c  or z = – a(1 – x2)1/2 – (a2 y2)/2 + c, by (3).
Ex. 9.  Find the complete integral of (y – x) (qy – px) = (p – q)2.    [Delhi Maths (H) 2005;

Ravishankar 2010; Meerut 1995, 97; Agra 1999; Kanpur 2001, 04, 07, 08]
Sol.  Let X and Y be two new variables such that

X = x + y and Y= xy. ...(1)
Given equation is (y – x) (qy – px) = (p – q)2. ...(2)

Now, p = �
�

/ �
�

�
�

# �
�

�
�

/ �
�

# �
�

z
x

z
X

X
x

z
Y

Y
x

z
X

y z
Y ...(3)

[� from (1),  �X/�x = 1  and  �Y/�x = y]

and q = �
�

/ �
�

�
�

# �
�

�
�

/ �
�

# �
�

z
y

z
X

X
y

z
Y

Y
y

z
X

x z
Y . ...(4)

[� from (1),  �X/�y = 1  and   �Y/�y = x]
Substituting the above values of p and q in (2), we have

  (y – x) y z
X

x z
Y

x z
X

y z
Y

�
�

# �
�

FH IK ∋ �
�

# �
�

FH IK
L
NM

O
QP =

�
�

# �
�

FH IK ∋ �
�

# �
�

FH IK
L
NM

O
QP

z
X

y z
Y

z
X

x z
Y

2

or (y – x)2 �
�

z
X = (y – x)2 �

�
FH IKzY

2
      or      �

�
z
X =

�
�
FH IKzY

2
   or     P = Q2, ...(5)

where P = �z/�X  and Q = �z/�Y.  (4) is of the form f(P, Q) = 0.
6 Solution of (4) is z = aX + bY + c, ...(6)

where a = b2,  on putting a for P and b for Q in (5).
6 from (6), the required complete integral is
z =  b2X + bY + c or z = b2(x + y) + bxy + c, by (1).
Ex. 10.  Find the complete integral of (x + y) (p + q)2 + (x – y) (p – q)2 = 1.

[I.A.S. 1991; Kanpur 2006; Meerut 1997]
Sol. Let X and Y be two new variables such that

X2 = x + y and Y2 = x – y. ...(1)
Given equation is (x + y) (p + q)2 + (x – y) (p – q)2 = 1. ...(2)

Now, p =
�
�

/ �
�

�
�

# �
�

�
�

/ �
�

# �
�

z
x

z
X

X
x

z
Y

Y
x X

z
X Y

z
Y

1
2

1
2 ...(3)

[� from (1),   �X/�x = 1/2X   and   �Y/�x = 1/2Y]

and q = �
�

/ �
�

�
�

# �
�

�
�

/ �
�

∋ �
�

z
y

z
X

X
y

z
Y

Y
y X

z
X Y

z
Y

1
2

1
2 . ...(4)

[� from (1),   �X/�y = 1/2X   and   �Y/�y = –1/2Y]

(3 )   and  (4) 2 p + q = 1
X

z
X

�
�         and p – q = 1

Y
z
Y

�
� . ...(5)

Using (1) and (5), (2) reduces to

X2 × 
2 2

2
2 2

1 1z zY
X YX Y

� �) ∗ ) ∗# 5+ , + ,− . − .� �
 =1 or P2 + Q2 = 1, ...(6)

where P = �z/�X  and  Q = �z/�Y.  (4) is of the form f(P, Q) = 0.
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Non-Linear Partial Differential Equations of Order One 3.39

6 Solution of (4) is z = aX + bY + c, ...(7)

where a2 + b2 = 1  or  b = 1 2∋ a ,  on putting a for P and b for Q in (6).

6 from (7), the required complete integral is

z = aX + Y 1 2∋ a + c or z = a x y x y a# # ∋ ∋1 2  + c, by (1).

Ex. 11.  Find a complete integral of (x2 + y2) (p2 + q2) = 1.
[Agra 2008; Indore 2004; Vikram 2000; Meerut 1995; Rohitkhand 1994]

Sol. Put x = r cos Ι and y = r sin Ι.      ...(1)
Then, r2 = x2 + y2 and Ι = tan–1(y/x).      ...(2)
Differentiating (2) partially  with respect to x and y, we get

2r(�r/dx) = 2x     and         2r(�r/�y) = 2y

2 �
�

/r
x

r
r

cosΙ = cos Ι     and             �
�

/r
y

r
r

sin Ι
= sin Ι.   ...(3)

and             �Ι
�x = 2 2

1
1 ( / )

y
y x x

) ∗5 ∋+ ,− .#
= ∋

#
/ ∋ / ∋y

x y
r

r r2 2 2
sin sinΙ Ι ...(4)

�Ι
�y = 2

1 1
1 ( / ) xy x

) ∗5+ ,− .#
= x

x y
r

r r2 2 2#
/ /

cos cosΙ Ι ...(5)

Given equation is      (x2 + y2) (p2 + q2) = 1. ....(6)

Now, p = �
�

/ �
�

�
�

# �
�Ι

�Ι
�

z
x

z
r

r
x

z
x

= cos Ι �
�

∋ �
�Ι

z
r r

zsin Ι , by (3) and (4)

and q = �
�

/ �
�

�
�

# �
�Ι

�Ι
�

z
y

z
r

r
y

z
y

= sin Ι �
�

# �
�Ι

z
r r

zcosϑ , by (3) and (5).

Hence p2 + q2 = (�z/�r)2 + (1/r2) × (�z/�Ι)2. ...(7)
6 (6) becomes r2[(�z/�r)2 + (1/r2) × (�z/�Ι)2] = 1,  using (2) and (7)

or r z
r

z�
�
FH IK # �

�Ι
FH IK

2 2
= 1. ...(8)

Let R be a new variable such that   (1/r)dr = dR so that       log r = R. ...(9)
Then (8) becomes (�z/�R)2 + (�z/� Ι )2 = 1          or               P2 + Q2 = 1, ...(10)

where  P = �z/�R and Q = �z/� Ι .  (10) is of the form f(P, Q) = 0.

6 solution of (4) is z = aR + b Ι  + c, ...(11)

where  a2 + b2 = 1  or b = 1 2∋ a , on putting a for P and b for Q in (10)

6 from (11), the required complete integral is

z = aR + Ι 1 2∋ a + c or z = a log r + Ι 1 2∋ a + c,

or z = a log (x2 + y2)1/2 + tan–1(y/x) . 1 2∋ a + c, by (2)

or z = (a/2) × log (x2 + y2) + 1 2∋ a tan–1(y/x) + c, a and c being arbitrary constants.

Ex. 12. Find the complete integral of 2z pqxy/ [Meerut 2007; Punjab 2005]

Sol. The given equation can be re–written as

2
1

xy z z

x yz

� �
/

� �
or

) ∗ ) ∗� �
/+ , + ,� �− . − .

1
x z y z

z x z y
... (1)
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3.40 Non-Linear Partial Differential Equations of Order One

Put  (1/ )x dx dX/ , / /(1/ ) and (1/ )y dy dY z dz dZ

so that    log x = X,      log y = Y          and log z = Z ... (2)
Then (1) becomes ( / ) ( / ) 1Z X Z Y� � � � /        or PQ = 1 ... (3)

where /P Z X/ � �  and /Q Z Y/ � � .  Then, solution of (3) is

Z aX bY C%/ # # ,    where ab = 1 so that b = 1/a.

6 log z = log (1/ ) log loga x a y C# # , taking logC C% /  and using (2)

or 1/a az x y C/ , a and C being arbitrary constants.

Ex. 13. Find the complete integral of ( / ) ( / )n n nx p y q z# / .

Sol. The given can be re–written as ( / ) ( / ) 1n nx zp y zq# / ... (1)

Let X = x2 /2, Y = y2 /2, Z = z2 /2, /P Z X/ � �  and   /Q Z Y/ � � ... (2)

Now, z z Z X x
p P

x Z X x z

� � � �
/ / /

� � � �
. Similarly, 

y
q Q

z
/ , using (2)

Hence x/zp = 1/P and y/zq = 1/Q and so (1) reduces to ∋ ∋# / 1n nP Q , whose solution is

Z aX bY C%/ # # , where 1n na b∋ ∋# / so that 1/(1 )n nb a∋ ∋/ ∋ ... (3)

6 (2) and (3) 2 2 2 1/ 2/ 2 ( / 2) (1 ) ( / 2) / 2n nz a x a y C∋ ∋/ # ∋ # , taking / 2C C% /

or 2 2 1/ 2(1 )n nz ax a y C∋ ∋/ # ∋ # , a and C being arbitrary constants.

Ex. 14. Find the complete integral of 3 6 2 2 4 6sec cosecp x z q y z# /

Sol. The given equation can be re–written as

236 4

6 4
1

cos sin

z z z z

x yx y

∋ ∋ ) ∗� �) ∗ # /+ ,+ ,� �− . − .
or

∋ ∋) ∗ ) ∗� �
# /+ , + ,+ , + ,� �− . − .

2 22 2

2 2
1

cos sin

z z z z

x yx y
... (1)

Let  ∋/ / /2 2 2cos , sin ,x dx dX ydy dY z dz dZ    ... (2)

2 / # / ∋0 0(1/ 2) (1 cos2 ) , (1/ 2) (1 cos2 )X x dx Y y dy ,           (1/ )Z z/ ∋

2 / #(1/ 2) { (1/ 2) sin 2 },X x x     / ∋(1/ 2) { (1/ 2) sin 2 },y y y          / ∋(1/ )Z z

2 / #(1/ 2) ( sin cos ),X x x x      / ∋(1/ 2) ( sin cos ),y y y y             / ∋(1/ )Z z ... (3)

Using (2), (1) becomes 2 2( / ) ( / ) 1Z X Z Y� � # � � /    or       2 2 1P Q# / ... (4)

where /P Z X/ � � and /Q Z Y/ � � . Now, solution of (4) is

/ 2Z aX bY C/ # # ,   where 2 2 1a b# /   so that 2 1/ 2(1 )b a/ ∋ ... (5)

6 2 1/ 2(1/ ) (1/ 2) ( sin cos ) (1 ) (1/ 2)( sin cos ) / 2z a x x x a y y y C∋ / # # ∋ ∋ # , by (3) and (5)

or # # # ∋ ∋ # /2 1/ 2(2 / ) ( sin cos ) (1 ) ( sin cos ) 0z a x x x a y y y C .
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Non-Linear Partial Differential Equations of Order One 3.41

Ex. 15. Find the complete integral of yp xq pq# / .
Sol. The given equation can be re–written as

1 1 1z z z z

x x y y xy x y

� � � �
# /

� � � �
or

z z z z

x x y y x x y y

) ∗� � � �) ∗# / + ,+ ,� � � �− .− .
... (1)

Put x / /,dx dX ydy dY so that / /2 2/ 2 , / 2x X y Y ... (2)

Then (1) becomes / / ( / ) ( / )z X z Y z X z Y� � # � � / � � � �        or     P Q PQ# / ... (3)

where  /P z X/ � � and /Q z Y/ � � . Then solution of (3) is

z aX bY c/ # # , where a b ab# / so that /( 1)b a a/ ∋ ... (4)

or 2 1 2( / 2) ( 1) ( / 2)z a x a a y c∋/ # ∋ # , a and c being arbitrary constants, by (2) and (4)

Ex. 16. Find the complete integral of 2 2p x px q# /

Sol. The given equation can be re–written as
2

2 z z
x x q

x x

� �) ∗ # /+ ,� �− .
or    

� �) ∗ # /+ ,� �− .

2
z z

x x q
x x

... (1)

Putting (1/ )x dx dX/  so that logx X/ , (1) gives

2( / ) /z X z X q� � # � � /    or      2P P q# / ,    where /P z X/ � � .

Its solution is z aX by c/ # # where 2a a b# /

or 2log ( )z a x a a y c/ # # # , a and c being arbitrary constants. [� X = log x]

Ex. 17. Find the complete integral, general integral and singular integral of 4pq xy/ .

Show that the equation is satisfied by 2z xy C/ # , C being an arbitrary constant. What is the
character of this integral. [Delhi Maths (H) 2007]

Sol. The given equation can be re–written as

1
4

pq

xy
/ or 

1 1
4

z z
xy x y

� �
/

� �
       or

) ∗� �) ∗ /+ ,+ ,� �− . − .

1 1
1

2 2

z z

x x y y
... (1)

Putting 2 , 2x dx dX y dy dY/ /   so that 2 2,x X y Y/ / , (1) gives

( / ) ( / ) 1z X z Y� � � � /       or 1PQ / whose solution is

z aX bY d/ # # , where ab = 1 so that  b = 1/a.

6 2 2(1/ )z ax a y d/ # # ... (2)

is complete integral of (1) containing two arbitrary constants a and d.

General integral. Putting ( )d a/ !  in (2), we get

2 2(1/ ) ( )z ax a y a/ # # ! ... (3)

Differenting (3) partially w.r.t. ‘a’, 2 2 20 (1/ ) ( )x a y a%/ ∋ # ! ... (4)

Then general integral is obtained by eliminating a from (3) and (4).
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3.42 Non-Linear Partial Differential Equations of Order One

Singular integral. Differenting (2) partially w.r.t. ‘a’ and ‘d’ by turn, we get
2 2 20 ( 1/ )x a y/ # ∋ ... (5) 0 = 1 ... (6)

Since (6) is absurd, so (1) has no singular solution.
Discussion of the character of the given integral

z = 2xy + C, C being an arbitrary constant ... (7)

Differenting (7) partially w.r.t. x and y, we get /z x� � = p = 2x and / 2z y q y� � / / . These
values of p and q satisfy (1). Hence (1) is satisfied by (7).

Now, (7) can be derived from (2), if the values of p and q given by (7) and (2) are same, that
is if 2 2ax y/  and 2 / 2y a x/ , i.e., if we choose /a y x/ . Putting /a y x/  and taking d = C in
(2), we have

2 2( / ) ( / )z y x x x y y C/ # # or 2z xy C/ # ,
showing that (7) is a particular case of the complete integral (2)

We now show that (7) is a particular case of the general integral. To this end, replace ( )a!

by C in (3) and write 2 2(1/ )z ax a y C/ # # ... (8)

Differenting (8) partially w.r.t. ‘a’, we get
2 2 20 (1/ )x a y/ ∋ or /a y x/ ... (9)

Eliminating a from (8) and (9), we get 2z xy C/ #

Ex. 18. Find the complete integral of z = p2 – q2. [Delhi Maths (G) 2006]
Sol. Re–writing the given equation, we have

221 1 1z z
z x z y

) ∗� �) ∗ ∋ /+ ,+ ,� �− . − .
or      

1/ 22
1/ 2 1/ 2 1z zz z

x y
∋ ∋) ∗� �) ∗ ∋ /+ ,+ ,� �− . − .

... (1)

Let X, Y and Z be new variables such that
dX = dx, dY = dy and dZ = z–1/2dz so that X = x,    Y = y,   Z = 2z1/2 ... (2)

Let /P Z X/ � �  and / .Q Z y/ � �  Using (2), (1) becomes
P2 – Q2 = 1, ... (3)

which is of the form f(P, Q) = 0. Hence a solution of (3) is Z = aX + by + c, ... (4)

where a2 – b2 = 1. Then 2 1/ 2( 1)b a/ ; ∋  and so from (4), we have

2 1/ 2( 1)Z aX a Y c/ ; ∋ # or 1/ 2 2 1/ 22 ( 1) ,z ax a y c/ ; ∋ #

which is the complete integral, a and c being arbitrary constants and | | 1.a Κ

EXERCISE 3(C)
Solve the following partial differential equations (1 – 10)

1. p2 – q2 = 1 Ans. C.I. z = ax + (a2 – 1)1/2 + c, a and c are arbitrary constants

and | | 1;a Κ S.I. Does not exist, G.I. It is given by 2 1/ 2( 1) ( ) 0,z ax a y a∋ ∋ ∋ ∋ ∃ /

– x – a(a2 – 1)–1/2 ( ),y a%∋ ∃  where ∃  is an arbitrary function.
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2. 2 2p q∋ / Λ Ans. C.I. 2 1/ 2( ) ,z ax a y c/ # ∋ Λ #  where a and c are arbitrary

constants and 2 ;aΛ Μ S.I. Does not exist, G.I. It is given by 2 1/ 2( ) ( ) 0,z ax a y a∋ ∋ ∋ Λ ∋ ∃ /

2 1/ 2( ) ( ) 0x a a y a%∋ ∋ ∋ Λ ∋ ∃ /

3. p + q = pq                    [Mysore 2004; Gulberga 2005; Kanpur 2011; Pune 2010]
Ans. C.I. z = ax + {a/(a – 1)}y + c, where a and c are arbitrary constants and 1;a & S.S. Does

not exist; G.S. It is given by { /( 1)} ( ) 0z ax a a y a∋ ∋ ∋ ∋ ∃ /  and 2( 1) ( ) 0,x y a a∋ %∋ ∋ ∋ ∋ ∃ /  where
∃  is an arbitrary function

4. p + q + pq = 0.   Ans. C.I. z = ax – {a/(a + 1)}y + c, where a and c are arbitrary
constants and 1;a & ∋ S.S. Does not exist; G.S. It is given by { /( 1)} ( ) 0,z ax a a y a∋ # # ∋ ∃ /

2 1/ 2{(2 1) / 2( ) } ( ) 0,x a a a y a%∋ ∋ # # ∋ ∃ /  where ∃  is an arbitrary function.
5. p2 + q2 = npq. (M.S. Univ. T.N. 2007), Ans. C.I. z = ax + (a/2) × {n + (n2 – 4)1/2y + c,

where a and c are arbitrary constants and 2 4n Κ ; S.S. Does not exists; G.S. It is given by
2 1/ 2( / 2) { ( 4) } ( ) 0,z ax a n n y a∋ ∋ 5 # ∋ ∋ ∃ / 2 1/ 2}(1/ 2) { ( 4) ( ) 0,x n n y a%∋ ∋ 5 # ∋ ∋ ∃ /  where ∃

 is an arbitrary function.

6. p = 2q2 + 1. Ans. C.I. 1/ 2{( 1) / 2} ,z ax a y c/ # ∋ #  where a and c are arbitrary

constants and 1;a Κ S.S. Does not exist; G.S. It is given by 1/ 2{( 1) / 2} ( ) 0,z ax a y a∋ ∋ ∋ ∋ ∃ /

  1(2 2 1) ( ) 0,x a y a∋ %∋ ∋ ∋ ∋ ∃ /  where ∃  is an arbitrary function.

7. p = eq. Ans. C.I. z = ax + y log a + c, where a and c are arbitrary constants and
a > 0; S.S. Does not exist; G.S. It is given by log ( ) 0,z ax y a a∋ ∋ ∋ ∃ / – x – (y/a) – ( ) 0,a%∃ /

 where ∃  is an arbitrary function.
8. p2q3 = 1 Ans. C.I. z = ax + a–2/3y + c, where a and c are arbitrary constants and a > 0;

S.S. Does not exist; G.S. It is given by 2/3 ( ) 0,z ax a y a∋∋ ∋ ∋ ∃ / 5/3(2 / 3) ( ) 0,x a y a∋∋ # 5 ∋ ∃ /

 where ∃  is an arbitrary function.
9. p2 + p = q2. Ans. C.I. z = ax + (a2 + a)1/2y + c, where a and c are arbitrary constants

and ( 1, 0);a Ν ∋ ∋R S.S. Does not exist; G.S. It is given by z – ax – (a2 + a)1/2 y – ( ) 0,a∃ /

2 1/ 2{(2 1) / 2( ) } ( ) 0,x a a a y a%∋ ∋ # # ∋ ∃ /  where ∃  is an arbitrary function.

10. p2 + 6p + 2q + 4 = 0. C.I. z = ax – (2 + 3a + a2/2)y + c, where a and c are

arbitrary constants; S.S. Does not exist; G.S. It is given by 2(2 3 / 2) ( ) 0,z ax a a y a∋ # # # ∋ ∃ /

( 3) ( ) 0,x a y a%∋ # # ∋ ∃ /  where ∃  is an arbitrary function.
Find the complete integral (solution) of the following equations (Ex. 11—18).
11. zy2p = x(y2 + z2q2). Ans. z2 = ax2 ; y2(a – 1)1/2+ c, where 1a Κ
12. z2(p2/x2 + q2/y2) = 1. Ans. z2 = ax2 ; y2(1 – a2)1/2+ c, where 1 1a∋ Μ Μ
13. yp + x2q2 = 2x2y. Ans. (3z – ax3 – b)2 = 4(2 – a)y2

14. (1 – y2) xq2 – y2p = 0. Ans. (2z – ax2 – b)2 = a(1 – y2)
15. p2y(1 + x2) = qx2. Ans.  z = a(1 + x2)1/2+ (1/2) × a2y2 + c
16. x4p2 + y2zq – z2 = 0. Ans. xy log z = ay + (a2 – 1)x + bxy

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



3.44 Non-Linear Partial Differential Equations of Order One

17. p2 + q2 = z. [Bangalore 1995] Ans. 2z1/2 = ax ;  (1 – a2)1/2y + c, where 1 1a∋ Μ Μ
18. x2p2 + y2q2 = 4z2. Ans. log z = a log x + (4 – a2)1/2 + c, 2 2a∋ Μ Μ
3.12. Standard form II. Clairaut equation. [Meerut 2009; Nagpur 2002]
A first order partial differential equation is said to be of Clariaut form if it can be written in the

form z = px + qy + f(p, q).    ...(1)
Let F(x, y, z, p, q) ( px + qy + f(p, q) – z. ...(2)

Charpit’s auxiliary equations are   
dp

F
x

p F
z

dq
F
y

q F
z

�
�

#
�
�

/
�
�

#
�
�

=
dz

p F
p

q F
q

dx
F
p

dy
F
q

∋
�
�

∋
�
�

/
∋

�
�

/
∋

�
�

or dp dq
0 0

/ = dz
px qy p f p q f q∋ ∋ ∋ � � ∋ � �( ) ( ) = dx

x f p∋ ∋ � �( )
=

dy
y f q∋ ∋ � �( )

, by (1)

Then, first and second fractions 2 dp = 0   and   dq = 0 2   p = a    and    q = b.
Substituting these values in (1), the complete integral is z = ax + by + f(a, b)
Remark 1.  Observe that the complete integral of (1) is obtained by merely replacing p and q

by a and b respectively.  Singular and general integrals can be obtained by usual methods.
Remark 2.  Sometimes change of variables can be employed to transform a given equation to

standard form II.
3.13. SOLVED EXAMPLES BASED ON ART. 3.12

Ex. 1.  Solve z = px + qy + pq. [Ravishanker 1997; Bangalore 2005; Sagar 1995, 96]
Sol. The complete integral is z = ax + by + ab, a, b being arbitrary constants ...(1)
Singular integral.  Differentiating (1) partially w.r.t. a and b, we have

a = x + b and 0 = y + a. ...(2)
Eliminating a and b between (1) and (2), we get    z = – xy – xy + xy   i.e., z = –xy,

which is the required singular solution, for it satisfies the given equation.
General Integral.  Take b = !(a), where ! denotes an arbitrary function.
Then (1) becomes z = a x + !(a) y + a ! (a). ...(3)
Differentiating (3) partially w.r.t. a, 0 = x + !%(a)y + !(a) – a !%(a). ...(4)
The general integral is obtained by eliminating a between (3) and (4).
Ex. 2.  Prove that complete integral of the equations   (px + qy – z)2 = 1 + p2 + q2

is  ax + by + cz = (a2 + b2 + c2)1/2. [I.A.S. 1989]
Sol. Re–writting the given equation, we have

px + qy – z = ± ( )1 2 2# #p q or z = px + qy ± ( )1 2 2# #p q
which is of standard form II and so its complete integral is

z = Ax + By ± (1 + A2 + B2)1/2. ...(1)
To get the desired form of solution we take +ve sign in (1) and set A = –a/c and B = –b/c.

Then (1) becomes z = – (ax + by)/c + (c2 + a2 + b2)1/2/c
or ax + by + cz = (a2 + b2 + c2)1/2.

Ex. 3.  Solve  z = px + qy + c ( )1 2 2# #p q . [I.A.S. 1989; Meerut 1998]

Sol.  The complete integral of the given equation is

z = ax + by + c ( )1 2 2# #a b , a, b being arbitrary constants. ...(1)

Singular Integral.  Differentiating (1) partially w.r.t. a and b, we get
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0 = x + ac/ ( )1 2 2# #a b ...(2)   0 = y + bc/ ( )1 2 2# #a b . ...(3)

6 From (2) and (3), x2 + y2 = (a2c2 + b2c2)/(1 + a2 + b2).

6 c2 – x2 – y2 = c2 – a c b c
a b

c
a b

2 2 2 2

2 2

2

2 21 1
#

# #
/

# #
so that 1 + a2 + b2 = c2/(c2 – x2 – y2). ...(4)

From (2), a =  –
x a b

c
x

c x y

( )

( )

1 2 2

2 2 2

# #
/ ∋

∋ ∋
, by (4)

Similarly from (3) and (4), we obtain b = – y/ c x y2 2 2∋ ∋ .
Putting these values of a and b in (1), the singular solution is

z = ∋
∋ ∋

∋
∋ ∋

#
∋ ∋

x
c x y

y

c x y
c

c x y

2

2 2 2

2

2 2 2

2

2 2 2( ) ( ) ( )
= c x y

c x y

2 2 2

2 2 2

∋ ∋

∋ ∋( )
or     z = (c2 – x2 – y2)1/2 or z2 = c2 – x2 – y2 or x2 + y2 + z2 = c2. ...(5)

We can easily verify that (1) is satisfied by (5).
General Integral. Take b = !(a), where ! is an arbitrary function.

Then, (1) yeilds z = ax + y!(a) + c[1 + a2 + {!(a)}2]1/2. ...(6)
Differentiating both sides of (6) partially w.r.t. ‘a’, we get

0 = x + y!%(a) + (c/2) × [1 + a2 + {!(a)}2]–1/2 × [2a + 2!(a) !%(a)]. ...(7)
Eliminating a from (6) and (7), we get the general integral.
Ex. 4.  Find the complete and singular integrals of the following equations:
(i)  z = px + qy + log (pq) [Indore 2004; K.U. Kurukshetra 2006]

(ii)  z = px + qy – 2 pq . [Bangalore 1993; Lucknow 2010]
Sol. (i) The complete integral is z = ax + by + log (ab)

or z = ax + by + log a + log b, a, b  being arbitrary constants ...(1)
Differentiating (1) partially with respect to a and b, we get
0 = x + (1/a) and 0 = y + (1/b)  so that a = –1/x   and   b = –1/y. ...(2)
Eliminating a and b from (1) and (2),  the required singular integral is

z = – 1 – 1 + log (1/xy) or z = – 2 – log (xy).

(ii) The complete integral is z = ax + by – 2 ab . ...(1)
Differentiating (1) partially with respect to a and b, we get

0 = x – 2
2

b
ab

and 0 = y – 2
2

a
ab

      so that      x = b
a

  and   y = a
b

.  ...(2)

Now, using (1) x – z = x – (ax + by – 2 ab ) = b
a – a b

a – b a
b  + 2 ab , using (2)

6  x – z = ( / )b a . ...(3)

Similarly, using (1)   y – z = y – (ax + by – 2 ab ),  = a
b – a b

a – b a
b  + 2 ab

6       y – z = ( / )a b . ...(4)
From (3) and (4),          (x – z) (y – z) = 1,

which is singular integral as it satisfies the given equation.
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Ex. 5.  Prove that the complete integral of z = px + qy – 2p – 3q represents all possible planes
through the point (2, 3, 0).  Also find the envelope of all planes represented by the complete
integral (i.e., find the singular integral).     (M.D.U. Rohtak 2006)

Sol. Given that z = px + qy – 2p – 3q, ...(1)
which is of the form z = px + qy + f(p, q)  and so its complete integral is

z = ax + by – 2a – 3b,  a, b being arbitrary constants ...(2)
Since (2) is a linear equation in x, y, z, it follows that (2) represents planes for various

values of a and b.  Again putting x = 2, y = 3, z = 0 in (2), we have
0 = 2a + 3b – 2a – 3b i.e., 0 = 0,

showing that coordinates of the point (2, 3, 0) satisfy (2).  Hence the complete integral (2) of (1)
represents all possible planes passing through the point (2, 3,0).

Differentiating (2) partially with respect to a and b, we get
0 = x – 2 and 0 = y – 3 so that x = 2 and y = 3.
Substituting these values in (2), we get z = 0 as the required envelope (i.e., singular integral).
Ex. 6.  Prove that the complete integral of z = px + qy + [pq/(pq – p – q)] represents all

planes such that the algebraic sum of the intercepts on three coordinate axes is unity.
Sol.  Since the given equation is of the form z = px + qy + f(p, q), so its complete integral is

        z = ax + by + [ab/(ab – a – b)],  a and b being arbitrary constants. ...(1)
Since (2) is a linear equation in x, y, z, it follows that (1) represents planes for various values

of a and b. We now rewrite (1) in the intercept form of a plane as follows :
        ax + by – z = ab/(a + b – ab)

or x
b a b ab

y
a a b ab

z
ab a b ab[ / ( )] [ / ( )] [ / ( )]# ∋

#
# ∋

#
∋ # ∋

= 1.

6 The algebric sum of the intercepts on three coordinate axes

= b
a b ab

a
a b ab

ab
a b ab

b a ab
a b ab# ∋

#
# ∋

# ∋
# ∋

/
# ∋
# ∋

( ) = 1, as required.

Ex. 7.  Show that the complete integral of the equation z = px + qy + (p2 + q2 + 1)1/2

represents all planes at unit distance from the origin.
Sol.  Given equation is of the form z = px + qy + f(p, q), so its complete integral is

z = ax + by + (a2 + b2 + 1)1/2, a, b being an arbitrary constants.
or ax + by – z + (a2 + b2 + 1)1/2 = 0. ...(1)

Since (2) is a linear equation in x, y, z, it follows that (1) represents planes for various values
of a and b.

The perpendicular distance of (1) from origin (0, 0, 0)

=
a b a b

a b

a b

a b

. .

{ ( ) }

0 0 0 1

1

1

1

2 2

2 2 2

2 2

2 2

# ∋ # # #

# # ∋
/

# #

# #
= 1,  as required

Ex. 8. Find the complete integral of the following equations:
(i) ( ) ( ) 1p q z px qy# ∋ ∋ / [Pune 2010]

(ii) 2 2 2 2( ) ( )pqz p xq p q yp q/ # # # [Delhi B.A. (Prog) II 2008, 10]

Sol. (i) Re–writing the given equation in the standard form ( , )z px qy f p q/ # # , we get

1/( )z px qy p q∋ ∋ / #    or   1/( )z px qy p q/ # # #
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6  Its complete integral is 1/( )z ax by a b/ # # # , where a and b are arbitrary constants.

(ii) Dividing both sides of the given equation by pq, 4 4( ) /z px qy p q pq/ # # # ,

Its complete integral is 4 4( ) /z ax by a b ab/ # # # , a, b being arbitrary constants.

Ex. 9. (a) Find the complete integral the equation 2( ) ( )y zq q xp yq# / # .
[Delhi Maths (H) 1999]

Sol. Re–writing the given equation, we have
22 2zq xpq yq y/ # ∋ or (1/ 2) (1/ 2) ( / )z px qy y q/ # ∋

or
∋

) ∗ ) ∗� � �) ∗/ # ∋+ , + ,+ ,� � �− . − . − .

1
2 21 1 1 1

2 2 2 2
z z z

z x y
x x y y y y ... (1)

Putting /2x dx dX  and 2y dy dY/ so that / /2 2andx X y Y , (1) gives

/ � � # � � ∋ � �( / ) ( / ) 1/{2 ( / )}z X z X Y z Y z Y         or (1/ 2 )z PX QY Q/ # ∋ ,

where /P z X/ � �  and /Q z Y/ � � . The above equation is of the form ( , )z PX Qy f P Q/ # #  and
hence its complete integral is

(1/ 2 )z aX bY b/ # ∋    or  2 2 (1/ 2 )z ax by b/ # ∋ , a and b being arbitrary constants.

Ex. 9. (b) Find the complete integral of 22 ( ) 1q z px qy q∋ ∋ / # .

Sol. Re–writing the given equation in the form ( , )z px qy f p q/ # # , we have

2(1 ) / 2z px qy q q∋ ∋ / # or 2(1 ) / 2z px qy q q/ # # # ,

Its complete integral is 2(1 ) / 2z ax by b b/ # # # , a and b being arbitrary constants.

Ex. 10. Find the compelte integral of 2 2 2( 2 2 )p x q y z px qy# / ∋ ∋ .
Sol. Taking positive root, the given equation reduces to

2 2 1/ 22 2 ( )z px qy p x q y∋ ∋ / # or   2 2 1/ 22 2 ( )z px qy p x q y/ # # #

or

1/222
1
2(1/ 2 ) (1/ 2 ) (1/ 2 ) (1/ 2 )

z z z z
z x y

x x y y x x y y

9 :) ∗) ∗� � � �> ?/ # # # + ,+ ,+ , + ,> ?� � � �− . − .> ?< =

... (1)

Put / /(1/ 2 ) and (1/ 2 )x dx dX y dy dY so that x X/    and y Y/  ... (2)

Using (2), (1) gives / � � # � � # 5 � � # � �2 2 1/ 2( / ) ( / ) (1/ 2) {( / ) ( / ) }z z X X z Y Y z X z Y

or      / # # 5 #2 2 1/ 2(1/ 2) ( )z PX QY P Q ,     where    / � � / � �/ and /P z X Q z Y .

It is of the Clairaut’s form / # # ( , )z Px Qy f P Q  and so its complete integral is given by

/ # # 5 #2 2 1/ 2(1/ 2) ( )z aX bY a b    or              / # # 5 #2 2 1/ 2(1/ 2) ( )z a x b y a b
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Ex. 11. Find a complete and the singular integral of  4xyz = pq + 2px2y + 2qxy2

Sol. The given equation can be rewritten as

2 21 1 1 1 .
2 2 2 2

z z z zz x y
x x y y x x y y

) ∗ ) ∗� � � �) ∗ ) ∗/ # #+ , + ,+ , + ,� � � �− . − .− . − .
... (1)

Put 2x dx = dX and 2y dy = dY ... (2)
so that x2 = X and y2 = Y. ... (3)

Using (2), (1) becomes ( / )( / ) ( / ) ( / )z z X z Y X z X Y z Y/ � � � � # � � # � �

or z = XP + YQ + PQ, ... (4)

where /P z X/ � � and / .Q z Y/ � �  (4) is of the form z = XP + YQ + f(P, Q).

6 Solution of (4) is z = aX + bY + ab, a, b being arbitrary constants.
or z = ax2 + by2 + ab, which is complete integral. ... (5)

Differentiating (5) partially w.r.t a and b, we have
0 = x2 + b and  0 = y2 + b      so that   b = – x2 and a = – y2 .... (6)
Eliminating a and b between (5) and (6), the required singular integral is
z = – x2y2 – x2y2 + x2y2 or z = – x2y2.
Ex. 12. Find the complete and singular solutions of z = px + qy + p2q2. [Jabalpur 2000;

Sagar 1995; Rewa 2003; Ravishankar 2004]
Sol. Given z = px + qy + p2q2 ... (1)
Since (1) is in Clairaut’s form, its complete solution is

z = ax + by + a2b2, a, b being arbitrary constants ... (2)
To find singular solution of (1). Differentiating (2) partially w.r.t. ‘a’ and ‘b’ successively,

0 = x + 2ab2  and 0 = y + 2a2b ... (3)
From (3), a = – (y2/2x)1/3   and b = – (x2/2y)1/3 ... (4)
Substituting the values of a and b given by (4) in (2), we get
z = – x(y2/2x)1/3 – y(x2/2y)1/3 + (x2y2/16)1/3 or z = – (3/4) × 41/3 x2/3 y2/3,

which is the required singular solution of (1)

EXERCISE 3 (D)
Solve the following partial differential equations : (1 – 9)

1. z = px + qy – 2p – 3q. [M.D.U. Rohtak 2006]
Ans. C.I. z = ax + by – 2a – 3b; S.S. z = 0; G.S. It is given by ( ) 2 3 ( ) 0,z ax a y a a∋ ∋ ∃ # # ∃ /

( 3) ( ) 2 0x y a%# ∋ ∃ ∋ /
2. z = px + qy + 5pq. Ans. S.I. z = ax + by + 5ab; S.S. 5z + xy = 0

G.S. ( ) 5 ( ) 0,z ax a y a a∋ ∋ ∃ ∋ ∃ / 5 ( ) ( 5 ) ( ) 0x a y a a%# ∃ # # ∃ /
3. z = px + qy + p2 – q2  [Purvanchal 2007] Ans. S.I. z = ax + by + a2 – b2;

S.S. x2 – y2 + 4z = 0; G.S. 2 2( ) { ( )} 0;z ax a y a a∋ ∋ ∃ ∋ # ∃ / 2 { 2 ( )} ( ) 0;x a y a a%# # ∋ ∃ ∃ /

4. z = px + qy + (q/p) – p. [Madras 2005]
Ans. C.I. z = ax + by + (b/a) – a; S.S. yz = 1 – x; G.S. It is given by

( ) (1/ ) ( ) ,z ax a y a a a∋ # ∃ # 5∃ ∋ 2( ) (1/ ) ( ) (1/ ) ( ) 0x a y a a a a% %∋ # ∃ ∋ ∃ # 5∃ /
5. z = px + qy + p/q Ans. C.I.  = ax + by + a/b; S.S. xz + 4 = 0;

G.S. ( ) / ( ) 0;z ax a y a a∋ ∋ ∃ ∋ ∃ / 2( ) 1/ ( ) { ( )}/{ ( )} 0x a y a a a a% %# ∃ # ∃ ∋ ∃ ∃ /
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6. 2z px qy pq/ # # [Bangalore 1994]

Ans. C.I. 2 ;z ax by ab/ # # S.S. (x – z) (y – z) = 1; G.S. ( ) 2 ( ) 0,z ax a y a a∋ ∋ ∃ ∋ ∃ /

( ) { ( ) ( )}/ 2 ( ) 0x a a a a a a% %# ∃ # ∃ # ∃ ∃ /

7. 2 .z px qy pq/ # ∋ Ans. C.I. 2 ;z ax by ab/ # ∋ S.S. (x – z) (y – z) = 1;

G.S. ( ) 2 ( ) 0,z ax a y a a∋ ∋ ∃ # ∃ / ( ) { ( ) ( )}/ ( ) 0x a y a a a a a% %# ∃ ∋ ∃ # ∃ ∃ /
8. z = px + qy + p2 + pq + q2. [Ranchi 2010]

Ans. C.I. z = ax  + by  + a2 + ab + b2; S.S. x2 + y2 – xy  + 3z =  0, G.S.
2 2( ) ( ) { ( )} 0,z ax a y a a a a∋ ∋ ∃ ∋ ∋ ∃ ∋ ∃ / { 2 ( )} ( ) 2 ( ) 0x y a a a a a%# # # ∃ ∃ # # ∃ /

9. 2 2 1/ 2( 1) .z px qy p q/ # # Γ # Ο # Ans. C.I. 2 2 1/ 2( 1) ;z ax by a b/ # # Γ # Ο #

S.S. 2 2 2/ / 1;x y zΓ # Ο # / G.S. 2 2 1/ 2( ) [ { ( )} 1] 0; ( )z ax a y a a x a y%∋ ∋ ∃ ∋ Γ # Ο ∃ # / # ∃
2 2 1/ 2{ ( ) ( )}/[ ( ( )} 1] 0a a a a a%# Γ # Ο∃ ∃ Γ # Ο ∃ # /

10. Find the complete integral of z = px + qy – sin (pq) [GATE 2003]
Ans. z = ax + by – sin (ab) a, b being arbitrary constants.

11. Find the complete integral and singular integral of the differential equation z = px + qy
+ p2 – q2. Find also a developable surface belonging to the general integral of this differential
equation. [I.A.S 1983]

Ans. Complete integral is z = ax + by + a2 – b2; singular integral is 4z = 3(x2 – y2)
3.14. Standard form III. Only p, q and z present. [Nagpur 2003; Delhi Maths (H) 2006]
Under this standard form we consider differential equation of the form

f(p, q, z) = 0. ...(1)

Charpit’s auxiliary equations are    
dp

f
x p f

z

dq
f
y q f

z
�
�

# �
�

/ �
�

# �
�

=
dz

p f
p q f

q

dx
f
p

dy
f
q∋ �

�
∋ �

�

/
∋ �

�

/
∋ �

�

or
dp

p f z
dq

q f z( ) ( )� �
/

� �
= dz

p f p q f q∋ � � ∋ � �( ) ( )
= dx

f p
dy
f q∋ � �

/
∋ � �

, using (1)

Taking the first two ratios,      (1/p)dp = (1/q)dq
Integrating,              q = ap,  a being an arbitrary constant. ...(2)
Now, dz = p dx + q dy = p dx + ap dy, using (2)

or dz = p(dx + ady) = pd(x + ay) = p du, ...(3)
where u = x + ay. ...(4)

Now, (3) 2   p = dz/du and so by (2) q = ap = a(dz/du).

Substituting these values of p and q in (1), we get f dz
du

a dz
du

z, ,FH IK = 0, ...(5)

which is an ordinary differential equation of first order.  Solving (5), we get z as a function of u.
Complete integral is then obtained by replacing u by (x + ay).

3.15.  Working rule for solving equations of the form      f(p,q , z) = 0. ...(1)
Step I. Let  u = x + ay, where a is an arbitrary constant. ...(2)
Step II. Replace p and q by dz/du and a(dz/du) respectively in (1) and solve the resulting

ordinary differential equation of first order by usual methods.
Step III. Replace u by x + ay in the solution obtained in step II.
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3.50 Non-Linear Partial Differential Equations of Order One

Remark 1.  Sometimes change of variables can be employed to reduce a given equation in
the standard form III.

Remark 2.  Singular and general integrals are obtined by well known methods.
3.16.SOLVED EXAMPLES BASED ON ART 3.15.

Ex. 1.  Find a complete integral of 9(p2z + q2) = 4.
[Delhi Maths (H) 2006; Banglore 1995; I.A.S. 1988; Meerut 1996; Rohilkhand 1995]

Sol. Given equation is 9(p2z + q2) = 4, ...(1)
which is of the form f(p, q, z) = 0.  Let u = x + ay, where a is an arbitrary constant. Now, replacing
p and q by dz/du and a(dz/du) respectively in (1), we get

9
2

2
2

z dz
du

a dz
du

FH IK # FH IK
L
NM

O
QP = 4 or dz

du
FH IK

2

= 4
9 2( )z a#

.

or du = ± (3/2) × (z + a2)1/2dz, separating variables u and z.
Integrating, u + b = ± (3/2) × [(z + a2)3/2/(3/2)] or u + b = ± (z + a2)3/2

or (u + b)2 = (z + a2)3   or (x + ay + b)2 = (z + a2)3,  as u = x + ay
which is a complete integral contaning two arbitrary constants a and b.

Ex. 2.  Find a complete integral of   p2 = qz. [Bilaspur 1996; Sagar 2004]
Sol. Given equation is p2 = qz, ...(1)

which is of the form f(p, q, z) = 0.  Let u = x + ay, where a is an arbitrary constant.  Now, replacing
p and q by dz/du and a(dz/du) respectively in (1), we get

dz
du

a dz
du

zFH IK / FH IK
2

or dz
du

= az or dz
z

= a du.

Integrating, log z – log b = au or z = beau or z = bea(x + ay),
which is a complete integral containing two arbitrary constants a and b.

Ex. 3.(a)  Find a complete integral of z = pq. [Meerut 1994]
Sol. Given equation is z = pq, ... (1)

which is of the form f(p, q, z) = 0. Let u = x + ay, where a is an arbitrary constant.  Now, replacing
p and q by dz/du and a(dz/du) respectively in (1), we get

z = a dz
du
FH IK

2
or dz

du = ± z
a

or ± a z–1/2dz = du.

Integrating,      ±2 az = u + b or 4(az) = (x + ay + b)2, as u = x + ay
Ex. 3.(b)  Find a complete integral of pq = 4z.
Sol. Proceed as in Ex. 3.(a). Ans. (x + ay + b)2 = az
Ex. 4.(a)  Find a complete integral of p(1 + q2) = q(z – Γ). [Meerut 1999;

Bilaspur 2002; Jiwaji 2003; Ravishanker 2005 Rewa 1998, Vikram 2004]
(b) Find a complete integral of p(1 + q2) = q(z – 1). [M.S. Univ. T.N. 2007]
Sol. (a) Given equation is p(1 + q2) = q(z – Γ), ...(1)

which is of the form f(p, q, z) = 0.  Let u = x + ay, where a is an arbitrary constant.  Now, replacing
p and q by dz/du and a(dz/du) respectively in (1), we get

    
dz
du

a dz
du

1
2

# FH IK
RST

UVW = a dz
du  (z – Γ) or 1 + a2 dz

du
FH IK

2
= a(z – Γ)

or dz
du = ;

∋ ∋{ ( ) }a z
a

Γ 1
  or du = ± adz

a z{ ( ) }∋ ∋Γ 1
.
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Integrating,     u + b = ± 2 { ( ) }a z ∋ ∋Γ 1 or (u + b)2 = 4{a(z – Γ) – 1}2

or (x + ay + b)2 = 4{a(z – Γ) – 1}2, a and b being arbitrary constants.
(b) Proceed as in part (a) by taking 1.Γ /

Ex. 5.(a)  Find a complete integral of pz = 1 + q2. [Meerut 1996]
Sol. Given equation is pz = 1 + q2, ...(1)

which is of the form f(p, q, z) = 0.  Let u = x + ay, where a is an arbitrary constant.  Now, replacing
p and q by dz/du and a(dz/du) respectively in (1), we get

z dz
du

= 1 + a2 dz
du
FH IK

2
or a2 dz

du
FH IK

2
– z dz

du  + 1 = 0.

6 dz
du

=
2 2 1/ 2

2
( 4 )

2
z z a

a
; ∋ or 2 2 1/ 2 2( 4 ) 2

dz du
z z a a

/
; ∋

or
2 2 1/ 2

2 2 1/ 2 2 2 1/ 2 2
[ ( 4 ) ]

[ ( 4 ) ][ ( 4 ) ] 2
z z a dz du

z z a z z a a
∋

/
; ∋ ∋

�
�

        or          
2 2 1/ 2

2 2
( 4 )

4 2
z z a du

a a
∋

/
�

or [z 2 2 1/ 2( 4 )z a∋� ] dz = 2du.

Integrating, 3 4
2 2

2 2 1/ 2 2 2 1/ 24( 4 ) log ( 4 ) 2
2 2 2 2
z z a bz a z z a u

9 :
∋ ∋ # ∋ / #> ?

< =
�

or z2 3 42 2 1/ 2 2 2 2 1/ 2( 4 ) 4 log ( 4 )z z a a z z a9 :∋ ∋ # ∋< =� = 4(x + ay) + b.

Ex. 5. (b)  Find a complete integral of 1 + p2 = qz.
Sol. Proceed as in Ex. 5.(a). The requied complete integral is

a2z2 � az a z az a z( ) log ( )2 2 2 24 4 4∋ ∋ # ∋L
NM

O
QP{ } = 4(x + ay) + b.

Ex. 6.  Find complete integrals of the following partial differential equations
(i)  p(z + p) + q = 0
(ii)  p(1 + q) = qz. [Gulbarga 2005]
Sol. (i)  The given equation is of the form f(p, q, z) = 0.  Let u = x + ay, a being an arbitrary

constant.  Replacing p by dz/du and q by a(dz/du) in the given equation, we get

dz
du

z dz
du

a dz
du

#FH IK # = 0 or dz
du = – (z + a) or

dz
z a# = – du.

Integrating, log  (z + a) – log b = –u  or  z + a = be–u  or z + a = be–(x + ay).
(ii) Proceed as in part (i). Ans. az – 1 = bex + ay.
Ex. 7.  Find a complete integral of p3 + q3 – 3pqz = 0. [I.A.S. 1991]
Sol. The given equation is of the form f(p, q, z) = 0. Let u = x + ay, a being an arbitrary

constant.  Replacing p by dz/du and q by a(dz/du) in the given equation,

dz
du

a dz
du

FH IK # FH IK
3

3
3

– 3az dz
du
FH IK

2
= 0   or   (1 + a3) dz

du = 3az or 1 3# a
z

dz = 3au.

Integrating (1 + a3) log z = 3au  + b or (1 + a3) log z = 3a(x + ay) + b.
Ex. 8.  Find a complete integrals of  (i) p + q = z/c.
(ii)  p + q = z.
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Sol. (i)  The given equation is of the form f(p, q, z) = 0.  Let u = x + ay, a being an arbitrary
constant.  Replacing p by dz/du and q by a(dz/du) in the given equation, we get

dz
du

a dz
du

z
c

# /   or   (1 + a) dz
du

z
c

/    or
c a

z
( )1#

dz = du.

Integrating,   c(1 + a) log z = u + b or c(1 + a) log z = x + ay + b.
(ii) Proceed as in part (i). Ans. (1 + a) log z = x + ay + b.
Ex. 9.  Find a complete integral of p2 = z2(1 – pq). [Jiwaji 1998; Meerut 2001]
Sol. The given equation is of the form f(p, q, z) = 0.  Let u = x + ay, a being an arbitrary

constant. Replacing p by dz/du and q by a(dz/du) in the given equation, we have

dz
du

z a dz
du

FH IK / ∋ FH IK
RST

UVW
2

2
2

1 or dz
du
FH IK

2
(1 + az2) = z2

or dz
du = ± z

az( )1 2#
   or ± du =

( ) ( )

( )

1 1

1

2 2

2

#
/ ;

#

#

az
z

dz az dz

z az
.

or du b; ;0 = dz
z az

az dz

az( ) ( )1
1
2

2

12 2#
#

#
z z . ...(1)

Now,
2

2 2

( 1/ )

(1 ) (1/ ) {(1 ( / )}

dz t dt

z az t a t

∋
/

# 5 #
0 0 ,  putting z = 1/t so that dz = –(1/t2)dt

       = – 1
2 1/ 2 sinh

( )
dt t

t a a
∋/ ∋

#0 = – sinh–1 1
z a

, as 1t
z

/ ...(2)

and 2 1/ 2
1 2
2 (1 )

az dz
az#0 = 1

2
2v v
v
dz , putting 2 21 az# / v  and 2 2az dz d/ v v

= v = (1 + az2)1/2.

Using (2) and (3), (1) reduces to ± (u + b) = – sinh–1(1/z a ) + (1 + az2)1/2

or ± (x + ay + b) = – sinh–1(1/z a ) + (1 + az2)1/2.
Ex. 10.  Find complete and singular integrals of 4(1 + z3) = 9z4pq.
Sol. The given equation is of the form f(p, q, z) = 0.  Let u = x + ay, a being an arbitrary

constant.  Replacing p by dz/du and q by a(dz/du) in the given equation, we have

4(1 + z3) = 9z4a dz
du
FH IK

2
or  ±

2

3 1/ 2
3

(1 )
az
z#

dz = 2 du

or ± a td i × 2t dt = 2 du,  putting 1 + z3 = t2  so that 3z2dz = 2t dt

Integrating,  ± a t = u + b or        ± a (1 + z3)1/2 = x + ay + b
or a(1 + z3) = (x + ay + b)2, ...(1)
which is a complete integral containing two arbitrary constants a and b.

Singular Integral.  Differentiating (1) partially w.r.t. a and b by turn, we get
1 + z3  = 2y(x + ay + b) ...(2)

and  0 = 2(x + ay + b). ...(3)
Eliminating a and b from (1), (2) and (3), the singular integral is 1 + z3 = 0. ...(4)
From (4),  p = �z/�x = 0  and   q = �z/�y = 0. Thus these values of p and q together with

1 + z3 = 0 satisfy the given equation.  Hence 1 + z3 = 0 is the required singular integral.
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Ex. 11.  Find complete and singular integrals of q2 = z2p2(1 – p2).
[Madurai Kamraj 2008; CDLU 2004]

Sol. The given equation is of the form f(p, q, z) = 0. Let u = x + ay, a being an arbitrary
constant.  Replacing p by dz/du and q by a(dz/du) in the given equation, we have

a dz
du
FH IK

2
= z2 dz

du
dz
du

FH IK ∋ FH IK
L
NM

O
QP

2 2
1 or a2 = z2 1

2
∋ FH IK
L
NM

O
QP

dz
du

or dz
du
FH IK

2
=

z a
z

2 2

2
∋

or du = ± zdz
z a( ) /2 2 1 2∋

.

Integrating, u + b = ± (z2 – a2)1/2   or (x + ay + b)2 = z2 – a2,  ...(1)
which is a complete integral containing two arbitrary constants a and b.

Singular Integral. Differentiating (1) partially w.r.t. ‘a’ and ‘b’, we get
–2a = 2y(x + ay + b) ...(2)

and    0 = 2(x + ay + b). ...(3)
From (2) and (3), x + ay + b = 0 and a = 0. Putting these values in (1), we get z = 0, which

is free from a and b. Again, from z = 0, we get p = �z/�x = 0 and q = �z/�y = 0. These values i.e.,
z = 0, p = 0 and q = 0 satisfy the given equation and hence the required singular integral is z = 0.

Ex. 12.  Find complete, singular and general integral of p3 + q3 = 27z. [Ravishankar 2005]
Sol. The given equation is of the form f(p, q, z) = 0. Let u = x + ay, a being an arbitrary

constant.  Replacing p by dz/du and q by a(dz/du) in the given equation, we have

dz
du

a dz
du

FH IK # FH IK
3 3

= 27z or dz
du (1 + a3)1/3 = 3z1/3

or du = (1/3) × (1 + a3)1/3 z–1/3 dz.
Integrating, u + b = (1/3) × (1 + a3)1/3 × [z2/3/(2/3)]     or 2(u + b) = (1 + a3)1/3z2/3

or 8(u + b)3 = (1 + a3)z2 or 8(x + ay + b)3 = (1 + a3)z2, ...(1)
which is a complete integral containing two arbitrary contants a and b.

Singular Integral.  Differentiating (1) partially w.r.t. ‘a’ and ‘b’, we get
24y(x + ay + b)2 = 3a2z2 ...(2)

and    24(x + ay + b) = 0. ...(3)
From (2) and (3), x + ay + b = 0 and a = 0.  Putting these values in (1), we get z = 0, which

is free from a and b.  Again, from z = 0, we get p = �z/�x = 0 and q = �z/�y = 0.  These values i.e.,
z = 0, p = 0 and q = 0 satisfy the given equation and hence the required singular integral is z = 0.

General integral.  Let b = !(a), where ! is an arbitrary function. Then (1) becomes
8[x + ay + !(a)]3 = z2(1 + a3). ...(4)

Differentiating (4) partially w.r.t. ‘a’,     24[x + ay + !(a)]2 [y + !%(a)] = 3a2z2. ...(5)
General integral is obtained by eliminating a from (4) and (5).
Ex. 13.  Find complete and singular integrals of z2(p2z2 + q2) = 1.

[Delhi Maths Hons 2005; Meerut 2003]
Sol.  The given equation is of the form f(p, q, z) = 0.  Let u = x + ay, a being an arbitrary

constant.  Replacing p by dz/du and q by a(dz/du) in the given equation, we have

z2 z dz
du

a dz
du

2
2

2
2FH IK # FH IK

L
NM

O
QP = 1 or z2(z2 + a2) dz

du
FH IK

2
= 1

or du = ± z(z2 + a2)1/2 dz = ± (1/2) × (z2 + a2)1/2 (2zdz)
Integrating,  u + b = ± (1/2) × [(z2 + a2)3/2/(3/2)]

or 9(u + b)2 = (z2 + a2)3 or 9(x + ay + b)2 = (z2 + a2)3,    ...(1)
which is a complete integral containing two arbitrary constants a and b.
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Singular Integral. Differentiating (1) partially, w.r.t. ‘a’ and ‘b’, we get
18(x + ay + b)y = 3(z2 + a2)  × 2a ...(2)

and 18(x + ay + b) = 0. ...(3)
From (2) and (3), x + ay + b = 0 and a = 0.  Putting these values in (1), we get z = 0, which

is free from a and b.  Again, from z = 0, we get p = �z/�x = 0 and q = �z/�y = 0.  These values i.e.,
z = 0, p = 0 and q = 0 do not satisfy the given equation.  Hence z = 0 is not a singular solution of
the given equation.

Ex. 14. (i)  Find a complete integral of z2(p2 + q2 + 1) = k2.
[Jabalpur 2004; Banglore 1993; I.A.S. 1996; Meerut 1997]

(ii)  Find a complete and singular integral of z2(p2 + q2 + 1) = 1. [I.A.S. 1979]
Sol. (i)  The given equation is of the form f(p, q z) = 0.  Let u = x + ay where a is an arbitrary

constant.  Replacing p by (dz/du) and q by a(dz/du) in the given equation, we get

z2 dz
du

a dz
du

FH IK # FH IK #
L
NM

O
QP

2
2

2
1 = k2 or (1 + a2) dz

du
FH IK

2
=

k z
z

2 2

2
∋

or   ± (1 + a2)1/2
2 2 1/ 2( )

z
k z∋

dz = du or ± 1
2

(1 + a2)(k2 – z2)–1/2(–2zdz) = du.

Integrating, ± (1 + a2)1/2 (k2 – z2)1/2 = u + b   or (1 + a2)(k2 – z2) = (u + b)2

or (1 + a2)(k2 – z2) = (x + ay + b)2.
(ii) Here k = 1.  Proceed as in part (i) and get complete integral

(1 + a2)(1 – z2) = (x + ay + b)2. ...(1)
Differentiating (1) partially w.r.t. a and b, we get

2a(1 – z2) = 2(x + ay + b) × y ...(2)
and 0 = 2(x + ay + b). ...(3)

From (2) and (3), we get x + ay + b = 0 and a = 0.  With these values (1) reduces to z2 = 1,
which is free from a and b.  Again, from z2 = 1, p = �z/�x = 0 and q = �z/�y = 0.  Now, p = 0, q =
0 and z2 = 1, satisfy the given equation and hence singular integral of the given equation is z2 = 1.

Ex. 15.   Find a complete integral of (i) q2y2 = z(z – px) [Meerut 1997]
(ii)  p2x2 = z(z – qy).

Sol. (i)  Given equation can be rewritten as y z
y

�
�
F
HG
I
KJ

2

= z z x
z
x

∋
�
�

F
HG

I
KJ . ...(1)

We choose new variables X and Y such that  (1/x)dx = dX      and   (1/y)dy = dY. ...(2)
so that log x = X         and log y = Y. ...(3)

Using (2), (1) becomes     �
�
FH IKzY

2
= z z z

X
∋ �

�
FH IK or        Q2 = z (z – P), ...(4)

where P = �z/�X and Q = �z/�Y.  (4) is of the form f(P, Q, z) = 0.  Let u = X + aY, where a is an
arbitrary constant. Replacing P by dz/du and Q by a(dz/du) in (4), we get

a2 dz
du
FH IK

2
= z z dz

du
∋FH IK         or a2 dz

du
FH IK

2
+ z dz

du – z2 = 0.

6 dz
du

=
∋ ; #

/
∋ ; #z z a z

a
a

a
z( ) ( )/ /2 2 2 1 2

2

2 1 2

2
4

2
1 1 4

2
= kz, ...(5)
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where k = [– 1 ;  (1 + 4a2)1/2]/2a2. ...(6)
From (5),  (1/kz)dz = du  so that        (1/k) log z = u + log b

or log z1/k = X + aY + log b = log x + a log y + log b = log (xbya).
6 z1/k = xbya  is complete integral containing two arbitrary constants a and b and an absolute

constant k given by (6).
(ii) Proceed as in part (i). Ans.  xbya = z1/k, where k = [–1 ;  (a2 + 4)1/2]/2
Ex. 16. Solve p2 + q2 = z.
Sol. Given equation is p2 + q2 = z, ... (1)

which is of the form f(p, q, z) = 0. Let u = x + ay, where a is an arbitrary constant. Now, replacing
p and q by dz/du and a(dz/du) respectively in (1), we have

(du/dz)2 + a2(du/dz)2 = z   or (dz/du)2 = z/(1 + a2)

or    
1/ 2

2 1/ 2(1 )
dz z
du a

/ ;
#   or 1/ 2 2 1/ 2(1 )z a dz du∋; # /

Integrating, 1/ 2 2 1/ 22 (1 )z a u b; # / #   or            1/ 2 2 1/ 22 (1 )z a x ay b; # / # #
Thus,       4z(1 + a2) = (x + ay + b)2, a, b being arbitrary constants ... (2)
(2) is the complete integral of the given equation (1).
Differentiating (2) partially w.r.t. ‘a’ and ‘b’, we get
8az = 2y(x + ay + b) or 4az = y(x + ay + b) ... (3)
0 = 2(x + ay + b) or x + ay + b = 0 ... (4)
Substituting the value of x + ay + b from (4) in (3), we have

4az = 0 or z = 0, which is the singular solution.
In order to get the general solution, put ( )b a/ ∃  in (2) and get

2 24 (1 ) { ( )} 0z a x ay a# ∋ # # ∃ / ... (5)

Differentiating (5) partially w.r.t. ‘a’,     8 2{ ( )} { ( )} 0az x ay a y a%∋ # # ∃ 5 # ∃ / ... (6)
The required general solution is given by (5) and (6)

Ex. 17. Find the complete integral of 2 2 2 2 216 9 4( 1) 0p z q z z# # ∋ /

Sol.  Given equation is of the form ( , , ) 0f p q z /

Let u x ay/ # , a being an arbitrary constant. ... (1)
Now replacing p and q by dz/du and a(dz/du) respectively in the given equation, we have

2 2 2 2 2 216 ( / ) 9 ( / ) 4( 1) 0z dz du a z dz du z# # ∋ /

or    
2

2 2 2(16 9 ) 4(1 )
dz

a z z
du

) ∗# / ∋+ ,
− .

              or
2 1/ 2

2 1/ 2

2(1 )

(16 9 )

dz z

du z a

∋
/

#

or ∋∋ 5 # ∋ ∋ /2 1/ 2 2 1/ 2( 1/ 2) (16 9 ) (1 ) ( 2 )a z z dz du

Integrating, 2 1/ 2 2 1/ 2(16 9 ) (1 )a z u b x ay b∋ # ∋ / # / # # , by (1)

or 2 2 2(16 9 ) (1 ) ( )a z x ay b# ∋ / # #  is the complete integral, a, b being arbitrary constants

Ex. 18. Find the complete integral of 4 3 2pq x y z/

Sol. Re–writing the given equation, we get 4 3 2( / ) ( / )z x x z y y z� � � � / ... (1)
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Putting   / /4 3,x dx dX y dy dY so that / /5 4/ 5 , / 4x X y Y , (1) gives

2( / ) ( / )z X z Y z� � � � / or 2PQ z/ ... (2)

which is of the form ( , , ) 0f P Q z / . Let u X aY/ # , a being an arbitrary constant. Replacing P and

Q be /dz du  and ( / )a dz du  respectively in (2), we get
2 2( / )a dz du z/ giving ( / )a z dz du/

Integrating / # / # #loga z u b X aY b ,  as  u X aY/ #

or / # #5 4log / 5 ( ) / 4 , ,a z x ay b a b  being arbitrars constants

EXERCISE 3(E)
Find the complete integral of the following equations (1–7)

1. z = p2 – q2. Ans. x + ay + b = 4(1 – a2)z
2. zpq = p + q. (Delhi 2007) Ans. x + ay + b = (4az)/(1 – a)
3. z2p2 + q2 = p2q. Ans. z = a tan(x + ay + b)
4. p2z2 + q2 = 1. [Delhi B.A. (Prog) II 2010, 11; M.S. Univ. T.N. 2007, Nagpur 2001;

          Meerut 2008]             Ans. 2 2 1/ 2 2 1[( / 2) ( ) ( / 2) sinh ( / )]x ay b z z a a z a∋# # / ; 5 # # 5

5. p3 = qz. (Delhi B.Sc. (Prog) II 2007) Ans. 4z = (x + ay + b)2

6. 16z2p2 + 25z2a2 + 9z2 – 81 = 0. Ans. (16 + 25a2) (9 – z2) = 9(x + ay + b)2

7. z2 = 1 + p2 + q2. Ans. z = cosh{x + ay + b)/(1 + a2)1/2}
8. Using Charpit’s method, discuss how to solve equations of the form f(z, p, q) = 0. Hence

find complete integral of the equation 9(p2z + q2) = 4.    [Delhi Maths (H) 2006]
Hint : Refer Art. 3.14 and Ex. 1 of Art. 3.15
Solve the following partial differential equations (9 – 14)

9. z2(p2 + q2 + 2) = 1 Ans. C.I. (1 + a2) (1 – 2z2) = 4(x + ay + b)2; S.S. 2z2 – 1 = 0;

G.S. It is given by (1 + a2) (1 – 2z2) – 2{ ( )} 0,x ay a# # ∃ /   2(1 2 )a z∋

4{ ( ) | { ( )} 0x ay a y a%∋ # # ∃ 5 # ∃ /

10. z = pq. Ans. C.I. 4az = (x + ay + b)2; S.S. z = 0; G.S. It is given by
24 { ( )} ,az x ay a∋ # # ∃ 2 { ( )} { ( )} 0z x ay a y a%∋ # # ∃ 5 # ∃ /

11. p(1 – q2) = q(1 – z). Ans. C.I. 4(1 – a + az) = (x + ay + b)2; S.S. Does not exist;

G.S. It is given by 24(1 ) { ( )} 0,a az x ay a∋ # ∋ # # ∃ / 2 2 { ( )}{ ( )} 0z x ay a y a%∋ ∋ # # ∃ # ∃ /

12. p2 + pq = 4z.     Ans. C.I. (1 + a)z = (x + ay + b)2; S.S. z = 0;G.S. 2(1 ) { ( )} 0,a z x ay a# ∋ # #∃ /

2{ ( )} { ( )} 0z x ay a y a%∋ # # ∃ 5 # ∃ /

13. p3 + q3 = 3pqz, z > 0. Ans. C.S. (1 + a3)log z = 3a(x + ay) + b; S.S. Does not

exist. G.S. It is given by 3(1 )log 3 ( ) ( ) 0,a z a x ay a# ∋ # ∋ ∃ / 23 log 3 6 ( ) 0a z x ay a%∋ ∋ ∋ ∃ /

14. p2 + q2 = 4z. Ans. C.I. 4(1+a2)z – (x + ay + b)2 = 0; S.S. z = 0; G.S. It is given by
2 2(1 ) { ( )} 0,a z x ay a# ∋ # # ∃ / { ( )} { ( )} 0.az x ay a y a%∋ # # ∃ 5 # ∃ /
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3.17. Standard form IV. Equation of the form f1(x, p) = f2(y, q). i.e., a form in which
z does not appear and the terms containing x and p are on one side and those containing y and q on
the other side.  [Bhopal 2010; Ravishankar 1999]

Let F(x, y, z, p, q) = f1(x, p) – f2(y, q) = 0. ...(1)
Then Charpit’s auxiliary equations are

dp dq
F F F Fp q
x z y z

/
� � � �# #
� � � �

=
dz dx dy

F F F Fp q
p q p q

/ /
� � � �∋ ∋ ∋ ∋
� � � �

or dp
f x

dq
f y� �

/
∋ � �1 2

=  dz
p f p q f q∋ � � # � �( ) ( )1 2

=
dx
f p

dy
f q∋ � �

/
� �1 2

, by (1)

Taking the first and the fourth ratios, we have

1 1( / ) ( / )f p dp f x dx� � # � � = 0                          or df1 = 0.
Integrating, f1 = a,  a being an arbitrary constant.
6 (1) 2 f1(x, p) = f2(y, q) = a. ...(2)
Now, (2) 2 f1(x, p) = a     and      f2(y, q) = a.   ...(3)
From (3), on solving for p and q respectively, we get
p = F1(x, a), say and q = F2(y, a), say ...(4)
Substituting these values in dz = p dx + q dy, we get        dz = F1(x, a) dx + F2(y, a) dy.

Integrating, z = 1 2( , ) ( , ) ,F x a dx F y a dy b# #0 0
which is a complete integral containing two arbitrary constants a and b.

Remark 1. Sometimes change of variables can be employed to reduce a given equation in
the standard form IV.

Remark 2. Singular and general integral are obtained by well known methods.
3.18.SOLVED EXAMPLES BASED ON ART 3.17

Ex. 1.  Find a complete integral of x(1 + y)p = y(1 + x)q. [Agra 1991]
Sol. Separating p and x from q and y, the given equation reduces to

(xp)/(1 + x) = (yq)/(1 + y)
Equating each side to an arbitrary constant a, we have

xp
x1# = a and yq

y1#
= a so that p = a 1#F

H
I
K

x
x

and q = a
1#F
HG
I
KJ

y
y .

Putting these values of p and q in dz = p dx + q dy, we get

dz =
a x

x
dx a y

y
( ) ( )1 1#

#
#

dy or dz = a
x

dx a
y

1 1 1 1#FH IK # #FHG
I
KJ dy.

Integrating, z = a(log x + x) + a(log y + y) + b = a(log xy + x + y) + b,
which is a complete integral containing two arbitrary constants a and b.

Ex. 2.  Find a complete integral of p – 3x2 = q2 – y. [Meerut 1996]
Sol. Equating each side to an arbitrary constant a, we get

p – 3x2 = a and q2 – y = a so that p = a + 3x2 and q = (a + y)1/2.
Putting these values of p and q in dz = pdx + qdy, we get
dz = (a + 3x2)dx + (a + y)1/2 dy so that z = ax + x3 + (2/3) × (a + y)3/2 + b.
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3.58 Non-Linear Partial Differential Equations of Order One

Ex. 3.  Find a complete integral of yp = 2yx + log q. [Ravishankar 2005]
Sol.  Rewritting the given equation,  p = 2x + (1/y) log q or     p – 2x = (1/y) log q.
Equating each side to an arbitrary constant a, we get
p – 2x = a and (1/y) log q = a so that p = a + 2x and q = eay.
Putting these values of p and q in dz = p dx + q dy, we get
dz = (a + 2x)dx + eaydy so that z = (ax + x2) + (1/a) × eay + b.
Ex. 4.  Find a complete integral of q = px + p2.

[Agra 1995; Meerut 1994; Bilaspur 2004; Jabalpur 1998]
Sol. Equating each side of the given equation to an arbitrary constant a, we have
q = a and px + p2 = a or q = a and p2 + px – a = 0.
6 q = a and p = [–x ± (x2 + 4a)1/2]/2.
Putting thse values of p and q in dz = p dx + q dy, we get

dz = (1/2) × [–x ± (x2 + 4a)1/2]dx + a dy.

Integrating, z = – x x x a a x x a
2

2 2

4
1
2 2

4 2 4; # # # #L
NM

O
QP( ) log ( ){ } + ay + b.

Ex. 5.  Solve py + qx + pq = 0. [Kurukshetra 2004; I.A.S 1990]
Sol. Given py + q(x + p) = 0.   or   p/(p + x) = –q/y.
Equating each side to an arbitrary constant a, we get
p/(p + x) = a and –q/y = a 2 p = (xa)/(1 – a)  and q = –ay.
Putting thse values of p and q in dz = p dx + q dy, we get
dz = {a/(1 – a)} x dx – ay dy       so that      z = {a/(1 – a)}× (x2/2) – a × (y2/2) + b/2

or 2z = {a/(1 – a)}x2 – ay2 + b, a, b being arbitrary constants.
Ex. 6. Find a complete integral of z2(p2 + q2) = x2 + y2, i.e.,  z2[(�z/�x)2 + (�z/�y)2] = x2 + y2.

[Agra 2006; Jabalpur 2004; Rewa 2002 Sagar 1999; Vikram 1996 Delhi Maths Hons
1990; I.A.S. 1989; Kanpur 1994; Meerut 2003]

Sol. Given   z z
x

z z
y

2
2

2
2

�
�
FH IK # �

�
F
HG
I
KJ = x2 + y2  or       z z

x
z z

y
�
�
FH IK # �

�
F
HG
I
KJ

2 2

= x2 + y2.   ...(1)

Let z dz = dz so that z2/2 = Z. ...(2)
Using (2), (1) becomes    (�Z/�x)2 + (�Z/�y)2 = x2 + y2 or P2 + Q2 = x2 + y2,

where P = �Z/�x and Q = �Z/�y. Separating P and x from Q and y, we get
P2 – x2 = y2 – Q2.

Equating each side of the above equation to an arbitrary constant a2, we get
P2 – x2 = a2 and y2 – Q2 = a2   so that    P = (a2 + x2)1/2 and Q = (y2 – a2)1/2.

Putting these values of P and Q in dZ = P dx + Q dy, we have
dZ = (a2 + x2)1/2 dx + (y2 – a2)1/2 dy.

Integrating, Z = (x/2) × (a2 + x2)1/2 + (a2/2) × log{x + (a2 + x2)1/2}
+ (y/2) × (y2 – a2)1/2 – (a2/2) × log {y + (y2 – a2)1/2} + (b/2)

or    z2 = x2 2 2 1/ 2( )a x#  + a2 log [x + 2 2 1/ 2( )a x# } + y 2 2 1/ 2( )y a∋ – a2log{y + 2 2 1/ 2( )y a∋ }+ b

[�  From (2), Z = z2/2]
Ex. 7.  Find a complete integral of z(p2 – q2) = x – y.

[Bilaspur 2003; Indore 2002, 02; Jiwaji 2000; Bangalore 1995; I.A.S 1989]
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Sol. Re–writting the given equation, ( )z z x� � 2– ( )z z y� � 2 = x – y. ...(1)

Let z dz = dZ so that (2/3) × z3/2 = Z. ...(2)
Using (2), (1) becomes (�Z/�x)2 – (�Z/�y)2 = x – y or P2 – Q2 = x – y,

where P = �Z/�x and Q = �Z/�y.  Separating P and x from Q and y, we get
P2 – x = Q2 – y. ...(3)

Equating each side to an arbitrary constant a, we get
P2 – x = a  and Q2 – y = a   so that      P = (x + a)1/2    and   Q = (y + a)1/2

Putting these values of P and Q in dZ = P dx + Q dy, dZ = (x + a)1/2dx + (y + a)1/2 dy.
Integrating, Z = (2/3) × (x + a)3/2 + (2/3) × (y + b)3/2 + 2b/3

or (2/3) × z3/2 = (2/3) × (x + a)3/2 + (2/3) × (y + b)3/2 + 2b/3, as Z = (2/3) × z3/2

or z3/2 = (x + a)3/2 + (y + a)3/2 + b,  a, b being arbitrary constants.
Ex. 8.  Find a complete integral of z(xp – yq) = y2 – x2.
Sol. Re–writting the given equation, we have

xz �
�

∋ �
�

z
x

yz z
y

= y2 – x2 or x z z
x

y z z
y

�
�
F
HG
I
KJ ∋

�
�
F
HG
I
KJ = y2 – x2. ...(1)

Let z dz = dZ so that z2/2 = Z. ...(2)
Using (2), (1) becomes x(�Z/�x) – y(�Z/�y) = y2 – x2 or xP – yQ = y2 – x2,

where P = �Z/�x and Q = �Z/�y. Separating P and x from Q and y, we get
xP + x2  = yQ + y2.

Equating each side to an arbitrary constant a, we have
xP + x2 = a and yQ + y2 = a so that P = a/x – x    and    Q = a/y – y.
Putting these values of P and Q in dZ = P dx + Q dy, dZ = (a/x – x)dx + (a/y – y)dy.
Integrating, Z = a log x – (x2/2) + a log y – (y2/2) + b/2

or z2/2 = a(log x + log y) – (x2 + y2 – b)/2 or z2 = 2a log (xy) – x2 – y2 + b.
Ex. 9.  Find a complete integral of p2 + q2 = z2(x + y). [Agra 2010; M.S. Univ. T.N.

2007]

Sol. Given �
�
FH IK # �

�
F
HG
I
KJ

z
x

z
y

2 2

= z2(x + y) or         1 12 2

z
z
x z

z
y

�
�
FH IK # �

�
F
HG
I
KJ = x + y   ....(1)

Let (1/z)dz = dZ  so that  log z = Z. ...(2)
Using (2), (1) becomes (�Z/�x)2 + (�Z/�y)2 = x + y  or P2 + Q2 = x + y,

where P = �Z/�x and Q = �Z/�y.  Separating P and x from Q and y, we get
P2 – x = y – Q2.

Equating each side to an arbitrary constant a, we have
P2 – x = a and y – Q2 = a so that P = (a + x)1/2   and    Q = (y – a)1/2.
Putting these values of P and Q in dZ = P dx + Q dy, dZ = (a + x)1/2dx + (y – a)1/2dy.
Integrating, Z = (2/3) × [(a + x)3/2 + (y – a)3/2] + (2/3) × b

6  log z = (2/3) × [(a + x)3/2 + (y – a)3/2 + b] is a complete integral, using Z = log z
Ex. 10.  Find a complete integral of p2 + q2 = (x2 + y2)z. [Delhi Maths Hons. 1995]
Sol. The given equation can be rewritten as

1 2 2

z
z
x

z
y

�
�
FH IK # �

�
F
HG
I
KJ

L
N
MM

O
Q
PP = x2 + y2 or 1 1

2 2

z
z
x z

z
y

�
�

F
HG
I
KJ # �

�
F
HG
I
KJ = x2 + y2. ...(1)
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Let 1 zd idz = dZ  i.e., z–1/2dz = dZ so that 2 z = Z.   ...(2)

Using (2), (1) becomes (�Z/�x)2 + (�Z/�y)2 = x2 + y2 or P2 + Q2 = x2 + y2,
where P = �Z/�x and Q = �Z/�y.  Separting P and x from Q and y, we get

P2 – x2 = y2 – Q2.
Equating each side to an arbitrary constant a2, we have
P2 – x2 = a2  and y2 – Q2 = a2 so that     P = (a2 + x2)1/2       and    Q = (y2 – a2)1/2

Putting these values of P and Q in dZ = P dx + Q dy,  dZ = (a2 + x2)1/2dx + (y2 – a2)1/2dy.

Integrating, Z =
x
2 (x2 + a2)1/2+ a2

2
sinh–1 x

a
y

#
2 (y2 – a2)1/2– a2

2
cosh–1 y

a
b#
2

or 4z1/2 = x(x2 + a2)1/2 + a2sinh–1(x/a) + y(y2 – a2)1/2 – a2cosh–1(y/a) + b, as 2Z z/
Ex. 11.  Find a complete integral of (p2/x) – (q2/y) = (1/z) × [(1/x) + (1/y)].

[Delhi B.Sc. Hons. 1996]
Sol. The given equation can be re–written as

z
x

z
x

z
y

z
y

�
�
FH IK ∋ �

�
F
HG
I
KJ

2 2

= 1 1
x y# or          1 12 2

x
z z

x y
z z

y
�
�

FH IK ∋ �
�

F
HG
I
KJ = 1 1

x y#    ....(1)

Let z dz = dZ so that (2/3) × z3/2 = Z. ...(2)
Using (2), (1) becomes

1 12 2

x
Z
x y

Z
y

�
�
FH IK ∋ �

�
F
HG
I
KJ = 1 1

x y#   or P
x

Q
y

2 2
∋ = 1 1

x y# ,

where P = �Z/�x  and Q = �Z/�y.  Separating P and x from Q and y, we get
(P2 – 1)/x = (Q2 + 1)/y.

Equating each side to an arbitrary constant a, we have
(P2 – 1)/x = a      and      (Q2 + 1)/y = a   so that   P = (1 + ax)1/2   and    Q = (ay – 1)1/2.
Putting these values of P and Q in dZ = P dx + Q dy,    dZ = (1 + ax)1/2dx + (ay – 1)1/2dy.
Integrating, Z = (2/3a) × (1 + ax)3/2 + (2/3a) × (ay – 1)3/2 + (2/3a) × b

or az3/2 = (1 + ax)3/2 + (ay – 1)3/2 + b,  as Z = (2/3) × z3/2.
Ex. 12.  Find a complete integral of yzp2 = q. [M.S. Univ. T.N. 2007]

Sol. Given yz2 �
�
FH IKzx

2
= z �

�
z
y       or       y z z

x
z z

y
�
�
F
HG
I
KJ /

�
�
F
HG
I
KJ

2

.  ...(1)

Let z dz = dZ so that z2/2 = Z. ...(2)
Using (2), (1) becomes y(�Z/�x)2 = �Z/�y  or           yP2 = Q,  ...(3)

where  P = �Z/�x and Q = �Z/�y.  Separating P from y and Q, we get
P2 = Q/y = a2, (say) ; a being an arbitrary constant. Hence     P = a       and       Q = ya2.
Then, dZ = P dx + Q dy reduces to  dZ = a dx + ya2dy so that   Z = ax + (a2/y2)/2 + b/2

or z2/2 = ax + (a2y2)/2 + b/2 or z2 = 2ax + a2y + b.
Ex. 13.  Find a complete integral of zpy2 = x(y2 + z2q2).

Sol. Given
2

2 2z zy z x y x z
x y

) ∗� �) ∗ / # + ,+ ,� �− . − .
...(1)

Let z dz = dZ so that      z2/2 = Z. ...(2)
Using (2), (1) becomes y2(�Z/�x) = xy2 + x (�Z/�y)2    or       y2P = x(y2 + Q2),

where  P = �Z/�x and Q = �Z/�y.  Separating P and x from, Q and y, we get
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P/x = (y2 + Q2)/y2.
Equating each side to an arbitrary constant a, we get
P/x = a  and  1 + (Q2/y2) = a so that P = ax and Q = ± (a – 1)1/2y.
6 dZ = P dx + Q dy = ax dx ± (a – 1)1/2y dy
Integrating,  Z =   (ax2/2) ± (a – 1)1/2(y2/2) + b/2 or  z2 = ax2 ± (a – 1)1/2y2 + b,  as Z = z2/2.
Ex. 14. Find the complete integral of the partial differential equation

2 2 2 2 2 2 2 22 3 8 ( )p q x y x q x y# / # [I.A.S. 2001]
Sol. Re–writing the given equation, we have

2 2 4 2 2 22 ( 4 ) (8 3)q p x x y q∋ / ∋ or 2 4 2 2 2 2 2( 4 ) / (8 3) /2 4p x x y q q a∋ / ∋ / , say

where a is an arbitrary constant. Then, 2 2 2 24 ( )p x a x/ # and ∋ /2 2 2 28 ( ) 3q y a y

so that   2 2 1/ 22 ( )p x a x/ # and ∋/ 5 5 ∋1/ 2 2 2 1/2(3/2) ( / 2) ( )q y y a

Substituting these values in / #dz p dx q dy , we get
∋/ # # 5 5 ∋2 2 1/2 1/ 2 2 2 1/ 22 ( ) (3/ 2) ( / 2) ( )dz x a x dx y y a dy

Integrating, 2 2 1/ 2 1/ 2 2 2 1/ 22 ( ) (3 / 2) (1/ 2) ( )z x a x dx y y a dy b∋/ # # 5 5 ∋ #0 0 ... (1)

Put    x2 + a2 = u    and    y2 – a2 = v    so that     2xdx = du     and      2ydy = dv ... (2)
i.e.,          xdx = (1/2) × du and ydy = (1/2) × dv. Then (1) reduces to

1/ 2 1/ 2 –1/ 2(3/ 2) (1/ 4)z u du d b/ # 5 5 #0 0 v v

or 3/2 1/ 2 1/ 2(2 / 3) (3/ 2) (1/ 4) 2z u b/ 5 # 5 5 #v

or 2 2 3/ 2 1/ 2 2 2 1/ 2(2 / 3) ( ) (3/ 2) (1/ 2) ( ) ,z x a y a b/ 5 # # 5 5 ∋ #
which is the required complete integral containing a and b as arbitrary constants.

Ex. 15. Find the complete integral of the partial differential equation p2q2 + x2y2

= x2q2(x2 + y2) [Delhi Maths (H) 2002; Agra 2005]

Sol. Re–writing, 2 2 2 2 2 2/ /p x y q x y# / # or 2 2 2 2 2 2 2( / ) ( / )p x x y y q a∋ / ∋ / , say

2    / #2 2 1/ 2( ) ,p x x a       and q = y/(y2 – a2)1/2

6 / #dz p dx q dy becomes 2 2 1/ 2 2 2 1/ 2( ) ( )dz x x a dx y y a dy∋/ # # ∋

Integrating, / 5 # # ∋ #2 2 1/ 2 2 2 1/ 2(1/ 3) ( ) ( )z x a y a b ,

which is complete integral with a and b as arbitrary constants.

Ex. 16. Find the complete integral of 2 2 2(1 ) 0x yp x q∋ # /

Sol. Re–writing, we have 2 2 2 2( 1) / /x p x q y a∋ / / , say

6 2 1/ 2/( 1)p ax x/ ∋  and 2q a y/ . Hence / #dz p dx q dy  becomes

  2 1/ 2 2( 1)dz ax x dx a ydy∋/ ∋ # so that / ∋ # #2 1/ 2 2 2( 1) ( ) / 2z a x a y b .

Ex. 17. Find the the complete integral of 2 2 1 0p q px qy# ∋ ∋ # / .

Sol. Re–writing, 2 2 1 ,p px qy q a∋ / ∋ ∋ /  say

6    #
/ /

∋ ∋
1

,
1 2 2 1

a a
p q

x y
and so      

#
/ # / #

∋ ∋
( 1)

1 2 2 1
a dx a dy

dz p dx q dy
x y
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Integrating, / ∋ 5 ∋ # 5 # # #( / 2) log | 1 2 | (1/ 2) ( 1)log | 2 1 |z a x a y b .

Ex. 18. Find the complete integral of 2 22 ( 1)x z q pz# /

Sol.  Re–writing the given equation, we have 22 {( / ) 1} ( / )x z z y z z x� � # / � � ... (1)

Putting /z dz dZ  so that 2 / 2z Z/ , (1) reduces to
22 {( / ) 1} /x Z y Z x� � # / � � or 22 ( 1)x Q P# / , ... (2)

where /P Z x/ � �  and /Q Z y/ � � . Re–writing (2), we have
2 2( / 2 ) 1P x Q a∋ / / , say so that / # 22 (1 ),P x a Q = a

6 / #d Z P dx Q dy         becomes / # #22 (1 )dZ x a dx a dy

Integrating,  2 2(1 )Z a x ay b/ # # # or 2 2/ 2 (1 )z a x ay b/ # # # .

EXERCISE 3 (F)
Find a complete integral of the following equations (1 – 9)

1(a). p2 = q + x. Ans. z = (2/3) × (a + x)3/2 + ay + b.
(b). p2y (1 + x2) = qx2.   [Delhi B.A (Prog) II 2011]        Ans. z = a(1 + x2)1/2 +(a2y/2) + b.

2. p2 + q2 = x + y. [Agra 2009; Meerut 2007]  Ans. 3z = 2(x + a)3/2 + 2(y – a)3/2 + b.
3. p2 + q2 = x2 + y2. [Jiwaji 1999; Ravishankar 2003]

Ans. 2z = x(x2 + a2)1/2 + a2sinh–1(x/a) + y(y2 – a2)1/2 – a2cosh–1(y/a) + b.
4. pey = qex. [Jiwaji 1996] Ans. z = aex + aey + b.
5. p1/3 – q1/3 = 3x – 3y. Ans. z = 3x3 – 3ax2 + a2x + 2y4 – 4ay3 + 3a2y2 – a3y + b.
6. q = 2yp2. Ans. z = ax + a2y2 + b.
7. p2 – y3q = x2 – y2. Ans. 2z = x(x2 + a2)1/2 + a2sinh–1(x/a) – (a2/2)+ log y2 + b.

  8.  z2(p2 + q2) = x2 + e2y. [Delhi Maths (H) 2005]

 Ans. z2 = x(x2 + a)1/2 + a sinh–1(x/ a ) + 2(e2y – a)1/2 – a  tan–1 {(e2y – a)/a}1/2 + b
  9.  p + q = px + qy.     [Bangalore 1996]   Ans. z = –a log (1 – x) + a log (y – 1) + b.
Solve the following partial differential equations: (10 – 17)

10. pq = xy Ans. C.I. 2z = ax2 + y2/a + b; S.S. Does not exist G.S. 2 22 / ( ) 0,z ax y a a∋ ∋ ∋∃ /

2 2 2/ ( ) 0x y a a%∋ # ∃ /

11. 2 .p q x# / Ans. C.I. z = (2x – a)3/6 + a2y + b; S.S. Does not exit; G.S.
3 2(2 ) / 6 ( ) 0,z x a a y a∋ ∋ ∋ ∋ ∃ / 2(2 ) / 2 2 ( ) 0x a ay a%∋ ∋ ∋ ∃ /

12. q (p – cos x) = cos y.  Ans. z = ax + sin x + (1/a) × sin y + b; S.S. Does not exist

G.S. (1/ ) sin ( ) 0,z ax a y a∋ ∋ 5 ∋ ∃ / 2(1/ ) sin ( ) 0x a y a%∋ ∋ 5 # ∃ /

13. q = xyp2  Ans. C.I. 22 4 ;z ax ay b/ # # S.S. Does not exist; G.S. 22 4 ( ) 0,z ax ay a∋ ∋ ∋∃ /
22 ( / ) ( ) 0x a y a%# #∃ /

14. x2p2 = q2y. Ans. C.I. log 2 ;z a x ay b/ # # S.S. Does not exist.

G.S. log 2 ( ) 0,z a x ay a∋ ∋ ∋ ∃ / log 2 2 ( ) 0x y a a%# # ∃ /
15. p – q = x2 + y2. Ans. C.I. z = (x3 – y3)/3 + a(x + y) + b; S.S. Does not exit;

G.S. 3 3( ) / 3 ( ) ( ) 0,z x y a x y a∋ ∋ ∋ # ∋ ∃ / ( ) 0x y a%# # ∃ /

16. 2 2p x q y∋ / ∋ Ans. C.I. 3z = 2(x + a)3/2 + 2(y + a)3/2 + b; S.S. Does not exist
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G.S. 3/ 2 3/ 2 1/ 2 1/ 23 2( ) 2( ) ( ) 0, 3( ) 3( ) ( ) 0z x a y a a x a y a a%∋ # ∋ # ∋ ∃ / # # # # ∃ /

17. px + q = p2. Ans. C.I. 3 42 2 1/ 2(1/ 4) ( 4 )z x x x a/ 5 # # + a log {x + (x2 + 4a2)1/2} ay

+ b; S.S. Does not exist G.S. 2 2 1/ 2 2 1/ 2(1/ 4) { ( 4 ) } log{ ( 4 ) }z x x x a a x x a ay∋ 5 # # ∋ # # ∋

( ) 0,a∋∃ /  (x/2) × (x2 + 4a)–1/2 + log {x + (x2 + 4a)1/2} + (2a)/[{x + (x2 + 4a)1/2} × (x2 + 4a)]

( ) 0y a%# # ∃ /

3.19. JACOBI’S METHOD [Himachel 2005; Meerut 2005, 06, 08; Pune 2010]
This method is used for solving partial differential equations involving three or more

independent variables.  The central idea of Jacobi’s method is almost the same as that of Charpit’s
method for two independent variables.  We begin with the case of three independent variables.  The
results arrived at are, however, general and will be used with suitable modification for the case of
four independent variables and so on.

Let p1 = �z/�x1, p2 = �z/�x2 and p3 = �z/�x3.
Consider a partial differential equation f(x1, x2, x3, p1, p2, p3) = 0, ...(1)

where the dependent variable z does not occur except by its partial differential coefficients with
respect to the three independent variables x1, x2, x3.

The main idea in Jacobi’s method is to get two additional partial differential equations of the
first order F1(x1, x2, x3, p1, p2, p3) = a1      ...(2)
and F2(x1, x2, x3, p1, p2, p3) = a2, ...(3)
where a1 and a2 are two arbitrary constants such that (1), (2) and (3) can be solved for p1, p2, p3 in
terms of x1, x2, x3 which when substituted in

dz = p1dx1 + p2dx2 + p3dx3, ...(4)
makes it integrable, for which the conditions are
�p2/�x1 = �p1/�x2, �p3/�x2 = �p2/�x3, and �p1/�x3 = �p3/�x1 ...(5)

Differentiating (1) and (2) partially, w.r.t. x1, we have
�
�

# �
�

�
�

# �
�

�
�

# �
�

�
�

f
x

f
p

p
x

f
p

p
x

f
p

p
x1 1

1

1 2

2

1 3

3

1
= 0 ...(6)

and 31 1 1 1 2 1

1 1 1 2 1 3 1

pF F p F p F
x p x p x p x

�� � � � � �
# # #

� � � � � � �
= 0. ...(7)

Eliminating �p1/�x1 from (6) and (7), we have

  1 1 1 1 2

1 1 1 1 2 1 1 2 1

F F F F pf f f f
x p p x p p p p x

) ∗ ) ∗� � � � �� � � �
∋ # ∋+ , + ,� � � � � � � � �− . − .  + 

31 1

3 1 1 3 1

pF Ff f
p p p p x

) ∗ �� �� �
∋+ ,� � � � �− . = 0.  ...(8)

Similarly, differentiating (1) and (2) partially w.r.t. x2 and then eliminating �p2/�x2 from the
resulting equations, we have

1 1 1 1 1

2 2 2 2 1 2 2 1 2

F F F F pf f f f
x p p x p p p p x

) ∗ ) ∗� � � � �� � � �
∋ # ∋+ , + ,� � � � � � � � �− . − .  + 

31 1

3 2 2 3 2

pF Ff f
p p p p x

) ∗ �� �� �
∋+ ,� � � � �− . = 0.  ...(9)

Again, differentiating (1) and (2) partially w.r.t. x3 and then eliminating �p3/�x3 from the
resulting equation, we have

1 1 1 1 1

3 3 3 3 1 3 3 1 3

F F F F pf f f f
x p p x p p p p x

) ∗ ) ∗� � � � �� � � �
∋ # ∋+ , + ,� � � � � � � � �− . − .

+ 1 1 2

2 3 3 2 3

F F pf f
p p p p x

) ∗� � �� �
∋+ ,� � � � �− .

= 0.  ...(10)

Adding (8), (9) and (10) and using the relations (5), we have
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1 1

1 1 1 1

F Ff f
x p p x

! �# ## #
∃% &# # # #∋ (  + 1 1

2 2 2 2

F Ff f
x p p x

! �# ## #
∃% &# # # #∋ (  + 

1 1

3 3 3 3

F Ff f
x p p x

! �# ## #
∃% &# # # #∋ ( = 0. ...(11)

The L.H.S. of (11) is generally denoted by (f, F1).  Then, (11) becomes

          (f, F1) =
#
#

#
#

∃ #
#

#
#

F
HG

I
KJ

)
∗ f

x
F
p

f
p

F
xr r r rr

1 1

1

3
= 0. ...(11)+

Starting with (1) and (3) in place of (1) and (2) and proceeding as above, we have a similar

relation   (f, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ f

x
F
p

f
p

F
xr r r rr

2 2

1

3

= 0.    ...(12)

Again, starting with (2) and (3) in place of (1) and (2) and proceeding as above, we again

have a similar relation       (F1, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

1 2 1 2

1

3

= 0. ...(13)

(11) [or (11)+ ] and (12) are linear equtions of first order with x1, x2, x3, p1, p2, p3 as
independent variables and F1, F2 as dependent variables respectively.  For both of these equations,
Lagrange’s auxiliary equations are

    dp
f x

dx
f p

1

1

1

1# #
)

∃ # #
=

dp
f x

dx
f p

2

2

2

2# #
)

∃ # #
=

dp
f x

dx
f p

3

3

3

3# #
)

∃ # # , ...(14)

which are known as Jacobi’s auxiliary equations.
We try to find two independent integrals F1(x1, x2, x3, p1, p2, p3) = a1 and F2(x1, x2, x3, p1, p2,

p3) = a2 with help of (14).  If these relations satisfy (13), these are the required two additional
relations (2) and (3).

We now solve (1), (2) and (3) for p1, p2, p3 in terms of x1, x2, x3.  Substituting these values in
(4) and then integrating the resulting equation, we shall obtain a complete integral of the given
equation containing three arbitrary constants of integration.

3.20. Working rules for solving partial differential equations with three or more
independent variable. Jacobi’s method

Step 1 :  Suppose the given equation with three independent variables is
          f(x1, x2, x3, p1, p2, p3) = 0. ...(1)

Step II.  We write Jacobi’s auxiliary equations
dp
f x

dx
f p

1

1

1

1# #
)

∃ # # =
dp
f x

dx
f p

2

2

2

2# #
)

∃ # # =
dp
f x

dx
f p

3

3

3

3# #
)

∃ # # .

Solving these equation we obtain two additional equations
F1(x1, x2, x3, p1, p2, p3) = a1 ...(2) F2(x1, x2, x3, p1, p2, p3) = a2.  ...(3)
where a1 and a2 are arbitrary constants.

While obtaining (2) and (3), try to select simple equations so that later on solutions of (1),
(2) and (3) may be as easy as possible.

Step III.  Verify that relations (2) and (3) satisfy the condition

(F1, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

1 2 1 2

1

3

= 0. ...(4)

If (4) is satisfied then solve (1), (2) and (3) for p1, p2, p3 in terms of x1, x2, x3.  Their
substitution in dz = p1dx1 + p2dx2 + p3dx3
and subsequent integration leads to a complete integral of the given equation.

Remark 1.  Sometime, change of variables can be employed to reduce the given equation in
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a form solvable by Jacobian method.
Remark 2.  While solving a partial differential equation with four independent variables, we

modify the above working rule as follows :
Step I.  Suppose the given equation with four independent variables is

       f(x1, x2, x3, x4, p1, p2, p3, p4) = 0. ...(1)
Step II.  We write Jacobi’s auxiliary equations

dp
f x

dx
f p

1

1

1

1# #
)

∃ # # =
dp
f x

dx
f p

2

2

2

2# #
)

∃ # # =
dp
f x

dx
f p

3

3

3

3# #
)

∃ # # =
dp
f x

dx
f p

4

4

4

4# #
)

∃ # #
Solving these equations we obtain three additional equations

F1(x1, x2, x3, x4, p1, p2, p3, p4) = a1,  ...(2)              F2(x1, x2, x3, x4, p1, p2, p3, p4) = a2,  ...(3)
and F3(x1, x2, x3, x4, p1, p2, p3, p4) = a3, ...(4)
where a1, a2 and a3 are arbitrary constants.

Step IV.  Verify that relations (2), (3) and (4) satisfy following three conditions:

(F1, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

1 2 1 2

1

4

= 0,  ...(4)       (F2, F3) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

2 3 2 3

1

4

= 0 ...(5)

and (F3, F1) =
4

3 31 1

1 r r r rr

F FF F
x p p x)

! �# ## #
∃% &# # # #∋ (

∗ = 0. ...(6)

If (4), (5) and (6) are satisfied, then solve (1), (2), (3) and (4) for p1, p2, p3 and p4 in terms
of x1, x2, x3 and x4.  Their substitution in dz = p1dx1 + p2dx2 + p3dx3 + p4dx4
and subsequent integration leads to a complete integral of the given equation.
3.21 SOLVED EXAMPLES BASED ON ART 3.20.

Ex. 1.  Find a complete integral of p1
3 + p2

2 + p3 = 1.  [I.A.S. 1997; Meerut 2006]
Sol. Let the given equation be rewritten as

f(x1, x2, x3, p1, p2, p3) = p p p1
3

2
2

3 1 0, , ∃ ) . ...(1)
− Jacobi’s auxiliary equations are

dp
f x

dx
f p

1

1

1

1# #
)

∃ # #
=

dp
f x

dx
f p

dp
f x

dx
f p

2

2

2

2

3

3

3

3# #
)

∃ # #
)

# #
)

∃ # #

or dp dx
p

1 1

1
20 3

)
∃

=
dp dx

p
2 2

20 2
)

∃
=

dp dx3 3
0 1

)
∃

, using (1)

From first and third fractions,   dp1 = 0  and  dp2 = 0 so that p1 = a1    and    p2 = a2.
− Here F1(x1, x2, x3, p1, p2, p3) = p1 = a1. ...(2)

and F2(x1, x2, x3, p1, p2, p3) = p2 = a2. ...(3)

Now, (F1, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

1 2 1 2

1

3

or (F1, F2) =
1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2 3 3 3 3

F F F F F F F F F F F F
x p p x x p p x x p p x

# # # # # # # # # # # #
∃ , ∃ , ∃

# # # # # # # # # # # #

or (F1, F2) = (0)(0) – (1)(0) + (0)(1) – (0) (0) + (0)(0) – (0)(0) = 0, by (3) and (4).
Thus, we have verified that for relations (2) and (3), (F1, F2) = 0.  Hence (2) and (3) may be

taken as additional equations.

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



3.66 Non-Linear Partial Differential Equations of Order One

Solving (1), (2) and (3) for p1, p2, p3,      p1 = a1,      p2 = a2,        p3 = 1 – a1
3 – a2

2.
Putting these values in  dz = p1dx1 + p2dx2 + p3dx3, we have

    dz = a1dx1 + a2dx2 + (1 – a1
3 – a2

2)dx3.
Integrating, z = a1x1 + a2x2 + (1 – a1

3 – a2
2) x3 + a3,

which is a complete integral of given equation containing three arbitrary constants a1, a2, and a3.
Ex. 2.  Find a complete integral of x3

2p1
2p2

2p3
2 + p1

2p2
2 – p3

2 = 0. [Delhi Maths (H) 2006]
Sol. Let          f(x1, x2, x3, p1, p2, p3) = x3

2p1
2p2

2p3
2 + p1

2p2
2 – p3

2 = 0. ...(1)
− Jacobi’s auxiliary equations are

dp
f x

dx
f p

1

1

1

1# #
)

∃ # #
=

dp
f x

dx
f p

2

2

2

2# #
)

∃ # #
=

dp
f x

dx
f p

3

3

3

3# #
)

∃ # #

or
dp dx

p x p p p p
1 1

1 3
2

2
2

3
2

1 2
20 2 2

)
∃ ,( )

=
dp dx

p x p p p p
2 2

2 3
2

1
2

3
2

2 1
20 2 2

)
∃ ,( )

= ....., by (1)

From first and third fractions, dp1 = 0 and dp2 = 0 so that p1 = a1  and      p2 = a2.
− Here F1(x1, x2, x3, p1, p2, p3) = p1 = a1, ...(2)

and F2(x1, x2, x3, p1, p2, p3) = p2 = a2. ...(3)
As in Ex. 1, verify that for relations (2) and (3), (F1, F2) = 0.
Hence (2) and (3) may be taken as the additional equations.

Solving (1), (2) and (3) for p1, p2, p3, we have p1 = a1,  p2 = a2,  2 2 2
3 1 2 1 2 3(1 )p a a a a x) . ∃ .

Putting these values in dz = p1dx1 + p2dx2 + p3dx3, we get

      dz = a1dx1 + a2dx2 ± a a a a x1 2 1
2

2
2

3
21( )∃{ } dx3, whose integration gives

z = a1x1 + a2x2 ±  sin–1(a1a2x3) + a3, a1, a2, a3 being arbitrary constants.
Ex. 3.  Find a complete integral of p1x1 + p2x2 = p3

2. [Meerut 2007]
Sol. Let f(x1, x2, x3, p1, p2, p3) = p1x1 + p2x2 – p3

2 = 0. ...(1)
− Jacobi’s auxiliary equations are

dp
f x

dx
f p

1

1

1

1# #
)

∃ # # =
dp
f x

dx
f p

2

2

2

2# #
)

∃ # # =
dp
f x

dx
f p

3

3

3

3# #
)

∃ # #

or
dp
p

dx
x

1

1

1

1
)

∃ =
dp
p

dx
x

2

2

2

2
)

∃ =
dp dx

p
3 3

30 2
) , using (1) ...(2)

Taking the first two fractions of (2), (1/x1)dx + (1/p1)dp1 = 0. /  log x1 + log p1 = log a1.
− x1p1 = a1 and let   F1(x1, x2, x3, p1, p2, p3) = x1p1 = a1. ...(3)
Taking the third and fourth fractions of (2),      (1/x2)dx2 + (1/p2)dp2 = 0.
− x2p2 = a2     and let          F2(x1, x2, x3, p1, p2, p3) = x2p2 = a2.  ...(4)
As in Ex. 1, verify that for relations (3) and (4), (F1, F2) = 0.
Solving (1), (3) and (4) for p1, p2, p3,  p1 = a1/x1,  p2 = a2/x2    and     p3 = (a1 + a2)

1/2.
Putting these values in dz = p1dx1 + p2dx2 + p3dx3, we have

dz = (a1/x1)dx1 + (a2/x2)dx2 + (a1 + a2)
1/2 dx3.

Integrating, z = a1 log x1 + a2 log x2 + x3 (a1 + a2)
1/2 + a3.

Ex. 4.  Find complete integral of 2p1x1x3 + 3p2x3
2 + p2

2p3 = 0.
[I.A.S. 1998, Meerut 1999]

Sol. Let                    f(x1, x2, x3, p1, p2, p3) = 2p1x1x3 + 3p2x3
2 + p2

2p3 = 0. ...(1)
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− Jacobi’s auxiliary equations are
dp
f x

dx
f p

1

1

1

1# #
)

∃ # # =
dp
f x

dx
f p

2

2

2

2# #
)

∃ # #
=

dp
f x

dx
f p

3

3

3

3# #
)

∃ # #

or
dp
p x

dx
x x

1

1 3

1

1 32 2
)

∃
=

dp dx
x p p

2 2

3
2

2 3
0 3 2

)
∃ ∃

=
dp

p x p x
dx

p
3

1 1 2 3

3

2
22 6,

)
∃

, by (1) ...(2)

Taking the first two fractions of (2),      (1/p1)dp1 + (1/x1)dx1 = 0.      so      p1x1 = a1
Let F1(x1, x2, x3, p1, p2, p3) = p1x1 = a1. ...(3)
From the third fraction of (2),          dp2 = 0  so that p2 = a2.
Let F2(x1, x2, x3, p1, p2, p3) = p2 = a2. ...(4)
As in Ex. 1, verify that for relations (3) and (4),    (F1, F2) = 0.
Solving (1), (3) and (4) for p1, p2, p3,   p1 = a1/x1,    p2 = a2 ,   p3 = – (2a1x3 + 3a2x3

2)/a2
2.

Putting these values in dz = p1dx1 + p2dx2 + p3dx2, we have
dz = (a1/x1)dx1 + a2dx2 – {(2a1x3 + 3a2x3

2)/a2
2}dx3, whose integration gives

z = a1 log x1 + a2x2 – (a1x3
2 + a2x3

3)/a2
2 + a3. which is required complete integral

Ex. 5.  Find a complete integral of p3x3 (p1 + p2) + x1 + x2 = 0.
Sol. Given f(x1, x2, x3, p1, p2, p3) = p3x3(p1 + p2) + x1 + x2 = 0. ...(1)
− Jacobi’s auxiliary equations are

dp
f x

dx
f p

1

1

1

1# #
)

∃ # # =
dp
f x

dx
f p

2

2

2

2# #
)

∃ # #
=

dp
f x

dx
f p

3

3

3

3# #
)

∃ # #

or
dp dx

p x
1 1

3 31
) =

dp dx
p x

2 2

3 31
)

∃ =
dp

p p p
dx

x p p
3

3 2 3

3

3 1 2( ) ( ),
)

∃ , , by (1) ...(2)

Taking the two fractions of (2), dp1 – dp2 = 0     so       p1 – p2 = a1
Let F1(x1, x2, x3, p1, p2, p3) = p1 – p2 = a1. ...(3)
Taking the fifth and sixth fractions of (2),   (1/p3)dp3 + (1/x3)dx3 = 0   giving   p3x3 = a3
Let F2(x1, x2, x3, p1, p2, p3) = p3x3 = a2. ...(4)

Now, (F1, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

1 2 1 2

1

3

=
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

F
x

F
p

F
p

F
x

1

1

2

1

1

1

2

1
+ 

#
#

#
#

∃
#
#

#
#

F
HG

I
KJ ,

#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

F
x

F
p

F
p

F
x

F
x

F
p

F
p

F
x

1

2

2

2

1

2

2

2

1

3

2

3

1

3

2

3

= (0)(0) – (1)(0) + (0)(0) – (–1)(0) + (0)(x3) – (0)(p3) = 0 by (3) and (4)
Thus, we have verified that for the relations (3) and (4), (F1, F2) = 0.

From (1) and (4), a2(p1 + p2) + x1 + x2 = 0   or          p1 + p2 = –(x1 + x2)/a2. ...(5)

Solving (3) and (5), p1 =
a x x

a
1 1 2

22 2
∃

,
    and        p2 = – a x x

a
1 1 2

22 2
∃

, . ...(6)

Again,  from (4), p3 = a2/x3. ...(7)
Putting the values of p1, p2, p3 given by (6) and (7) in dz = p1dx1 + p2dx2 + p3dx3, we have

dz =
a1
2 (dx1 – dx2) –

( )x x
a

1 2

22
,  (dx1 + dx2) + 2

3

a
x

dx3.

Integrating,  z = (a1/2) × (x1 – x2) – (1/4a2) × (x1 + x2)
2 + a2 log x3 + a3.
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Ex. 6.  Find a complete integral of (p1 + x1)
2 + (p2 + x2)

2 + (p3 + x3)
2 = 3(x1 + x2 + x3).

Sol. Let the given partial differential equation be re–written as
f(x1, x3, x3, p1, p2, p3) = (p1 + x1)

2 + (p2 + x2)
2 + (p3 + x3)

2 – 3(x1 + x2 + x3) = 0.   ...(1)
− Jacobi’s auxiliary equations are

dp
f x

dx
f p

1

1

1

1# #
)

∃ # # =
dp
f x

dx
f p

2

2

2

2# #
)

∃ # #
=

dp
f x

dx
f p

3

3

3

3# #
)

∃ # # ,  giving

dp
p x

dx
p x

1

1 1

1

1 12 3 2( ) ( ), ∃
)

∃ , = 2 2

2 2 2 22( ) 3 2( )
dp dx

p x p x
)

, ∃ ∃ ,
  =

dp
p x

dx
p x

3

3 3

3

3 32 3 2( ) ( ), ∃
)

∃ , .   ...(2)

              Each fraction of (2)  =  
dp dx dp dx dp dx1 1 2 2 3 3

3 3 3
,
∃

)
,
∃

)
,
∃

...(3)

Then (3)  /  dp1 + dx1 = dp2 + dx2 and dp3 + dx3 = dp2 + dx2
Integrating, p1 + x1 = p2 + x2 + a1 and p3 + x3 = p2 + x2 + a2,

where a1 and a2 are arbitrary constants
Let F1(x1, x2, x3, p1, p2, p3) = x1 + p1 – x2 – p2 = a1. ...(4)

and F2(x1, x2, x2, p1, p2, p3) = x3 + p3 – x2 – p2 = a2. ...(5)
As in Ex. 1, verify that for relations (4) and (5), the condition (F1, F2) = 0 is satisfied.  Hence

(4) and (5) may be taken as two additional equations.
With help of (4) and (5), (1) reduces to

(x2 + p2 + a1)
2 + (x2 + p2)

2 + (x2 + p2 + a2)
2 = 3(x1 + x2 + x3)

or 3(p2 + x2)
2 + 2(p2 + x2) (a1 + a2) + a1

2 + a2
2 – 3(x1 + x2 + x3) = 0.

−
2 2 2

2 2 1 2 1 2 1 2 1 2 32( ) [4( ) 12{ 3( )} 6p x a a a a a a x x x0 1, ) ∃ , . , ∃ , ∃ , ,2 34 5

/ p2 = – x2 + 2 2
1 2 1 2 3 1 2 1 2( ) {9( ) 2 2 2 } 3a a x x x a a a a0 1∃ , . , , ∃ ∃ ,2 34 5

For sake of simplification, we take a1 = 3c1 and a2 = 3c2.  Then, we get

p2 = – x2 – (c1 + c2) ± {( ) }x x x c c c c1 2 3 1
2

2
2

1 22 2 2, , ∃ ∃ , . ...(6)

− From (4), p1 = x2 + p2 + 3c1 – x1

/ p1 = – x1 + 2c1 – c2 ± {( ) }x x x c c c c1 2 3 1
2

2
2

1 22 2 2, , ∃ ∃ , ,by (6)

Again, from (5), p3 = x2 + p2 + 3c2 – x3

/ p3 = – x3 + 2c2 – c1 ± {( ) }x x x c c c c1 2 3 1
2

2
2

1 22 2 2, , ∃ ∃ , , by (6)

Substituting these values in dz = p1dx1 + p2dx2 + p3dx3, we get
dz = – (x1dx + x2dx2 + x3dx3) + [(2c1 – c2)dx1 – (c1 + c2)dx2 + (2c2 – c1)dx3]

2 2 1/ 2
1 2 3 1 2 1 2( 2 2 2 )x x x c c c c. , , ∃ ∃ ,  (dx1 + dx2 + dx3).

Integrating,  z = – (1/2) × ( )x x x1
2

2
2

3
2, ,  + (2c1 – c2) x1 – (c1 + c2)x2 + (2c2 – c1)x3

± (2/3) × (x1 + x2 + x3 – 2c c c c1
2

2
2

1 22 2∃ , )3/2 + c3,
which is a complete integral containing c1, c2, c3 as arbitrary constants.

Ex. 7.  Find a complete integral of (x2 + x3) (p2 + p3)
2 + zp1 = 0. [Delhi B.Sc. (Hons) III 2011]

Sol. Given          (x2 + x3)(p2 + p3)
2 + zp1 = 0. ...(1)

Since the dependent variable z is involved, the given equation (1) is not in the standard form.
We shall first reduce it in the standard form and then proceed as usual. Re–writting (1), we have
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(x2 + x3)
1 1 1

2 3

2

1z
z

x z
z
x z

z
x

#
#

, #
#

F
HG

I
KJ , #

# = 0. ...(2)

Let (1/z)dz = dZ  so that         Z = log z. ...(3)
Then, (2)  / (x2 + x3) (#Z/#x2 + #Z/#x3)

2 + #Z/#x1 = 0. ...(4)
Let P1 = #Z/#x1,  P2 = #Z/#x2,  P3 = #Z/#x3. Then (4) becomes

(x2 + x3)(P2 + P3)
2 + P1 = 0.

So here f(x1, x2, x3, P1, P2, P3) 6 (x2 + x3)(P2 + P.3)
2 + P1 = 0. ...(5)

Jacobi’s auxiliary equations take the form
dP
f x

dx
f P

1

1

1

1# #
)

∃ # #
=

dP
f x

dx
f P

2

2

2

2# #
)

∃ # #
=

dP
f x

dx
f P

3

3

3

3# #
)

∃ # #

or
dx dP1 1

1 0∃
) =

dx
x x P P

dP
P P

2

2 3 2 3

2

2 3
22∃ , ,

)
,( ) ( ) ( )

=
dx

x x P P
dP

P P
3

2 3 2 3

3

2 3
22∃ , ,

)
,( )( ) ( )

.  ...(6)

Taking second ratio of (6), we have dP1 = 0   /  P1 = – a1.
Let F1(x1, x2, x3, P1, P2, P3) = P1 = –a1. ...(7)
Taking the fourth and sixth ratios in (6), we get    dP2 = dP3 / P2 – P3 = a2.
Let F2(x1, x2, x3, P1, P2, P3) = P2 – P3 = a2. ...(8)
Using (7), (5)  / P2 + P3 = ± {a1/(x2 + x3)}

1/2. ...(9)
Solving (8) and (9) for P2 and P3, we have

P2 =
1
2 2

1

2 3

1 2

a
a

x x
.

,
F
HG

I
KJ

L
N
MM

O
Q
PP

/

and P3 =
1
2

1

2 3

1 2

2.
,

F
HG

I
KJ ∃

L
N
MM

O
Q
PP

a
x x

a
/

. ...(10)

Using (7) and (10),  dZ = P1dx1 + P2dx2 + P3dx3 becomes

dZ = –a1dx1 + 1
2

1
22

1

2 3
1 2 2

1

2 3
1 2 2 3a

a

x x
dx

a

x x
a dx.

,

L
N
MM

O
Q
PP , .

,
∃

L
N
MM

O
Q
PP( ) ( )/ /

or dZ = – a1dx1 + (1/2) × a2dx2 – (1/2) × a2dx3 ± 1(1/ 2) a7 (x2 + x3)
–1/2(dx2 + dx3).

Integrating and noting that dZ = (1/z)dz, complete integral is given by

log z = – a1x1 + (a2/2) × (x2 – x3) ± a1 (x2 + x3)
1/2 + a3.

Ex. 8.  Find a complete integral of p1p2p3 = z3x1x2x3. [Meerut 1998]
i.e.,     (#z/#x1)(#z/#x2) (#z/#x3) = z3x1x2x3. [Delhi Maths (H) 2000, 10; I.A.S. 1995]

Sol. Given    p1p2p3 = z3x1x2x3  or    (#z/#x1)(#z/#x2) (#z/#x3) = z3x1x2x3. ...(1)
Since the dependent variable z is involved, the given equation (1) is not in the standard form.

We shall first reduce it in the standard form and then proceed as usual.  Re–writting (1) we have

1 1 1
1 2 3z
z
x z

z
x z

z
x

#
#
F
HG
I
KJ

#
#
F
HG
I
KJ

#
#
F
HG
I
KJ = x1x2x3. ...(2)

Let (1/z)dz = dZ so that log z = Z. Then (2) becomes
(#Z/#x1)(#Z/#x2) (#Z/#x3)  = x1x2x3 or    P1P2P3 = x1x2x3.
− Here              f(x1, x2, x3, P1, P2, P3) 6 P1P2P3 – x1x2x3 = 0. ...(3)
− Jacobi’s auxilliary equations are

dP
f x

dx
f P

1

1

1

1# #
)

∃ # #
=

dP
f x

dx
f P

2

2

2

2# #
)

∃ # #
=

dP
f x

dx
f P

3

3

3

3# #
)

∃ # #
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or
dP
x x

dx
P P

1

2 3

1

2 3∃
)

∃ =
dP
x x

dx
P P

2

1 3

2

1 3∃
)

∃ =
dP
x x

dx
P P

3

1 2

3

1 2∃
)

∃ , by (3)

Since from (3), P2P3 = (x1 x2 x3)/P1, hence first and second fractions give

dP
x x

1

2 3∃
= 1

1 2 3 1( / )
dx

x x x P∃
or

dP
P

dx
x

1

1

1

1
) .

Integrating,     log P1 = log x1 + log a1 or P1 = a1x1.
Thus, here we have F1(x1, x2, x3, P1, P2, P3) 6 P1 – a1x1 = 0. ...(4)
Similarly, F2(x1, x2, x3, P1, P2, P3) 6 P2 – a2x2 = 0. ...(5)
As in Ex. 1, verify that for (4) and (5) the condition (F1, F2) = 0 is satisfied.  Hence (4) and

(5) can be taken as two additional equations. Solving (3), (4) and (5) for P1, P2, P3, we have
P1 = a1x1,  P2 = a2x2 and P3 = x3/(a1a2).
Putting these values in dZ = P1dx1 + P2dx2 + P3dx3, we have

dZ = a1x1dx + a2x2dx2 + {x3/(a1a2)}dx3.
Integrating, Z = (1/2) × a1x1

2 + (1/2) × a2x2
2 + {1/(2a1a2)}x3

2 + a3/2
or 2 log z = a1x1

2 + a2x2
2 + {1/(a1a2)}x3

2 + a3, as Z = log z
Ex. 9. Find a complete integral of p1

2 + p2p3 – z(p2 + p3) = 0. [Delhi Maths (H) 2009]
Sol. Given equation is p1

2 + p2p3 – z(p2 + p3) = 0. ...(1)
Since the dependent variable z is involved, the given equation (1) is not in the standard form.

We shall first reduce it in the standard form and then proceed as usual.  Dividing each term by z2,
(1) can be re–written as

1 1 1 1 1

1

2

2 3 2 3z
z
x z

z
x z

z
x z

z
x z

z
x

#
#
F
HG
I
KJ ,

#
#
F
HG
I
KJ

#
#
F
HG
I
KJ ∃

#
#
F
HG
I
KJ ∃

#
#
F
HG
I
KJ = 0. ...(2)

Let (1/z)dz = dZ so that   log z = Z. ...(3)
Using (3), (2) becomes      P1

2 + P2P3 – P2 – P3 = 0, ...(4)
Let us write         f(x1, x2, x3, P1, P2, P3) = P1

2 + P2P3 – P2 – P3 = 0. ...(5)
− Jacobi’s auxiliary equations are

dP
f x

dx
f P

1

1

1

1# #
)

∃ # #
=

dP
f x

dx
f P

2

2

2

2# #
)

∃ # #
=

dP
f x

dx
f P

3

3

3

3# #
)

∃ # #

or
dP dx

P
1 1

10 2
)

∃ =
dP dx

P
2 2

30 1
)

∃ , =
dP dx

P
3 3

20 1
)

∃ , , by (5)

Taking the third and fifth fractions,  dP2 = 0  and  dP3 = 0  so that  P2 = a1  and  P3 = a2.
Let F1(x1, x2, x3, P1, P2, P3) = P2 = a1. ...(6)

and F3(x1, x2, x3, P1, P2, P3) = P3 = a2. ...(7)
As in Ex. 1, verify that for (6) and (7), the condition (F1, F2) = 0 is satisfied.  Hence (6) and

(7) can be taken as two additional equations.  Solving (4), (6) and (7) for P1, P2, P3, we have
P2 = a1,  P3 = a2, P1 = (a1 + a2 – a1a2)

1/2.
Putting these values in dZ = P1dx1 + P2dx2 + P3dx3,  we have

dZ = (a1 + a2 – a1a2)
1/2dx1 + a1dx2 + a2dx3.

Integrating,  Z = (a1 + a2 – a1a2)
1/2x1 + a1x2 + a2x3 + a3. Then, the complete integral is

log z = (a1 + a2 – a1a2)
1/2x1 + a1x2 + a2x3 + a3, using (3).

Ex. 10.  Find a complete integral of 2x1x3zp1p3 + x2 p2 = 0.
Sol. Given equation is 2x1x3zp1p3 + x2 p2 = 0. ...(1)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Non-Linear Partial Differential Equations of Order One 3.71

Since the dependent variable z is involved, the given equation (1) is not in the standard form.
We shall first reduce it in the standard form and then proceed as usual.  Multiplying each term by
z, (1) can be re–written as

2x1x3
z z

x
z z

x
x z z

x
#
#
F
HG
I
KJ

#
#
F
HG
I
KJ ,

#
#
F
HG
I
KJ1 3

2
2

= 0. ...(2)

Let  zdz = dZ so that z2/2 = Z. ...(3)
Using (3), (2) becomes          2x1x3P1P3 + x2P2 = 0, ...(4)

where P1 = #Z/#x1, P2 = #Z/#x2 and P3 = #Z/#x3. We re–write (4) as
f(x1, x2, x3, P1, P2, P3) = 2x1x3P1P3 + x2P2 = 0. ...(5)

−  Jacobi’s auxilairy equations are

dP
f x

dx
f P

1

1

1

1# #
)

∃ # #
=

dP
f x

dx
f P

2

2

2

2# #
)

∃ # #
=

dP
f x

dx
f P

3

3

3

3# #
)

∃ # #

or
dP

x P P
dx
x x P

1

3 1 3

1

1 3 32 2
)

∃ =
dP
P

dx
x

2

2

2

2
)

∃ =
dP

x P P
dx
x x P

3

1 1 3

3

1 3 22 2
)

∃
, by (5) ...(6)

Taking the first and second fractions of (6) and simplifying, we get
(1/P1)dP1 + (1/x1)dx1 = 0 so that log P1 + log x1 = log a1 or P1x1 = a1

So here F1(x1, x2, x3, P1, P2, P3) = P1x1 = a1. ...(7)
Taking the fifth and sixth fractions of (6) and simplifying, we get

(1/P3)dP3 + (1/x3)dx3 = 0 so that log P3 + log x3 = log a3  or P3x3 = a2
So here F2(x1, x2, x3, P1, P2, P3) = P3x3 = a2. ...(8)
As in Ex. 1, verify that for (7) and (8), the condition (F1, F2) = 0 is satisfied.  Hence (7) and

(8) can be taken as additional equations.  Solving (5), (7) and (8) for P1, P2, P3, we have
P1 = a1/x,   P3 = a2/x3, P2 = – (2a, a2)/x2.

Putting these values in dZ = P1dx + P2dx2 + P3dx3, we have
dZ = (a1/x1)dx1 – {(2a1a2)/x2}dx2 + (a2/x3)dx3.

Integrating, Z = a1log x1 – 2a1a2 log x2 + a2 log x3 + a3
or  z2/2 = a1 log x1 – 2a1a2 log x2 + a2 log x3 + a3, by (3).

Ex. 11.  Find a complete integral of p1p2p3 + p4
3x1x2x3x4

3 = 0.
Sol. [In the present problem we have four independent variables in places of three.  According

we shall use modified working as explained in remark 2 of Art 3.20]
The given equation can be written as

f(x1, x2, x3, x4, p1, p2, p3, p4) = p1p2p3 + p4
3x1x2x3x4

3 = 0. ...(1)
− Jacobi’s auxiliary equations are

dp
f x

dx
f p

1

1

1

1# #
)

∃ # #
=

dp
f x

dx
f p

2

2

2

2# #
)

∃ # #
=

dp
f x

dx
f p

3

3

3

3# #
)

∃ # #
= dp

f x
dx
f p

4

4

4

4# #
)

∃ # #
, giving

dp
p x x x

dx
p p

1

4
3

2 3 4
3

1

2 3
)

∃
=  

dp
p x x x

dx
p p

2

4
3

1 3 4
3

2

1 3
)

∃
=

dp
p x x x

dx
p p

3

4
3

1 2 4
3

3

1 2
)

∃
=

dp
p x x x x

dx
p x x x x

4

4
3

1 2 3 4
2

4

4
3

1 2 3 4
33 3

)
∃

Since from (1), p4
3x2x3x4

3 = –p1p2p3/x1, the first two fractions give

1

1 2 3 1( / )
dp

p p p x∃
=

dx
p p

1

2 3∃
or

dp
p

dx
x

1

1

1

1
) .
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Integrating,  log p1 = log x1 + log a1     or   p1 = a1x1.  
Let          F1(x1, x2, x3, x4 p1, p2, p3, p4) = p1 – a1x1 = 0. ...(2)
Similarly,          F2(x1, x2, x3, x4, p1, p2, p3, p4) = p2 – a2x2 = 0 ...(3)

and          F1(x1, x2, x3, x4, p1, p2, p3, p4) = p3 – a3x3 = 0. ...(4)
With these values of F1, F2 and F3, we can verify that

(F1, F2) =
#
#

#
#

∃
#
#

#
#

F
HG

I
KJ

)
∗ F

x
F
p

F
p

F
xr r r rr

1 2 1 2

1

4

= 0.

Similarly, we see that (F2, F3) = 0 and (F3, F1) = 0.  Hence (2), (3) and (4) can be taken as the
three desired additional equations.  Now solving (1), (2) (3) and (4) for p1, p2, p3 and p4, we get

p1 = a1x1,       p2 = a2x2,        p3 = a3x3      and      1/ 3
4 1 2 3 4( ) .p a a a x)

Putting these in dz = p1dx1 + p2dx2 + p3dx3 + p4dx4 and integrating the desired complete
integral is z = (1/2) × (a1x1

2 + a2x2
2 + a3x3

2) – (a1a2a3)
1/2 log x4 + a4/2

or 2z = a1x1
2 + a2x2

2 + a3x3
2 – 2(a1a2a3)

1/2 log x4 + a4,

Ex. 12. Find a complete integral by Jacobi’s method of the equation # # # #2 22 ( / ) ( / )x y u x u z

) # # , # #2 2( / ) 2 ( / )x u y y u x .    [Delhi Maths (H) 2001]

Sol. Let ) ) ) # # ) # # ) # # )1 2 3 1 2 3, , , / , / , and /x x y x z x u x p u y p u z p

Then given equation becomes 2 2 2 2
1 2 1 3 1 2 2 12 2x x p p x p x p) ,

Dividing by ) ,2 2 2 2
1 2 1 3 2 2 1 1, 2 ( / ) (2 / )x x p p p x p x , which can be written as

2 2
1 2 3 1 2 3 1 3 1 2 2( , , , , , ) 2 ( 1/ ) / 0f x x x p p p p p x p x) ∃ ∃ ) ... (1)

−  Jacobi’s auxiliary equations are

3 31 1 2 2

1 1 2 2 3 3/ / / / / /

dp dxdp dx dp dx

f x f p f x f p f x f p
) ) ) ) )

# # ∃# # # # ∃# # # # ∃# #

or 3 31 1 2 2
2 3 2 2 2

21 1 1 3 1 2 2 11/ 04 / 4 ( 1/ ) / 2

dp dxdp dx dp dx

xp x p p x p x p
) ) ) ) )

∃ ∃ ∃
, by (1)

Taking the fifth fraction, 3 0dp ) so that   3 1p a)

Taking the second and fourth fractions, 2 2 2 2(1/ ) (1/ )p dp x dx)

Integrating, 2
2 2 2log log log(2 )p x a) ,   or 2

2 2 2/ 2p x a)

−    Here             ) )1 1 2 3 1 2 3 3 1( , , , , , )F x x x p p p p a ... (2)

and                     ) ) 2
2 1 2 3 1 2 3 2 2 2( , , , , , ) / 2F x x x p p p p x a ... (3)

Now,           
3

1 2 1 2
1 2

1

( , )
r r r rr

F F F F
F F

x p p x)

! �# # # #
) ∃% &# # # #∋ (
∗

or     1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 1 1 1 2 2 2 2 3 3 3 3

( , )
F F F F F F F F F F F F

F F
x p p x x p p x x p p x

# # # # # # # # # # # #
) ∃ , ∃ , ∃

# # # # # # # # # # # #

   = (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (1) (0) 0∃ , ∃ , ∃ )
Hence (2) and (3) may be taken as additional equations.
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Solving (1), (2) and (3) for p1, p2, p3,
2 1/ 2

1 2 1 1 1/( 1)p a x a x) ∃ , ) )2
2 2 2 3 12 ,p a x p a

Putting these in 1 1 2 2 3 3du p dx p dx p dx) , , ∃) ∃ , ,2 1/ 2 2
2 1 1 1 1 2 2 2 1 3( 1) 2a x a x dx a x dx a dx .

Integrating, ) 7 ∃ , , ,2 1/ 2 2 2
2 1 1 1 2 2 1 3 3( / ) ( 1)u a a a x a x a x a ,

which is the complete integral with 1 2 3, ,a a a  as arbitrary constants.

Ex. 13. Show that a complete integral of the equation ( / , / , / ) 0f u x u y u z# # # # # # )  is

( , ) ,u ax by a b z c) , , 8 ,  where a, b and c are arbitrary constants and ( , , ) 0f a b 8 )

(b)Find a complete integral of the equation / / /u x u y u z# # , # # , # #

( / ) ( / ) ( / ).u x u y u z) # # # # # #      [Allahabad 2004, 06; Meerut 2004, 06; Purvanchal 2003]

Sol. (a) Let   1 2/ , /u x p u y p# # ) # # )       and       3/ .u z p# # )

Then gievn equation becomes   1 2 3( , , ) 0f p p p ) ... (1)
We shall now proceed as in Ex. 1, Art. 3.21. Here Jacobi’s auxiliary equations are given by

31 2

1 2 3/ / / / / /
dpdp dpdx dy dz

f x f p f y f p f z f p
) ) ) ) )

# # ∃# # # # ∃# # # # ∃# #

/ 1 2

0 0
dp dp

) , using (1)      / dp1 = 0 and dp2 = 0

Integrating, p1 = a, p2 = b, a and b being arbitrary constants ... (2)
Putting p1 = a and p2 = b in (1), f(a, b, p3) = 0    so that

    p3 = a function of , ( , ),a b a b) 8  say ... (3)

Now, we have 1 2 3( / ) ( / ) ( / )du u x dx u y dy u z dz p dx p dy p dz) # # , # # , # # ) , ,

or ( , ) ,du a dx b dy a b dz) , , 8  by (2) and (3)

Integrating, ( , ) ,u ax by a b z c) , , 8 , ... (4)

where c is an arbitrary constant and , ,a b 8  are connected by relation

( , , ( , )) 0,f a b a b8 )  by (1), (2) and (3) ... (5)

(b) Given / / / ( / ) ( / ) ( / ) 0u x u y u z u x u y u z# # , # # , # # ∃ # # # # # # ) ... (i)

Let 1 / ,p u x) # #   2 /p u y) # #   and    3 / .p u z) # #  Then, (i) gives
p1 + p2 + p3 – p1 p2 p3 = 0 ... (ii)

Comparing (ii) with (1) of part (a), here
f(p1, p2, p3) = p1 + p2 + p3 – p1 p2 p3 ... (iii)

Hence required complete integral is given by (4) and (5) of part (a) i.e.,

( , ) ,u a x b y a b z c) , , 8 , ... (iv)

where ( , ) ( , ) 0a b a b ab a b, , 8 ∃ 8 ) ... (v)

From (v), ( , ) ( ) /( 1)a b a b ab8 ) , ∃ ... (vi)
From (iv) and (vi), u = ax + by + {(a + b)/(ab – 1)} + c,

which is the required complete integral of (i), a, b, c being arbitrary constants.
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EXERCISE 3(G)
Find the complete integral of the following equation: (1 – 5)

1. 1 2 3( , , ) 0f p p p ) Ans. 1 1 2 2 3 3 4z a x a x a x a) , , , , where 1 2 3( , , ) 0f a a a )

2. 1 2 3 1 2 3 0p p p p p p, , ∃ ) Ans. 1 1 2 2 3 3 4z a x a x a x a) , , , , where 1 2 3 1 2 3 0a a a a a a, , ∃ )

3. 2 2 2
1 1 2 3 0p x p ap∃ ∃ ) Ans. 2 2 1

1 2 1 1 2 2 3 3 3( )z a aa x a x a a x a∃) ∃ , , , ,

4. 2 2
3 3 3 1 2( )x x p p p, ) , Ans. ) , , , ∃ ,2 2 2

1 1 2 2 1 2 3 3 3( ) log / 2z a x a x a a x x a

5. 2
3 3 1 32 ( ) 0x p p p, ∃ , ) Ans. ) , , , 7 ∃ ,2 2

1 1 2 2 1 2 3 3 3( ) ( / 2) ( / 4)z a x a x a a x x a

6. , , , ∃ )2 2 2
1 1 2 2 3 3 0x p x p x p Ans. ) , , , ,1/2 1/2 1/2

1 1 2 2 1 2 3 32 ( ) 2 ( ) 2{( ) }z a x a x a a x a

7. Show how to solve, by Jacobi method, a partial differential equation of the type
( , / , / ) ( , / , / )f x u x u z g y u y u z# # # # ) # # # #  and illustrate the method by finding a complete integral

of equation 2 2 2 22 ( / ) ( / ) ( / ) 2 ( / ) .x y u x u z x u y y u x# # # # ) # # , # # [Meerut 2005]

Sol. Try yourself Ans. u = (ax2 – b)1/2 + ay2 + (z/b) + c

8. Prove that an equation of the ‘‘Clairaut’’ form  ( / ) ( / ) ( / )x u x y u y z u z# # , # # , # #

( / , / , / )f u x u y u z) # # # # # # is always solvable by Jacobi’s method. Hence solve

( / / / ) { ( / ) ( / ) ( / )} 1u x u y u z x u x y u y z u z# # , # # , # # # # , # # , # # )
3.22. Jacobi’s method for solving a non-linear first order partial differential

equation in two independent variables.
[Delhi Maths (H) 1997; Amaravati 2001; Himanchal 2003, 05]

Let ( , , , , ) 0F x y z p q ) ... (1)
be the non-linear first order equation in two independent variables x, y.

Then we know that a solution of (1) is of the form     ( , , ) 0u x y z ) ... (2)
showing that u can be treated as a dependent variable and x, y, z as three independent variables.

Differentiating (2) partially w.r.t. ‘x’ and ‘y’, respectively, we get

0
u u z
x z x

# # #
, )

# # #
and 0

u u z

y z y

# # #
, )

# # #

or   1 3 0p p p, ) and 2 3 0p p q, ) ... (3)

where  / , / ,p z x q z y) # # ) # # 1 1 2 2/ / , / /p u x u x p u y u x) # # ) # # ) # # ) # # , 3 3/ /p u z u x) # # ) # #

by taking  ) )1 2,x x y y  and      3z x) ... (4)

From (3), ) ∃ 1 3( / )p p p        and ) ∃ 2 3( / )q p p ... (5)

Using (4) and (5), (1) reduces to   1 2 3 1 2 3( , , , , , ) 0f x x x p p p ) ... (6)
We now solve (6) by Jacobi’s method as usual (refer Art. 3.20) to get the complete integral of

(6). Finally, putting 1 2 3, ,x x x y x z) ) ) , we obtain solution of (6) containing original variables
x, y, z and new dependent variable u. The solution so obtained will contain three arbitrary constants

1 2 3, ,a a a (say). However, for the given equation in the form (1), we need only two arbitrary constants
in the final solution. The required solution u = 0 of (1) is obtained by making different choices of
our third arbitrary constant.
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Ex. 1. Solve 2 2p x q y z, )  by Jacobi’s method. [Nagpur 2002; Himanchal 2003, 05]

Sol. Given 2 2p x q y z, ) .

Let a solution of (1) be of the form ( , , ) 0u x y z ) ... (2)
So treating u as dependent variable and x, y, z as three independent variables, differentiation

of (2) partially w.r.t ‘x’ and ‘y’ respectively gives

0
u u z

x z x

# # #
, )

# # #
and 0

u u z

y z y

# # #
, )

# # #
   i.e.    1 3 0p p p, )    and    p2 + p3 q = 0

so that 1 3/p p p) ∃ and     2 3/q p p) ∃ .... (3)

where  1 1/ /p u x u x) # # ) # # , 2 2 3 3/ / , / /p u y u x p u z u x) # # ) # # ) # # ) # # , / , /p z x q z y) # # ) # #

by taking 1,x x)    2y x) and 3z x) ... (4)

Using (3) and (4), (1)  /   2 2
1 1 3 2 2 3 3( / ) ( / )x p p x p p x, ) .   /    2 2 2

1 1 2 2 3 3 0x p x p x p, ∃ )

Let 2 2 2
1 2 3 1 2 3 1 1 2 2 3 3( , , , , , ) 0f x x x p p p x p x p x p) , ∃ ) ... (5)

Now, the Jacobi’s auxiliary equations are

3 31 1 2 2

1 1 2 2 3 3/ / / / / /

dp dxdp dx dp dx

f x f p f x f p f x f p
) ) ) ) )

# # ∃# # # # ∃# # # # ∃# #

or
3 31 1 2 2

2 2 2
1 1 2 2 3 31 2 32 2 2

dp dxdp dx dp dx

p x p x p xp p p
) ) ) ) )

∃ ∃ ∃ , by (5)

Taking the first two fractions, 1 1(2 / ) (1/ ) 0p dp x dx, ) .

Integrating,    1 1 12 log log logp x a, )    so that      2
1 1x p = 1a     or 1/ 2

1 1 1( / )p a x)

Similarly, the third and fourth fractions give 1/ 2
2 2 2( / )p a x)

Substituting these values of 1 2andp p in (5), we get 1/ 2
3 1 2 3{( ) / }p a a x) , .

Putting the above values of p1, p2 and p3 in 1 1 2 2 3 3du p dx p dx p dx) , , , we get

  ∃∃ ∃) , , , (1/ 2)1/2 1/ 2 1/ 2 1/2
1 1 1 2 2 2 1 2 33( )du a x dx a x dx a a x dx .

Integrating, ) , , , ,1/ 2 1/ 2 1/ 2 1/ 2
1 1 2 2 1 2 3 32( ) ( ) 2( )u a x a x a a x a ... (6)

Taking 2 1a )  and using (4), the required solution 0u )  is given by

1/ 2 1/ 2 1/ 2 1/ 2
1 1 32( ) 2 2( 1) 0a x y a z a, , , , ) ,

which is the complete integral containing two arbitrary constants a1 and a3.
Ex. 2. Solve p2 + q2 = k2 by Jacobi’s method [Delhi B.A./B.Sc. (Prog) Maths 2007]
Sol. Given p2 + q2 = k2 ... (1)
Let a solution of (1) be of the form u(x, y, z) = 0 ... (2)
So treating u as dependent variable and x, y, z as three independent variable, differentiation

of (2) partially w.r.t. ‘x’ and ‘y’ respectively gives
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0
u u z
x z x

# # #
, )

# # #
and 0

u u z
y z y

# # #
, )

# # #
i.e., p1 + p3 p = 0 and   p2 + p3q = 0

so that p = – (p1/p3) and q = – (p2/p3) ... (3)

where 1 1/ / ,p u x u x) # # ) # # 2 2/ / ,p u y u x) # # ) # # 3 3/ / ,p u z u x) # # ) # # / ,p z x) # # /q z y) # #

by taking x = x1, y = x2 and z = x3 ... (4)

Using (3) and (4), (1) reduces to 2 2 2 2 2
1 3 2 3/ /p p p p k, )        or 2 2 2 2

1 2 3p p k p, )

Let 2 2 2 2
1 2 3 1 2 3 1 2 3( , , , , , ) – 0f x x x p p p p p k p) , ) ... (5)

Now, the Jacobi auxilliary equations are given by

3 31 1 2 2

1 1 2 2 3 3/ / / / / /
dp dxdp dx dp dx

f x f p f x f p f x f p
) ) ) ) )

# # ∃# # # # ∃# # # # ∃# #

or
3 31 1 2 2

2
1 2 3

,
0 2 0 2 0 2

dp dxdp dx dp dx
p p k p

) ) ) ) )
∃ ∃  using (5)

From the first and third fractions of (5), dp1 = 0   and dp2 = 0
Integrating,     p1 = a1 and p2 = a2, a1 and a2 being arbitrary constants

With p1 = a1 and p2 = a2, (5) gives 2 2 1/ 2
3 1 2( ) /p a a k) ,

Putting the above values of p1, p2 and p3 in du = p1dx1 + p2dx2 + p3dx3, we get
2 2 1/ 2

1 1 2 2 1 2 3{( ) / }du a dx a dx a a k dx) , , ,

Integrating, 2 2 1/ 2
1 2 2 1 2 3 3{( ) / }u a x a x a a k x a) , , , , ... (6)

Taking a2 = 1 and using (4), the required solution u = 0 is given by
2 1/ 2

1 2 1 3 3{( 1) / } 0,a x x a k x a, , , , )

which is the complete integral of (1) containing two arbitrary constants a1 and a3.
Ex. 3. Solve the following partial differential equations by Jacobi’s method:

   (i) 2( )p z qy) ,    (ii) 2 2( )p q x pz, )    (iii)  xpq + yq2 = 1 [Nagpur 2005]
Hint. Proceed as in the above solved Ex. 1
3.23 Cauchy’s method of characteristics for solving non-linear partial differential

equation ( , , , / , / ) 0f x y z z x z y# # # # ) i.e., ( , , , , ) 0f x y z p q ) ... (1)

We know that the plane passing through the point 0 0 0( , )P x y z  with its normal parallel to the

direction n whose direction ratios are 0 0, , 1p q ∃  is uniquely given by the set of five numbers

0 0 0 0 0( , , , , )D x y z p q  and conversely any such set of
five numbers defines a plane in three dimensional
space. In view of this fact a set of five numbers

( , , , , )D x y z p q  is known as a plane element of a three
dimensional space. As a special case a plane element

0 0 0 0 0( , , , , )x y z p q  whose components satisfy (1) is
known as an integral element of (1) at P. Solving (1)
for q, suppose we get
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( , , , )q F x y z p) .
which gives a value of q corresponding to known values of x, y, z and p. Then, keeping x0, y0 and
z0 fixed and varying p, we shall arrive at a set of plane elements 0 0 0{ , , ,x y z p , 

0 0 0( , , , )G x y z p }
which depend on the single parameter p. As p varies, we get a set of plane elements all of which
pass through the point P. Hence the above mentioned set of plane elements envelop a cone with
vertex P. The cone thus obtained is known as the elementary cone of (1) at the point P.

Consider a surface S with equation ( , )z g x y) ... (2)

If the function ( , )g x y  and its first partial
derivatives ( , )xg x y  and ( , )yg x y  are continuous in a
certain region R of the xy-plane, then the tangent plane
at each point of S determines a plane element of the
form {x0, y0, g(x0, y0), 0 0( , )xg x y , 0 0( , )yg x y } which
will be referred as the tangent element of the surface
S at the point 0 0 0 0{ , , ( , )]x y g x y .

Consider a curve C with parametric equations

( )x x t) ,      ( )y y t) ,        ( )z z t) ,       t being the parameter. ... (3)

Then curve C lies on (2) provided              ( ) { ( ), ( )}z t g x t y t) ... (4)
holds good for all values of t in the appropriate interval I. Let P0 be a point on curve C corresponding
to 0t t) . Now, the direction ratios of the tangent line 0 1P P  are 0 0( ), ( )x t y t+ + , 0( )z t+  where

0 0 0( ), ( ) ( )x t y t z t+ + +  denote the values of / , / , /dx dt dy dt dz dt  respectively at 0t t)

This direction will be perpendicular to direction of normal n (with direction ratios 0 0, , 1p q ∃ )

if 0 0 0 0 0( ) ( ) ( 1) ( ) 0p x t q y t z t+ + +, , ∃ ) or 0 0 0 0 0( ) ( ) ( )z t p x t q y t+ + +) ,

It follows that any set { ( ), ( ), ( ), ( ), ( )}x t y t z t p t q t ...(5)

of five real functions satisfying the condition that ( ) ( ) ( ) ( ) ( )z t p t x t q t y t+ + +) , ... (6)
defines a strip at the point (x, y, z) of the curve C. When such a strip is also an integral element of
(1), then the strip under consideration is known as an integral strip of (1). In other words, the set
of functions (5) is known as an integral strip of (1) provided these satisty (6) and the following
additional condition

{ ( ), ( ), ( ), ( ), ( )}f x t y t z t p t q t = 0, for all t in I.
If at each point of the curve (3) touches a generator of the elementary cone, then the

corresponding strip is known as a characteristic strip.
Derivation of the equations determining a characteristic strip
Clearly, the point ( , , )x dx y dy z dz, , ,  lies in the tangent plane to the elementary cone at P if

    dz pdx q dy) , ... (7)
where p, q satisfy (1). Differentiation (7) w.r.t. ‘p’, we get

         0 ( / )dx dq dp dy) , ... (8)
Again, differentiating (1) partially w.r.t. ‘p’, we have

/ ( / ) ( / ) 0f p f q dq dp# # , # # ) i.e., ( / ) 0p qf f dq dp, ) ... (9)

Here, / pf p f# # )       and               / qf q f# # )

S
P ,q , –0 0 1

CP0 P1
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3.78 Non-Linear Partial Differential Equations of Order One

Solving (7), (8) and (9) for the ratios of dy, dz to dx, we get

) )
,p q p q

dx dy dz

f f p f q f . ... (10)

Hence along a characteristic strip ( ), ( )x t y t+ + , ( )z t+  will be proportional to ,, ,p q p qf f p f q f

respectively. If the parameter t be selected satisfying the relations

( ) px t f+ ) and ( ) qy t f+ ) .

then, we have + ) ,( ) p qz t p f q f

Since along a characteristic strip p is a function of t, hence

( ) ( / ) ( / ) ( / ) ( / )p t p x dx dt p y dy dt+ ) # # , # # = ( / ) ( / ) ( / ) ( / )p x f p p y f q# # # # , # # # # , using (11)1)

Thus, ( ) ( / ) ( / ) ( / ) ( / )p t p x f p q x f q+ ) # # # # , # # # # ... (12)

p z z q

y y x x y x

0 1! �# # # # # #! �) ) )2 3% &% &# # # # # #∋ (2 3∋ (4 5
�

Now, differentiating (1) partially w.r.t. ‘x’, gives 0
f f f p f q

p
x z p x q x

# # # # # #
, , , )

# # # # # #

or ( ) 0x zf p f p t+, , ) , using (12)

Hence on a characteristic strip, ( ) x zp t f p f+ ) ∃ ∃ ... (13)

Similarly, we have + ) ∃ ∃( ) y zq t f q f ... (14)

Here  ) # # ) # # ) # #/ , / , /x y zf f x f f y f f z

From (11), (13) and (14), we get the following system of five ordinary differential equations
for the determination of the characteristic strip

( ) px t f+ ) ,   ( ) qy t f+ ) ,   + ) ,( ) p qz t p f q f ,   ( ) x zp t f p f+ ) ∃ ∃    and    ( ) y zq t f q f+ ) ∃ ∃  ...(15)

The above equations are called the characteristic equations of (1). In view of a well known
result if the functions which are involved in (15) satisfy a Lipschitz condition, there exists a unique
solution of (15) for given set of initial values of the variables. It follows that the characteristic strip
is determined uniquely by any initial element 0 0 0 0 0( , , , , )x y z p q  and any initial value to of t.

Working rule for solving Cauchy’s problem. [Meerut 2005]
Suppose we wish to find the integral surface of (1) which passes through a given curve with

parametric equation 1( )x f) 9 , 2 ( )y f) 9 , ) 93( ),z f 9  being the parameter  ... (16)

then in the solution 0 0 0 0 0( , , , , , )x x p q x y t t)  etc. ... (17)
of the characteristic equations (15), we shall assume that

0 1( )x f) 9 , 0 2 ( )y f) 9 , 0 3( )z f) 9

are the initial values of x, y, z respectively. Then the corresponding initial values of p0, q0 can be
obtained by the following relations

9 ) 9 , 9+ + +3 0 1 0 3( ) ( ) ( )f p f q f and 1 2 3 0 0{ ( ), ( ), ( ), , } 0f f f f p q9 9 9 )
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Non-Linear Partial Differential Equations of Order One 3.79

When the above values of 0 0 0 0 0, , , ,x y z p q  and the appropriate value of t0 is substituted in
(17), we shall be able to express x, y, z involving the two parameters t and 9  of the form

) : 9 ) : 91 2( , ), ( , )x t y t     and          3( , )z t) : 9 ... (18)
which are known as characteristics of (1)

Finally, by eliminating 9  and t from (18), we arrive at a relation of the form G ( , , )x y z = 0,
which is the required equation of the integral surface of (1) passing through the given curve (16).

3.24 Some Theorems:
Theorems 1. A necessary and sufficient condition that a surface be an integral surface of a

partial differential equation is that at each point its tangent element should touch the elementary
cone of the equation.

Proof. Using geometrical considerations and Art 3.23, complete the proof yourself.
Theorem II. Along every characteristic strip of the partial differential equation f (x, y, z, p,

q) = 0 the function f (x, y, z, p, q) is  a constant.
Proof. Along a characteristic strip, we have

{ ( ), ( ), ( ), ( ), ( )}
d

f x t y t z t p t q t
dt

= , , , ,+ + + + +( ) ( ) ( ) ( ) ( )x y z p qf x t f y t f z t f p t f q t

= ( ) ( ) ( )x p y q z p q p x z q y zf f f f f p f q f f f p f f f q f, , , ∃ , ∃ ,

= 0, using the characteristic equation (15) of Art. 3.23
showing that f (x, y, z, p, q) = K, a constant along the strip.

Corollary to theorem II. If a characteristic strip contains at least one integral element of
( , , , , ) 0f x y z p q )  it is an integral strip of the equation ( , , , / , / ) 0f x y z z x z y# # # # )

Proof. Left as an exercise.
3.25 SOLVED EXAMPLES BASED ON ART. 3.23

Ex. 1. Find the characteristics of the equation pq z) , and determine the integral surface
which passes through the parabola x = 0, y2 = z. [Meerut 2005; I.A.S. 1999]

Sol. Given equation is pq = z ... (1)
We are to find its integral surface which passes through the given parabola given by

 x = 0, and y2 = z ... (2)
Re-writing (2) in parametric form, we have

x = 0, y = 9 , 2z ) 9 , 9  being a parameter ... (3)

Let the initial values 0 0 0 0 0, , , ,x y z p q  of , , , ,x y z p q  be taken as

0 0 ( ) 0x x) 9 ) , ) 9 ) 9 ) 9 ) 92
0 0 0 0( ) , ( )y y z z ... (4A)

Let p0, q0 be the initial values of p, q corresponding to the initial values x0, y0, z0. Since
initial values 0 0 0 0( , , , , )x y z p q  satisfy (1), we have

0 0 0p q z) ,          or        2
0 0p q ) 9 , by (4A) ... (5)

Also, we have 9 ) 9 , 9+ + +0 0 0 0 0( ) ( ) ( )z p x q y

so that 0 02 0 1p q9 ) 7 , 7 or     0 2 ,q ) 9  by (4A) ... (6)

Solving (5) and (6), 0 / 2p ) 9 and      0 2q ) 9 ... (4B)
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3.80 Non-Linear Partial Differential Equations of Order One

Collecting relations (4A) and (4B) together, initial values of 0 0 0 0 0, , , ,x y z p q  are given by

0 0x ) ,    0 ,y ) 9   2
0z ) 9 ,    0 / 2p ) 9 , 0 2q ) 9  when 0 0t t) ) ... (7)

Re-writing (1), let ( , , , , ) 0f x y z p q pq z) ∃ ) ... (8)
The usual characteristic equations of (8) are given by

/ /dx dt f p q) # # ) ... (9)

/ /dy dt f q p) # # ) ... (10)

/ ( / ) ( / ) 2dz dt p f p q f q pq) # # , # # ) ... (11)

/ ( / ) ( / )dp dt f x p f z p) ∃ # # ∃ # # ) ... (12)

and / ( / ) ( / )dq dt f y q f z q) ∃ # # ∃ # # ) ... (13)

From (9) and (13), ( / ) ( / ) 0dx dt dq dt∃ ) , so that 1x q C∃ ) , .... (14)
where C1 is an arbitrary constant. Using initial values (7), (14) gives

0 0 1x q C∃ ) or 10 2 C∃ 9 ) or 1 2C ) ∃ 9 , Then (14) becomes

2x q∃ ) ∃ 9 or 2x q) ∃ 9 , ... (15)

From (10) and (12), ( / ) ( / ) 0dy dt dp dt∃ ) so that       2y p C∃ ) , ... (16)

where 2C  is an arbitrary constant. Using initial values (7), (16) gives

0 0 2y p C∃ ) or 2( / 2) C9 ∃ 9 ) or 2 / 2C ) 9 . Then (16) becomes

/ 2y p∃ ) 9 or ( / 2)y p) , 9 ... (17)

From (12), (1/ )p dp dt) so that 3log logp C t∃ )    or   3
tp C e) ... (18)

Using initial values (7), (18) gives   0
0 3p C e)          or 3/ 2 C9 )

Hence (18) reduces to              ) 9 7( / 2) tp e ... (19)

From (13),   (1/q) dq dt) so that 4log logq C t∃ )      or        4
tq C e)  ... (20)

Using initial values (7), (20) gives   0
0 4q C e)          or 42 C9 )

Hence (20) reduces to 2 tq e) 9 ... (21)

Using (21), (15) becomes 2 2tx e) 9 ∃ 9 or 2 ( 1)tx e) 9 ∃ ... (22)

Using (19), (17) becomes   ( / 2) / 2ty e) 9 , 9   or      ) 9 7 ,( / 2) ( 1)ty e ... (23)

Substituting values of p and q from (19) and (21) in (11), we get

) 9 7 7 9/ 2{( / 2) } {2 }t tdz dt e e or 2 22 tdz e dt) 9 .

Integrating, 2 2
5

tz e C) 9 , , C5  being arbitrary constant .... (24)

Using initial values (7), (24) gives 2 0
0 5z e C) 9 ,     or    2 2

5C9 ) 9 ,     or    5 0C )
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Non-Linear Partial Differential Equations of Order One 3.81

Then, (24) gives 2 2tz e) 9 or    2 2( )tz e) 9 ... (25)

The required characteristics of (1)are given by (22), (23) and (25)
To find the required integral surface of (1), we now proceed to eliminate two parameters t and

9  from three equations (22), (23)and (25). Solving (22) and (23) for et and 9 , we have

( 4 ) /(4 )te x y y x) , ∃ and 9 ) ∃(4 ) / 4y x

Substituting these values of et and 9  in (25), we have

2 2{(4 ) /16} {( 4 ) /(4 )}z y x x y y x) ∃ 7 , ∃ or 216 (4 )z y x) , ,

which is the required integral surface of (1) passing through (2).

Ex. 2. Find the solution of the equation ) ,2 2( ) / 2z p q  + ( ) ( )p x q y∃ ∃  which passes
through the x-axis.    [Himachal 1996; 2004; I.A.S. 2002]

Sol. Given equation is ) , , ∃ ∃2 2( ) / 2 ( )( )z p q p x q y ... (1)
We are to find its integral surface which passes through x-axis which is given by equations

y = 0 and z = 0     ... (2)
Re-writing (2) in parametric form,  ) 9 ) ) 9, 0, 0,x y z  being the parameter    ... (3)

Let the initial values 0 0 0 0 0, , , ,x y z p q  of , , , ,x y z p q  be taken as

0 0 ( )x x) 9 ) 9 , 0 0 ( ) 0y y) 9 ) , 0 ( ) 0z z) 9 ) ... (4A)

Let 0 0,p q  be the initial values of p, q corresponding to the initial values x0, y0, z0. Since

initial values 0 0 0 0 0( , , , , )x y z p q  satisfy (1), we have

) , , ∃ ∃2 2
0 0 0 0 0 0 0( ) / 2 ( ) ( )z p q p x q x or ) , , ∃ 92 2

0 0 0 00 ( ) / 2 ( ),p q q p  by (4A)

or 2 2
0 0 0 0 02 2 0p q q p q, , ∃ 9 ) ... (5)

Also, we have       0 0 0 0 0( ) ( ) ( )z p x q y+ + +9 ) 9 , 9

so that 0 00 1 0p q) 7 , 7          or 0 0p ) , by (4A) ... (6)

Solving (5) and (6),         0 0p ) and 0 2q ) 9 ... (4B)

Collecting relations (4A) and (4B) together, initial values of 0 0 0 0 0, , , ,x y z p q  are given by

) 9 ) ) ) ) 90 0 0 0 0, 0, 0, 0, 2x y z p q    when     0 0t t) ) ... (7)

Let ) , , ∃ ∃ , ∃ )2 2( , , , , ) ( ) / 2 0f x y z p q p q pq py qx xy z ... (8)
The usual characteristic equations of (8) are given by

/ /dx dt f p p q y) # # ) , ∃ ... (9)

/ /dy dt f q q p x) # # ) , ∃ ... (10)

          / ( / ) ( / ) ( ) ( )dz dt p f p q f q p p q y q q p x) # # , # # ) , ∃ , , ∃ , ... (11)

         / ( / ) ( / )dp dt f x p f z p q y) ∃ # # ∃ # # ) , ∃ ... (12)

and         / ( / ) ( / )dq dt f y q f z p q x) ∃ # # ∃ # # ) , ∃ ... (13)

From (9) and (12), ( / ) ( / ) 0dx dt dp dt∃ )     so that      1x p C∃ ) ... (14)

where C1 is an arbitrary constant. Using initial conditions (7), (14) gives 10 C9 ∃ )  or   1C ) 9 .
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3.82 Non-Linear Partial Differential Equations of Order One

Hence (14) reduces to x p∃ ) 9     or         x p) , 9  ... (15)

     From (10) and (13), ( / ) ( / ) 0dy dt dq dt∃ )   so that    2y q C∃ ) , ... (16)
where C2 is an arbitrary constant.

Using initial conditions (7), (16) gives 20 2 C∃ 9 ) or 2 2C ) ∃ 9 .

 Hence (16) reduces to      2y q∃ ) ∃ 9       or           2y q) ∃ 9  ... (17)

−
( )

( )
d p q x dp dq dx

p q y p q x p q y
dt dt dt dt

, ∃
) , ∃ ) , ∃ , , ∃ ∃ , ∃ , using (9), (12) and (13)

or ( )d p q x
p q x

dt
, ∃

) , ∃   or ( )d p q x
dt

p q x

, ∃
)

, ∃
.

Integrating, 3log( ) logp q x C t, ∃ ∃ )  or          3
tp q x C e, ∃ ) , ... (18)

where C3 is an arbitrary constant. Using initial conditions (7), (18) gives 30 2 C, 9 ∃ 9 )  or 3C ) 9 .

Hence (18) reduces to        tp q x e, ∃ ) 9 ... (19)

Now, ( )
( )

d p q y dp dq dy
p q y p q x q p x

dt dt dt dt

, ∃
) , ∃ ) , ∃ , , ∃ ∃ , ∃ , by (10), (12) and (13)

or      ( )d p q y
p q y

dt

, ∃
) , ∃   or ( )d p q y

dt
b q y

, ∃
)

, ∃
.

Integrating,    4log( ) logp q y C t, ∃ ∃ )   or             4
tp q y C e, ∃ ∃ ... (20)

where C4 is an arbitrary constant. Using initial conditions (7), (20) gives 40 2 0 C, 9 ∃ )  or 4 2C ) 9 .

 Hence (20) reduces to 2 tp q y e, ∃ ) 9 ... (21)

From (9) and (21), / 2 tdx dt e) 9 so that 52 tx e C) 9 , ... (22)

where C5 is an arbitary constant. Using initial conditions (7), (22) gives 52 C9 ) 9 ,  or 5C ) ∃9 .

 Hence (22) reduces to 2 tx e) 9 ∃ 9           or   (2 1)tx e) 9 ∃ ... (23)

From (10) and (19), / tdy dt e) 9 so that    6
ty e C) 9 , ... (24)

where C6 is an arbitrary constant. Using initial conditions (7), (24) gives 60 C) 9 ,  or 6C ) ∃9 .

 Hence (24) reduces to ) 9 ∃ 9ty e       or     ( 1)ty e) 9 ∃  ... (25)

Substituting value of y from (17) in (12), we get

  / ( 2 )dp dt p q q) , ∃ ∃ 9 or ∃ ) 9( / ) 2 ,dp dt p   ... (26)

which is a linear equation whose integrating factor =
( 1)dt te e
∃ ∃);  and solution is

7 3(2 ) 2t t tp e e dt C e C∃ ∃ ∃) 9 , ) ∃ 9 ,;           or             32 tp C e) ∃ 9 , ... (27)

where C7 is an arbitrary constant. Using initial condition (7), (27) gives 70 2 C) ∃ 9 ,  or 7 2C ) 9 .

 Hence (27) reduces to 2 2 tp e) ∃ 9 , 9    or     2 ( 1)tp e) 9 ∃  ... (28)

Substituting value of x from (15) in (13), we get
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/ ( )dq dt p q p) , ∃ , 9 or /dq dt q∃ ) ∃9 , ... (29)

which is a linear equation whose integrating factor =
( 1)dt te e
∃ ∃);  and solution is

8 8( )t t tqe e dt C e C∃ ∃ ∃) ∃9 , ) 9 ,; or 8
tq C e) 9 , ... (30)

where C8 is an arbitrary constant. Using initial condition (7), (30) gives 82 C9 ) 9 ,  or C8 = 9 .

 Hence (30) reduces to tq e) 9 , 9 or        (1 )tq e) 9 ,  ... (31)

Substitutions the values of p q x, ∃  and p q y, ∃  from (13) and (24) respectively in (1) gives

/ (2 ) ( ) 2 ( 1) (2 ) (1 ) ( )t t t t t tdz dt p e q e e e e e) 9 , 9 ) 9 ∃ 9 , 9 , 9
[on putting values of p and q with help of (28) and (31)]

or 2 2 2/ 5 3t tdz dt e e) 9 ∃ 9     or 2 2 2(5 3 )t tdz e e dt) 9 ∃ 9 .

Integrating, ) 7 9 ∃ 9 ,2 2 2
9(5/ 2) 3t tz e e C ... (32)

where C9 is an arbitrary constant. Using initial conditions (7), namely z = 0 where t = 0, (32) gives

0 = (5/2) × 2 2
93 C9 ∃ 9 ,  or 2 2

9 3 (5/ 2)C ) 9 ∃ 9 . Hence (32) reduces to

      ) 7 9 ∃ ∃ 9 ∃2 2 2(5 / 2) ( 1) 3 ( 1)t tz e e ... (33)

Solving (23) and (25) for 9  and et, 2x y9 ) ∃ and  ( ) /( 2 )te x y x y) ∃ ∃   ... (34)

Eliminating 9  and te  from (33) and (34), we have

< =! � ! �∃ ∃> >) ∃ ∃ ∃ ∃ ∃? ≅% & % &∃ ∃∋ ( ∋ (> >Α Β

2
2 25

( 2 ) 1 3( 2 ) 1
2 2 2

x y x y
z x y x y

x y x y

or ) 7 ∃ ∃ ∃ ∃2 2(5/ 2) {( ) ( 2 ) } 3z x y x y 2{( 2 ) ( ) ( 2 ) }x y x y x y∃ ∃ ∃ ∃

or ) 7 ∃( / 2) (4 3 )z y x y , on simplification.

Ex. 3. Determine the characteristics of the equation 2 2z p q) ∃  and find the integral surface

which passes through the parabola 24 0, 0z x y, ) ) .                    [Himachal 2000, 05]

Sol. Do yourself, the required characteristics are 2 (2 )tx e∃) 9 ∃ , ∃) 9 ∃2 2 ( 1),ty e ∃) ∃9 92 2 ,tz e

being parameter. Solution is , , )24 ( 2) 0z x y .
Ex. 4. Determine the characteristics of the equation p2 + q2 = 4z and find the solution of

this equation which reduces to z = x2 + 1 when y = 0.
Miscellaneous Problem on Chapter 3

1. Show that the envelope of the family of surfaces touch each member of the family at all points of
its characteristics. [Meerut 2008]

2. Find a complete integral of the partial differential equation 2 2( ), )p q x pz  and deduce the
surface solution which passes through the curve   x = 0,  z2 = 4 y. [Meerut 2007]

3. Solve p2y + p2yx2 = qx2 [Pune 2010]
Ans. Complete integral is         z = a (1 + x2)1/2 + (a2y2)/2 + b.
4. Given thta (x – a)2 + (y – b)2 + z2 = 1 is complete integral of z2 (1 + p2 + q2) = 1. Find its singular

integral. [Pune 2010]
Hint. Use definition on page 3.1.  Ans. z2 = 1

2 2( ), )p q x pz
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4
Homogenous Linear Partial Differential

Equations with Constant Coefficients

4.1. Homogeneous and Non–homogeneous linear equations with constant
coefficients. A partial differential equation in which the dependent variable and its derivatives
appear only in the first degree and are not multiplied together, their coefficients being constants or
functions of x and y, is known as a linear partial differential equation. The general form of such an
equation is

A z
x

A z
x y

A z
y

n

n

n

n n

n

n0 1 1
!
!

� !
! !

� � !
!

F
HG

I
KJ# . .. � !

!
� !

! !
�

F
HG

#

#

#

#B z
x

B z
x y

n

n

n

n0

1

1 1

1

2 ...
1

1 0 11

n

n n
z z zB M M

x yy

#

# #

∃ % ∃! ! !
� � �& ∋ &! !! ( ))

                  + N0 z = f(x, y),  ...(1)
where the coefficients A0, A1, ... An, B0, B1, ... Bn – 1, M0, M1 and N0 are constants or functions of x
and y. If A0, A1, ... An, B0, B1, ... Bn – 1, M0, M1 and N0 are all constants, then (1) is called a linear
partial differential equation with constant coefficients.

For convenience !/!x and !/!y will be denoted by D (or Dx) and D∗ (or Dy) respectively.
Then (1) can be rewritten as

[(A0D
n + A1D

n – 1D∗ + ... + AnD∗n) + (B0D
n – 1 + B1 Dn – 2D∗ + ... + Bn – 1D∗n – 1)

                            + (M0D + M1D∗) + N0]z = f(x, y),  ...(2)
or, briefly, F(D, D∗)z = f(x, y). ...(3)

When all the derivatives appearing in (1) are of the same order, then the resulting equation is
called a linear homogeneous partial differential equation with constant coefficients and it is then
of the form

(A0D
n – 1 + A1D

n – 1D∗ + ... + AnD∗n)z = f(x, y). ...(4)
On the other hand, when all the derivatives in (1) are not of the same order, then it is called

a non–homogeneous linear partial differential equation with constant coefficients.
In this chapter we propose to study the various methods of solving homogeneous linear partial

differential equation with constant coefficients, namely, (4)
4.2. Solution of a homogeneous linear partial differential equation with constant
coefficients, namely,         (A0D

n – 1 + A1D
n – 1D∗ + ... + AnD∗n)z = f(x, y),    ...(1)

where A0, A1, ..., An are constants. (1) may rewritten as
     F(D, D∗)z = f(x, y), ...(2)

where F(D, D∗) = A0D
n – 1 + A1D

n – 1D∗ + ... + AnD∗n. ...(3)
As in the case of linear ordinary differential equation with constant coefficients, we start with

the following basic theorems.
Theorem I. If u is the complementary function and z∗ a particular integral of a linear partial

differential equation F(D, D∗)z = f(x, y), then u + z∗ is a general solution of the equation.
Proof. Given F(D, D∗)z = f(x, y). ...(1)
The complementary function u of (1) is the most general solution of

F(D, D∗)z = 0. ...(2)
4.1
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4.2 Homogenous linear partial differential equations with constant coefficients

+ F(D, D∗)u = 0. ...(3)
Note that the complementary function must contain as many arbitrary constants as is the

order of equation (2).
Any solution z∗ of (1) is called a particular integral of (1). Note that particular integral does

not contain any arbitrary constant. Thus, by definition, we have
   F(D, D∗)z∗ = f(x, y). ...(4)

Adding (3) and (4),   F(D, D∗)(u + z∗) = f(x, y),
showing that u + z∗ is a solution of (1). Since (1) and (2) are of the same order, the general solution
u + z∗ will contain as many arbitrary constants as the general solution of (1) requires.

Theorem II. If u1, u2, ..., un are solutions of the homogeneous linear partial differential

equation F(D, D∗ )z = 0, then c ur r
r

n

,
−

1
 is also a solution, where C1, C2, ..., Cr, ..., Cn are arbitraryy

constants.
Proof. Given equation is F(D, D∗)z = 0. ...(1)
We have F(D, D∗)(cr ur) = cr F(D, D∗)ur ...(2)

and F D D' r
r

n
( , ) v

,
−

1
= F D D' r

r

n
( , )v

,
−

1
...(3)

for any set of functions vr. Using results (2) and (3), we get

1

( , ) ( )
n

r r
r

F D D' c u
,

− =
1 1

( , )( ) ( , )
n n

r r r r
r r

F D D' c u c F D D' u
, ,

,− − ...(4)

Since ur is solution of (1) for r = 1, 2, ..., n,      so    F(D, D∗)ur = 0    for  r = 1, 2, 3, ..., n.

+ (4) gives F D D' c ur r
r

n
( , ) ( )

,
−

1
= 0, which proves the required result.

Note. For convenience we shall denote complementary function by C.F. and particular integral
by P.I.
4.3. Method of finding the complementary function (C.F.) of the linear homogeneous
partial differential equation with constant coefficients, namely,  F(D, D∗)z = f(x, y)
i.e., (A0D

n + A1D
n – 1D∗ + ... + AnD∗n)z = f(x, y), ...(1)

where A0, A1, ..., An are all constants.
The complementary function of (1) is the general solution of

      (A0D
n + A1D

n – 1D∗ + ... + AnD∗n)z = 0. ...(2)
or [(D – m1D∗)(D – m2D∗) ... (D – mnD∗)]z = 0.

...(3)
where m1, m2, ..., mn are some constants.

Clearly, the solution of any one of the equations
(D – m1D∗)z = 0,  (D – m2D∗)z = 0, .................,         (D – mnD∗)z = 0  ...(4)

is also a solution of (3).
We now show that the general solution of (D – mD∗)z = 0 is z = .(y + mx),

where . is an arbitrary function.
We have,   (D – mD∗)z = 0 or  (!z/!x) – m(!z/!y) = 0  or    p – mq = 0,    ...(5)

which is in Lagrange’s form Pp + Qq = R. Here Lagrange’s auxiliary equations for (5) are

dx
1

=
dy
m

dz
#

,
0 . ...(6)
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Homogenous linear partial differential equations with constant coefficients 4.3

Taking the first two fractions of (6),    dy + mdx = 0    so that        y + mx = c1     ... (7)
From the third fraction of (6), dz = 0 so that        z = c2.          ...(8)
Hence from (7) and (8), the general solution of (5) is z = .(y + mx), where . is an arbitrary

function. So, we assume that a solution of (2) is of the form
z = .(y + mx). ...(9)

From (9), Dz = !z/!x = m.∗(y + mx),
D2z = !2z/!x2 = m2.∗∗(y + mx),
...................................................

and Dnz = !nz/!xn = mn.(n)(y + mx).

Again, D∗z = !z/!y = ∗. (y + mx),

D∗2z = !2z/!y2 = ∗∗. (y + mx),
 ...................................................

and D∗nz = !nz/!yn = .(n)(y + mx).
Also, in general, DrD∗sz = !r + sz/!xr!ys = mr.(r + s)(y + mx).
Substituting these values in (2) and simplifying, we get

(A0m
n + A1m

n – 1 + A2m
n – 2 + ... + An).(n)(y + mx) = 0,

which is true if m is a root of the equation
A0m

n + A1m
n – 1 + A2m

n – 2 + ... + An = 0. ...(10)
The equation (10) is known as the auxiliary equation (A.E.) and is obtained by putting

D = m and D∗ = 1 in F(D, D∗) = 0.
Let m1, m2, ..., mn be n roots of A.E. (10). Two cases arise.
Case I. When m1, m2, m3, ... mn are distinct. Then the part of C.F. corresponding to m = mr

is z = .r(y + mrx) for r = 1, 2, 3, ..., n. Since (2) is linear, the sum of the solutions is also a solution.
+ C.F. of (2) = .1(y + m1 x) + .2(y + m2 x) + ... + .n(y + mn x), ...(11)

where .1, .2, ..., .n are arbitrary functions.
Case II. Repeated roots. Let m be repeated root of (10) and so consider

(D – mD∗)(D – mD∗)z = 0. ...(12)
Let  (D – mD∗)z = v. ...(13)
Then,  (12) /  (D – mD∗)v = 0   or     (!v/!x) – m(!v/!y) = 0,  ...(14)

which is in Lagrange’s form. Hence Lagrange’s auxiliary equations for (14) are
dx
1

= dy
m

d
#

, v
0

. ...(15)

As before, two independent integrals of (15) are y + mx = c3 and v = c4.
+ v = .(y + mx) ...(16)

is a solution of (14), . being as arbitrary function.
Using (16), (13) becomes (!z/!x) – m(!z/!y) = .(y + mx) ...(17)

which is in Lagrange’s form. Its Lagrange’s auxiliary equations for (7) are
dx
1 =

dy
m

dz
y mx#

,
�.( )

...(18)

Taking the first two fractions of (18), dy + mdx = 0 so that y + mx = c5. ... (19)
Taking the first and third fractions of (18) and using (19), we get

5( ) /1 ( ) / ( )dx dz c, . so that dz – .(c5)dx = 0.
Integrating, z – x .(c5) = c6 or   z – x .(y + mx) = c6, using (19).  ...(20)
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4.4 Homogenous linear partial differential equations with constant coefficients

From (19) and (20), the general solution of (12) is
z – x.(y + mx) = 0(y + mx) or z = 0(y + mx) + x.(y + mx), ...(21)

where . and 0 are arbitrary functions. (21) is a part of C.F. corresponding to the two times repeated
root m. In general, if a root ‘m’ is repeated ‘r’ times, the corresponding part of C.F. is

.1(y + m x) + x.2(y + mx) + x2.3(y + mx) + ... + xr – 1.r(y + mx).
4.4.A. Working rule for finding C.F. of linear homogeneous partial differential equation
with constant coefficients

Step 1. Put the given equation in standard form (A0D
n + A1D

n – 1D∗ + ... AnD∗n)z = f(x, y)....(1)
Step 2. Replacing D by m and D∗ by 1 in the coefficients of z, we obtain auxiliary

equation (A.E.) for (1) as A0m
n + A1m

n – 1 + ... + An = 0.
   ...(2)

Step 3. Solve (2) for m. Two cases will arise :
Case (i) Let m = m1, m2, ..., mn (different roots). Then
C.F. = .1(y + m1x) + .2(y + m2 x) + ... + .n(y + mn x), where .1, .2 ..., .n are arbitrary functions.
If in the above case (i), m = a1/b1, a2/b2, ..., an/bn, then

  C.F. 1 1 1 2 2 2( ) ( ) ... ( )n n nb y a x b y a x b y a x, . � � . � � � . �
Further if m = –(a1/b1), –(a2/b2), ..., –(an/b n), then

  C.F. 1 1 1 2 2 2( ) ( ) ... ( )n n nb y a x b y a x b y a x, . # � . # � � . #
Case (ii) Let m = m∗ (repeated n times). Then corresponding to these roots

  C.F. = .1(y + m∗ x) + x .2(y + m∗ x) + 2
2 ( )x y m x. � �∗ ... + xn – 1.n(y + m∗ x).

In the above case (ii), if m = a/b (repeated n times), Then corresponding to these n roots,

  C.F. 2 1
1 2 2( ) ( ) ( ) ... ( )n

nby ax x by ax x by ax x by ax#, . � � . � � . � � � . �
And, if m = –(a/b), (repeated n times), then

  C.F. 2
1 2 2( ) ( ) ( ) ... ( )n

nby ax x by ax x by ax x by ax, . # � . # � . # � � . #
Case (iii) Corresponding to a non–repeated factor D on L.H.S. of (1),
the part of C.F. is taken as .(y).
Case (iv) Corresponding to a repeated factor Dm on L.H.S. of (1), the part of C.F. is taken as

.1(y) + x .2(y) + x2.3(y) + ... + xm – 1.m(y).
Case (v) Corresponding to a non–repeated factor D∗ on L.H.S. of (1),
the part of C.F. is taken as .(x).
Case (vi) Corresponding to a repeated factor D∗m on L.H.S. of (1), the part of C.F. is taken as

.1(x) + y .2(x) + y2.3(x) + ... + ym – 1.m(x).
4.4.B. Alternative working rule for finding C.F.

Let the given partial differential equation be F(D, D∗)z = f(x, y). Factorize F(D, D∗) into
linear factors of the form (bD – aD∗). Then we use the following results :

(i) Corresponding to each non–repeated factor (bD – aD∗), the part of C.F. is taken as
.(by + ax).

(ii) Corresponding to a repeated factor (bD – aD∗)m, the part of C.F. is taken as
.1(by + ax) + x.2(by + ax) + x2.3(by + ax) + ... + xm – 1.m(by + ax).

(iii) Corresponding to a non–repeated factor D, part of C.F. is taken as .(y).
(iv) Corresponding to a repeated factor Dm, the part of C.F. is taken as

.1(y) + x .2(y) + x2.3(y) + ... + xm – 1.m(y).
(v) Corresponding to a non–repeated factor D∗, part of C.F. is taken as .(x).
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Homogenous linear partial differential equations with constant coefficients 4.5

(vi) Corresponding to a repeated factor D∗m, the part of C.F. is taken as
.1(x) + y .2(x) + y2.3(x) + ... + ym – 1.m(x).

4.5. Solved examples based on articles 4.4A and 4.4B
[Notations  p = !z/!x, q = !z/!y, r = !2z/!x2, s = !2z/!x!y and t = !2z/!y2 will be used]
Ex. 1. Solve (a) r = a2t. [I.A.S. 1987; Meerut 1991]
(b)(!2z/!x2) – (!2z/!y2) = 0.
(c) (D2 – 3aDD∗ + 2a2D∗2)z = 0. [Kanpur 2007; Meerut 2007]

Sol. (a) Given equation is !2z/!x2 = a2(!2z/!y2) or    (D2 – a2D∗2)z = 0.     ...(1)
The auxiliary equation of (1) is m2 – a2 = 0 so that           m = a, –a.

+ The general solution of (1) is z = C.F. = .1(y + ax) + .2(y – ax),
where .1 and .2 are arbitrary functions.

(b) Proceed as in part (a). Ans. z = .1(y + x) + .2(y – x)
(c) Proceed as in part (a). Ans. z = .1(y + ax) + .2(y + 2ax)
Ex. 2. Solve (a) (D3 – 6D2D∗ + 11DD∗2 – 6D∗3)z = 0. [Agra 2005]
(b) (!3z/!x3) – 7(!3z/!x!y2) + 6(!3z/!y3) = 0. [Bhopal 2010]
(c) (D3 – 3D2D∗ + 2DD∗2)z = 0. [Meerut 2008; Lucknow 2010]
Sol. (a) The auxiliary equation is  m3 – 6m2 + 11m – 6 = 0

or (m – 1)(m – 2)(m – 3) = 0 so that        m = 1, 2, 3.
+ The general solution of the given equation is

z = .1(y + x) + .2(y + 2x) + .3(y + 3x), .1, .2, .3 being arbitrary functions.
(b) The given equation can be written as (D3 – 7DD∗2 + 6D∗3)z = 0. ...(1)

Its auxiliary equation is m3 – 7m + 6 = 0 or (m – 1)(m – 2)(m + 3) = 0.
Hence m = 1, 2, –3 and so the general solution of (1) is

z = .1(y + x) + .2(y + 2x) + .3(y – 3x), .1, .2, .3 being arbitrary functions.
(c)Proceed as above. Ans. z = .1(y) + .2(y + x) + .3(y + 2x).
Ex. 3. (a) Solve 2r + 5s + 2t = 0. [Meerut 2011]
(b) 2(!2z/!x2) – 3(!2z/!x!y) – 2(!2z/!y2) = 0.
Sol. (a) Now, r = !2z/!x2 = D2z, s = !2z/Dx!y = DD∗z and t = !2z/!y2 = D∗2z. Hence the given

equation can be re–written as (2D2 + 5 DD∗ + 2D∗2)y = 0.    ...(1)
Its auxiliary equation is 2m2 + 5m + 2 = 0 or (2m + 1)(m + 2) = 0.
So m = –1/2, –2 and hence the general solution of (1) is

z = .1(2y – x) + .2(y – 2x), .1 and .2 being arbitrary functions.
Alternative method : (1) can be re–written as (2D + D∗)(D + 2D∗) = 0.
So by using the alternative working rule 4.4B, the general solution of (1) is

z = .1(2y – x) + .2(y – 2x), .1 .2 being arbitrary functions.
(b) Proceed as in part (a). Ans. z = .1(2y – x) + .2(y + 2x)
Ex. 4. Solve (a) r + t + 2s = 0 [Kanpur 2009]
(b) 25r – 40s + 16t = 0 [Bilaspur 1996; Jabalpur 2002; Sagar 2004];
(c) (4D2 + 12DD∗ + 9D∗2)z = 0. [Kanpur 2008; Indore 2004]
Sol. (a) Here r = !2z/!x2 = D2z,    t = !2z/!y2 = D∗2z,        s = !2z/!x!y = DD∗z.
So the given equation becomes (D2 + D∗2 + 2DD∗)z = 0. ...(1)
Its auxiliary equation is m2 + 1 + 2m = 0 or (m + 1)2 = 0 or m = –1, –1.
So the general solution of (1) is z = .1(y – x) + x.2(y – x), .1 and .2 being arbitrary functions.
(b) Here r = !2z/!x2 = D2z, s = !2z/!x!y = DD∗z, t = !2z/!y2 = D∗2z. So the given equation

becomes       (25D2 – 40DD∗ + 16D∗2)z = 0.               ...(1)
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4.6 Homogenous linear partial differential equations with constant coefficients

Its auxiliary equation is  25m2 – 40m + 16 = 0   or   (5m – 4)2 = 0  so that    m = 4/5, 4/5.
Hence the general solution of (1) is         z = .1(5y + 4x) + x.2(5y + 4x).
Alternative method (1) may be written as (5D – 4D∗)2z = 0.
Using result (ii) of Art 4.4B, the solution of (1) is

z = .1(5y + 4x) + x.2(5y + 4x), .1, .2 being arbitrary functions.
(c)Proceed as in part (b). Ans. z = .1(2y – 3x) + x.2(2y – 3x)
Ex. 5. Solve (a) (D3 – 4D2D∗ + 4DD∗2)z = 0. [Bhopal 2000, 03]
(b) (D4 – 2D3D∗ + 2DD∗3 – D∗4)z = 0. [Bilaspur 2004]
(c) (D4 + D∗2 – 2D2D∗2)z = 0.
(d) (D3 – 3D2D∗ + 3DD∗2 – D∗3)z = 0.
Sol. (a) The auxiliary equation of the given equation is
m3 – 4m2 + 4m = 0 or m(m – 2)2 = 0 so that  m = 0, 2, 2
Hence the general solution of the given equation is

z = .1(y) + .2(y + 2x) + x.3(y + 2x), .1, .2, .3 being arbitrary functions.
(b) The auxiliary equation of the given equation is
m4 – 2m3 + 2m – 1 = 0 or (m + 1)(m – 1)3 = 0 so that    m = –1, 1, 1, 1.
Hence the general solution of the given equation is

         z = .1(y – x) + .2(y + x) + x.2(y + x) + x2.3(y + x), where .1, .2, .3 and .4 are arbitrary
functions.

(c) Try yourself. Ans. z = .1(y + x) + x.2(y + x) + .3(y – x) + x.4(y – x)
(d) Proceed as in part (a). Ans. z = .1(y + x) + x.2(y + x) + x2.3(y + x)
Ex. 6. Solve (a) (D3D∗2 + D2D∗3)z = 0. (b) (D3D∗ – 4D2D∗2 + 4DD∗3)z = 0.
Sol. (a) The given equation can be re–written as              D2D∗2(D + D∗)z = 0. ...(1)
Hence using the alternative method 4.4B for C.F., the general solution is

      z = .1(y) + x.2(y) + .3(x) + y.4(x) + .5(y – x), where .1, .2, .3, .4 and .5 are arbitrary functions.
(b) The given equation can be re–written as
DD∗(D2 – 4DD∗ + 4D∗2) = 0 Or DD∗(D – 2D∗)2 = 0.
Using the working rule 4.4B, the required general solution is
z = .1(y) + .2(x) + .3(y + 2x) + x.4(y + 2x), where .1, .2, .3 and .4 are arbitrary functions.
Ex. 7. Solve (a) (!4z/!x4) – (!4z/!y4) = 0 (b) (D4 + D∗4)z = 0.
Sol. (a) Rewriting, the given equation is              (D4 – D∗4)z = 0. ...(1)
Its auxiliary equation is m4 – 1 = 0 or (m2 – 1)(m2 + 1) = 0  /   m = 1, –1 i, –i.
Hence the general solution of (1) is z = .1(y – x) + .2(y + x) + .3(y + ix) + .4(y – ix),

where .1, .2, .3 and .4 are arbitrary functions.
(b) The auxiliary equation of the given equation is    m4 + 1 = 0    or    (m2 + 1)2 – 2m2 = 0

or (m2 + 1)2 – (m 2 )2 = 0 or ( )( )m m m m2 21 2 1 2� � � # = 0

so that m m2 2 1� � = 0 or m m2 2 1# � = 0  /    m = ( ) , ( )# 1 11 2 1 2i i .

Let z1 =( )# �1 2i  and z2 = ( )1 2� i , then, m = z z z z1 1 2 2, , , ,
where z1 and z2  denote complex conjugates of z1 and z2 respectively..

Hence the general solution of the given equation is
z = .1(y + z1x) + .2(y + z1x) + .3(y + z2x) + .4(y + z2 x), where .1, .2, .3, .4 are arbitrary functions.
4.6.  Particular integral (P.I.) of homogeneous linear partial differential equation

given by         ( , ) ( , )F D D y f x y∗ , ... (1)
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The inverse operator1/ ( , )F D D∗  of the operator ( , )F D D∗  is defined by the following identity

1( , ) ( , ) ( , )
( , )

F D D f x y f x y
F D D

% ∃∗ ,∋ &∗( )

+ Particular integral (P.I.) of (1) 1 ( , )
( , )

f x y
F D D

,
∗

In what follows we shall treat the symbolic functions of D and D∗ as we do for the symbolic
functions of D alone in ordinary differential equations. Thus it will be factorized and resolved into
partial fractions or expanded in an infinite series as the case may be. The reader is advised to note
carefully the following results :

(i) D, D2, ... will stand for differentiating partially with respect to x once, twice and so on.

For example, Dx4y5 = !
!

,
x

x y x y4 5 3 54  ;          D2x4y5 = !
!

,
2

2
4 5 2 512

x
x y x y .

(ii) D∗, D∗2... will stand for differentiating partially with respect to y once, twice and so on.

For example, D∗ x4y5 = !
!

,
y

x y x y4 5 4 45  ;  D∗2x4y5 = !
!

,
2

2
4 5 4 320

y
x y x y .

(iii) 1/D, 1/D2, ... will stand for integrating partially with respect to x once, twice and so on.

For example, 1 4 5

D
x y = x y dx x y4 5

5 5

5z ,  ;    1
2

4 5

D
x y = x y dx dx x y4 5

6 5

30zz ,

(iv) 1/D∗, 1/D∗2, ... will stand for integrating partially with respect to y once, twice and so on.

For example, 1 4 5

∗D
x y = x y dy x y4 5

4 6

6z ,  ;   1
2

4 5

∗D
x y = x y dy dy x y4 5

4 7

42zz , .

4.7. Short methods of finding the P.I. in certain cases.
Before taking up the general method for finding P.I. of F(D, D∗)z = f(x, y)

we begin with cases when f(x, y) is in two special forms. The methods corresponding to these
forms are much shorter than the general methods to be discussed in Art. 4.12.
4.8. A Short Method I. When f(x, y) is of the form f(ax + by).

The method under consideration is based on the following theorem.
Theorem I. If F(D, D∗) be homogeneous function of D and D∗ of degree n, then

1
F D D ax byn

( , )
( )( )

∗
�. = 1

F a b ax by
( , )

( ). � ,

provided F(a, b) 2 0, .(n) being the nth derivative of . w.r.t. ax + by as a whole.
Proof. By direct differentiation, we have             Dr.(ax + by) = ar.(r)(ax + by),
D∗s.(ax + by) = bs.(s)(ax + by) and DrD∗s.(ax + by) = arbs.(r + s)(ax + by).
Since F(D, D∗) is homogeneous function of degree n, so we have

F(D, D∗).(ax + by) = F(a, b).(n)(ax + by). ...(1)
Operating both sides of (1) by 1/F(D, D∗), we have

.(ax + by) = F a b F D D ax byn( , )
( , )

( )1
∗

�.3 4 . ...(2)

Since F(a, b) 2 0, dividing both sides of (2) by F(a, b), we get
1

F D D ax byn
( , )

( )
∗

�.3 4 = 1
F a b ax by

( , )
( ). � . ...(3)

An important deduction from result (3) : Putting ax + by = v, (3) gives
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1
F D D

n
( , )

( )
∗

.3 4 v =
1

F a b( , )
( ). v . ...(4)

Integrating both sides of (4) n times w.r.t. ‘v’, we have
1

F D D( , )
( )

∗
. v = 1

F a b( , ) ... ( ) .... v v v vd d dzzz ,        where       v = ax + by.

Exceptional case when F(a, b) = 0. When F(a, b) = 0, then the above theorem does not hold
good. In such a case the new method is based on the following theorem. Note that F(a, b) = 0 if
and only if (bD – aD∗) is a factor F(D, D∗).

Theorem II.   1
( )

( )
bD aD

ax byn# ∗
�. = x

b n
ax by

n

n !
( ). � .

Proof. Consider the equation (bD – aD∗)z = xr.(ax + by) ...(1)
or bp – aq = xr.(ax + by). ...(2)

Lagrange’s subsidiary equations for (2) are              dx
b

=
dy

a
dz

x ax byr#
,

�.( )
.   ...(3)

Taking the first two fractions of (3),    adx + bdy = 0       so that       ax + by = c1 ... (4)
Taking the first and third members of (4) and using (4), we get

dx
b

= dz
x cr.( )1

or dz =
x c

b
dx

r.( )1 .

Integrating, z =
x c
b r

x ax by
b r

r r� �

�
, �

�

1
1

1

1 1
. .( )

( )
( )

( )
, by (4). ...(5)

        (5) is a solution of (1).

Now, from (1), z = 1
( )

( )bD aD' x ax byr
#

�. . ...(6)

From (5) and (6), 1
( )

( )bD aD' x ax byr
#

�. = x
b r

ax by
r �

�
�

1

1( )
( ). . ...(7)

Hence, if z = 1
( )

( )
bD aD'

ax byn#
�. , then we have

z = 1 1
1( ) ( )

( )
bD aD' bD aD'

x ax byn# #
�L

NM
O
QP#

0. , as x0 = 1

  = 1
1 ( )

( )n
x ax by
bbD aD' #

. �
#

, using (7) for r = 0

  = 1 1 1
2b bD aD' bD aD

x ax byn( ) ( )
( )

# # ∗
�L

NM
O
QP# .

  =
2

2
1 1 ( )

2( )n
x ax by

b bbD aD' #
. �

#
, using (7) for r = 1

  = 2
2 2

1 1 ( )
2! ( )n x ax by

b bD aD' #
. �

#

  = 1 1 ( ) ( )
! ( ) !

n
n

n n n n
xx ax by ax by

n b bD aD' b n# . � , . �
#

[after repeated use of (7) for n – 2 times more]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Homogenous linear partial differential equations with constant coefficients 4.9

Working rule for finding particular integral where f(x, y) = .(ax + by).
The following rules will used depending upon the situation in hand.
Formula (i). When F(a, b) 2 0 and F(D, D∗) is a homogeneous function of degree n, then

P.I. = 1
F D D'

ax by
( , )

( ). � = 1
F a b f d d d

( , )
... ( ) ...v v v vzzz ,         where        v = ax + by

Note that R.H.S. contains a multiple integral of nth order.
Formula (ii). When F(a, b) = 0, we have

1
( )

( )
bD aD'

ax byn#
�. = x

b n
ax by

n

n !
( ). � .

4.9. Solved Examples based on Short Method I of Art. 4.8
Ex. 1. Solve (D2 + 3DD∗ + 2D∗2)z = x + y. [I.A.S. 1986, Meerut 2005, 07, 09, 10]
Sol. The auxiliary equation of the given equation is   m2 + 3m + 2 = 0   giving   m = –1, –2.
+ C.F. = .1(y – x) + .2(y – 2x), .1, .2 being arbitrary functions.

Now, P.I. = 1
3 22 2D DD D

x y
� ∗ � ∗

�( )

= 2 2
1

1 3 1 1 2 1
d d

� 5 5 � 5 6 6 v v v , where v = x +  y,  using formula (i) of working rule

  = ( 2v v/ )2 dz = (1/6) × (v3/6) = (1/36) × (x + y)3.
Hence the required general solution is z = C.F. + P.I., i.e.,

z = .1(y – x) + .2(y – 2x) + (1/36) × (x + y)3.
Ex. 2. Solve (a) (2D2 – 5DD∗ + 2D∗2)z = 24(y – x). [Vikram 2000]
(b) (!2V/!x2) + (!2V/!y2) = 12(x + y) [Nagpur 2010]
(c) (D2 + D∗2)z = 30(2x + y). [Bhopal 1996, Sagar 2004]
(d) (!2z/!x2) + 2(!2z/!x!y) + (!2z/!y2) = 2x + 3y. [Kumaun 1992]
(e) (D2 + 3DD∗ + 2D∗2)z = 2x + 3y. [Kurukshetra 2005]
(f) r + s – 2t = (2x + y)1/2. [Lucknow 2010]
Sol. (a) The auxiliary of the given equation is   2m2 – 5m + 2 = 0      giving    m = 1/2,

2.
+ C.F. = .1(2y + x) + .2(y + 2x), .1, .2 being arbitrary functions.

Now, P.I. = 1
2 5 2

24 24 1
2 5 22 2 2 2D DD D

y x
D DD D

y x
# ∗ � ∗

# ,
# ∗ � ∗

#( ) ( )

= 2 2
24

2 ( 1) 5 ( 1) 2 2 2
d d

5 # # 5 # 5 � 5 6 6 v v v , where v = y – x, using formula (i) of

working rule

= 2 3 3(24 / 20) ( / 2) (6 / 5) ( / 6) (1/ 5) ( )d y x5 , 5 , 5 #6 v v v .

Hence the required general solution is    z = .1(2y + x) + .2(y + 2x) + (y – x)3/5.
(b) The given equation can be written as  (D2 + D∗2)V = 12(x + y). ...(1)
Its auxiliary equation is    m2 + 1 = 0       so that m = ± i.
+ C.F. = .1(y + ix) + .2(y – ix), .1, .2 being arbitrary functions.

Now, P.I. = 1 12 12 1 12
1 12 2 2 2 2 2D D

x y
D D

x y d d
� ∗

� ,
� ∗

� ,
� zz( ) ( ) v v v
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4.10 Homogenous linear partial differential equations with constant coefficients

=
2 3 36 ( / 2) ( )d x y, , �6 v v v .

Hence the required general solution is V = .1(y + ix) + .2(y – ix) + (x + y)3.
(c)Try yourself. Ans. z = .1(y + ix) + .2(y – ix) + (2x + y)3

(d)Try yourself. Ans. z = .1(y – x) + x.2(y – x) + (1/150) × (2x + 3y)3

(e)Proceed as in part (d). Ans. y = .1(y – x) + .2(y – 2x) + (1/240) × (2x + 3y)3

(f) Since 2 2 2 2 2/ , / , / ,r z x s z x y t z y, ! ! , ! ! ! , ! !  the given equation can be re–written as

2 2 2 2 2/ / 2 ( / )z x z x y z y! ! � ! ! ! # ! ! = (2x + y)1/2     or (D2 + DD∗ – 2D∗2)z = (2x + y)1/2.
Its auxiliary equation is m2 + m – 2 = 0 so that m = 1, –2.

+ C.F. = .1(y + x) + .2(y – 2x), .1, .2 being arbitrary functions.

P.I. = 1
2

22 2
1 2

D DD' D'
x y

� #
�( ) / = 1/ 2

2 2
1

2 2 1 2 1
d d

� 5 # 5 6 6 v v v , where v = 2x + y

     = 3/2 5/2 5/ 21 2 1 2 2 1
(2 )

4 3 4 3 5 15
d x y, 5 5 , �6 v v v

Hence the required general solution is z = .1(y + x) + .2(y – 2x) + (1/15)(2x + y)5/

2.
Ex. 3. Solve (a) (D2 + 2DD∗ + D∗2)z = e2x + 3y.  [Bhopal 2010; Indore 1998; Jabalpur 1998;

Purvanchal 2007, Sagar 1999; K.V. Kurkshetra 2005]
(b) (D2 – 2DD∗ + D∗2)z = ex + 2y. [Bhopal 1997, 98, Kanpur 2005]
(c) (D3 – 6D2D∗ + 11DD∗2 – 6D∗3)z = e5x + 6y.
Sol. (a) Here auxiliary equation is m2 + 2m + 1 = 0 so that m = –1, –1.

+ C.F. = .1(y – x) + x.2(y – x), .1, .2 being arbitrary functions.

P.I. = 1
2

1
2 2

2 3
2

2 3

D DD' D'
e

D D
ex y x y

� �
,

� ∗
� �

( )
= 1

2 3 2( )� zz e d dv v v , where v = 2x + 3y

= 2 3(1/ 25) (1/ 25) (1/ 25) x ye d e e �5 , 5 , 56 v vv

+ Solution is z = C.F. + P.I. = .1(y – x) + x.2(y – x) + (1/25) × e2x + 3y.
(b) Proceed as in part (a). Ans. z = .1(y + x) + x.2(y + x) + ex + 2y

(c) Here auxiliary equation is m3 – 6m2 + 11m – 6 = 0 giving   m = 1, 2, 3.
+  C.F. = .1(y + x) + .2(y + 2x) + .3(y + 3x), .1, .2, .3 being arbitrary functions.

P.I. = 1
6 11 63 2 2 3

5 6

D D D' DD' D'
e x y

# � #
� = 1

2 3
5 6

( )( )( )D D' D D' D D'
e x y

# # #
�

= 1
5 6 5 12 5 18( )( )( )# # # zzz e d d dv v v v , where v = 5x + 6y

=
1
91

1
91

1
91

1
91

5 6

#
, # , # , #zz z �e d d e d e e x yv v vv v v

Hence the required solution is z = .1(y + x) + .2(y + 2x) + .3(y + 3x) – (1/91) × e5x + 6y.
Ex. 4. Solve (a) r – 2s + t = sin (2x + 3y).   [Meerut 2007; Indore 2002; Vikram 1996;]
(b) (D3 – 4D2D∗ + 4DD∗2 )z = 2 sin (3x + 2y). [Kanpur 2008; I.A.S. 2006]
(c) (D3 – 4D2D∗ + 4DD∗2)z = cos (2x + 3y).
(d) (D3 – 3DD∗2 – 2D∗3)z = cos (x + 2y). [Delhi Maths Hons. 1992]

Sol. (a) Since 2 2 2 2 2/ , / , / ,r z x s z x y t z t, ! ! , ! ! ! , ! !  the given equation becomes
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Homogenous linear partial differential equations with constant coefficients 4.11

2 2 2 2 2/ 2( / ) /z x z x y z y! ! # ! ! ! � ! ! = sin (2x + 3y)   or (D2 – 2DD∗ + D∗2)z = sin (2x +
2y).

Its auxiliary equation is m2 – 2m + 1 = 0 so that m = 1, 1.
+ C.F. = .1(y + x) + x .2(y + x), .1, .2 being arbitrary functions.

P.I. = 1 2 3 1
2 32 2( )

sin ( )
( )

sin
D D

x y d d
# ∗

� ,
# zz v v v , where v = 2x + 3y

  = # z cos v vd = –sin v = –sin (2x + 3y).
Hence the required general solution is z = .1(y + x) + x.2(y + x) – sin(2x + 3y).
(b) The auxiliary equation of the given equation is m3 – 4m2 + 4m = 0.

or m(m2 – 4m + 4) = 0 or m(m – 2)2 = 0 so that        m = 0, 2, 2.
+ C.F. = .1(y) + .2(y + 2x) + x.3(y + 2x), .1, .2, .3 being arbitrary functions.

Now,  P.I. = 3 2 2
1 2 sin (3 2 )

4 4
x y

D D D DD
�

∗ ∗# �

 = 3 2 2
12 sin

3 4 3 2 4 3 2
d d5

# 5 5 � 5 5 6 6 6 v v v , where v = 3x + 2y

= (2 / 3) ( cos ) (2 / 3) sin (2 / 3) cos (2 / 3) cos(3 2 )d d d x y5 # , # 5 , 5 , 5 �6 6 6v v v v v v

The required general solution is   z = .1(y) + .2(y + 2x) + x.3(y + 2x) + (2/3) × cos (3x + 2y).
(c) Proceed as in part (b).   Ans. z = .1(y) + .2(y + 2x) + x.3(y + 2x) – (1/32) × sin (2x + 3y)
(d) Proceed as in part (b). Ans. z = .1(y – x) + x.2(y – x) + .3(y + 2x) + (1/27) × sin (x + 2y)
Ex. 5. Solve !2z/!x2 + !2z/!y2 = cos mx cos ny. [Kanpur 2007; Nagpur 2010]
Sol. Given equation can be written as   (D2 + D∗2)z = cos mx cos ny.
Its auxiliary equation is m2 + 1 = 0 so that m = ± i.

+ C.F. = .1(y + ix) + .2(y – ix), .1 and .2 being arbitrary functions.

P.I. = 1 1
22 2 2 2D D'

mx ny
D D'

mx ny mx ny
�

,
�

� � #cos cos cos ( ) cos ( )

= 1
2

1 1
2

1
2 2 2 2D D'

mx ny
D D'

mx ny
�

� �
�

#cos ( ) cos ( )

= 1
2

1 1
2

1
2 2 2 2m n

d d
m n

u du du
�

�
� #zz zzcos

( )
cosv v v ,

where v = mx + ny   and   u = mx – ny

= 1
2

1 1
2

1
2 2 2 2m n

d
m n

u du
�

�
�z zsin sinv v = 2 2

1 1 [ cos cos ]
2

u
m n

# #
�

v

2 2
1 [cos ( ) cos ( )]

2( )
mx ny mx ny

m n
, # � � #

�
, as v  = mx + ny, u = mx – ny

= #
�

5 , # � #1
2

22 2
2 2 1

( )
cos cos ( ) cos cos

m n
mx ny m n mx ny .

Hence the required general solution is  z = .1(y + ix) + .2(y – ix) – (m2 + n2)–1 cos mx cos ny.

Ex. 5. (b) Solve 2 2 2 2/ / cos sin .z x z y mx ny! ! � ! ! , [Ravishankar 1999, 2001]

Sol. Do like Ex. 5(a) Ans. 2 2
1 2( ) ( ) (sin sin ) /( )z y ix y ix mx ny m n, . � � . # � � �
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4.12 Homogenous linear partial differential equations with constant coefficients

Ex. 6. Solve the following partial differential equations :
(a) (D2 – 2DD∗ + D∗2)z = tan (y + x) or (D – D∗)2z = tan (y + x)        [Jiwaji 1996]
(b) (D2 – 2aDD∗ + a2D∗2)z = f(y + ax)  or (D – aD∗)2z = f(y + ax).
(c) 4r – 4s + t = 16 log (x + 2y). [Agra 2009; Meerut 2009; Ravishankar 2000]
Sol. (a) Here auxiliary equation is (m – 1)2 = 0 so that m = 1,

1.
+ C.F. = .1(y + x) + x.2(y + x), where .1 and .2 are arbitrary functions.

Now, P.I. =
2 2

2 2
1 tan ( ) tan ( ) tan ( )

2( ) 1 2!
x xy x y x y x

D D'
� , � , �

# 5

[Using formula (ii) of working rule with a = 1, b = 1, m = 2]
Hence the required general solution is      z = .1(y + x) + x.2(y + x) + (x2/2) × tan (y + x).
(b) Here auxiliary equation is  (m – a)2 = 0         so that           m = a, a.

+ C.F. = .1(y + ax) + x.2(y + ax), .1, .2 being arbitrary functions.

P.I. =
2 2

2 2
1 ( ) ( ) ( )

2( ) 1 2!
x xf y ax f y ax f y ax

D aD'
� � � , �

# 5
.

[using formula (ii) of working rule with a = a, b = 1, m = 2]
+ General solution is   z = .1(y + x) + x.2(y + x) + (x2/2) × f(y + ax).

(c) Since 2 2 2 2 2/ , / , / ,r z x s z x y t z y, ! ! , ! ! ! , ! !  the given equation becomes

4(!2z/!x2) – 4(!2z/!x!y) + (!2z/!y2) = 16 log (x + 2y)    or     (4D2 – 4DD∗ + D∗2)z = 16 log (x + 2y)
Its auxiliary equation is 4m2 – 4m + 1 = 0 so that m = 1/2. 1/2.

+ C.F. = .1(2y + x) + x.2(2y + x), .1 and .2 being arbitrary functions.

Now, P.I. = 2
1 16 log ( 2 ) 16

(2 )
x y

D D'
� , 5

#

2

2 log ( 2 )
2 2!

x x y�
5

= 2x2 log (x + 2y)

[using formula (ii) of working rule with a = 1, b = 2, m = 2]
+ The required solution is      z = .1(2y + x) + x.2(2y + x) + 2x2 log (x + 2y).
Ex. 7. Solve the following partial differential equations :
(a) (2D2 – 5DD∗ + 2D∗2)z = 5 sin (2x + y). [M.D.U. Rohtak 2005]
(b) (D2 – 5DD∗ + 4D∗2)z = sin (4x + y). [Meerut 2006, 08]
(c) (D3 – 2D2D∗ – DD∗2 + 2D∗3)z = ex + y.   [Bhopal 2000, 03, Meerut 2007; Jabalpur 2004]
(d) r – t = x – y.
(e) 2r – s – 3t = 5ex/ey. [Indore 2003; Jiwaji 2003, Vikram 1998]

(f) r + 5s + 6t = (y – 2x)–1 or 2 2 2 2 2( / ) 5( / ) 6( / ) 1/( 2 )z x z x y z y y x! ! � ! ! ! � ! ! , #

[Agra 2009; Indore 2000; I.A.S. 1991; Garhwal 2005]
Sol. (a) Here auxiliary equation is 2m2 – 5m + 2 = 0     so that m = 2, 1/2.
+ C.F. = .1(y + 2x) + .2(2y + x), .1, .2 being arbitrary functions.

Now,                 P.I. = 1
2 5 2

5 2 5 1
2

1
2

22 2D DD D
x y

D D D D
x y

# ∗ � ∗
� ,

# ∗ # ∗ �
L
NM

O
QP

sin ( )
( ) ( )

sin ( )

=
1 15 sin
2 (2 2) 1

d
D D# 5 #∗ 6 v v , where v = 2x + y, using formula (i) of working rule
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Homogenous linear partial differential equations with constant coefficients 4.13

    = 1
5 1 5 1 5( cos ) cos (2 ) cos (2 )
3 2 3 2 3 1 1!

xx y x y
D D' D D'

# , # � , # 5 �
# # 5

v

[Using formula (ii) with a = 2, b = 1, m = 2]
+ The required general solution is  z = .1(y + 2x) + .2(2y + x) – (5x/3) × cos (2x + y).
(b) Do as in part (a). Ans. z = .1(y + x) + .2(y + 4x) – (x/3) × cos (4x + y)
(c) Here auxiliary equation is m3 – 2m2 – m + 2 = 0   or    m2(m – 2) – (m – 2) = 0

or (m2 – 1)(m – 2) = 0        so that     m = 2, 1, –1.
+ C.F. = .1(y + 2x) + .2(y + x) + .3(y – x), .1, .2, .3 being arbitrary functions.

P.I. = 3 2 2 3 2 2
1 1 1

( )2 2 ( 2 )
x y x ye e

D DD D D DD D D DD D
� �7 89 9, : ;∗#∗ ∗ ∗ ∗ ∗# # � # #9 9< =

= 2 2
1 1

1 (1 1) (2 1)
e d

D D# ∗ # 5 # 5 6 v v , where v = x + y,  using formula (i) of working

rule

= 1
1 1 1 1 1

2 2 2 21 1!
x y x y x yx xe e e e

D D D D
� � �% ∃# , # , # 5 , #∋ &( )# #∗ ∗ 5

v

[Using formula (ii) with a = 1, b = 1, m = 1]
+ Required solution is z = .1(y + 2x1) + .2(y + x) + .3(y – x) – (x/2) × ex + y.
(d) The given equation can be re–written as

(!2z/!x2) – (!2z/!y2) = x – y or      (D2 – D∗2)z = x – y.   ...(1)
Its auxiliary equation is m2 – 1 = 0 so that m = 1, –1.
+ C.F. = .1(y + x) + .2(y – x), .1, .2 being arbitrary functions.

Now, P.I. = 1 1 1 1 1
1 12 2D D

x y
D D D D

x y
D D

d
# ∗

# ,
� ∗ # ∗ # ,

� ∗ # # z( ) . ( ) . ( ) v v , where v = x – y.

        =
2

2 2
1

1 1 1 1 1 1( ) ( )
2 2 4 4 [( 1) 1 ]

x y x y
D D D D D D

, # , # #
� �∗ ∗ # 5 # 5 ∗

v

        = 2 2
1

1 ( ) ( )
4 4( 1) 1!

x xx y x y# # , #
# 5

, by formula (ii) with a = 1, b = –1, m = 1.

+ The required solution is       z = .1(y + x) + .2(y – x) + (x/4) × (x – y)2.
(e) The given equation can be re–written as
2(!2z/!x2) – (!2z/!x!y) – 3(!2z/!y2) = 5ex – y     or        (2D2 – DD∗ – 3D∗2)z = 5ex – y

or (D + D∗) (2D – 3D∗)z = 5ex – y.
C.F. = .1(y – x) + .2(2y + 3x), .1, .2 being arbitrary functions.

Now, P.I. = 1 1 1 15 5
( ) (2 3 ) (2 1) 3 ( 1)

x ye e d
D D D D D D

#5 , 5
� # � 5 # 5 #∗ ∗ ∗ 6 v v , where v = x – y,

= 1
1 1

[( 1) 1 ] ( 1) 1!
x y x y x yxe e e xe

D D D D
# # #, # , # ,

� # 5 # 5∗ ∗ # 5
v ,

[using formula (ii) with  a = 1, b = –1, m = 1]
+ The required solution is z = .1(y – x) + .2(2y + 3x) + xex – y.
(f) Given equation can be rewritten as  (D2 + 5DD∗ + 6D∗2)z = (y – 2x)–1. ...(1)
Its auxiliary equation is m2 + 5m + 6 = 0 so that m = –2, –3.

+ C.F. = .1(y – 2x) + .2(y – 3x), .1, .2 being arbitrary functions.
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4.14 Homogenous linear partial differential equations with constant coefficients

Now, P.I.    = 1
5 6

2 1
2

1
3

22 2
1 1

D DD D
y x

D D D D
y x

� ∗ � ∗
# ,

� ∗ � ∗
#L

NM
O
QP

# #( ) ( )

= 11 1
2 2 (3 1)

d
D D

#5
� # � 5∗ 6 v v , where v = y – 2x, by formula (i)

= 1
1 1 1log log ( 2 ) log ( 2 )
2 2 [1 ( 2) ]

y x y x
D D D D D D

, # , #
� �∗ ∗ 5 # # 5 ∗

v

= 1 log ( 2 )
1 1!

x y x#
5

, by formula (ii) with a = –2, b = 1, m = 1

+ The general solution is z = .1(y – 2x) + .2(y – 3x) + x log (y – 2x).
Ex. 8. Solve the following partial differential equation :
(a) (D3 – 4D2D∗ + 4DD∗2)z = 4 sin (2x + y).

[Bilaspur 1995; Indore 2004;Rewa 2000, 01; MDU Rohtak 2004]
(b) (D3 – 4D2D∗ + 4DD∗2)z = cos (2x + y).
(c) (D3 – 4D2D∗ + 4DD∗2)z = sin (y + 2x).
Sol. (a) Here the auxiliary equation is m3 – 4m2 + 4m = 0   or    m(m2 – 4m + 4) = 0

or m(m – 2)2 = 0 so that m = 0, 2, 2.
+ C.F. = .1(y) + .2(y + 2x) + x.3(y + 2x), .1, .2, .3 being arbitrary functions.

Now, P.I. = 1
4 4

4 2 4 1
2

1 23 2 2 2D D D DD
x y

D D D
x y

# ∗ � ∗
� ,

# ∗
�sin ( )

( )
sin ( ){ }

     = 4 1
2

1
2

22( )
cos ( )

D D
x y

# ∗
# �{ }, since 1 /  stands for integration

w.r.t.  treating  as constant.
D

x y

      =
2

2 2
12 cos (2 ) 2 cos (2 )

( 2 ) 1 2!
xx y x y

D D
# � , # �

# 5∗
,

[Using formula  (ii) with a = 2, b = 1, m = 2]
So the required solution is y = .1(y) + .2(y + 2x) + x.3(y + 2x) – x2 cos (2x + y).
(b)Try yourself Ans. z = .1(y) + .2(y + 2x) + x.3(y + 2x) + (x2/4) × sin (2x +

y)
(c)Try yourself Ans. z = .1(y) + .2(y + 2x) + x.3(y + 2x) – (x2/4) × cos (2x + y)
Ex. 9. Solve the following partial differential equations :
(a) (D2 – 3DD∗ + 2D∗2)z = e2x – y + ex + y + cos (x + 2y).
(b) (D2 – 3DD∗ + 2D∗2)z = e2x – y + cos (x + 2y) [Delhi Maths (H) 2006]
(c) (D3 – 4D2D∗ + 5DD∗2 – 2D∗3)z = ey + 2x + (y + x)1/2.

(d) 3 2 3( 7 6 )x x y yD D D D z# # = sin (x + 2y) + e3x + y. [I.A.S. 1995]

Sol. (a) Here auxiliary equation is m2 – 3m + 2 = 0 so that m = 1, 2.
+ C.F. = .1(y + x) + .2(y + 2x), .1, .2 being arbitrary functions. ...(1)

Now, P.I. corresponds to e2x – y

= 2
2 2 2 2

1 1
3 2 2 3 2 ( 1) 2 ( 1)

x ye e d d
D DD D

# ,
# � # 5 5 # � 5 #∗ ∗ 6 6 v v v , where v = 2x – y

= 2(1/12) (1/12) (1/12) .x ye d e e #5 , 5 , 56 v vv ...(2)
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Homogenous linear partial differential equations with constant coefficients 4.15

P.I. corresponding to ex + y  = 1
3 2

1 1
22 2D DD D

e
D D D D

ex y x y

# ∗ � ∗
,

# ∗ # ∗
RST

UVW
� �

=
1 1

1 (2 1)
e d

D D
7 8
: ;

# # 5∗ < =6 v v , where v = x + y, using formula (i)

= 1 1
1 1

( ) 1 1!
x y x y x yxe e e xe

D D D D
� � �# , # , # , #

# ∗ # 5∗
v . ...(3)

[Using formula (ii) with a = b = 1, m = 1]
Finally, P.I. corresponding to cos (x + 2y)

= 2 2 2 2
1 1cos ( 2 ) cos

3 2 1 (3 1 2) (2 2 )
x y d d

D DD D
� ,

# � # 5 5 � 5∗ ∗ 6 6 v v v , where v = x + 2y

= (1/ 3) sin (1/ 3) cos (1/ 3) cos( 2 )d x y5 , # 5 , # 5 �6 v v v ...(4)

From (1), (2), (3) and (4), the required solution is z = C.F. + P.I.
or z = .1(y + x) + .2(y + 2x) + (1/12) × e2x – y – xex + y – (1/3) × cos (x + 2y).

(b) This problem is same as part (a) except that the term ex + y is missing on R.H.S. So, now
you need not compute P.I. corresponding to ex + y. Therefore the solution will take the form

2
1 2( ) ( 2 ) (1/12) (1/ 3) cos( 2 )x yy y x y x e x y#, . � � . � � 5 # 5 �

(c) Here auxiliary equation is m3 – 4m2 + 5m – 2 = 0 giving m = 1, 1, 2.

+ C.F. = .1(y + x) + x.2(y + x) + .3(y + 2x)., 1 2 3, ,. . .  being arbitrary function ...(1)
Now, P.I. corresponding to ey + 2x

= 1
4 5 2

1
2

1
3 2 2 3

2
2

2

D D D DD D
e

D D D D
ey x y x

# ∗ � ∗ # ∗
,

# ∗ # ∗
RST

UVW
� �

( )

= 1
2

1
2 1 2D D

e d d
# ∗ # zz( )

v v v , where v = y + x, by formula (i)

= 2
1

1 1 1
2 2 (1 2 )

y xe d e e
D D D D D D

�, ,
# #∗ ∗ 5 # 5 ∗6 v vv =

1 1!
y x y xx e xe� �,

5
, ...(2)

[using formula (ii) with a = 2, b = 1, m = 1]
Finally, P.I. corresponding to (y + x)1/2

= 1
4 5 23 2 2 3

1 2

D D D DD D
y x

# ∗ � ∗ # ∗
�( ) / = 1 1

22
1 2

( )
. ( ) /

D D D D
y x

# ∗ # ∗
�RST
UVW

= 1/ 2
2

1 1
1 (2 1)( )

d
D D

5
# 5# ∗ 6 v v , where v = y + x, using formula (i)

=
2

3/2 3/2 3/2
2 2

1 2 2 1 2( ) ( )
3 3 3( ) 1 2!

xy x y x
D D D D

# 5 , # � , # 5 �
# ∗ # 5∗

v

= – (x2/3) × (y + x)3/2, using formula (ii) with a = b = 1, m = 2 ...(3)
From (1), (2) and (3), the required general solution is

z = .1(y + x) + x.2(y + x) + .3(y + 2x) + xey + x – (x2/3) × (y + x)3/2.
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4.16 Homogenous linear partial differential equations with constant coefficients

(d) Here note that Dx and Dy stand for D and D∗ respectively.
+ Auxiliary equation is m3 – 7m – 6 = 0 so that m = –1, –2, 3.
+ C.F. = .1(y – x) + .2(y – 2x) + .3(y + 3x), .1, .2, .3 being arbitrary functions.

Now, P.I. corresponding to sin (x + 2y)

= 3 2 3 3 2 3
1 1sin ( 2 ) sin

7 6 1 (7 1 2 ) (6 2 )x x y y
x y d d d

D D D D
� ,

# # # 5 5 # 5 6 6 6 v v v v ,where v = x + 2y

 = (1/ 75) ( cos ) (1/ 75) ( sin )d d d# 5 # , # 5 #6 6 6v v v v v = (1/ 75) cos (1/ 75) cos ( 2 )x y# 5 , # 5 �v
and P.I. corresponding to e3x + y

= 1
7 6

1
3

1
23 2 3

3 3

D D D D
e

D D D D D D
e

x x y y

x y

x y x y x y

x y

# #
,

# � �
L
NMM

O
QPP

� �

( )( )

= 1
3

1
3 1 3 2D D

e d d
x y# � � zz.

( )( )
v v v , where v = 3x + y, by formula (i)

= 3
1

1 1 1 1 1 1
20 3 20 3 20 ( 3 )

x y

x y x y x y
e d e e

D D D D D D
�, ,

# # #6 v vv

= 3 3
1

1
20 201 1!

x y x yx xe e� �5 ,
5

, using formula (ii) with a = 2, b = 1, m = 1.

Hence the required general solution is z = C.F. + P.I.
or z = .1(y – x) + .2(y – 2x) + .3(y + 3x) – (1/75) × cos (x + 2y) + (1/20) × x e3x + y.

Ex. 10. Solve (i) 2 2( 6 9 ) tan( 3 )D DD D z y x∗ ∗# � , � [Delhi 2007; Ravishankar 2004]

(ii) 2 2( 6 9 ) 6 2D DD D z x y∗ ∗# � , �
Sol (i) Here auxiliary equation is (m – 3)2 = 0 so that         m = 3, 3.

+ C.F. = 1 2 1 2( 3 ) ( 3 ), ,y x x y x. � � . � . .  being arbitrary functions

P.I. =  � , � , �
# 5∗

2 2

2 2

1
tan( 3 ) tan( 3 ) tan( 3 )

2( 3 ) 1 2!

x x
y x y x y x

D D

+  The required solution is , . � � . � � 5 �2
1 2( 3 ) ( 3 ) ( / 2) tan( 3 )z y x x y x x y x .

(ii) Re-writing the given equation reduces to (D – 3D∗)2 z = 2(3x + y)
+          C.F. = .1(y + 3x) + x.1 (y + 3x), .1, .2 being arbitrars constants.

Now,
2

1
. .

( 3 )
P I

D D
,

∗#
 2(3x + y) = 2 � , �

5

2
2

2
(3 ) (3 )

1 2!

x
x y x x y

+  The required solution is       , . � � . � � �3 2
1 2( 3 ) ( 3 ) 3 .z y x x y x x x y

Ex. 11. Solve (i) 2 3( 3 ) ( 3 ) x yD D D D z e �∗ ∗# � , [Delhi Maths (Hons) 2000, Agra 2005]

(ii) 2( 2 ) ( ) cos (2 )D D D D z x y∗ ∗# � , �

Sol. (i) C.F. = 1 2 3( 3 ) ( 3 ) ( 3 )y x x y x y x. � � . � � . # , where 1 2,. . , 3.  are arbitrary functions

P.I. = 3
2 2

1 1 1 1

3 3 (3 1)( 3 ) ( 3 )
x y ve e dv

D DD D D D
� ,

∗� � 5∗ ∗# # 6 , where v  = 3x + y
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Homogenous linear partial differential equations with constant coefficients 4.17

= � �, ,
5# #∗ ∗

3 3
2 2

1 1 1 1 1
6 6 6 1 2!( 3 ) ( 3 )

v x y x yx
e e e

D D D D

The required solution is �, . � � . � � . # � 52 3
1 2 3( 3 ) ( 3 ) ( 3 ) ( /12) x yz y x x y x y x x e

(ii) Try your self             Ans. , . � � . # � . # # 5 �1 2 3( 2 ) ( ) ( ) ( / 9) cos(2 )z y x y x x y x x x y

Ex. 12. Solve (i) 2 x yr s t e �� # ,

(ii) 3 2 3( 7 6 ) sin( 2 )D DD D y x y∗ ∗# # , �

(iii) 3 2 3 1/2( 3 2 ) ( 2 )D DD D y x y∗ ∗# � , # [Delhi Maths (H) 2009]

Sol. (i) Re-writing given equation becomes 2 2 2 2 2( / ) ( / ) 2 ( / ) x yz x z x y z y e �! ! � ! ! ! # ! ! ,

or        2 2( 2 ) x yD DD D z e �∗ ∗� # , or   ( ) ( 2 ) x yD D D D z e �∗ ∗# � , .

Its C.F. = 2( ) ( 2 )y x y x. � � . # , 1 2,. .  being arbitrary functions

P.I. =
1 1 1 1

2 1 (2 1)
x y ve e dv

D D D D D D
� ,

∗ ∗ ∗# � # � 5 6 , where v x y, �

=
1 1 1 1 1
3 3 3 1!

v x y x yx
e e e

D D D D
� �, ,

∗ ∗# #

+  The required solution is �, . � � . # � 51 2( ) ( 2 ) ( / 3) x yz y x y x x e .

(ii) Here the auxiliary equation is 3 7 6 0m m# # ,    giving       m = –1, –2, 3.

+ C.F. = 1 2 3 1 2 3( ) ( 2 ) ( 3 ), , ,y x y x y x. # � . # � . � . . .  are arbitrary functions.

P.I. = � ,
# # # 5 5 # 5∗ ∗ 6 66 3

3 2 3 3 2 3

1 1
sin ( 2 ) sin ( ) ,

7 6 1 (7 1 2 ) (16 2 )
x y v dv

D DD D
 where  v = x + 2y

=
1
75

# # , # # , # , # �66 6
1 1 1

( cos ) ( sin ) cos cos ( 2 )
75 75 75

v d d v dv v x yv v

+ Required solution   , . # � . # � . � # 5 �1 2 3( ) ( 2 ) ( 3 ) (1/ 75) cos( 2 )z y x y x y x x y

(iii) The auxiliary equation is 3 3 2 0m m# � , giving m = 1, 1, 2.

+  C.F. = 1 2 3 1 2 3( ) ( ) ( 2 ), , ,y x x y x y x. � � . � � . � . . .  are arbitrary functions

P.I. = 1/ 2 1/2 3
3 2 3 3 2 3

1 1
( 2 ) ( )

3 2 1 3 1 ( 2) 2 ( 2)
x y v dv

D DD D
# ,

∗ ∗# � # 5 5 # � 5 # 666 , where v = x – 2y

 = # , # , #
566 6

3/ 2 5/ 21 1 1
27 (3/ 2) 27 (3/ 2) (5/ 2) 27

v v
dv dv dv

5 5

7/2

(3/ 2) (5 / 2) (7 / 2)
v

= # 5 , # 5 #7/2 7/2(8 / 2835) (8 / 2835) ( 2 )v x y

General solution is         , . � � . � � . � # 5 # 7/2
1 2 3( ) ( ) ( 2 ) (8 / 2835) ( 2 )z y x x y x y x x y .

Ex. 13. Solve 2 2( 3 2 ) cos ( 2 )D DD D z x y∗ ∗# � , �

Sol. The auxiliary equation 2 3 2 0m m# � , gives m = 1, 2.

+ C.F. = 1 2 1 2( ) ( 2 ), ,y x y x. � � . � . .  being arbitrary functions
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4.18 Homogenous linear partial differential equations with constant coefficients

P.I. = � ,
∗ ∗# � # > > � > 66 2

2 2 2 2

1 1
cos ( 2 ) cos ( ) ,

3 2 1 3 1 2 2 2
x y v dv

D DD D
 where v = x + 2y

(1/ 3) sin (1/ 3) cos (1/ 3) cos ( 2 )v dv v x y, 5 , # 5 , # 5 �6
+   Solution is , . � � . � # 5 �1 2( ) ( 2 ) (1/ 3) cos( 2 )z y x y x x y

Ex. 14. Solve 2 2 3 4( 2 ) 2 3 x yD DD D z x y e �∗ ∗# # , � � . [I.A.S. 2000]

Sol. The auxiliary equation 2 2 0m m# # , giving 2, 1m , # .

+ C.F. = 1 2 1 2( 2 ) ( ), ,y x y x. � � . # . .  being arbitrary functions
P.I. corresponding to (2x + 3y)

= 2
2 2 2 2

1 1
(2 3 ) ( )

2 2 (2 3) (2 3 )
x y v dv

D DD D
� ,

∗ ∗# # # 5 # 5 66 , where 2 3v x y, �

=
2 3

31 1 1
(2 3 )

20 2 20 2 3 60
v v

dv x y
% ∃

# , # , # �∋ &∋ &5( )
6

P.I. corresponding to 3 4x ye �

= 3 4 2
2 2 2 2

1 1
( )

2 3 (3 4) (2 4 )
x y ve e dv

D DD D
� ,

∗ ∗# # # 5 # 5 66 , where 3 4v x y, �

= �# 5 , # 5 3 4(1/ 35) (1/ 35)v x ye e .

+ General solution is �, . � � . # # 5 � # 53 3 4
1 2( 2 ) ( ) (1/ 60) (2 3 ) (1/ 35) x yz y x y x x y e .

EXERCISE 4(A)
Solve the following partial differential equations:

1. 2 2( – 6 ) cos(2 )∗ ∗# , �D DD D z x y [Agra 2009, 10]

Ans. 1 2( 3 ) ( 2 ) – (1/ 4) cos (2 )z y x y x x y, . � � . # 5 � 1 2, ,. . being arbitrary functions.

2. 24 4 �# � , x yr s t e [Agra 2010]

Ans. 2 2
1 2( 2 ) ( 2 ) ( / 2) x yz y x x y x x e �, . � � . � � 5 1 2,. . being arbitrary functions

        3. 3 2 2 2( – 4 4 ) 6sin(3 2 )D D D DD z x y∗ ∗� , �

Ans. 1 2 3( ) ( 2 ) ( 2 ) 2cos(3 2 ),z y y x x y x x y, . � . � � . � � � 1 2 3, ,. . . , being arbitrary functions.

         4. 2 3( – 3 ) ( 3 ) x yD D D D z e �∗ ∗� , [Agra 2005]

Ans. 3
1 2 3( 3 ) ( 3 ) ( – 3 ) ( /12) ,x yz y x x y x y x x e �, . � � . � � . � 5 1 2 3, , ,. . . being arbitrary

functions.
4.10. Short Method II.  When f(x, y) is of the form xmyn or a rational integral

algebraic function of x and y.
Then the particular integral (P.I.) is evaluated by expanding the symbolic function 1/f (D, D ∗) in

an infinite series of ascending powers of D or D ∗. In solved examples 1 and 2 of Art. 4.11, we have
shown that P.I. obtained on expanding 1/f(D, D ∗) in ascending powers of D is different from that
obtained on expanding 1/f(D, D ∗) in ascending powers of D ∗. Since to get the required general solu-
tion of given differential equation any P.I. is required, any of the two methods can be used.  The
difference in the two answers of P.I. is not material as it can be incorporated in the arbitrary functions
occuring in C.F. of that given differential equation.
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Homogenous linear partial differential equations with constant coefficients 4.19

Remark :  If n < m, 1/f(D, D ∗) should be expanded in powers of D ∗/D whereas if m < n, 1/f(D,
D ∗) should be expanded in powers of D/D ∗.
4.11 SOLVED EXAMPLES BASED ON SHORT METHOD II

Ex. 1.  Solve (D2 # a2D ∗2)z = x or  (!2z/!x2) # a2(!2z/!y2) = x.
Sol.  Here auxiliary equation is            m2 # a2 = 0        so that       m = a, #a.
+ C.F. = .1(y + ax) + .2(y # ax), .1, .2 being arbitrary functions. ...(1)

Now,  P.I. = 1 1
1

1 12 2 2 2 2 2 2 2
2

2

2

1

D a D
x

D a D D
x

D
a D

D
x

# ∗
,

# ∗
, # ∗F
HG

I
KJ

#

[ ( / )]

= 1 1 1
62

2
2

2 2

3

D
a D

D
x

D
x x� ∗ �

F
HG

I
KJ , ,... . ...(2)

Alternatively, we can compute P.I. on follows :

       P.I. = 1 1
1

1 12 2 2 2 2 2 2 2 2 2

2

2 2

1

D a D
x

a D D a D
x

a D
D

a D
x

# ∗
,

# ∗ # ∗
, #

∗
#

∗
F
HG

I
KJ

#

[ ( / )]

              =
2 2

2 2 2 2 2 2 2
1 1 11 ...

2
D xyx x

a D a D a D a
% ∃

# � � , # , # 5∋ &∗ ( ∗ ) ∗
. ...(3)

Hence the required general solution is z = C.F. + P.I. that is,
z  = .1(y + ax) + .2(y # ax) + x3/6, using (1) and (2).

or z   =  .1(y + ax) + .2(y # ax) # (xy2)/(2a2), using (1) and (3).
Ex. 2.  Solve (D2 + 3DD∗ + 2D∗2)z = x + y, by expanding the particular integral in ascending

powers of D as well as in ascending powers of D∗.
[Bhopal 2000, 03; Indore 1999; Jiwaji 1995;  Rewa, 2002, 03; I.A.S. 1994]

Sol.  Here auxiliary equation is m2 + 3m + 2 = 0 so that        m = #2, #1.
+C.F. = .1(y # 2x) + .2(y # x), .1, .2 being arbitrary functions. ...(1)
Now, by expanding in ascending powers of D, we have

P.I. = 1
3 2

1

2 1
2

3
2

2 2
2

2

2
D DD D

x y
D D

D
D
D

x y
� ∗ � ∗

� ,
∗ �

∗
�

∗
F
HG

I
KJ

L
NM

O
QP

�( ) ( )

=

12

2 2 2
1 3 1 31 ( ) 1 ... ( )

2 22 2 2
D D Dx y x y

D DD D D

#
? ≅% ∃ % ∃� � � , # � �Α Β ∋ &∋ & ( )∗ ∗∗ ( ∗ ) ∗Α ΒΧ ∆

= 1
2

3
2

1
2 2 4 242 2

2 3

∗
� #FH IK ,

∗
#FH IK , #

D
x y y

D
x y xy y . ...(2)

Again, by expanding in ascending powers of D, P.I. of given equation is given by

P.I. = 1
3 2

1

1 3 22 2
2

2

2
D DD D

x y
D D

D
D
D

x y
� ∗ � ∗

� ,
�

∗
�

∗F
HG

I
KJ

L
NM

O
QP

�( ) ( )=

12

2 2
1 3 21 ( )D D x y

DD D

#
? ≅% ∃∗ ∗

� � �Α Β∋ &( )Α ΒΧ ∆

2
1 31 ... ( )D x y

DD
∗% ∃, # � �∋ &

( )
= 1 3

2 32

2 3

D
x y x yx x( )� # , # .

Hence the required general solution is given by                  z = C.F. + P.I., i.e.,
z = .1(y # 2x) + .2(y # x) + (1/4) × xy2 # (1/24) × y3, using (1) and (2)

or z = .1(y # 2x) + .2(y # x) + (1/2)× yx2 # (1/3) × x3, using (1) and (3).
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4.20 Homogenous linear partial differential equations with constant coefficients

Ex. 3.  Solve (!3z/!x3) # (!3z/!y3) = x3y3  or (D3 # D ∗3)z = x3y3.  [I.A.S. 1997]
Sol.  Here auxiliary equation is m3 # 1 = 0 so that m = 1, Ε, Ε2,

where Ε and Ε2 are complex cube roots of unity.
+ C.F. = .1(y + x) + .2(y + Εx) + .3(y + Ε2x), .1, .2, .3 being arbitrary functions.

Now, P.I. = 1 1
1

1 13 3
3 3

3 3 3
3 3

3

3

3

1
3 3

D D
x y

D D D
x y

D
D
D

x y
# ∗

,
# ∗

, #
∗F

HG
I
KJ

#

[ ( / )]

= 1 1 1 1 63

3

3
3 3

3
3 3

3
3

D
D
D

x y
D

x y
D

x�
∗

�
F
HG

I
KJ , �F

H
I
K... =

6
3 3

3
1 6

4 5 6
xx y

D
% ∃

� 5∋ &5 5( )
= (1/120)× x6y3 + (1/10080) × x9.

Hence the required general solution is z = C.F. + P.I.
or     z =  .1(y + x) + .2(y + Εx) + .3(y + Ε2x) + (1/120) × x6y3 + (1/10080) × x9.

Ex. 4.  Solve r + (a + b)s + abt = xy. [Indore 1998; Vikram 1998, 2000; Rewa 1998]
Sol.  Given equation can be written as                  [D2 + (a + b)DD∗ + abD∗2] = xy.
Its auxiliary equation is m2 + (a + b)m + ab = 0     or      (m + a)(m + b) = 0 so that  m = #a, #b.

+   C.F. =  .1(y # ax) + .2(y # bx), 1 2,. .  being arbitrary functions.

 Now, P.I. = 1 1

1
2 2

2
2

2
D a b DD abD

xy
D a b D

D
ab D

D

xy
� � ∗ � ∗

,
� �

∗
�

∗L
NM

O
QP

( ) ( )

      = 1 1 1 12

2

2

1

2D
a b D'

D
ab D'

D
xy

D
a b D'

D
xy� � �

L
NM

O
QP , # � �L

NM
O
QP

#

( ) ( ) ...

           = 1 1 1
22 2 2

2

D
xy a b

D
D' xy

D
xy a b

D
x

D
xy a b x# �RST

UVW , # �RST
UVW , # �RST

UVW( ) ( )

           =
3 4 3 4( )

2 3 2 3 4 6 24
x a b x x y a b xy � �

5 # 5 , #
5 5

.

Required general solution            z = .1(y # ax) + .2(y #bx) + (1/6) × x3y # (a + b) × (x4/24),

Ex. 5. Solve (a) 2 2(2 – 5 2 ) 24( – ).D DD D z y x∗ ∗� ,

(b) 2 2( 3 2 ) .D DD D z x y∗ ∗� � , � [Meerut 1996]

(c) 2 2 2 2 2( / ) 3( / ) 2( / ) 2 3 .z x z x y z y x y! ! � ! ! ! � ! ! , �

(d) 2 2 2 2 2( / ) 3( / ) 2( / ) 6( ).z x z x y z y x y! ! � ! ! ! � ! ! , �

(e) 2 2 2 2( / ) – ( / ) – .z x z y x y! ! ! ! ,

Sol. (a) Here auxiliary equation is 22 – 5 2 0m m � ,               so that

2, 1/ 2.m ,

+ C.F. = 1 2 1 2( 2 ) (2 ), ,y x y x. � � . � . .  being arbitrary functions.

Now, 2 2
1P.I.

2 – 5 2D DD D
,

∗ ∗�
24( – ) 24y x ,

2
2

2

1 ( – )
52 1
2

y x
D DD
D D

% ∃∗ ∗
# �∋ &∋ &

( )
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–12

2 2 2
12 5 12 51– ( – ) 1 ... ( – )

2 2
D D Dy x y x
D DD D D

% ∃∗ ∗ ∗% ∃, � , � �∋ & ∋ &∋ & ( )( )
2

12 5( – ) ( – )
2

y x D y x
DD

7 8∗, �: ;
< =

2
12 5– 1

2
y x

DD
% ∃, �∋ &
( )

2 3

2 2
12 5 12 3– 12 18

2 2 2 2 3
x x x xy x y y

D D

% ∃ % ∃% ∃ % ∃, � , � , 5 � 5∋ & ∋ & ∋ & ∋ &( ) ( ) 5( ) ( )

Hence the required general solution is 2 3
1 2( 2 ) (2 ) 6 3 .z y x y x x y x, . � � 0 � � �

(b)Try as in part (a). Ans. 3 2
1 2( – 2 ) ( – ) (1/ 3) (1/ 2)z y x y x x x y, . � . # 5 � 5

(c) Try yourself Ans. 2 3
1 2( – ) ( – 2 ) (3 / 2) – (7 / 6)z y x y x x y x, . � . � 5 5

(d) Try as in part (c). [Ans. 2 3
1 2( – ) ( 2 ) 3 – 2z y x y x x y x, . � . # �

(e) Try yourself. Ans. 3 2
1 2( ) ( ) (1/ 6) – (1/ 2)z y x y x x x y, . � � . # � 5 5

Ex. 6. Solve 2 2 2( – 6 9 ) 12 36 .D DD D z x xy∗ ∗� , � [Meerut 1994, Bhuj 1999, Jabalpur 2003]

Sol. Re-writing the given equation, we get       2 2( – 3 ) 12( 3 ).D D z x xy∗ , �

Its auxiliary equation is (m – 3)2 = 0                so that       m = 3, 3.

+ C.F. = 1 2 1 2( 3 ) ( 3 ), ,y x x y x. � � . � . .  being arbitrary functions.

Now, 2 2
2 2 2

1 1P.I.= 12( 3 ) 12 ( 3 )
( – 3 ) (1– 3 / )

x xy x xy
D D D D D

� , �
∗ ∗

[Take D common as power of y is less than that of x]

=
–2

2 2
2 2

12 3 121– ( 3 ) 1 6 ... ( 3 )D Dx xy x xy
D DD D

∗ ∗% ∃ % ∃� , � � �∋ & ∋ &
( ) ( )

[Retain upto D∗  as maximum power of y in 2( 3 )x xy�  is one]

2 2 2
2 2

12 6 12 63 ( 3 ) 3 (3 )x xy D x xy x xy x
D DD D

7 8 7 8∗, � � � , � �: ; : ;
< = < =

2
2

2
12 3 18

2
xx xy

D

7 89 9, � � 5: ;
9 9< =

4 3
2

2
12 (10 3 ) 120 36

3 4 2 3
x xx xy y

D
% ∃ % ∃

, � , �∋ & ∋ &∋ & ∋ &5 5( ) ( )
= 10x4 + 6x3y.

Hence the required general solution is         4 3
1 2( 3 ) ( 3 ) 10 6 .z y x x y x x x y, . � � . � � �

Ex. 7. (a)  Solve (!2V/!x2) + (!2V/!y2) = #4Φ(x2 + y2).
(b) Find a real function V of x and y, satisfying (!2V/!x2) + (!2V/!y2) = #4Φ(x2 + y2) and

reducing to zero, when y = 0. [ Nagpur 2005; I.A.S. 1998]

Sol. (a)  Given equation can be rewritten as (D2 + D∗2)V = #4Φ(x2 + y2). ...(1)
Its auxiliary equation is m2 + 1 = 0 so that m = i, #i.

+          C.F. =.1(y + ix) + .2(y # ix), where .1, .2 are arbitrary functions.

P.I.  = 1 4 4 1
2 2

2 2
2 2

2 2

D D'
x y

D D'
x y

�
# � , #

�
�[ ( )] ( )Φ Φ =# Γ

� ∗
�4

12 2 2
2 2Φ

D D D
x y

( / )
( )
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4.22 Homogenous linear partial differential equations with constant coefficients

= # �
F
HG

I
KJ � , # # �

F
HG

I
KJ �

#

4 1 4 1
2

2

1
2 2

2

2

2
2 2Φ Γ Φ

ΗD
D'
D

x y
D

D'
D

x y( ) ... ( )

= # � # ∗ �RST
UVW , # � #RST

UVW
4 1 4 1

22
2 2

2
2 2 2

2
2 2

2
Φ Φ

D
x y

D
D x y

D
x y

D
( ) ( ) ( ) .

=
2 2

2 2 2 2 2 2 2
2 2

4 42 4 2
2 2
x xx y y y x y

D D

% ∃Φ Φ
# � # 5 , # , # Φ 5 , # Φ∋ &( )

.

Hence the required general solution is            V = .1(y + ix) + .2(y # ix) # 2Φ2x2y2.
...(2)

(b)Proceed as in part (a) upto equation (2).Since we want real function V(x, y) satisfying (1)
and reducing to zero when y = 0, it follows .1(y + ix) = .2(y # ix) = 0 in (2) and hence the required
solution is                    V = #2Φ2x2y2.

Ex. 8.  Solve (D2 # 2DD∗ + D∗2)z = ex + 2y + x3.           [Bhopal 1995, 97, 98; Lucknow 2010]
Sol.  Given equation is         (D # D∗)2z = ex + 2y + x3. ...(1)
Its auxiliary equation is        (m # 1)2 = 0   so that                   m = 1, 1.
+ C.F. = .1(y + x) + x.2(y + x), .1, .2 being arbitrary functions.
Now, P.I. corresponding to ex + 2y

= 1 1
1 22

2
2( ) ( )D D

e e d dx y

# ∗
,

#
� zz v v v , where v = x + 2y

= e d e ex yv vvz , , � 2 , as v = x + 2y,, using formula (i) of working rule of Art. 4.8 and
P.I. corresponding to x3

= 1 1
1

1 12
3

2 2
3

2

2
3

( ) ( / )D D'
x

D D' D
x

D
D'
D

x
#

,
#

, #FH IK
#

= 1 1
202

3 5

D
x x( ...)� ,

Hence the required general solution is                     z = .1(y + x) + x.2(y + x) + ex + 2y + x5/20.

Ex. 9. Solve 2 2 2 2 2 2/ – ( / ) .z x a z y x! ! ! ! , [Ravishanker 2000, 04; Vikram 1995]

Sol. Let / and / .D x D y∗Ι ! ! , ! !  Then, the given equation becomes 2 2 2 2( – )D a D y x∗ ,

The auxiliary equation is 2 2– 0m a ,                   so that           m = a, –a.

+ 1 2. . ( ) ( – )C F y ax y ax, . � � . , 1 2,. .  being arbitrary functions

Now,
12

2 2 2 2
2 2 2 2 2 2 2 2 2

1 1 1. . 1–
( – ) {1– ( / )}

DP I x x a x
D a D D a D D D D

#
% ∃∗

, , , ∋ &∋ &∗ ∗ ( )

   =
2 3 4

2 2 2
2 2 2

1 1 11 ...
3 12

D x xa x x
DD D D

% ∃∗
� � , , ,∋ &∋ &

( )

Hence, the required general solution is z = C.F. + P.I, i.e., 4
1 2( ) ( – ) /12z y ax y ax x, . � � . � .

Ex. 10. Solve 3 2 3 2 3 3 2/ – 2( / ) / 1/z x y z x y z y x! ! ! ! ! ! � ! ! , (Vikram 1994)

Sol. Let /D x, ! !  and / .D y∗ , ! !  Then the given equation becomes
2 2 3 2( – 2 ) 1/D D DD D z x∗ ∗ ∗� ,              or 2 2( – ) 1/D D D z x∗ ∗ , ...(1)

Corresponding to repeated factor 2( – )D D∗ , the part of C.F. is 1 2( ) ( ).y x x y x. � � . �  Again
corresponding to factor ,D∗  the part of C.F.. is 1( )f x .
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Homogenous linear partial differential equations with constant coefficients 4.23

+ C.F. of (1)  = 1 2 3( ) , ( ) ( )y x x y x x. � � . � � .

P.I.= 2 2 2 2 2 2
1 1 1 1 1

( – ) ( – ) ( – )
ydy

D D D x D D x D D x
, ,

∗ ∗ ∗ ∗6
–2

2 2
1 1– D y

DD x
∗% ∃, ∋ &

( )

2

2 2 2
1 2 31 ...D D y

DD D x
% ∃∗ ∗

, � � �∋ &∋ &
( )

2 2 2 2 2 3 2
1 2 1 1 1 2 1y y

DD x x D x D x
7 8% ∃, � , �: ;∋ &

( )< =

1 1
– – log ,y y x

D x
% ∃, ,∋ &( )

where we have omitted a function of x as it can be included in the term 3.  (x) of C.F..

+  Required general solution is                      1 2 3( ) ( ) ( ) – log ,z y x x y x x y x, . � � . � � .

where .1, .2 and .3 are arbitrary functions.

Ex. 11. Solve 3 2 3 2 2 3( – 7 – 6 ) cos( – )D DD D z x xy y x y∗ ∗ , � � � [K.U. Kurukshetra, 2004]

Sol. Given        3 2 3 2 2 3( – 7 – 6 ) cos( – )D DD D z x xy y x y∗ ∗ , � � � ...(1)

Here auxiliary equation is 3 – 7 – 6 0m m , so that m = –1, –2, 3.

+ 1 2 3. . ( – ) ( – 2 ) ( 3 )C F y x y x y x, . � . � . � , 1 2 3, ,. . .  being arbitrary functions

P.I. Corresponding to 2 2 3( )x xy y� �

–12 3
2 2 3 2 2 3

3 2 3 3 2 3
1 1( ) 1– 7 6 ( )

– 7 – 6
D Dx xy y x xy y

D DD D D D D

7 8% ∃∗ ∗9 9, � � , � � �∋ &: ;∋ &∗ ∗ 9 9( )< =

2 3
2 2 3

3 2 3
1 1 7 6 ... ( )D D x xy y

D D D

7 8% ∃∗ ∗9 9, � � � � �∋ &: ;∋ &9 9( )< =
2 2 3

3 5 6
1 7 36( ) (2 6 )x xy y x y

D D D
, � � � � � 1

5 4 2 3 3 6 5 6( / 60 / 24 / 6) 7( /360 / 20) 36 ( / 720)x x y x y x x y x, � � � � � 5

6 5 5 4 2 3 35 / 72 / 60 7 / 20 / 24 / 6x x x y x y x y, � � � �

P.I. Corresponding to cos( – )x y

3 2 3 2 2
1 1 1cos( – ) cos ( – )

( )– 7 – 6 ( – – 6 )
x y x y

D DD DD D D DD D
, ,

∗�∗ ∗ ∗ ∗

2 2
1 1 cos , where

1 – 4 1 (–1) – 6 (–1)
vdv dv v x y

D D
, , #

� ∗ 5 5 5 66
1 1 1 1(–cos ) cos( – )

(–4) 4
x y

D D D D
, 5 5 ,

∗ ∗� �
v 1

1 1 1– cos( – ) cos( – )
4 (–1) –1 4 (–1) 1!

xx y x y
D D

, #
5 5 ∗ 5

= ( / 4) cos( – )x x y5

Hence the required general solution is 1 2 3( – ) ( – 2 ) ( 3 )z y x y x y x, . � . � . �

6 5 4 2 3 3(5 / 72) / 60 (7 / 20) (1/ 24) (1/ 6) ( ) ( / 4) cos( ),x x x y x y x y x x yϑ� 5 � � 5 � 5 � 5 � 5 #
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4.24 Homogenous linear partial differential equations with constant coefficients

Ex 12. Solve 2 2( – 2 –15 ) 12 .D DD D z xy∗ ∗ , (K.U. Kurukshetra 2004; Meerut 2006, 2011)

Sol. Here auxiliary equation is 2 – 2 –15 0m m , so that             m = 5, –3.

+ 1 2 1 2. . ( 5 ) ( – 3 ), ,C F y x y x, . � � . . .  being arbitrary functions

Now, P.I.  = 2 2 2 2 2
1 1(12 ) (12 )

– 2 –15 (1– 2 / –15 / )
xy xy

D DD D D D D D D
,

∗ ∗ ∗ ∗

–12 2

2 2 2 2
12 2 15 12 2 151– ( ) 1 ... ( )D D D Dxy xy

D DD D D D

7 8% ∃ % ∃∗ ∗ ∗ ∗9 9, � , � � �: ;∋ & ∋ &( ) ( )9 9< =

2
2 2 2

12 2 15 12 2( ) ( ) ...xy D xy D xy xy x
D DD D D

7 8 % ∃∗ ∗, � � � , �: ; ∋ &
< = ( )

3 4
3 4

2 3
1 2412 12 24 2

6 24
x xy x x y x y x

D D
% ∃ % ∃

, � , � , �∋ & ∋ &∋ & ∋ &
( ) ( )

Hence the required general solution is 3 4
1 2( 5 ) ( – 3 ) 2z y x y x x y x, . � � . � �

Ex. 13. Solve 3 3 3 3 3 3 3 3 3 3/ / / 3 ( / ) 3u x u y u z u x y z x y z xyz! ! � ! ! � ! ! # ! ! ! ! , � � # .

Sol.  Let D = !/!x, D∗ = !/!y, DΚ = !/!z.  Then the given equation can be re-written as
                    (D3 + D∗3 + DΚ3 # 3DD∗DΚ)u = x3 + y3 + z3 # 3xyz.

or    (D + D ∗ + DΚ)(D + ΕD ∗ + Ε2DΚ)(D + Ε2D ∗ + ΕDΚ)u = x3 + y3 + z3 # 3xyz,
where Ε is a complex cube root of unity. ...(1)

For C.F., let us consider (D + Ε2D ∗ + ΕDΚ)u = 0. ...(2)

Subsidiary equations of (2) are   dx
1

= 2 0
dy dz du

, ,
ΕΕ

.  ...(3)

Three independent integrals of (3) are
y # Ε2x = constant,    z # Εx = constant                and             u = constant.
Hence, general solution of (2) is                          u = .1(y # Ε2x, z # Εx).
Similarly, the contributions to complementary function corresponding to other factors in (1) are

.2(y # Εx, z # Ε2x) and  .3(y # x, z # x) and hence
C.F. = .1(y # Ε2x, z # Εx) + .2(y # Εx, z # Ε2x) + .3(y # x, z # x),

where .1, .2 and .3 are arbitrary functions.
P.I. corresponding to x3

= Γ
� ∗ � ∗∗ # ∗ ∗∗

, �
∗

�
F
HG

I
KJ

RS|T|
UV|W|Λ

#

D D D DD D
x

D
D
D

x3 3 3
3 3

3

1
3

3
1 1 ... = 1

1203
3 6

D
x x, .

Similarly, P.I. corresponding to y3 = y6/120  and P.I. corresponding to z3 = z6/120.
Finally,    P.I. corresponding to (#3xyz)

= #
� ∗ � ∗∗ # ∗ ∗∗

, ∗ ∗∗ � � ∗ � ∗∗
∗ ∗∗

RS|T|
UV|W|

#

3 1
3

1 1
33 3 3

3 3 3 1

D D D DD D
xyz

DD D
D D D

DD D
xyz

=
1 1

3
1

8

3 3 3 2 2 2

DD D
D D D

DD D
xyz

DD D
xyz x y z

∗ ∗∗
#

� ∗ � ∗∗
∗ ∗∗

�
RS|T|

UV|W|
,

∗ ∗∗
,...... .
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Homogenous linear partial differential equations with constant coefficients 4.25

Hence the required general solution of (1) is     z = .1(y # Ε2x, z # Εx) + .2(y # Εx, z # Ε2x)
+ .3(y # x, z # x) + (1/120) × (x6 + y6 + z6) + (1/8) × x2y2z2.

Ex.14. Solve 
!
!

�
!
!

�
!
!

#
!

! ! !

3

3

3

3

3

3

3
3u

x
u

y
u

z
u

x y z
= x3 # 3xyz.

Sol.  Proceed as in Ex. 13.  Its general solution is z = .(y # w2x, z # wx) + .2(y # wx, z # w2x) + .3(y
# x, z # x) + (1/120)x6 + (1/8)x2y2z2.

EXERCISE 4(B)
Solve the following partial differential equations:
1. 2 2( – 2 ) 12D DD D z xy∗ ∗� ,            (Jiwaji 1998; Ravishanker 1999; Vikram 1995, 97)

Ans. 3 4
1 2 1 2( ) ( ) 2 , ,z y x x y x x y x, . � � . � � � . .  being arbitrary functions

2. 2 2( – – 6 )D DD D z xy∗ ∗ , (Sagar 2003, Vikram 1995)

Ans. 3 4
1 2( – 2 ) ( 3 ) (1/ 6) (1/ 24)z y x y x x y x, . � . � � 5 � 5

4.12.  A general method of finding the particular integral of linear homogeneous equa-
tion with constant coefficients.

Let the given equation be F(D, D∗)z = f(x, y), ...(1)
where F(D, D∗) is a homogeneous function of D and D∗ of degree n, (say) so that

   F(D, D∗)   = (D # m1D∗)(D # m2D∗) .... (D # mnD∗).
+ P.I. of (1) = 1

F D D
f x y

( , )
( , )∗ =  1

1 2( )( )....( )
( , )

D m D D m D D m D
f x y

n# ∗ # ∗ # ∗ . ...(2)

In order to evaluate P.I. given by (2), we consider a solution of the following equation :
(D # mD∗)z = f(x, y) or p # mq = f(x, y), ...(3)

which is of the form Pp + Qq = R.  So Lagrange’s auxiliary equation for (3) are
dx
1

=
dy
m

dz
f x y#

,
( , ) . ...(4)

Taking the first two fractions of (4), dy + mdx = 0    so that    y + mx = c. ...(5)
Next, taking the first and the last fractions of (4), we have

dz = f(x, y)dx = f(x, c # mx)dx, as from (5),  y = c # mx
Integrating, z = f x c mx dx( , )#z .

Thus,    z = 1
D mD

f x y f x c mx dx
# ∗ , #z( , ) ( , ) , ...(6)

where after integration the constant c must be replaced by y + mx since the P.I. does not contain any
arbitrary constant.

Hence the P.I. given by (2) can be obtained by applying the operation (6) by the factors, in
succession, starting from the right.

Working rule for finding P.I. (General method) of F(D, D∗)z = f(x, y).

P.I. =
1

1 2( )( )...( )
( , )

D m D D m D D m D
f x y

n# ∗ # ∗ # ∗
...(7)

We shall use one of the following formulas :

Formula I :     1
D mD

f x y
# ∗ ( , ) = f x c mx dx( , )#z ,       where       c = y + mx.      ...(8)

Formula II :   1
D mD

f x y
� ∗ ( , )  = f x c mx dx( , )�z ,        where        c = y # mx.   ...(9)

Hence in order to evaluate P.I. (7), we apply (8) or (9) depending on the factor D # mD ∗ and
D + mD ∗.  Note that result (9) can be obtained from (8) by replacing m by #m.
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4.26 Homogenous linear partial differential equations with constant coefficients

4.13 SOLVED EXAMPLES BASED ON GENERAL METHOD
Ex. 1.  Solve (!z/!x) + (!z/!y) = sin x.
Sol.  Rewritting, the given equation is                                        (D + D∗)z = sin x. ...(1)
Its auxiliary equation is m + 1 = 0 so that         m =

#1.
+ C.F. = .(y # x), where . is an arbitrary function.

and P.I. = 1
D D

x x dx x
� ∗ , , #zsin sin cos

Hence the required solution is z = C.F. + P.I. = .(y # x) # cos x.
Ex. 2.  Solve (a) (D2 # DD∗ – 2D∗2)z = (y # 1)ex.

[Delhi Maths (H) 2004, 10; Bhopal 2004; Jiwaji 2000; Rewa 2003; Vikram 2002, 04]
(b) (D # D∗)(D + 2D∗)z = (y + 1)ex. [Delhi Maths (H) 1993; I.A.S. 2004]

Sol. (a)  Here given (D2 # DD∗ – 2D∗Η)z = (y # 1)ex           or            (D + D∗)(D # 2D∗)z = (y # 1)ex.
Its auxiliary equation is (m + 1) (m # 2) = 0               so that              m = #1, 2.
+ C.F. = .1(y # x) + .2(y + 2x), .1, .2 being arbitrary functions.

P.I.  = 1
2

1 1 1
2

1
( )( )

( ) ( )
D D D D

y e
D D D D

y ex x

� ∗ # ∗ # ,
� ∗ # ∗ #
RST

UVW
= 1 2 1

D D
c x e dxx

� ∗ # #z ( ) , by formula I of working rule of Art. 4.12. and taking c = y + 2x

= 1 2 1 2
D D

c x e e dxx x

� ∗ # # # #z( ) ( ) , integrating by parts

= 1 2 1 2 1 2 1
D D

c x e e
D D

c x ex x x

� ∗ # # � ,
� ∗ # �[( ) ] ( )

= 1 2 2 1
D D

y x x ex

� ∗ � # �{( ) } , replacing c by y + 2x 1 ( 1) xy e
D D

, �
∗�

( 1) ,xc x e dx, � �∗6  by formula II of working rule of Art. 4.12 and taking c∗ = y # x

= ( 1) (1. ) ( 1)x x x x xc x e e dx c x e e ye� � # , � � # ,∗ ∗6 ,   since       c∗ = y # x

Hence the required general solution is z = C.F. + P.I.      or            z = .1(y # x) + .2(y + 2x) + yex.
(b) Here auxiliary equation is (m # 1)(m + 2) = 0 so that m = 1, #2.
+ C.F.= .1(y + x) + .2(y # 2x), .1, .2 being arbitrary functions.

and P.I. = 1
2

1 1 1
2

1
( )( )

( ) ( )
D D D D

y e
D D D D

y ex x

# ∗ � ∗ � ,
# ∗ � ∗ �
RST

UVW
= 1 2 1

D D
c x e dxx

# ∗ � �z ( ) = 1 2 1 2
( )

{( ) }
D D

c x e ex x

# ∗ � � # , where c = y # 2x

= 1 1 1
D D

y e c x e dxx x

# ∗ # , ∗ # #z( ) ( ) , where c∗ = y + x

= (c∗ # x # 1)ex + ex = yex as c∗ = y + x.
+ General solution is                               y = .1(y + x) + .2(y # 2x) + yex.
Ex. 3.  (D2 # 4D∗2)z = (4x/y2) # (y/x2). [Delhi Maths (H) 2004, 08; Meerut 1992, Bhopal 2010]
Sol.  Here auxiliary equation  is m2 # 4 = 0 so that m = 2, #2.
+ C.F. = .1(y + 2x) + .2(y # 2x), .1, .2 being arbitrary functions

P.I .= 1
2 2

4
2 2( )( )D D D D
x

y
y

x� ∗ # ∗ #
F
HG

I
KJ =

1
2

4
2

2
2 2D D

x
c x

c x
x

dx
� ∗ #

#
#RS|T|
UV|W|z ( )

, where c = y + 2x.
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= 2 2
1 2 2 2
2 2 ( 2 )

c c dx
D D c x xc x x

7 89 9# � # �: ;
� #∗ #9 9< =

6 = 
1
2

2
2

2
D D

c x c
c x

c
x

x
� ∗

# �
#

� �
RST

UVW
log ( ) log

=  1
2

2 2 2
D D

y y x
y

y x
x

x
� ∗ � � � � �L
NM

O
QPlog log

= log ( ) log∗ � � � ∗ �
�

∗ � � �
RST

UVWz c x x
c x

c x
x

x dx2 1 2
2

2 2 2 ,  taking c∗ = y # 2x

=  x log (c∗ + 2x) + 5x + c log x + 2x log x # 2x = x log y + y log x + 3x, as c∗ = y # 2x
+      The required solution z = .1(y + 2x) + .2(y # 2x) + x log y + y log x + 3x
Ex. 4.  Solve (D2 # DD ∗ # 2D ∗2)z = (2x2 + xy # y2) sin xy # cos xy.

[I.A.S 2009; Meerut 1994; Delhi Maths (Hons.) 2007]
Sol.  Here auxiliary equation is m2 # m # 2 = 0       so that  m = 2, #1.
+                 C.F. = .1(y + 2x) + .2(y # x), .1, .2 being arbitrary functions.

P.I. = 1
2

1 2 2

( )
{( ) sin cos }D D D D x xy y xy xy

# ∗ � ∗
� # #

= 1
2

1 2
D D D D

x y x y xy xy
# ∗ � ∗ # � #{( )( ) sin cos }

= 1
2

2
D D

x c x c x c x x c x dx
# ∗ # � � # �z{( )( ) sin ( ) cos ( )} , taking c = y # x

= 1
2

2 2 2

D D
x c x c cx x cx x dx

# ∗ # � � # �z{( )( ) sin ( ) cos ( )}

= 1
2

2 2 2

D D
x c cx x cx x dx cx x dx

# ∗ # # � � � # �z z( ) cos ( ) cos ( ) cos ( )

=
1 ( 2 ) cos ,
2

y x xy
D D

#
# ∗

 as c = y # x

= ( ) cos ( )∗ # ∗ #z c x c x x dx4 2 2 , where c∗ = y + 2x
= cos t dtz = sin t, putting c∗x # 2x2 = t so that (c∗ # 4x)dx = dt
= sin (c∗x # 2x2) = sin xy, as c∗ = y + 2x.

+ Required solution is z = .1(y + 2x) + .2(y # x) + sin xy.
Ex. 5.  Solve (a) r + s # 6t = y cos x.    or           2 2( 6 ) cosD DD D z y x� # ,∗ ∗

[Bilaspur 2002, Indore 2002, Jabalpur 1999
Meerut 2000, 02, Ravishankar 1994, Jiwaji 1999, Garhwal 2005, 10; I.A.S.1992, 2008;

 Vikram 1999, Delhi Maths (Hons) 2007, Purvanchal 2007; Kanpur 2011]
(b) (D2 + DD∗ # 6D∗2)z = y sin x.

Sol. (a)  Since 2 2 2 2 2/ , / , / ,r z x s z x y t z y, ! ! , ! ! ! , ! !  the given equation becomes

2 2 2 2 2/ / 6( / )z x z x y z y! ! � ! ! ! # ! ! = y cos x             or          (D2 + DD∗ # 6D∗2)z = y cos x....(1)

Its auxiliary equation is m2 + m # 6 = 0             so that m = 2, #3.
+ C.F. = .1(y + 2x) + .2(y # 3x), .1, .2 being arbitrary functions.

      P.I. = 1
6

1
2 32 2D DD D

y x
D D D D

y x
� ∗ # ∗

,
# ∗ � ∗cos

( )( )
cos

     = 1
2

3
D D

x c x dx
# ∗ �z ( ) cos , where c = y # 3x
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4.28 Homogenous linear partial differential equations with constant coefficients

         = 1
2

3 3
D D

x c x x dx
# ∗ � # z( ) sin sin , integrating by parts

         = 1
2

3
D D

y x x
# ∗ �[ sin cos ], as c = y # 3x

         = [( 2 ) sin 3 cos ]c x x x dx# �∗6 , where c∗ = y + 2x

           = ( 2 )( cos ) ( 2)( cos ) 3 sinc x x x dx x# # # # # �∗ 6 , integrating by parts
         = y(#cos x) # 2 sin x + 3 sin x, as c∗ = y + 2x
         = sin x # y cos x.

+ General solution is               z = .1(y + 2x) + .2(y # 3x) + sin x # y cos x.
(b) Proceed as in part (a). Ans.  z = .1(y + 2x) + .2(y # 3x) # y sin x # cos x
Ex. 6.  Solve (D2 + 2DD ∗ + D ∗2)z = 2 cos y # x sin y. [Agra 2009; Meerut 1999;

Bilaspur 2002; Indore 2004; Jabalpur 1999; Rewa 2002; Ranchi 2010]
Sol.  Given equation is                          (D + D ∗)2z = 2 cos y # x sin y. ...(1)
Its auxiliary equation is (m + 1)2 = 0          so that                m = #1, -1.
+ C.F. = .1(y # x) = x.2(y # x), .1, .2 being arbitrary functions.

P.I. = 1 1 2
D D D D

y x y
� ∗ � ∗ #( cos sin )= 1 2

D D
x c x x c dx

� ∗ � # �z[ cos ( ) sin ( )] , where c = y #

x
= 1 2

D D
x c dx x x c dx

� ∗ � # �z zcos ( ) sin ( ) = 1 2
D D

x c x x c x c dx
� ∗ � # # � � �zsin ( ) cos ( ) cos ( )n s

= 1 2
D D

x c x x c x c
� ∗ � � � # �sin( ) cos( ) sin( ) = 1

D D
y x y

� ∗ �(sin cos ), as c = y # x

= [sin ( ) cos ( )]x c x x c dx� � �∗ ∗6 = # cos (x + c∗) + x sin (x + c∗) # {1.sin ( )}x c dx� ∗6 , where c y x∗ , #

=  # cos (x + c∗) + x sin (x + c∗) + cos (x + c∗) = x sin y, as c∗ = y # x.
So the required solution is z = .1(y # x) + x.2(y # x) + x sin y.

Ex. 7.  Solve r # t = tan3 x tan y # tan x tan3 y or 2 2 3 3( – ) tan tan – tan tanD D z x y x y∗ ,
[Agra 2010; Delhi Maths (G) 2006]

Sol.  Given equation is (D2 # D∗2)z = tan3 x tan y # tan x tan3 y
or              (D + D∗)(D # D∗)z = tan3 x tan y # tan x tan3 y. ...(1)

Its auxiliary equation is (m + 1)(m # 1) = 0           so that             m = #1, 1.
+ C.F. = .1(y # x) + .2(y + x), .1, .2 being arbitrary functions.

P.I. = 1 3 3

( )( )
(tan tan tan tan )

D D D D
x y x y

� ∗ # ∗ #

= 1 3 3

D D
x c x x c x dx

� ∗ # # #z [tan tan ( ) tan tan ( )] , where c = y + x

= 1 12 2

D D
x c x x x c x

� ∗ # # # #z[tan tan ( )(sec ) tan tan ( ){sec ( ) }]2 1c x dx# #

= 1 2 2

D D
x x c x c x c x x dx

� ∗ # # # #z [tan sec tan ( ) tan ( ) sec ( ) tan ]

= 1
2 2

1
2 2

2

D D
x c x x c x dx

� ∗ # # # #
L
NMM ztan tan ( ) tan sec ( ).( )

– tan ( )
( )

tan tan ( )
( )

sec
2 2

2
2 1 2 1

c x x c x x dx#
5 #

# #
5 #

RST
UVW
O
QPz
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Homogenous linear partial differential equations with constant coefficients 4.29

= 1
2

2 2

( )
[tan tan ( ) tan tan ( )]

D D
x c x x c x

� ∗ # � #

� # # # # #z z(sec ) sec ( ) {sec ( ) } sec ]2 2 2 21 1x c x dx c x x dx

= 1
2

2 2

( )
[tan tan ( ) tan tan ( )

D D
x c x x c x

� ∗ # � # # # � zz sec ( ) sec ]2 2c x dx x dx

= 1
2

2 2

( )
[tan tan ( ) tan tan ( ) tan ( ) tan ]

D D
x c x x c x c x x

� ∗ # � # � # �

= 1
2

2 2

( )
(tan tan tan tan tan tan )

D D
x y x y y x

� ∗ � � � , as c = y + x

=  1
2

1 12 2

( )
[tan (tan ) tan (tan )]

D D
y x x y

� ∗ � � � = 1
2

2 2

( )
(tan sec tan sec )

D D
y x x y

� ∗ �

=  2 21
tan ( ) sec tan sec ( )

2
? ≅� � �∗ ∗Α ΒΧ ∆6 6c x x dx x c x dx , where c∗ = y # x

= 2 21
tan ( ) tan sec ( ) tan tan sec ( )

2
c x x c x x dx x c x dx? ≅� # � � �∗ ∗ ∗Α ΒΧ ∆6 6

[On integrating the first integral by parts keeping the second integral unchanged]
= (1/2) × tan (c∗ + x) tan x = (1/2) × tan y tan x, as c∗ = y # x.
+The required solution is z = .1(y # x) + .2(y + x) + (1/2) × tan y tan x.
Ex. 8.  Solve (D2 + DD∗ # 6D∗2)z = x2 sin (x + y). [Meerut 1994]
Sol.  Re-writing the given equation is  (D + 3D∗)(D # 2D∗)z = x2 sin (x + y). ...(1)
+ C.F. = .1(y # 3x) + .2(y + 2x), .1, .2 being arbitrary functions.

         P.I. = 1
3 2

1
3

1
2

2 2

( )( )
sin ( ) . , sin ( )

D D D D
x x y

D D D D
x x y

� ∗ # ∗
� ,

� ∗ # ∗
�RST
UVW

= 21 sin ( 2 )
3

x x c x dx
D D

� #
∗� 6 = 1

3
2

D D
x c x dx

� ∗ #z sin ( )  , where c = y + 2x

= 1
3

22

D D
x c x x c x dx

� ∗ # # #zcos ( ) cos ( ) , integrating by parts

= 1
3

2 22

D D
x c x x c x c x dx

� ∗ # # # # � #zcos ( ) sin ( ) sin ( )n s , integrating by parts

= 1
3

2 22

D D
x c x x c x c x

� ∗ # � # # #[ cos ( ) sin ( ) cos ( )]

= 1
3

2 22

D D
x x y x x y

� ∗ # � � �[( ) cos ( ) sin ( )], as c = y + 2x

= [( ) cos ( ) sin ( )]x x c x x x c x dx2 2 3 2 3# � ∗ � � � ∗ �z , where 3c y x∗ , #

= ( ) cos ( ) sin ( )x x c dx x x c dx2 2 4 2 4# � ∗ � � ∗z z
= 2 sin (4 ) sin (4 )( 2) 2 2 sin (4 )

4 4
� �∗ ∗

# # � � ∗6 6x c x cx x dx x x c dx

[Integrating by part 1st integral and keeping the second integral unchanged]

= 1
4

2 4 3
2

42( ) sin ( ) sin ( )x x c x x c dx# � ∗ � � ∗z = x x c x x c x c dx
2 2
4

4 3
2

4
4

4
4

# � ∗ � # � ∗ � � ∗L
NM

O
QPzsin ( ) cos ( ) cos ( )

= x x c x x c x c
2 2
4

4 3
8

4 3
32

4# � ∗ # � ∗ � � ∗sin ( ) cos ( ) sin ( )

= 1
4

2 4 3 3
8

4 3 3
32

4 32( ) sin ( ) cos ( ) sin ( )x x y x x x y x x y x# � # # � # � � # , as  c∗ = y # 3x
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4.30 Homogenous linear partial differential equations with constant coefficients

= 3 42 / 4 13/ 32 sin ( ) (3 / 8) cos ( )x x y x x y# � # 5 � , on simplification

The solution is z = .1(y # 3x) + .2(y + 2x) + [(x2/4) # (13/32)] sin (x + y) # (3x/8) × cos (x + y).
Ex. 9. Solve 3 2 2 3( ) cos2yD D D DD D z e x∗ ∗ ∗� # # ,

Sol. Here 3 2 2 3 2 2( ) ( )D D D DD D D D D D D D∗ ∗ ∗ ∗ ∗ ∗� # # , � # � ∗ ∗, � #2( ) ( )D D D D

So the given equation reduces to 2( ) ( ) cos2yD D D D z e x∗ ∗# � ,

+  C.F. = 1 2 3( ) ( ) ( )y x y x x y x. � � . # � . # , 1 2,. .  being arbitrary functions

P.I. =
1 1

cos2
( ) ( )

ye x
D D D D D D∗ ∗ ∗# � �

=
1

cos2
( ) ( )

a xe x dx
D D D D

�

∗ ∗# � 6 , where y x a# ,

=
1

cos2
( )( )

a xe e x dx
D D D D∗ ∗# � 6 =

2 2

1 1
(cos2 2sin2 )

( )( ) 1 2
y x xe e x x

D D D D
# �

∗ ∗# � �
*

=
1 1

(cos2 2sin2 )
5 ( ) ( )

ye x x
D D D D

�
∗ ∗# �

=
1 1

(cos2 2sin 2 )
5

x ae x x dx
D D

� �
∗# 6 , where y x a# ,

= Μ Ν�
# ∗ 6 61 1

cos2 2 sin2
5

a x xe e x dx e x dx
D D

= # 7 89 9� � #: ;
# ∗ � �9 9< =

2 2 2 2

1 1 2
(cos2 2sin2 ) (sin2 2cos2 )

5 1 2 1 2

x x
y x e e

e x x x x
D D

=
1 1

(4sin 2 3cos2 )
25

ye x x
D D

#
∗#

=
1

(4sin 2 3cos2 )
25

b xe x x dx# #6 , where b = y + x

= Μ Ν1
4 sin 2 3 cos2

25
b x xe e x dx e x dx# ##6 6

=
# #

� 7 89 9# # # # �: ;
� �9 9< =

2 2 2 2

1 4 3
( sin2 2cos2 ) ( cos2 2sin2 )

25 1 2 1 2

x x
y x e e

e x x x x

= # 5 �(1/ 25) (cos2 2sin2 )ye x x

+  Required solution is  , . � � . # � . # # 5 �1 2 3( ) ( ) ( ) ( / 25) (cos2 2sin2 )yz y x y x x y x e x x

Ex. 10. Find the solution of the equation 2 2 2 2/ / cosxz x z y e y#! ! � ! ! ,  which 0Ο  as
x Ο Π  and has the value cos y when x = 0. [I.A.S. 1999]

Sol. Given 2 2 2 2/ / xz x z y e#! ! � ! ! , cos y or 2 2( ) cosxD D z e y#∗� ,   ... (1)

 P.I. = ( 1) 0.
2 2 2 2

1 1
cos cosx x ye y e y

D D D D
# # �,

∗ ∗� �
 = # �

∗# � �
( 1) 0.

2 2

1
cos

( 1) ( 0)
x ye y

D D

#,
∗� # #2 2

1
cos

2 1
xe y

D D D
= 2 2

1 1 1
cos cos cos

2 20 ( 1) 2 1
x x xe y e y xe y

DD
# # #, , #

#� # # �
.

Now, the general solution of (1) is z = C.F. + P.I.

where C.F. is solution of 2 2 2 2/ / 0z x z y! ! � ! ! , ... (2)

* We shall use the following results of Integral calculus directly

2 2
sin ( sin cos ),

ax
ax e

e bx dx a bx b bx
a b

, #
�6 and 2 2

cos ( cos sin )
ax

ax e
e bx dx a bx b bx

a b
, �

�6
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Homogenous linear partial differential equations with constant coefficients 4.31

Since #

ΟΠ ΟΠ ΟΠ
, , ,

1
lim lim lim 0,x

x xx x x

x
x e

e e
we observe that P.I. Ο  0 as Ο Π.x  Also, we have P.I. = 0 when x = 0

Here we are to solve (1) satisfying the conditions 0z Ο  as x Ο Π  and z = cos y when
x = 0. It follows that C.F. of (1), that is solution of (2) must satisfy the conditions C.F. 0Ο  as
x Ο Π  and C.F. = cos y when x = 0. In other words, we now * solve (2) subject to conditions :

( , ) 0z x y Ο  as x Ο Π ... (3)

and ( , ) cosz x y y,  when 0x , ... (4)
Let a solution of (2) be ( , ) ( ), ( )z x y X x Y y, ... (5)

From (5), 2 2/ ( ) ( )z x X x Y y∗∗! ! , and 2 2/ ( ) ( )z y X x Y y∗∗! ! , ,
where prime denotes the derivative w.r.t. to the relevent variable. Substituting these in (2), we get

( ) ( ) ( ) ( ) 0X x Y y X x Y y∗∗ ∗∗� ,         or / /X X Y Y∗∗ ∗∗, #        ... (6)
Since x and y are independent variables, (6) is true if each side is equal to a constant, say n2.

Since condition (4) involves trigonometric function cos y, we choose n as positive integer.

+ (6) /            2/X X n∗∗ ,          and        2/Y Y n∗∗# ,

or             2 2 2/ 0d X dx n X# ,             and 2 2 2/ 0d Y dy n Y� ,

Solving these, ( ) nx nxX x A e Be#, � ... (7)

and ( ) cos sinY y C ny D ny, � ... (8)

Take A = 0 in (7) for otherwise ( )X x Ο Π  as x Ο Π  and so ( , )z x y Ο Π  as x Ο Π  which
contradicts (3) Using (7) and (8), (5) reduces to

( , ) ( cos sin )nxz x y e E ny F ny#, � ... (9)
where E (= BC) and F (= BD) are new arbitrary constants.

Now, putting x = 0 in (9) and using (4), we get cos y = E cos ny + F sin ny which holds if we

choose n = 1, E = 1 and F = 0. Hence from (9), the C.F. of (1) is given by cosxe y# . Keeping in mind
this C.F. of (1) and P.I. already obtained, the required solution of (1) is

# # #, # 5 , 5 #cos ( / 2) cos (1/ 2) (2 ) cosx x xz e y x e y x e y .

EXERCISE 4(C)
Solve the following partial differential equations:

1. 3 2 2 3( 2 – – 2 )D D D DD D∗ ∗� ( 2) xz y e, � Ans. 1 2 3( ) ( – ) ( –2 ) yz y x y x y x ye, . � �. �. �

2. 3 2 3( – 3 – 2 ) cos( 2 ) – (3 2 )yD DD D z x y e x∗ ∗ , � �

Ans. 1 2 3( – ) ( – ) ( 2 ) (1/ 27) sin( 2 ) .xz y x x y x y x y x xe, . � . � . � � 5 � �

3. 3 2 2 2 2 2( 2 ) ( 4 )x yD D D DD z e x y�∗ ∗# # , � .

Ans. 1 2 3( ) ( 2 ) ( )z y y x y x, . � . � � . # �# 5 � # # �2 2 2(1/81) (9 36 18 72 76) x yx y x y e

* We shall use the method of separation for solving partial differential equation. For details
refer part III ‘‘Boundary value problems’’ in author’s ‘‘Advanced Differential Equations.’’
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4.32 Homogenous linear partial differential equations with constant coefficients

4.14.  SOLUTIONS UNDER GIVEN GEOMETRICAL CONDITIONS:
We have seen that solutions obtained in above methods involve arbitrary functions of x and y.

We shall now determine these under the given geometrical conditions.  This will lead to required
surface satisfying the given differential equation under the given geometrical conditions.
4.15. SOLVED EXAMPLES BASED ON ART. 4.14.

Ex. 1.  Find a surface passing through the two lines  z = x = 0,  z # 1 = x # y = 0  satisfying
r # 4s + 4t = 0. [Meerut 97,2000;  I.A.S. 1996; Bhopal 2010]

Sol.  The given equation may be written as 2 2 2 2 2/ 4( / ) 4( / ) 0! ! # ! ! ! � ! ! ,z x z x y z y

or                                  (D2 # 4DD ∗ + 4D∗2)z = 0                  or                               (D # 2D∗)2z = 0.

Its solution is z = .1 (y + 2x) + x.2(y + 2x). 1 2,. .  being arbitrary functions ...(1)

Since (1) passes through z = x = 0, we have 0 = .1(y) which gives .1(y + 2x) = 0.
+ (1) becomes z = x .2(y + 2x). ...(2)
 Since  (2) passes through z # 1 = x # y = 0, i.e. z = 1 and y = x,  we get

             1 = x .2(3x) or .2(3x) = 3/(3x) so that .2(y + 2x) = 3/(y + 2x).
+ from (2), we have 3x = z(y + 2x), which is the required surface.
Ex. 2.  Find the surface satisfying the equation r + t # 2s = 0 and the conditions that bz = y2

when x = 0 and az = x2 when y = 0.

Sol.  Re-writing the given equation,                          2 2 2 2 2/ / 2( / ) 0! ! � ! ! # ! ! ! ,z x z y z x y

or (D2 # 2DD∗ + D∗2) = 0            or    (D # D∗)2z = 0.

Its solution is z = .1(y + x) + x .2(y + x). 1 2, ..  being arbitrary functions. ...(1)

Since z = y2/b when x = 0, (1) gives   y2/b = .1(y),     /      .1(y + x) = (y + x)2/b. ...(2)
Again since z = x2/a when  y = 0, (1) gives             x2a = x.2(x) + .1(x). ...(3)

Since from (2), .2(x) = x2/b, (3) becomes   x
a

2
= x x x

b
.2

2
( ) � i.e.  .2(x) = b a

ab
x#

which gives    .2(y + x) = b a
ab

y x# �( ). ...(4)
Using (2) and (4) in (1), the required surface is

2( )( )# � � #% ∃, � � , � �∋ &( )
b a y x y x b az x y x x y x

ab b b a  or ( ) x yz y x
a b

% ∃, � �∋ &
( )

Ex. 3.  Find a surface satisfying r # 2s + t = 6 and touching the hyperbolic paraboloid z = xy
along its section by the plane y = x. [Meerut 1997]

Sol.  Re-writing the given equation,                                 2 2 2 2 2/ 2( / ) / 6! ! # ! ! ! � ! ! ,z x z x y z y

or    (D2 # 2DD∗ + D∗2)z = 6 or (D # D∗)2z = 6. ... (1)∗

Its C.F. = .1(y + x) + x .2(y + x), 1 2,. .  being arbitrary functions

Now, P.I. =
2

2 2
1 1.6 1 6

( )

#∗% ∃, #∋ &( )# ∗

D
DD D D

= 2
2 2

1 2 11 ... 6 6 3∗% ∃� � , ,∋ &( )
D x
DD D

.

+ General solution of (1)∗ is             z = C.F. + P.I. = .1(y + x) + x.2(y + x) + 3x2. ...(1)
Since the required surface (1) touches the given surface                          z = xy ...(2)
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Homogenous linear partial differential equations with constant coefficients 4.33

along the section y = x, the values of p and q for the two surfaces must be equal for any point on the
plane y = x. ...(3)

Now equating the values of p and q from (1) and (2), we have

       p = .2(y + x) + x.2∗(y + x) + 1∗. (y + x) + 6x = y ...(4)

and                 q = x.2∗(y + x) + .1∗(y + x) = x. ...(5)
Subtracting (5) from (4) and using (3), we get

2. (2x) = #6x = #3 × (2x)

which gives  .2(y + x) = #3(y + x). ...(6)
From (6), .2∗(y + x) = #3. Then (5) becomes

1 13 ( ) so that (2 ) 2 (2 ), asx y x x x x y x∗ ∗# � . � , . , 5 ,

Now, ∗ , / ∗ ,. .Γ1 2 2 2 2( ) ( ) ( ) .x x x x ... (7)
Integrating  (7), .1(x) = x2 + c which gives .1(y + x) = (y + x)2 + c. ...(8)
Putting the values of .2(y + x) and .1(y + x) given by (6) and (8) in (1), we get
z =x{#3(y + x)} + (y + x)2 + c + 3x2  or   z = x2 # xy + y2 + c.

...(9)
Equating the values of z from (2) and (9), we get
xy = x2 # xy + y2 + c or           x2 = x2 # x2 + x2 + c, using (3)

giving c = 0.  Hence the required surface is z = x2 # xy + y2.
Ex. 4.  A surface is drawn satisfying r + t = 0 and touching x2 + z2 = 1 along its section by

y = 0. Obtain  its  equation  in the form x2(x2 + z2 – 1) = y2(x2 + z2). [Meerut 1998]
Sol.  Given equation (D2 + D∗2)z = 0 i.e. (D + iD)(D # iD∗)z = 0.

+ Its solution is               z =.1(y + ix) + .2(y # ix), 1 2,. .  being arbitrary functions.       ...(1)
The given surface is x2 + z2 =1 or z = (1 # x2)1/2.         ...(2)
Since (1) and (2) touch along their common section by y = 0, ...(3)

the values of p and q from (1) and (2) must be the same.

+     p = i .1∗(y + ix) # i .2∗(y # ix) = #
#

x
x( ) /1 2 1 2 and      q = .1∗(y + ix) + .2∗(y # ix) = 0.

Using (3), these reduce to

.1∗(ix) # .2∗(#ix) = ix
x i( ) /1 2 2 1 2�

and .1∗(ix) + .2∗(#ix) = 0, noting that i2 = –1

Solving these for .1∗ (ix) and .2∗ (#ix),       .∗1(ix) = ix
x i2 1 2 2 1 2( ) /�

,        .∗2 (#ix) = 2 2 1/ 22(1 )
#

�
ix

x i
.

Writing ix = X and #ix = Y, these give .1∗(X) = X
X2 1 2 1 2( ) /�

.2∗(Y) = Y
Y2 1 2 1 2( ) /�

Integrating, .1(X) = (1/2) × (1 + X2)1/2 + c1, .2(Y) = (1/2) × (1 + Y2)1/2 + c2
These give  .1(y + ix) = (1/2) × {1 + (y + ix)2}1/2 + c1,   .2(y # ix) = (1/2) × {1 + (y # ix)2}1/2 + c2.

Putting these in (1) and writing c1 + c2 = c,  z = 2 2(1/ 2) [ {1 ( ) } {1 ( ) }]5 � � � � # �y ix y ix c  ...(4)

Now equating two values of z from (2) and (4) at y = 0, we get

2 2(1/ 2) [ (1 ) (1 )]x x c5 # � # � = ( )1 2# x               so that           c = 0.
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4.34 Homogenous linear partial differential equations with constant coefficients

Then, (4) gives 2z = { ( ) } { ( ) }1 12 2� � � � #y ix y ix . Squaring its both sides gives

or                4z2 = {1 + (y + ix)2} + (1 + (y # ix)2} + 2 1 12 2[{ ( ) } { ( ) }]� � � #y ix y ix ,

or                             2z2 = ( ) [{ ( ) }{ ( ) }]1 1 12 2 2 2� # � � � � #y x y ix y ix . ...(5)
Squaring both sides of (5), we get

4z4 = ( 1 + y2 # x2)2+{1 + (y + ix)2}{1 + (y # ix)2} + 2(1 + y2 # x2) [{ ( ) }{ ( ) }]1 12 2� � � #y ix y ix
or   4z4 = (1 + y2 # x2)2 + {(1 + y2 # x2) + 2ixy}{(1 + y2 # x2) # 2ixy}

+ 2(1 + y2 # x2){2z2 # (1 + y2 # x2)}, using (5)
or   4z4 = (1 + y2 # x2)2 + (1 + y2 # x2)2 + 4x2y2 + 4z2(1 + y2 # x2) # 2(1 + y2 # x2)2

or 4z4 = 4x2y2 + 4z2(1 + y2 # x2)                     or z2(x2 + z2 # 1) = y2(x2 + z2).

Ex.5. Find a surface satisfying the equation 2 6 2D z x, �  and touching 3 3z x y, �  along its
section by the plane x + y + 1 = 0. Ans. z = x3 + y3 + (x + y + 1)2

MISCELLANEOUS PROBLEMS ON CHAPTER 4
1.  Solution of differential equation 3 2 2 3( – 6 11 – 6 ) 0D D D DD D z∗ ∗ ∗� ,  is

(a) 1 2 3( ) ( 2 ) ( – 3 )z y x y x y x, . � � . � � . (b) 1 2 3( – ) ( – 2 ) ( 3 )z y x y x y x, . � . � . �

(c) 1 2 3( – ) ( 2 ) ( 3 )z y x y x y x, . � . � � . � (d) 1 2 3( ) ( 2 ) ( 3 )z y x y x y x, . � � . � � . �
Sol.  Ans (a). Refer solved Ex. 2 (a) of Art. 4.5. [Agra 2005]
2.  P.I. of the equation r – 2s + t = cos (2x + 3y) is

(a) – cos (2x + 3y) (b) cos (2x + 3y) (c) sin (2x + 3y) (d) None of these     [Kanpur 2004]
Sol.  Ans (a). Proceed like Ex. 4, Art. 4.9.
3.  Auxialary equation of r – 2s + t = sin (2x + 3y) is

(a) 2 2 1 sin(2 3 )m m x y# � , � (b) 2 2 1 sin (2 3 )m m x y� � , �

(c) 2( 1) 0m # , (d) 2( 1) 0m � , [Bhopal 2010]
Ans. (c)

4.  Solve (D2 – DD∗ – 6D∗2)z = cos (2x + y) [Agra 2009, 10]
Ans. z = .1 (y + 3x) + .2 (y – 2x) – (1/4) × cos (2x + y)
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5
Non–homogeneous Linear Partial Differential

Equations with Constant Coefficients

5.1. Non–homogeneous linear partial differential equations with constant coefficients.
Definition. A linear partial differential equation with constant coefficients is known as non–

homogeneous linear partial differential equation with coefficients if the orders of all the partial
derivatives involved in the equation are not equal.

For example, 2 2 3 3( / ) ( / ) /z x y z x z x y! ! � ! ! # ! ! # ∃ #  is a non–homogenous partial
differential equation with constant coefficients.
5.2. Reducible and irreducible linear differential operators.

A linear differentiable operator F ( , )D D%  is known as reducible, if it can be written as the
product of linear factors of the form aD bD c%# #  with a, b and c as constants.

( , )F D D%  is known as irreducible, if it is not reducible.
For example, the operator 2 2D D%�  which can be written in the form ( )( )D D D D% %# �  is

reducible, whereas the operator 2 3D D%�  which cannot be decomposed into linear factors is
irreducible.
5.3. Reducible and irreducible linear partial differential equations with constant
coefficients. [Delhi Maths (H) 2001, 2004, 09]

A linear partial differential equation with constant coefficients ( , ) ( , )F D D z f x y% ∃  is known
as reducible, if ( , )F D D%  is reducible.

%( , )F D D z = f (x, y) is known as irreducible if ( , )F D D%  is irreducible.

For example, 2 2 2 3( )D D z x y%� ∃  is a reducible partial differential equation, with constant
coefficients, since 2 2 ( ) ( )D D D D D D% % %� ∃ # �  whereas 2 3 2 3( )D D z x y%� ∃  is an irreducible partial

differential equation with constant coefficients, since 2 3D D%�  cannot be decomposed into linear
factors.

5.4. Theorem. If the operator ( , )F D D%  is reducible, the order in which the linear factors occur
is unimportant.

Proof. In order to prove the theorem we must show that

( ) ( )r r r s s r sa D b D c a D b D c% %# # # # = ( )s s sa D b D c%# # ( )r r ra D b D c%# # ... (1)
for any reducible operator can be written in the form

1

( , ) ( )
n

r r r
r

F D D a D b D c
∃

% %∃ # #& ... (2)

The proof of (1) is immediate, since both sides are equal to
2 2( )r s s r r s r sa a D a b a b DD b b D% %# # # + ( ) ( )s r r s s r r s s rc a c a D c b c b D c c%# # # #

5.1
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5.2 Non-homogeneous linear partial differential equations with constant coefficients

5.5. Determination of complementary function (C.F.) of a reducible non–homogeneous
linear partial differential equation with constant coefficients given by

( , ) 0F D D z% ∃ ... (1)
Let F(D, D%) = (b1D – a1D% – c1)(b2D – a2D% – c2)...... (bnD – anD% – cn), ...(2)

where a’s, b’s and c’s are constants. Then (1) becomes
(b1D – a1D% – c1)(b2D – a2D% – c2)...(bnD – anD% – cn) z = 0. ...(3)

Equation (3) shows that any solution of the equation
(br D – ar D% – cr)z = 0, r = 1, 2, ... n ...(4)

is a solution of (3) i.e.    br p – ar q = crz    which is Lagrange’s equation.

Its Lagrange’s auxiliary equations are dx
br

= dy
a

dz
c zr r�

∃ .      ...(5)

Proceeding as usual two independent integrals of (5) are br y + ar x = c1

and z = c e c b xr r
2

( / ) , if br ∋ 0 or z = % �c e c a yr r
2

( / ) , if ar ∋ 0

( the general solution of (4) is z = e c b xr r( / )
)r(br y + ar x), if br ∋ 0 ...(6)

or  z = e c a yr r� ( / ) ∗r(br y  + ar x ), if ar ∋ 0, ...(7)
where )r and ∗r are arbitrary functions.

The general solution of (3) is the sum of the solutions of the equations of the form (4)
corresponding to each factor in (2).

Case of repeated factors. Let two times repeated factor of (2), be bD – aD% – c.
Consider the equation (bD – aD% – c) (bD – aD% – c)z = 0.    ...(8)
Let (bD – aD% – c)z = v . ...(9)
Then (8) reduces to    (bD – aD% – c) v = 0. ...(10)
As before, the general solution of (10) is v = e(c/b)x)(by + ax), if b ∋ 0. ...(11)

or v = e– (c/a)y∗(by + ax), a ∋ 0. ...(12)
where ) and ∗ are arbitrary functions

Substituting from (11) is (9), we have
(bD – aD% – c)z = e(c/b)x )(by + ax) or bp – aq = cz + e(c/b)x)(by + ax). ...(13)

Lagrange’s auxiliary equations of (13) are  dx
b

= dy
a

dz
cz e by axc b x�

∃
# #( / ) ( ))

. ...(14)

Taking the first two fractions of (14),   adx + bdy = 0    so that   by + ax = +, (say). ...(15)
where + is an arbitrary constant.

Taking first and third fractions of (14), we get
dz
dx

c
b

z� = 1
b

e by axc b x( / ) ( )) #   or dz
dx

c
b

z� = 1
b

e c b x( / ) ( )) + , using (15)

This is linear equation. Its I.F. = e ec b dx c b x� �z ∃( / ) ( / )  and solution is given by

ze–(c/b)x = 1
b

e e dxc b x c b x( / ) ( / )( )) + �z , that is,

ze–(c/b)x – (x/b) )( + ) = ,    or  ze–(c/b)x – (x/b) )(by + ax) = ,, by (15) ...(16)
where µ is an arbitrary constant.

From (15) and (16), the general solution of (13) or (8) is
ze–(c/b)x – (x/b))(by + ax) = )1(by + ax) or  z = e(c/b)x[)1(by + ax) + x )2(by + ax)], if b ∋ 0 ...(17)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Non-homogeneous linear partial differential equations with constant coefficients 5.3

where )1 and )2 are arbitrary functions.
Taking (12) and (9), we obtain as before.

   z = e– (c/a)y[∗1(by + ax) + y ∗2(by + ax)], if a ∋ 0. ...(18)
where ∗1 and ∗2 are arbitrary functions.

In general, if (bD – aD% – c) is repeated r times, then

z = c x by axc b x i
i

i

r
( / ) ( )�

∃
#− 1

1
) , if b = 0 or z = c y by axc a y i

i
i

r
� �

∃

#−( / ) ( )1

1

∗ , if a ∋ 0.

5.6. Working rule for finding C.F. of reducible non–homogeneous linear partial
differential equation with constant coefficients. For proofs refer Art. 5.5.

Let the given differential equation be ( , ) ( , )F D D f x y% ∃ .

Factorize ( , )F D D%  into linear factors. Then use the following results:

Rule I. Corresponding to each non–repeated factor ( )bD aD c%� � , the part of C.F. is taken

as ( / ) ( )cx be by ax) # , if 0b ∋
We now have three particular cases of Rule I
Rule IA. Take c = 0 in rule I. Hence corresponding to each linear factor ( )bD aD%� , the part

of C.F. is ( ), 0by ax b) # ∋ .
Rule IB. Take a = 0 in rule I. Hence corresponding to each linear factor (bD – c), the part of

C.F. is ( / ) ( ), 0cx be by b) ∋ .
Rule IC. Take a = c = 0 and b = 1 in rule I. Hence corresponding to linear factor D, the part

of C.F. is ( )y) .

Rule II. Corresponding to a repeated factor ( )rbD aD c%� � , the part of C.F. is taken as
( / ) 2 1

1 2 3[ ( ) ( ) ( ) ... ( )]cx b r
re by ax x by ax x by ax x by ax�) # # ) # # ) # # # ) # , if 0b ∋

We now have three particular cases of Rule II.
Rule II A. Take c = 0 in rule II. Hence corresponding to each repeated factor ( )rbD aD%� ,

the part of C.F. is        2
1 2 3( ) ( ) ( ) ...by ax x by ax x by ax) # # ) # # ) # # # 1 ( )r

rx by ax� ) # , 0b ∋ .

Rule II B. Take a = 0 in rule II. Hence corresponding to a repeated factor �( )rbD c , the part

of C.F. is ) # ) # )( / ) 2
1 2 3[ ( ) ( ) ( )cx be by x by x by  + ... + 1 ( )]r

rx by� ) , 0b ∋
Rule II C. Take a = c = 0 and b = 1 in rule II. Hence corresponding to repeated factor Dr,

the part of C.F. is    2 1
1 2 3( ) ( ) ( ) ... ( )r

ry x y x y x y�) # ) # ) # # ) .

Rule III. Corresponding to each non–repeated linear factor ( )bD aD c%� � , the part of C.F..

is taken as ( / ) ( )cy ae by ax� ) # , if 0a ∋ .
We now have three particular cases of rule III.
Rule III A. Take c = 0 in rule III. Hence corresponding to each linear factor ( )bD aD%� , the

part of C.F. is ( )by ax) # , ∋ 0a .
Rule III B. Take b = 0 in rule III. Hence corresponding to each linear factor % #( )aD c , the

part of C.F. is ( / ) ( )cy ae ax� ) , 0a∋ .

Rule III C. Take 0b c∃ ∃  and a = 1 in rule III. Hence corresponding to linear factor D% ,
the part of C.F. is ( )x)
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5.4 Non-homogeneous linear partial differential equations with constant coefficients

Rule IV. Corresponding to a repeated factor ( )rbD aD c%� � , the part of C.F. is taken as
( / ) 2

1 2 3[ ( ) ( ) ( )cy ae by ax y by ax y by ax� ) # # ) # # ) #  + ... + 1 ( )r
ry by ax� ) # ], if 0a ∋

We now have three particular cases of rule IV.

Rule IV A. Take c = 0 in rule IV. Hence corresponding to repeated factor ( )rbD aD%� , the

part of C.F. is         �) # # ) # # ) # # # ) #2 1
1 2 3( ) ( ) ( ) ... ( )r

rby ax y by ax y by ax y by ax , 0a ∋ .

Rule IV B. Take b = 0 in rule IV. Hence corresponding to a repeated factor #%( )raD c , the

part of C.F. is ( / ) 2 1
1 2 3[ ( ) ( ) ( ) ... ( )]cy a r

re ax y ax y ax y ax� �) # ) # ) # # ) , 0a ∋

Rule IV C. Take b = c = 0 and a = 1 in rule IV. Hence corresponding to repeated factor rD% ,

the part of C.F. is     2 1
1 2 3( ) ( ) ( ) ... ( )r

rx y x y x y x�) # ) # ) # # ) .

5.7. SOLVED EXAMPLES BASED ON ART. 5.6.
Ex. 1. Solve (D2 – D%2 + D – D%)z = 0.
Sol. The given equation can be re-written as          (D – D%)(D + D% + 1)z = 0.
Here R.H.S. = 0 . P.I. = 0. Hence the required solution is z = C.F.

or z = )1(y + x) + e–x)2(y – x), )1 and )2 being arbitrary functions.
Ex. 2. Solve (D2 – a2D%2 + 2abD + 2a2bD%)z = 0.
Sol. The given equation can be re–written as
[(D + aD%)(D – aD%) + 2ab(D + aD%)]z = 0 or (D + aD%)(D – aD% + 2ab)z = 0.
Hence general solution is z = C.F. = )1(y – ax) + e–2abx)2(y + ax),

where )1 and )2 are arbitrary functions.
Ex. 3. Solve r + 2s + t + 2p + 2q + z = 0.
Sol. The given equation can be re–written as

        (!2z/!x2) + 2(!2z/!x!y) + (!2z/!y2) + 2(!z/!x) + 2(!z/!y) + z = 0
or          (D2 + 2DD% + D%2 + 2D + 2D% + 1)z = 0
or       [(D + D%)2 + 2(D + D%) + 1]z = 0 or (D + D% + 1)2z = 0.

There are repeated linear factors. So the required general solution is

z = C.F. = e–x[)1(y – x) + x)2(y – x)], 1 2,) )  being arbitrary functions.

Ex. 4. Solve ( 2 3) 0.DD D D z% %� � ∃

Sol. Using rules I, IC, III C of Art. 5.6, the required solution is z = C.F., i.e.,
3

1 2 3( ) ( ) ( 2 ),xz y x e y x∃ ) # ) # ) #  where 1 2 3, and) ) )  are arbitrary functions.

Ex. 5. Solve (2D – 3) 2(3 5 7) 0D D z%� � ∃

Sol. Using rules IB and II of Art. 5.6, the required solution is z = C.F., i.e.,

/ 03 / 2 7 /3
1 2 3(2 ) (3 5 ) (3 5 )x xz e y e y x x y x∃ ) # ) # # ) # , 1 2 3, ,) ) )  being arbitrary functions.

Ex. 6. Solve (3 5) (7 2) (2 3 5) 0D D DD D D z% % %� # # # ∃

Sol. Using rules IB, IIIB, IC, IIIC and I, the required solution is z = C.F. i.e.,

z 5 / 3 (2 / 7) (5 / 2)
1 2 3 4 5(3 ) (7 ) ( ) ( ) (2 3 )x y xe y e x y x e y x� �∃ ) # ) # ) # ) # ) �
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Non-homogeneous linear partial differential equations with constant coefficients 5.5

Ex. 7. Solve the partial differential equation t + s + q = 0.

Sol.Re-writing the given equation, 2 2 2/ / / 0z x z x y z y! ! # ! ! ! # ! ! ∃

or 2( ) 0D DD D z% %# # ∃ or        ( 1) 0,D D D% %# # ∃

whose general solution is                 1 2 1 2( ) ( ), ,xz x e y x�∃ ) # ) � ) )  being arbitrary functions.

EXERCISE 5(A)
Solve the following partial differential equations :

1. ( 1) ( 2 2) 0D D D D z% %# � # � ∃ Ans. 2
1 2( ) ( 2 )x xz e y x e y x∃ ) � # ) �

2. ( 1) ( 2 3) 0D D D D z% %� # # � ∃ Ans. 2
1 2( ) ( 3 )x xz e y x e y x�∃ ) # # ) �

3. ( ) 0DD aD bD ab z% %# # # ∃ Ans. 1 2( ) ( )bx ayz e y e x� �∃ ) # )

4. r + 2s + t + 2p + 2q + z = 0 Ans. / 01 2( ) ( )xz e y x x y x�∃ ) � # ) �

5. ( 1) ( 1) 0D D D z%# # � ∃ Ans. 1 2( ) ( )x xz e y e y x�∃ ) # ) �

6. 2 2( ) 0D D D D z% %� # � ∃ Ans. 1 2( ) ( )xz y x e y x�∃ ) # # ) �

7. 2 2 2 2 2/ / 6( / ) 0z x z x y z y! ! # ! ! ! � ! ! ∃ Ans. 1 2( 2 ) ( 3 )z y x y x∃ ) # # ) �

8. 2 2( 2 2 2 ) 0D DD D D D z% % %� � # # ∃ Ans. 2
1 2( ) ( 2 )xz y x e y x�∃ ) � # ) #

9. s + p – q – z = 0 Ans. 1 2( ) ( )x yz e y e x�∃ ) # )

10. 2( 1) 0D DD D z% %� # � ∃ Ans. 1 2( ) ( )x xz e y e y x�∃ ) # ) #

11. 2( 1) 0D DD D z% %# # � ∃ Ans. 1 2( ) ( )x xz e y e y x�∃ ) # ) �

5.8. Method of finding C.F. of irreducible linear partial differential equation with
constant coefficients, namely, ( , ) ( , )F D D z f x y% ∃   ... (1)

When the operator ( , )F D D%  in (1) is irreducible, it is not always possible to find a solution
with the full number of arbitrary functions, but it is possible to construct solutions which contain as
many arbitrary constants as we wish. We now state and prove a theorem which will be used to find
C.F. of (1).

Theorem. To show that    ( , ) ( , )ax by ax byF D D e F a b e# #% ∃

Proof. We know that ( , )F D D%  consists of terms of the form Crs Dr D%s.

Also ( )r ax by r ax byD e a e# #∃ and                    D%s ( ax bye # ) = s ax byb e #

so that                 ( ) ( )r s ax by r s
rs rsC D D e C a b#% ∃ ax bye #

The theorem follows by combining the terms of the operator ( , ).F D D%

We now discuss method of finding C.F. of (1). Consider ( , ) 0F D D z% ∃ ... (2)

From the above theorem we see that hx kye #  is a solution of (2) provided ( , ) 0F h k ∃ , so that

i ih x k y
i

i

z A e #∃ − ... (3)

in which Ai, hi, ki are all constants, is also a solution provided that hi, ki are connected by the
relation         ( , ) 0i iF h k ∃             ... (4)
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5.6 Non-homogeneous linear partial differential equations with constant coefficients

Thus we can construct solution of (2) containing as many arbitrary constants as we need. The
series (3) may not be finite but if it is infinite, it is necessary that it should be uniformly convergent
if it has to be a solution of (2).

Remark. We can also present C.F. of irreducible equation (1) in the following manner

. . hx kyC F Ae #∃ 1

where A, h, k are orbitrary constants such that ( , ) 0F h k ∃

Working rule for finding C.F. of irreducible non–homogeneous linear partial differential
equation with constant coefficients, namely,   ( , ) 0F D D z% ∃

Step 1. If necessary, factorize ( , )F D D%  in the form 1 2( , ) ( , ),F D D F D D% %  where 1( , )F D D%
consist of a product of linear factors in ,D D%  and 2 ( , )F D D%  consists of a product of irreducible
factors in , .D D%

Step 2. Using Art. 5.6, write down the part of C.F. corresponding to factors of 1( , ).F D D%

Step 3. Using Art 5.8, write down the part of C.F. corresponding to factors of 2 ( , ).F D D%

Step 4. Adding the C.F. corresponding to 1( , )F D D%  obtained in step 2 and the C.F..

corresponding to 2 ( , )F D D%  obtained in step 3, we obtain the C.F. of the given equation

( , ) 0,F D D z% ∃ i.e.,           1 2( , ) ( , ) 0.F D D F D D z% % ∃

5.9 SOLVED EXAMPLES BASED ON ART. 5.8
Ex. 1. Solve (D – D%2)z = 0.
Sol. Here D – D%2 is not a linear factor in D and D%. Let z = Aehx + ky be a trial solution of the

given equation. Then Dz = Ahehx + ky and       D%2z = Ak2ehx + ky.
Putting these values in the given differential equation, we get
A(h – k2)ehx + ky = 0 so that   h – k2 = 0   or    h = k2.
Replacing h by k2, the most general solution of the given equation is

z =
2

,k x kyAe #1  where A and k are arbitrary constants.
Ex. 2. Solve (D – 2D% – 1)(D – 2D%2 – 1)z = 0.
Sol. (D – 2D% – 1) being linear in D and D%, the part of C.F. corresponding to it is ex)(y + 2x),

where ) is an arbitrary function.
To find C.F. corresponding non–linear factor D – 2D%2 – 1, we now proceed as follows :
Let a trial solution of             (D – 2D%2 – 1)z = 0 ...(1)

be z = Aehx + ky ...(2)
( Dz = Ahehx + ky and D%2z = Ak2ehx + ky. Hence (1) becomes

A(h – 2k2 – 1)ehx + ky = 0 or h – 2k2 – 1 = 0 or h = 2k2 + 1.
Replacing h by 2k2 + 1 in (2), the solution of (1) i.e. the part of C.F. corresponding to

(D – 2D%2 – 1) in the given equation is given by
2(2 1) ,k x kyAe # #1 A and k being arbitrary constants.

(The required solution is z = ex)(y + 2x) + 
2(2 1)k x kyAe # #1 .

Ex. 3. Solve (!2z/!x2) + (!2z/!y2) = n2z.
Sol. The given equation can be written as      (D2 + D%2 – n2)z = 0. ...(1)
Let a trial solution of (1) be z = Aehx + ky. ...(2)
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Non-homogeneous linear partial differential equations with constant coefficients 5.7

( D2z = Ah2ehx + ky and D%2z = Ak2ehx + ky. Hence (1) gives
A(h2 + k2 – n2)ehx + ky = 0 or   h2 + k2 = n2.   ...(3)
Taking 2 as parameter, we see that (2) is satisfied if h = n cos 2  and k = n sin 2.
Putting these values in (2), the required general solution is

          z = 1 Aen(x cos 2 + y sin 2), A and 2 being arbitrary constants.

Ex. 4. Solve 4 2 2(2 3 ) 0D D D D z% %� # ∃

Sol. Re–writing the given equation, we have            2 2(2 ) ( ) 0D D D D z% %� � ∃ ... (1)

Let z = A ehx + ky be a solution of             2(2 ) 0D D z%� ∃

( 2(2 ) 0hx kyh k Ae #� ∃     so that     2h2 – k = 0    or     k = 2h2

Hence C.F. corresponding to 2(2 )D D%�  is 22hx h yAe #1 ... (2)

Again, let h x k yz A e % %#%∃  be a solution of 2( ) 0D D z%� ∃

( 2( ) 0h x k yh k A e % %#% % %� ∃ so that 2 0h k% %� ∃    or 2.k h% %∃

Hence, C.F. corresponding to 2( )D D%�  is   2h x h yA e % %#%1 ... (3)

From (2) and (3), the general solution of (1) is given by     z = Total C.F., i.e.,
2 22 ,# #% %∃ # %− −i i i ih x h y h x h y

i i
i i

z A e A e  where , , andi i i iA h A h% %  are arbitrary constants.

Ex. 5. Solve 2( 2 3) ( ) 0D D D D z% %# � # ∃

Sol. C.F. corresponding to linear factor ( 2 3)D D%# �  is 3 ( 2 ).) �xe y x

We now find C.F. corresponding to irreducible factor 2( ).D D%#

Let z = Aehx + ky be a solution of 2( ) 0.D D z%# ∃

( 2( ) 0hx kyh k Ae ## ∃ so that h2 + k = 0 or k = – h2.

Hence C.F. corresponding to 2( )D D%#  is 2
.hx h yAe �1

Therefore, the general solution of given equation is
23 ( 2 ) �∃ ) � # − i ih x h yx

i
i

z e y x A e ,

where )  is an arbitrary function and Ai, hi are arbitrary constants.

Ex. 6. Solve 2( ) 0D D z%� ∃ . [Delhi Maths (H) 2009]

Sol. Given equation is        ( , ) 0,∃%F D D z  where 2( , ) .∃ �% %F D D D D
Let z = ehx+ky be a trial solution of the given equation. Then, the required solution is

i ih x k y
i

i

z A e #∃ − , where 2( , ) 0i i i iF h k h k∃ � ∃ so that 2
i ik h∃

Hence the required solution is 
2

i ih x h y
i

i

z A e #∃ − , Ai, hi  being arbitrary constants.
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5.8 Non-homogeneous linear partial differential equations with constant coefficients

Ex. 7. Show that ! ! ∃ 3 ! !2 2/ (1/ ) ( / )z x k z t  possesses solutions of the form

2

0

cos( ) kn t
n n

n

C nx e
4

�

∃

# 5− .

Sol. Re–writing giving equation, we get � 3 ∃%2{ (1/ ) } 0D k D z , ... (1)

where /D x∃ ! ! , /D t% ∃ ! ! . Note that here we have t in place of usual independent variable y.

Let z = ax bte #  be a trial solution of (1). Then, 2 (1/ ) 0a k b� ∃  so that ∃2 /a b k . This relation is

satisfied if we take a in∃ 6  and 2b kn∃ � . Then solution of (1) will be of the form

2

0

inx kn t
n

n

z C e
4

6 �

∃

∃ − , which can be re-written as         
2

0

cos( ) kn t
n n

n

z C nx e
4

�

∃

∃ # 5−
Ex. 8. Write the form of solution possessed by the equation ! ! # ! !2 2/ 2 ( / )y t k y t

∃ ! !2 2 2( / )c y x   [Delhi B.Sc (H) 2002]

Another form. Show that the equation 2 2/ 2 ( / )y t k y t! ! # ! ! 2 2 2( / )c y x∃ ! !  possesses

solutions of the form      
0

cos ( )cos ( )kt
r r r r r

r

C e w t x
4

�

∃

# 7 2 # 5− ,

where Cr, 2r ,r r7 5  are constants and 2 2 2 2
r rw c k∃ 2 � .

Sol. Re–writing the given equation, we get           2 2 2( 2 ) 0D k D c D y% %# � ∃ ... (1)

where /D t% 8 ! ! , /D x8 ! ! . Here t is independent variable and y is dependent variable.

Let  z = eax + bt be a solution of (1) Then, 2 2 22 0b kb c a# � ∃

so that        2 2 2 1/ 2{ 2 (4 4 )} / 2b k k c a∃ � 6 # ∃ � 6 � 22 2 2 1/ 2( )rk k c ,            where              ∃ �22 2
ra

or          rb k iw∃ � 6 ,           where             2 2 2 2
r rw c k∃ 2 � ... (2)

Hence the solution of (1) takes the form

( ) ( )

0 0

r r r ri x k iw t k iw t i x
r r

r r

y C e C e e
4 4

6 2 # � 6 � 6 6 2

∃ ∃

∃ ∃− −

which can also be re–written as               
0

cos( )cos ( )kt
r r r r r

r

y C e w t x
4

�

∃

∃ # 7 2 # 5− ,

where , , ,r r r rC 2 7 5  are constants. Also, by (2), 2 2 2 2.r rc k9 ∃ 2 �

EXERCISE 5(B)
Solve the following partial differential equations:

1. 2( ) 0D D D z%# # ∃ Ans.
2( ) ,i i ih h h y

i
i

z A e � #∃ − where Ai and hi are arbitrary constants.

2. 2 2(2 ) 0D D D z%� # ∃

Ans. ,i ih x k y
i

i

z A e #∃ −  where 2 22 0;i i ih k h� # ∃ Ai, hi, ki being arbitrary constants.

3. 2 2( 3 ) ( 5 ) 0D D D D D z% %# # # ∃ Ans. 1 2(3 ) (3 )z y x x y x∃ ) � # ) �

+
2( 5 ) ,i i ih x h h y

i
i

A e � #−  where 1 2,) )  are arbitrary functions and Ai, hi are arbitrary constants.
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Non-homogeneous linear partial differential equations with constant coefficients 5.9

4. 2 2(2 3 7) ( 3 ) 0.D D D D z% %� # # ∃ Ans. (7 / 2)
1 2{ (2 3 ) (2 )}xz e y x x y x�∃ ) # # ) #

2( ) /3
1 2, where ,i ih x h y

i
i

A e �# ) )− are arbitrary functions and Ai, hi are arbitrary constants.

5.10. General solution of non–homogeneous linear partial differential equation with
constant coefficients.

Let ( , ) ( , )F D D z f x y% ∃ ... (1)
be a non-homogeneous linear partial differential equation with constant coefficients. Let u be the
C.F. of (1). Then, by definition u in a solution of ( , ) 0F D D z% ∃  so that

( , ) 0F D D u% ∃ ... (2)

Let z%  be a particular integral (P.I.) of (1). Hence

( , ) ( , )F D D z f x y% % ∃ ... (3)

Now,       ( , ) ( ) ( , ) ( , ) ( , ),F D D u z F D D u F D D z f x y% % % % %# ∃ # ∃  by (2) and (3),

Thus u z%#  is a solution of (1). Hence, a solution of (1) is    z = C.F. + P.I.
5.11. Particular integral of non–homogeneous linear partial differential equation

%( , ) = ( , )F D D y f x y ... (1)

The inverse operator 1/ ( , )F D D%  of the operator ( , )F D D%  is defined by the following  indentity:

1
( , ) ( , ) ( , )

( , )
F D D f x y f x y

F D D
: ;% ∃< =%> ?

. Particular integral (P.I.) 
1

( , )
( , )

f x y
F D D

∃
%

5.12. Determination particular integral of non–homogeneous linear partial differential
equations (reducible or irreducible), namely,

F(D, D%)z = f(x, y). ...(1)
The methods of finding particular integrals of non–homogeneous partial differential equations

are very similar to those of ordinary linear differential equation with constant coefficients. We now
give a list of some cases of finding P.I. of (1).

Case I. When f(x, y) = eax + by and F(a, b) ∋ 0.

Then, P.I. = 1 1
F D D

e
F a b

eax by ax by

( , ) ( , )% ∃# # .

Thus in this case we replace D by a and D % by b.
Case II. When f(x, y) = sin (ax + by) or cos (ax + by).

Then, P.I. = 1
F D D

ax by
( , )

sin ( )% # or 1
P.I. cos ( )

( , )
ax by

F D D
∃ #

%

which is evaluated by putting D2 = –a2, D%2 = –b2, DD% = –ab, provided the denominator is non–zero.
Case III. When f(x, y) = xmyn

Then, P.I. = 1 1

F D D
x y F D D x ym n m n

( , )
[ ( , )]% ∃ % � ,

which is evaluated by expanding [F(D, D%)]–1 in ascending powers of D%/D or D/D% or D or D% as
the case may be. In practice, we shall expand in ascending powers of D%/D. However note that if
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5.10 Non-homogeneous linear partial differential equations with constant coefficients

we expand in ascending powers of D/D%, we shall get a P.I. of apparently different form. In this
connection remember that both forms of P.I. are correct because the two could be transformed into
each other with the help of C.F. of the given equation.

Case IV. When f(x, y) = Veax + by, when V is a function of x and y.

Then P.I. = 1 1
F D D

Ve e
F D a D b

eax by ax by ax by

( , ) ( , )% ∃
# % #

# # #

Remark. If F(a, b) = 0 and f(x, y) = eax + by. Then, we have

  P.I. = 1
F D D

eax by

( , )%
# ,

in which case I fails. However, by treating eax + by as product of eax + by with ‘1’ and applying the
result of case IV, we can evaluate P.I. as follows :

P.I. = 1 1
1 1

( , ) ( , )
ax by ax bye e

F D D F D a D b
# #≅ ∃ ≅

# #% %
,

which can be evaluated as explained in case III by treating 1 = x0y0.
5.13 SOLVED EXAMPLES BASED ON ARTICLES 5.6, 5.8, AND 5.12.

Type 1 : Examples based on case I of Art. 5.12.
Ex. 1. Solve (DD% + aD + bD% + ab)z = emx + ny.
Sol. The given equation can be re–written as (D + b)(D% + a)z = emx + ny

( C.F. = e–bx)1(y) + e–ay)2(x), )1, )2 being arbitrary functions.

and P.I. = 1 1
( )( ) ( )( )D b D a

e
m b n a

emx xy mx ny

# % #
∃

# #
# # .

Hence the required general solution is z = e–bx)1(y) + e–ay)2(x) + [(m + b)(n + a)]–1emx + ny.
Ex. 2. Solve (D2 – D%2 + D – D%)z = e2x + 3y. [Ravishankar 2005]
Sol. The given equation can be re–written as
[(D – D%)(D + D%) + (D – D%)]z = e2x + 3y or     (D – D%)(D + D% + 1)z = e2x + 3y.

( C.F. = )1(y + x) + e–x)2(y – x), )1, )2 being arbitrary functions.

and P.I. = 1
1

1
2 3 2 3 1

1
6

2 3 2 3 2 3
( )( ) ( )( )D D D D

e e ex y x y x y

� % # % #
∃

� # #
∃ �# # #

Hence the required general solution is z. z = )1(y + x) + e–x)2(y – x) – (1/6) × e2x + 3y.
Ex. 3. Solve (D – D% – 1)(D – D% – 2)z = e2x – y.
Sol. Try yourself. Ans. z = ex)1(y + x) + e2x)2(y + x) + (1/2) × e2x – y

Ex. 4. Solve (a) (D2 – 4DD% + D – 1)z = e3x – 2y.
(b) (D3 – 3DD% + D + 1)z = e2x + 3y. [Kanpur 2006]
Sol. (a) Here (D2 – 4DD% + D – 1) cannot be resolved into linear factors in D and D%. Hence

for finding C.F., consider the equation (D2 – 4DD% + D – 1)z = 0.    ...(1)
Let a trial solution of (1) be          z = Aehx + ky. ...(2)
( D2z = Ah2ehx + ky,     DD% = Ahkehx + ky,      Dz = Ahehx + ky and so (1) gives

A(h2 – 4hk + h – 1)ehx + ky = 0 so that      h2 – 4hk + h – 1 = 0
giving    k = (h2 + h – 1)/4h. ...(3)

( C.F. = 1 Aehx + ky, when k is given by (3).

Again, P.I. = 3 2 3 2 3 2
2 2

1 1 1
354 1 3 4 3 ( 2) 3 1

x y x y x ye e e
D DD D

� � �∃ ∃
� # � � 3 3 � # �%
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Non-homogeneous linear partial differential equations with constant coefficients 5.11

Hence the required general solution is   z = C.F. + P.I. i.e. z = 1 Aehx + ky + (1/35)× e3x – 2y,
where A, h and k are constants and k and h are related by (3).

(b) Proceed as in part (a).       Ans. z = 1 Aehx + ky – (1/7) × e2x + 3y,
where A, h, k are arbitrary constants and k is given by k = (h3 + h + 1)/3h

Ex. 5. Solve 2 2 2 2( / ) ( / ) x zy x y z y e #! ! � ! ! ∃ # .

Sol. Re–writing, 2 2( 1) x zD D y e #%� � ∃ , where / , /D x D z%8 ! ! 8 ! ! .

C.F. = hx kzA e #− , where 2 2 1 0h k� � ∃ ... (1)

P.I. =
2 2

1 1
1 1 11

x z x z x ze e e
D D

# # #∃ ∃ �
� �%� �

(  The required solution is hx ky x zz A e e# #∃ 1 � , where A, h and k are arbitrary constants and
h and k are connected by relation (1).

EXERCISE 5(C)
Solve the following partial differential equations:

1. 2 2( 2 ) .x yD DD D z e #%� � ∃ Ans. 2 2
1 2( ) ( ) (1/ 2)x x yz y e y x e #∃ ) # ) # � 3

2. 2 2 2 3( 2 2 2 ) .x yD DD D D D z e #% % %� � # # ∃

Ans. 2 2 3
1 2( ) ( 2 ) (1/10)x x yz y x e y x e� #∃ ) � # ) # � 3

3. 2 2( 3 2) .x yD D D D z e �% %� # # � ∃  Ans. 2
1 2( ) ( ) (1/ 4)x x x yz e y x e y x e� �∃ ) # # ) � � 3

4. 2 4( 4) .x yD D z e �%# # ∃

 Ans.
2
1( 4) 4(1/19)ia x a y x y

i
i

z A e e� # �∃ 1 # 3 , where Ai and ai are arbitrary constants.

5. 2 2 2( – – 3 ) x yD D D z e #∃% %  (Purvanchal 2007)

   Ans. 
2 ½( 3 ) 2– (1/ 9)k k x ky x yz Ae e# # #∃ 1 3

Type 2 : Examples based on case II of Art. 5.12.
Ex. 1. Solve (D2 + DD% + D% – 1)z = sin (x + 2y).

[Bilaspur 2003; Bhopal 1998; Jiwaji 1997; Ravishankar 2004]
Sol. The given equation can be re–written as (D + 1)(D + D% – 1)z = sin (x + 2y).

( C.F. = e–x)1(y) + ex)2(y – x), )1, )2 being arbitrary functions

and   P.I. = 2 2
1 1

sin ( 2 ) sin ( 2 )
1 1 – (1 2) 1

x y x y
D DD D D

# ∃ #
# # � � ≅ # �% % %

= 2
1 1

sin ( 2 ) ( 4) sin ( 2 )
4 16

x y D x y
D D

%# ∃ # #
% � % �

=
2
1

( 4) sin ( 2 )
2 16

D x y# #%
� �

 = (1/ 20) ( 4) sin ( 2 )D x y%� 3 # # = – (1/20) × [D% sin (x + 2y) + 4 sin (x + 2y)]
 = – (1/20) × [2 cos (x + 2y) + 4 sin (x + 2y)].

( Solution is   z = e–x)1(y) + ex)2(y – x) – (1/10) × [cos (x + 2y) + 2 sin (x + 2y)].

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



5.12 Non-homogeneous linear partial differential equations with constant coefficients

Ex. 2. Solve (!2z/!x2) – (!z/!x!y) + (!z/!y) – z = cos (x + 2y).
[Delhi Maths (H) 2001; M.D.U Rohtak 2004]

Sol. The given equation can be re–written as
(D2 – DD% + D% – 1)z = cos (x + 2y) or (D – 1)(D – D% + 1)z = cos (x + 2y).

( C.F. = ex)1(y) + e–x)2(y + x), )1, )2 being arbitrary functions.

P.I. = 2 2
1 1

cos ( 2 ) cos ( 2 )
1 1 (1 2) 1

x y x y
D DD D D

# ∃ #
� # � � # ≅ # �% % %

1
cos( 2 )x y

D
∃ #

%

= (1/2) × sin (x + 2y), as 1/D% stands for integration w.r.t. y keeping x as constant
Hence the required solution is z = ex)1(y) + e–x)2(y + x) + (1/2) × sin (x + 2y).
Ex. 3. Solve 2(!2z/!x2) + (!2z/!y2) – 3(!z/!y) = 5 cos (3x – 2y).

Ans.  z = )1(x) + e3x/2)2(2y – x) + (1/10) × [4 cos (3x – 2y) + 3 sin (3x – 2y)].
Ex. 4. Solve (D – D% – 1)(D – D% – 2)z = sin (2x + 3y). [KU Kurukshetra 2005]
Sol. Here C.F. = ex)1(y + x) + e2x)2(y + x), )1, )2 being arbitrary functions.

and   P.I. = 1
1 2

2 3
( )( )

sin ( )
D D D D

x y
� % � � % �

# = 1
2 3 3 2

2 32 2D DD D D D
x y

� % # % � # % #
#sin ( )

 = 2 2
1

sin (2 3 )
2 2 (2 3) 3 3 3 2

x y
D D

#
� # 3 3 � � # #%

 = 2
1 1sin (2 3 ) sin (2 3 )

3 3 1 3 3
x y D x y

D D D DD D
# ∃ #

%� # # %� # #

 = D 2
1 1

sin (2 3 ) sin (2 3 )
63 ( 2 ) 3 (2 3)

x y D x y
DD

# ∃ #
�� 3 � # 3 3 #

 = 2
2 2
1 1( 6) sin(2 3 ) ( 6 ) sin(3 2 )

36 2 36
D D x y D D x y

D
# # ∃ # #

� � �
= –(1/40) × [D2 sin (2x + 3y) + 6D sin (2x + 3y)] = –(1/40) × [–4 sin (2x + 3y) + 12 cos (2x + 3y)]

( Solution is  z = ex)1(y + x) + e2x)2(y + x) + (1/10) × [sin (2x + 3y) – 3 cos (2x + 3y)].
Ex. 5. Solve (a) (D – D%2)z = cos (x – 3y)   [Delhi Maths (Hons.) 1998, 2007, 2009, 2011]
(b) (D2 – D%)z = cos (3x – y).
Sol. (a) Here (D – D%2) cannot be resolved into linear factors in D and D%. Hence in order to

find C.F. of the given equation, consider the equation
(D – D%2)z = 0. ...(1)

Let a trial solution of (1) be z = Aehx + ky. ...(2)
( Dz = Ahehx + ky               and            D%2z = Ak2ehx + ky. Then (1) gives

A(h – k2)ehx + ky = 0 so that h – k2 = 0 or h = k2.

( C.F. ( ) ,k kx yAe #∃ 1 where A, k are arbitrary constants.

Now, P.I. = 1
3

1
3

32 2D D
x y

D
x y

� %
� ∃

� �
�cos ( )

( )
cos ( )

      = 2
1 1

( 9) cos ( 3 ) ( 9) cos ( 3 )
( 9)( 9) 81

D x y D x y
D D D

� � ∃ � �
# � �

= 
2

( 9) cos ( 3 )
1 81
D

x y
�

�
� �

= (1/ 82) [ cos ( 3 ) 9 cos ( 3 )]D x y x y� 3 � � � = –(1/82) × [–sin (x – 3y) – 9 cos (x – 3y)].

(  General solution is     z = 1 Aek(kx + y) + (1/82) × [sin (x – 3y) + 9 cos (x – 3y)]
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(b) Ans. z = 1 Aeh(x + hy) – (1/82) × [ 9 cos (3x – y) – sin (3x – y)], where A and h are arbitrary
constants.

Ex. 5. (c) Solve (D2 – D%)z = A cos (lx + my), where A, l, m are constants.

Sol. Proceed as in Ex. 5(a). Ans. z = 1 A%ehx h y# 2
 – {A/(m2 + l4)} × {m sin (lx + my)

+  l2 cos (lx + my)}, where A% and h are arbitrary constants.
Ex. 6. Solve (D2 – DD% – 2D)z = sin (3x + 4y). [Delhi Maths (Hons.) 1997]
Sol. The given equation can be re–written as                D(D – D% – 2)z = sin (3x + 4y).

( C.F. = )1(y) + e2x)2(y + x), )1, )2 being arbitrary functions.

and   P.I. = 2 2
1 1

sin (3 4 ) sin (3 4 )
2 3 (3 4) 2

x y x y
D DD D D

# ∃ #
� � � # 3 �%

1
sin (3 4 )

3 2
x y

D
∃ #

�

2
1

(3 2 )
9 – 4

D
D

∃ # 2
3 2 sin (3 4 )
9 4

D
x y

D
#

∃ #
�

= 3 2
9 4 3

3 4 1
45

3 3 4 2 3 42
#

� �
# ∃ # # #D x y x y D x y

( )
sin ( ) [ sin ( ) sin ( )]

 = (1/45) × [3 sin (3x + 4y) + 6 cos (3x + 4y)] = (1/15) × [sin (3x + 4y) + 2 cos (3x + 4y)].
(  Solution is z = )1(y) + e2x)2(y + x) + (1/15) × [sin (3x + 4y) + 2 cos (3x + 4y)]

Ex. 7. Solve 2(3 2 ) sin (2 3 )DD D D z x y% % %� � ∃ # . [Delhi Maths (H) 2001]

Sol. Re–writing, given equation becomes (3 2 1) sin(2 3 )D D D z x y% %� � ∃ #

( C.F. = / 3
1 2 1 2( ) (2 3 ), ,xx e x y) # ) # ) )  are arbitrary functions

P.I. = # ∃
� � 3 3 � 3 � �% % % %2 2

1 1
sin(2 3 )

3 2 –3 (2 3) 2 ( 3 )
x y

DD D D D
 sin(2x + 3y)

 = %� # ∃ 3 #(1/ ) sin (2 3 ) (1/ 3) cos(2 3 )D x y x y

(  General solution is ∃ ) # ) # # 3 #/ 3
1 2( ) (2 3 ) (1/ 3) cos(2 3 )xz x e x y x y .

Ex. 8. ( ) ( 2) sin( 2 )D D D D z x y% %# # � ∃ # [Delhi Maths (H) 2000]

Sol. Here C.F. = 2
1 2( ) ( )xy x e y x) � # ) � , 1 2,) )  being arbitrary function

       P.I.  = 1
sin( 2 )

( ) ( 2)
x y

D D D D
#

% %# # � 2 2

1
sin( 2 )

2 2 2
x y

D DD D D D
∃ #

% % %# # � �

 = #
� 3 3 � � � %2 2

1
sin( 2 )

1 – 2 (1 2) 2 2 2
x y

D D

∃ # ∃ � � # ≅ #%
# # % � # % 2

1 1
– sin( 2 ) {9 2 ( )} sin( 2 )

9 2( ) 81 4 ( )
x y D D x y

D D D D

 = 2 2

(9 2 2 )
sin ( 2 )

81 4 4 8

D D
x y

D D DD

%� � �
#

% %� � �
= � � %

� #
� � � � # 3 32 2

9 2 2
sin( 2 )

81 4( 1 ) 4( 2 ) 8 (1 2)

D D
x y

= (1/117)× � # # # # #{ 9sin ( 2 ) 2cos ( 2 ) 4cos ( 2 )}x y x y x y  = 3 # � #(3/117) {2cos ( 2 ) 3sin ( 2 )}x y x y

(  Solution is   ∃ ) � # ) � # 3 # � #2
1 2( ) ( ) (3/117) {2cos( 2 ) 3sin( 2 )}xz y x e y x x y x y
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5.14 Non-homogeneous linear partial differential equations with constant coefficients

Ex. 9. Solve 2 2( 2 2 2 ) sin(2 )D DD D D D z x y% % %� � # # ∃ #

Sol. Re–writing the given equation, we get ( ) ( 2 2) sin (2 )D D D D z x y% %# � # ∃ # .

( C.F. = 2
1 2( ) ( 2 )xy x e y x�) � # ) # , 1 2and) )  being arbitrary functions.

   P.I. = 
2 2

1
sin (2 )

2 2 2
x y

D DD D D D
#

% % %� � # #
= #

� # 3 � 3 � # # %2 2

1
sin (2 )

2 (2 1) 2 ( 1 ) 2 2
x y

D D

∃ #
%#

1
sin(2 )

2( )
x y

D D
=

2 2 2 2

1 1
sin(2 ) sin(2 )

2 2 2 ( 1 )

D D D D
x y x y

D D

% %� �
# ∃ #

%� � � �

= %� 3 � # ∃ � 3 # � #(1/ 6) ( )sin (2 ) (1/ 6) {2cos (2 ) cos (2 )}D D x y x y x y

(  General solution is �∃ ) � # ) # � 3 #2
1 2( ) ( 2 ) (1/ 6) cos(2 )xz y x e y x x y

EXERCISE 5 (D)
Solve the following partial differential equations:

1. 2(2 3 ) 3cos(3 2 ).DD D D z x y% % %# � ∃ � [MDU Rohtak 2005]

Ans. / 03 / 2
1 2( ) (2 ) (3 / 50) 4cos(3 2 ) 3sin(3 2 )xz x e y x x y x y∃ ) # ) � # 3 � # �

2. 2 2( ) ( ) sin(2 )D D D D D z x y% %# � � ∃ #     Ans.
2 2( )i i i i ia x a y b b x b y

i i
i i

z A e B e� # #∃ #− −

/ 0(1/ 34) 5sin (2 ) 3cos (2 ) ,x y x y� 3 # � #  which Ai, ai, Bi, bi are arbitrary constants
Type 3. Examples based on case III of Art. 5.12.

Ex. 1. Solve s + p – q = z + xy. [Delhi Maths (Hons.) 1995, I.A.S. 1991]
Sol. The given equation can be rewritten as        (!2z/!x!y) + (!z/!x) – (!z/!y) – z = xy

or (DD% + D – D% – 1)z = xy or              (D – 1)(D% + 1)z = xy.   ...(1)

( C.F. = ex ) 1(y) + e–y ) 2(x), ) 1 and ) 2 being arbitrary functions

      P.I.  = 1
1 1

1
1 1( )( ) ( )( )D D

xy
D D

xy
� % #

∃ �
� # % = – (1 – D)–1(1 + D%)–1xy

            =  – (1 + D + ...)(1 – D% + ...)xy = – (1 + D – D% – DD% + ...)xy = –xy – y + x + 1.

( The required solution is   z = ex ) 1(y) + e–y ) 2(x) – xy – y + x + 1.
Ex. 2. Solve (a) r – s + 2q – z = x2y2. [I.A.S. 1993]

   (b) (D2 – D% – 1)z = x2y.
Sol. (a) The given equation can be re–written as

(!2z/!x2) – (!2z/!x!y) + 2(!z/!y) – z = x2y2    or       (D2 – DD% + 2D% – 1)z = x2y2. ...(1)
Since (D2 – DD% + 2D% – 1) cannot be resolved into linear factors in D and D%, hence C.F. of

(1) is obtained by considering the equation      (D2 – DD% + 2D% – 1)z = 0.    ...(2)
Let a trial solution of (2) be           z = Aehx + ky ...(3)

( D2z = Ah2ehx + ky, DD%z = Ahkehx + ky, D%z = Akehx + ky . Then (2) gives
A(h2 – hk + 2k – 1)ehx + ky = 0              or h2 – hk + 2k – 1 = 0

so that k = (1 – h2)/(2 – h). ...(4)
(    C.F. = 1Aehx + ky, where A, h, k are arbitrary constants; h, k being related by (4).
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Non-homogeneous linear partial differential equations with constant coefficients 5.15

P.I. = 1
2 1

1
1 22

2 2
2

2 2

D DD D
x y

D DD D
x y

� % # % �
∃ �

� � % # %( )
= –[1 – (D2 – DD% + 2D%)]–1x2y2

= –[1 + (D2 – DD% + 2D%) + (D2 – DD% + 2D%)2 + {D2 + D%(2 – D)}3 + ...]x2y2

= –[1 + (D2 – DD% + 2D%) + (D2D%2 + 4D%2 + 4D2D% – 4DD%2 + ...) + 3D2D%2(2 – D)2 + ...]x2y2

= –(1 + D2 – DD% + 2D% + D2D%2 + 4D%2 + 4D2D% – 4DD%2 + 12D2D%2 + ...)x2y2

= –x2y2 – 2y2 + 4xy – 4x2y – 8x2 – 16x – 16y – 52.

(  Solution is   z = 1 Aehx + ky – x2y2 – 2y2 + 4xy – 4x2y – 8x2 – 16x – 16y – 52.

(b) Ans. z =1Aehx h y# �( )2 1  + x2 – x2y – 2y + 4, A and h being arbitrary constants.
Ex. 3. Solve (a) (D2 – D%)z = 2y – x2. [Delhi Maths (H.) 2004, 10; Agra 2005]
(b) (2D2 – D%2 + D)z = x2 – y.
Sol. (a) Here D2 – D% cannot be resolved into linear factors in D and D%. Hence to find C.F., we

consider the equation      (D2 – D%)z = 0.   ...(1)
Let a trial solution of (1) be       z = Aehx + ky. ...(2)
So D2z = Ah2ehx + ky and D%z = Akehx + ky. Then (1) gives

A(h2 – k)ehx + ky = 0    or h2 – k = 0 so that k = h2.

( C.F. = hx kyAe #1 = 1Aehx h y# 2
, A, h being arbitrary constants.

Now, P.I. = 1 2 1
1

22
2

2 2
2

D D
y x

D D D
y x

� %
� ∃

� %
�( )

( / )
( )  = 

1
2

2 2
1 1 (2 )D y x

D D

�%: ;� �< =
> ?

2
2 2

1 1 ... (2 )D
y x

D D

%: ;∃ # # �< =
> ?

= 1 2 1 2 1 2 1 22
2

2
2

2
2

2D
y x

D
D y x

D
y x

D
( ) ( )� # % �RST

UVW ∃ � #F
HG

I
KJ

=
2 2

2 2
2 2

1 1
2 2 (2 ) 2

2 2
x x

y x y y x y
D D

: ;
� # 3 ∃ ∃ 3 ∃< =< =

> ?
.

General solution is z =1Aehx h y# 2
 + x2y, A and h being arbitrary constants.

(b) Ans. hx kyz Ae #∃ 1 – (1/2) × x2y2 + (1/6) × y3 – (1/12) × xy4 – (1/6) × y4 – (1/360) × y6,
where h and k are connected by the relation 2h2 – k2 + h = 0

Ex. 4. Solve r – s + p = 1. [Meerut 1993; Sagar 2003; Vikram 2004]
Sol. The given equation can be re–written as (!2z/!x2) – (!2z/!x!y) + (!z/!x) = 1

or (D2 – DD% + D)z = 1      or        D(D – D% + 1)z = 1. ...(1)
( C.F. = )1(y) + e–x)2(y + x), )1, )2 being arbitrary functions.

and P.I. = 11 1
1 (1 ) 1

(1 )
D D

D D D D
�∃ # � %

# � %
=

1 1
[1 ( ) ...]1 1D D x

D D
� � # ∃ ∃%

So the required general solution is z = )1(y) + e–x)2(y + x) + x.
Ex. 5. Solve (a) D(D + D% – 1)(D + 3D% – 2)z = x2 – 4xy + 2y2.
(b) (D + D% – 1)(D + 2D% – 3)z = 2x + 3y. [Bhopal 2000, 03, 04]

Sol. (a) Here C.F. = )1(y) + ex)2(y – x) + e2x)3(y – 3x), 1 2 3, ,) ) )  being arbitrary functions

P.I.  = 1
1 3 2

4 22 2

D D D D D
x xy y

( )( )
( )

# % � # % �
� # = 1

2
1 1 3

2
4 21

1
2 2

D
D D D D x xy y{ ( )} ( )� # % � # %RST

UVW
� #�

�
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5.16 Non-homogeneous linear partial differential equations with constant coefficients

      = 21
{1 ( ) ( ) ...}

2
D D D D

D
% %# # # # # 1 3

2
3

2
4 2

2
2 2# # %

# # %F
HG

I
KJ #

R
S|
T|

U
V|
W|

� #D D D D x xy y... ( )

      = 1
2

1 3
2

3
2

2
2

D
D D D D D D D D# # % # # % # # %

# # %F
HG

I
KJ

R
S|
T|

( ) ( )

# # % # %
#
UVW

� #( )( ) ... ( )D D D D x xy y3
2

4 22 2

    = 1
2

1 3
2

5
2

7
4

19
4

11
2

4 2
2 2 2 2

D
D D D D DD x xy y# #

%
# #

%
#

%
#

F
HG

I
KJ � #... ( )

    = 1
2

4 2 3 2 5 2 2 7
2

19 222 2

D
x xy y x y y x( ) ( ) ( )� # # � # � # # �{ }

    = 1
2

4 2 7 4 1
2

2 2
D

x xy y x y� # � # #FH IK = 1
2 3

2 2 7
2

4
2

3 2 2 2x x y y x x xy x� # � # #
F
HG

I
KJ

Hence the required general solution is z = C.F. + P.I.,  i.e.,
z = )1(y) + ex)2(y – x) + e2x)3(y – 3x) – (x3/6) + x2y + y2x – (7x2/4) + 2xy + x/4.
(b) Try yourself. Ans. z = ex)1(y – x) + e3x)2(y – 2x) + 2x/3 + y + 23/9

Ex. 6. Solve ( 1) ( 1) 1 .D D D z xy%� � # ∃ # [Delhi Maths (H) 2001]

Sol. Here C.F. 1 2 1 2( ) ( ), where andx xe y e y x�∃ ) # ) # ) )  are arbitrary functions

P.I. 
1

(1 )
( 1) ( 1)

xy
D D D

∃ #
%� � #

1 1(1 ) {1 ( )} (1 )D D D xy� �%∃ � � # � #

     2(1 ...) {1 ( ) ( ) ...} (1 )D D D D D xy% %∃ � # # � � # � # (1 ...) (1 2 ...) (1 )D D D DD xy% %∃ � # # � # � # #

    (1 ...) (1 )D DD xy% %∃ � # � # # = –(1 + xy + x – 1) = – xy – x

(  The required solution is     1 2( ) ( )x xz e y e y x xy x�∃ ) # ) # � �

Ex. 7. Solve 2 2( 3 3 ) .D D D D z xy% %� � # ∃

Sol. Re–writing, given equation is ( ) ( 3) .D D D D z xy% %� # � ∃

Its C.F. = 3
1 2 1 2( ) ( ), ,xy x e x y) # # ) � ) )  being arbitrary functions

P.I. 
11 1

– 1 1
( ) ( 3) 3 3

D D D
xy

D D D D D D

�% %#: ; : ;∃ ∃ � �< = < =% %� # � > ? > ?

     
21 ( )– 1 ... 1 ...

3 3 9
D D D D D

xy
D D

Α Β% % %# #Χ Χ: ;∃ # # # # #∆ Ε< =
> ?Χ ΧΦ Γ

1 1 1 2– 1 ... 1 ...
3 3 3 9

D
D D DD xy

D D
%: ;: ;% %∃ # # # # # #< =< =

> ?> ?

     
1 1 1 2 1– 1 ...

3 3 3 9 3
D

D D DD D xy
D D

%: ;% % %∃ # # # # # #< =
> ?

     
2 2 2 31 1 2 2 1 2

3 3 3 9 2 3 2 3 3 9 6
x x y xy x x xxy y x

D
: ; : ;

∃ � # # # # ∃ � # # # #< = < =< = < =
> ? > ?

(      solution is  3 2 2 3
1 2( ) ( ) (1/ 6) ( / 9) (2 / 27) ( /18)xz y x e y x x y x x x∃ ) # # ) � � 3 � � �
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Non-homogeneous linear partial differential equations with constant coefficients 5.17

Ex. 8. Solve ( 1) ( 2 3) 4 3 6 .D D D D z x y% %# � # � ∃ # #

Sol. Here C.F. 3
1 2( ) ( 2 ),x xe y x e y x∃ ) � # ) � 1 2,) )  being arbitrary functions

P.I. 
1

(4 3 6 )
( 1) ( 2 1)

x y
D D D D

∃ # #
% %# � # �

1
11 2

{1 ( )} 1 (4 3 6 )
3 3

D D
D D x y

�
� %#Α Β%∃ � # � # #∆ Ε

Φ Γ

     
1 2 1 4 5(1 ...) 1 ... (4 3 6 ) 1 ... (4 3 6 )
3 3 3 3 3 3

D D D D
D D x y x y

% %: ; : ;%∃ # # # # # # # # ∃ # # # # #< = < =
> ? > ?

     (1/ 3) (4 3 6 4 10) 6 2 .x y x y∃ 3 # # # # ∃ # #
( General solution is          3

1 2( ) ( 2 ) 6 2 .x xz e y x e y x x y∃ ) � # ) � # # #
EXERCISE 5(E)

Solve the following partial differential equations:

1. ( 1) ( 2) .D D D D z x% %� � � � ∃ Ans. 2
1 2( ) ( ) (2 3) / 4x xz e y x e y x x∃ ) # # ) # # #

2. 2 2( 2 2 2 ) .D DD D D D z xy% % %� � # # ∃   Ans. 2 2
1 2( ) ( 2 ) (1/ 4) ( 2 )xz y x e y x x y xy x�∃ ) � # ) # # 3 � �

2 3(3 ) / 8 ( /12)x x# � , 1 2,) )  being arbitrary functions

3. 2 2 2( 3 2)D D D D z x y% %� # # � ∃   Ans. 2 2 2
1 2( ) ( ) (4 4 6 6x xz e y x e y x x y xy x y�∃ ) # # ) � � # # #

12 21) / 8x# # , 1 2,) )  being arbitrary functions.
Type 4. Examples based on case IV of Art. 5.12.

Ex. 1. Solve (D2 – D%)z = xeax a y# 2
.

Sol. Since (D2 – D%) cannot be resolved into linear factors in D and D%, C.F. is obtained by
considering the equation (D2 – D%)z = 0.              ...(1)

Let a trial solution of (1) be     z = Aehx + ky. ...(2)
( D2z = Ah2ehx + ky and D%z = Akehx + ky. Then (1) becomes

A(h2 – k)ehx + ky = 0 so that h2 – k = 0    or          k = h2.

(From (2),   C.F. = 1 A e h x h y# 2
, A, h being arbitrary constants.

P.I. =  1 1
2 2 2

2 2

D D
xe e

D a D a
xax a y ax a y

� %
∃

# � % #
# #

( ) ( )
2

2
1

2
ax a ye x

D aD D
#∃

%# �

    
2

11 1
2 2 2

ax a y D D
e x

aD a aD

�
# %: ;∃ # �< => ?

2 21 1 1
1 ...

2 2 2 2 2
ax a y ax a yD D

e x e x
aD a aD aD a

# #%Α Β: ; : ;∃ � � # ∃ �∆ Ε< = < =
> ? > ?Φ Γ

     = / 02 2 2( / 4 ) ( / 4 ) .ax a ye x a x a# �

(General solution is z =
2 2 2 2{( / 4 ) ( / 4 )}hx h y ax a yAe e x a x a# ## �− .

Ex. 2. Solve (D – 3D% – 2)2z = 2e2x sin (y + 3x) [I.A.S. 2005]

Sol. Here C.F. = e2x[)1(y + 3x) + x)2(y + 3x)], 1 2,) )  being arbitrary functions

P.I. = 2 0.
2

1 2 sin ( 3 )
( 3 2)

x ye y x
D D

# #
%� �

= 2 0.
2

12 sin ( 3 )
{( 2) 3( 0) 2}

x ye y x
D D

# #
%# � # �
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5.18 Non-homogeneous linear partial differential equations with constant coefficients

     =
2

2 2
2 2

1
2 sin ( 3 ) 2 sin ( 3 ),

( 3 ) 1 2!
x x x

e y x e y x
D D

# ∃ #
�% %

 using formula (ii)of Art. 4.8

(  Required solution is     z = e2x[)1(y + 3x) + x)2(y + 3x)] + x2e2x sin (y + 3x).

Ex. 3. Solve !
!

� !
! !

# !
!

# !
!

� !
!

∃ #
2

2

2 2

24 4 2z
x

z
x y

z
y

z
x

z
y

ex y .

Sol. Given (D2 – 4DD% + 4D%2 + D – 2D%)z = ex + y    or     (D – 2D%)(D – 2D% + 1)z = ex + y.
( C.F. = )1(y + 2x) + e–x)2(y + 2x), )1, )2 being arbitrary functions

P.I. = 1 1 1 1
( 2 1) 2 2 1 1 2

x y x ye e
D D D D D D

# #Η Ι
∃ϑ Κ� # � � � �% % %Λ Μ

, by case I of Art. 5.12

=  �
# � % # #

#e
D D

x y 1
1 2 1 1

1
( ) ( )

. , using result of case IV of Art. 5.12

=
11 1 2 1

1 1 1 1
2

x y x y x y x yD
e e e xe

D D D D D

�
# # # #%: ;� ∃ � � ∃ � ∃ �< => ?� %

( The required solution is     z = )1(y + 2x) + e–x)2(y + 2x) – xex + y.
Ex. 4. Solve (3D2 – 2D%2 + D – 1)z = 4ex + y cos (x + y). [Delhi Maths (H) 1999, 2008]

Sol. Since (3D2 – 2D%2 + D – 1) cannot be resolved into linear factors in D and D%, hence
C.F. = 1 Aehx + ky, where A, h are arbitrary constants connected by 3h2 – 2k2 + h – 1 = 0.

P.I. = 1
3 2 1

42 2D D D
e x yx y

� % # �
## cos ( )= 4 1

3 1 2 1 1 12 2e
D D D

x yx y#

# � % # # # �
#

( ) ( ) ( )
cos ( )

     = 4
1

3 7 2 4 12 2e
D D D D

x yx y#

# � % � % #
#cos ( ) = 4 1

3 1 7 2 1 4 12 2e
D D

x yx y#

� # � � � % #
#

( ) ( )
cos ( )

     =
2 2

1 1
4 cos ( ) 4 (7 4 ) cos ( )

7 4 49 16
x y x ye x y e D D x y

D D D D
# ## ∃ # #%

� % � %

     = 2 2
7 4

4 cos ( )
49( 1 ) 16( 1 )

x y D D
e x y# %#

#
� � �

    (4 /33) (7 4 ) cos ( )x ye D D x y# %∃ � 3 # # = (4 / 33) [7 cos ( ) 4 cos ( )]x ye D x y D x y#� 3 # # #%

     = (4 / 33) [ 7 sin ( ) 4 sin ( )]x ye x y x y#� 3 � # � # = (4/3) × ex + y sin (x + y).

Hence general solution is z = 1 Aehx + ky + (4/3) × ex + y sin (x + y).

Ex. 5. Solve ( 1) ( 1) yD D D z e%� � # ∃ . [Delhi Maths (H) 2001]

Sol. Here  C.F. = 1 2( ) ( )x xe y e y x�) # ) # , 1 2,) )  being arbitrary functions

 P.I. = ≅ # ≅∃
� � # � # �% %

0 11 1 1
( 1) ( 1) 1 1

y x ye e
D D D D D D

≅ # ≅∃
� # �%

0 11 1
1

1 0 1
x ye

D D

      
≅ # ≅∃ �

# � # #%
0 1 1

( 0) ( 1) 1
1x ye

D D

�% %: ; : ;∃ � � ∃ � # # ∃ �< = < => ? > ?

11 1
1 1 1 ....y y yD D

e e xe
D D D D

( General solution is 1 2( ) ( )x x yz e y e y x x e�∃ ) # ) # �
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Ex. 6. Solve 2 2( 3 2) 2 tan( 3 )xD D z e y x%� � ∃ # . [Delhi Maths (H) 2004]

Sol. Here C.F. = 2
1 2{ ( 3 ) ( 3 )}xe y x x y x) # # ) # , 1 2and) )  being arbitrary functions.

P.I. = # ≅# ∃ #
� � � �% %

2 2 0
2 2

1 1
2 tan( 3 ) 2 tan ( 3 )

( 3 2) ( 3 2)
x x ye y x e y x

D D D D

     = # ≅ # ∃ #
# � # � �% %

2 0 2
2 2

1 1
2 tan( 3 ) 2 tan( 3 )

{( 2) 3( 0) 2} ( 3 )
x y xe y x e y x

D D D D

     = 3 #2 22 ( / 2!) tan ( 3 )xe x y x , refer formula (ii), of Art. 4.12 of chapter 4

( General solution is ∃ ) # # ) # # #2 2 2
1 2{ ( 3 ) ( 3 )} tan ( 3 )x xz e y x x y x x e y x

Ex. 7. Solve 2 2 2( 3 3 ) x yD D D D z e #% %� � # ∃ . [Delhi Maths (H) 2005]

Sol. Re–writing the given equation, we get 2( ) ( 3) x yD D D D z e #% %� # � ∃ .

Its C.F. = 3
1 2 1 2( ) ( ), ,xy x e y x) # # ) � ) )  being arbitrary functions

 P.I. = # #Α Β ∃ ≅∆ Ε
# � � # � �% % %Φ Γ

2 21 1 1 1
1

3 3 (1 2)
x y x ye e

D D D D D D

      =
�

# # %: ;� ∃ � #< => ?# # # �%

1
2 21 1

1 1 1
1 2 3

x y x y D
e e

D D D D

      = # #� � # ∃ �%2 2(1/ ) (1 / .....) 1x y x ye D D D e x

(  General solution is 3 2
1 2( ) ( )x x yz y x e y x x e #∃ ) # # ) � �

Ex. 8. Solve  (i) 2( ) x yD D z e #%� ∃

  (ii) 2 2( ) x yD D z e #%� ∃ .

Sol. (i) C.F. = hx kyA e #− , where 2 0h k� ∃  so that 2k h∃

( C.F. =
2 ( )hx h y h x hyA e A e# #∃− −

 P.I. = # # #≅ ∃ ∃
� # � # # �% % %2 2 2

1 1 1
1 1 1

( 1) ( 1) 2
x y x y x ye e e

D D D D D D D

  =
�

# # # #: ; : ;# #
� � ∃ � # # ∃ � ∃ �< = < =% % % % %> ? > ?

12 21 2 1 2 1
1 1 1 .... 1 1x y x y x y x yD D D D

e e e e y
D D D D D

(  The required solution is ( )h x hy x yz Ae ye# #∃ �− , where A and h are arbitrary constants

(ii) C.F. is same as in part (i). Its P.I. is given by

P.I. = 2 2 2
2 2

1 1 1
32 1

x y x y x ye e e
D D

# # #∃ ∃
%� �

(  General solution is # #∃ � 3− ( ) 2(1/ 3)h x hy x yz A e e , A, h being arbitrary constants.
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5.20 Non-homogeneous linear partial differential equations with constant coefficients

Ex. 9. Solve ( 1) ( 3) ( ) sin (2 )x yD D D D D D z e x y#% % %# � # � # ∃ #

Sol. C.F. = ) � # ) � # ) �3
1 2 3( ) ( ) ( )x xe y x e y x y x , 1 2 3, ,) ) )  being arbitrary functions.

P.I. = 
1

( 1) ( 3) ( )D D D D D D% % %# � # � #
sin (2 )x ye x y# #

    =
1

sin (2 )
( 1 1 1) ( 1 1 3) ( 1 1)

x ye x y
D D D D D D

# #
% % %# # # � # # # � # # #

    = 1
sin(2 )

( 1) ( 1) ( 2)
x ye x y

D D D D D D
# #

% % %# # # � # #
=

2 2

1
sin(2 )

( 2) ( 2 1)
x ye x y

D D D DD D
# #

% % %# # # # �

    = # #
# #% � 3 3 � �2 2

1 1
sin(2 )

2 2 – 2 (2 1) 1 1
x ye x y

D D
=

2

1
( 2) sin (2 )

10 ( ) 4

x ye
D D x y

D D

#
%� # � #

%# �

=
2 2

1
( 2) sin(2 )

10 2 4

x ye
D D x y

D DD D

#
%� # � #

% %# # �
=

#

� # � #%
� 3 3 � �2 2

1
( 2) sin(2 )

10 2 – 2 (2 1) 1 4

x ye
D D x y

     = # %3 # � #(1/130) ( 2) sin(2 )x ye D D x y = #3 # # # � #(1/130) {2cos (2 ) cos (2 ) 2sin(2 )}x ye x y x y x y

    (  Solution is ∃ ) � # ) � # ) �3
1 2 3( ) ( ) ( )x xz e y x e y x y x ## 3 # � #(1/130) {3cos(2 ) 2sin(2 )}x ye x y x y

Ex. 10. Solve 3 2 2 (2 4 ) yr s t p q x e�� # � # ∃ #

Sol. Re–writing the given equation        2 2( 3 2 2 ) (2 4 ) yD DD D D D z x e�% % %� # � # ∃ #

or ( 2 ) ( 1) (2 4 ) yD D D D z x e�% %� � � ∃ #

( C.F. = 1 2( 2 ) ( )xy x e y x) # # ) # , where 1 2,) )  are arbitrary functions.

P.I. = ≅ � #
� � �% %

01
2 (1 2 )

( 2 ) ( 1)
x ye x

D D D D
=

≅ � #
# � � # � � �% %

0 1
2 (1 2 )

{ 0 2( 1)} { 0 ( 1) 1}
x ye x

D D D D

   =
1

2 (1 2 )
( 2 2) ( )

ye x
D D D D

� #
% %� # �

=
1 1

1 2
2 1 1 (1 2 )

2 2
y D D D

e x
D D

� �
� % %�: ; : ;# � #< = < =

> ? > ?

     =
1 1

1 ( 2 ) ... 1 ... (1 2 )
2

y D
e D D x

D D
� %Α Β : ;%� � # # # #∆ Ε < =

Φ Γ > ?
– 1

(1– ....)(1 2 )
2

y D
e x

D
∃ # #

    = 2(1/ ) (1 2 1)y ye D x x e� �# � ∃

(  The required solution is 2
1 2( 2 ) ( )x yz y x e y x x e�∃ ) # # ) # # .

Ex. 11. Solve 2( ) x yD D z xe #%� ∃

Sol. As usual C.F. = hx kyA e #− , when h2 – k = 0 or k = h2. So C.F. 
2hx h yAe #∃ 1

 P.I. =
2 2

1 1

( 1) ( 1)
x y x yx e e x

D D D D
# #∃

% %� # � #
#∃

%# �2

1

2
x ye x

D D D

     

�
# : ;� %

∃ #< => ?

121
1

2 2
x y D D

e x
D D

# #: ;% %� : ;∃ � # ∃ � # #< = < =< = > ?> ?

21 1
1 ... 1 ....

2 2 2 2 2
x y x yD D D D

e x e x
D D D D

     = 2(1/ 2 )( 1/ 2) ( / 4 / 4)x y x ye D x e x x# #� ∃ � .

( Solution is # #∃ # 3 �− 2

( / 4) ( 1)hx h y x yz A e x x e , A, h being arbitrary constants.
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Non-homogeneous linear partial differential equations with constant coefficients 5.21

EXERCISE 5(F)
Solve the following partial differential equations:

1. 2 2 2( 2 ) ( ) ( 4 ).x yD D D D D z e x y#� # ∃ #% %            Ans. 1 2 3( ) ( 2 ) ( )z y y x y x∃ ) # ) # # ) �

2 2 2(1/81) (9 36 18 72 76) x yx y x y e #� 3 # � � # 1 2 3, ,) ) )  being arbitrary functions.

2. 2 2 2 2( 1) ( ).xD DD D D z e x y�% %# # # � ∃ #

Ans. 2 2 2(1/ 27) (9 9 18 6 14),hx ky xz Ae e x y x y# �∃ 1 # 3 # # # #  where h2 + hk + h + k + 1 = 0.

3. 2 2 2( 2) sin3 cos .y xD D D z e x e y% %# � ∃ �            Ans.  2(1/16) sin 3hx ky yz Ae e x#∃ 1 � 3

(1/ 20) (3cos 2 sin 2 ),xe y y# 3 �  where h and k are related by h2k + k2 – 2 = 0.

4. 2( 1) .yD DD D z e% %� # � ∃ Ans. 1 2( ) ( )x x yz e y e y x xe�∃ ) # ) # �

5. 2( 1) xD DD D z e% %� # � ∃ Ans. 1 2( ) ( ) (1/ 2)x x xz e y e y x xe�∃ ) # ) # � 3

MISCELLANEOUS EXAMPLES ON ART. 5.12.
Ex. 1. Solve (a) (D2 – DD% + D% – 1)z = cos (x + 2y) + ey.   [Jabalpur 2004; I.A.S. 1992]
(b) (D2 – DD% + D% – 1)z = cos (x + 2y) + ex.
Sol. (a) From given equation        (D – 1)(D – D% + 1)z = cos (x + 2y) + ey. ...(1)

( C.F. = ex)1(y) + e–x)2(y + x), )1, )2 being arbitrary functions.
P.I. corresponding to cos (x + 2y)

=
2 2

1 1
cos ( 2 ) cos ( 2 )

1 1 (1 2) 1
x y x y

D DD D D
# ∃ #

� # � � # 3 # �% % %

= (1/ ) cos ( 2 ) (1/ 2) sin ( 2 )D x y x y% # ∃ 3 # .
P.I. corresponding to ey

= 0 11 1 1
.

( 1)( 1) 1 1
y x ye e

D D D D D D
≅ # ≅∃

� � # � # �% %
= 0 11 1

.
1 0 1

x ye
D D

≅ # ≅

� # �%

= 0 1 1 1
1 1

( 0) ( 1) 1 (1 / )
x y ye e

D D D D D
≅ # ≅� ∃ �

# � # # �% %

11
1 ... 1y D

e
D D

�%: ;∃ � � #< =
> ?

(1/ ) (1 ...).1y ye D e x∃ � # ∃ � .

(   The general solution is z = ex)1(y) + e–x)2(y + x) + (1/2) × sin (x + 2y) – xey.

(b) As in part (a), C.F. = ex )1(y) + e–x )2(y + x), 1 2,) )  being arbitrary function.

and P.I. corresponding to cos (x + 2y) = (1/2) × sin (x + 2y).
Now, P.I. corresponding to ex

= 1 0 1 01 1 1 1
( 1) ( 1) ( 1) ( 1) ( 1) (1 0 1)

x x y x ye e e
D D D D D D D

≅ # ≅ ≅ # ≅∃ ∃
� � # � � # � � #% %

= 1 0 1 01 1 1 1 1 11 1 1
2 1 2 ( 1) 1 2 2

x
x y x y x xe

e e e
D D D

≅ # ≅ ≅ # ≅∃ ∃ ∃
� # �

.

(The general solution is z = ex)1(y) + e–x)2(y + x) + (1/2) × sin (x + 2y) + (x/2) × ex.
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5.22 Non-homogeneous linear partial differential equations with constant coefficients

Ex. 2. Solve (a) (D2 – DD% – 2D%2 + 2D + 2D%)z = e2x + 3y + xy + sin (2x + y). [Delhi 2008]
(b) (D2 – DD% – 2D%2 + 2D + 2D%)z = e2x + 3y + xy.
(c) (D2 – DD% – 2D%2 + 2D + 2D%)z = xy + sin (2x + y).
Sol. (a) The given equation can be rewritten as

(D + D%)(D – 2D% + 2)z = e2x + 3y + xy + sin (2x + y). ...(1)
( C.F. = )1(y – x) + e–2x)2(y + 2x), )1, )2 being arbitrary functions.

P.I. corresponding to e2x + 3y

      = 1
2 2

1
2 3 2 6 2

1
10

2 3 2 3 2 3

( )( ) ( )( )D D D D
e e ex y x y x y

# % � % #
∃

# � #
∃ �# # # .

P.I. corresponding to xy

      =
1 1

( )( 2 2) (1 / ) 2{1 ( / 2 )}
xy xy

D D D D D D D D D
∃

% % % %# � # # 3 # �

      = 1
2

1 1
2

1 1

D
D
D

D D xy#
%F

HG
I
KJ # � %FH IKRST

UVW
� �

= 1
2

1 1
2 2

2

D
D
D

D D D D xy�
%

#
F
HG

I
KJ � � %FH IK # � %FH IK #
RST

UVW
... ...

      = 1
2

1 1
2D

D
D

D D DD xy�
%

#
F
HG

I
KJ � # % � % #FH IK... ... = 1

2
1

2
1

D
D
D

xy y x�
%

#
F
HG

I
KJ � # �FH IK...

      = 1
2 2

1 1 1
2

1
2 2

1
2 2

2

D
xy y x

D
x

D
xy y x x x� # � � �FH IKL

NM
O
QP∃ � # � � #L
NM

O
QP

      = 1
2 2 2 2 6 4 4

3
8 4 2 12

2 2 3 2 2 2 3x y xy x x x x x y x xy x x� # � � #
L
NMM

O
QPP

∃ # � � � .

P.I. corresponding to sin (2x + y)

     = 1
2 2 2

22 2D DD D D D
x y

� % � % # # %
#sin ( )= 2 2

1
sin (2 )

2 (2 1) 2 ( 1 ) 2 2
x y

D D
#

� # 3 � 3 � # # %

1
sin (2 )

2( )
x y

D D
∃ #

%# 2 2
1 1

( ) sin (2 )
2 ( )

D D x y
D D

∃ � #%
� %

2 2
1 1

( ) sin (2 )
2 2 ( 1 )

D D x y∃ � #%
� � �

= (1/ 6) ( ) sin (2 ) (1/ 6) [ sin (2 ) sin (2 )]D D x y D x y D x y% %� 3 � # ∃ � 3 # � #

= – (1/6) × [2 cos (2x + y) – cos (2x + y)] = – (1/6) × cos (2x + y).
The required solution is z = )1(y – x) + e–2x )2(y + 2x)  – (1/10) × e2x + 3y + (1/4) × x2y

+ (3/8) × x2 – (1/4) × xy – (x/2) – (x3/12) – (1/6) × cos (2x + y)
(b) As in part (a), C.F. = )1(y – x) + e–2x)2(y + 2x).
P.I. corresponding to e2x + 3y = –(1/10) × e2x + 3y

P.I. corresponding to xy = (1/4) × x2y + (3/8) × x2 – (1/4) × xy – (1/2) × x – (1/12) × x3.
( The required general solution is z = C.F. + P.I., i.e.
z = )1(y – x) + e–2x)2(y + 2x) – (1/10) × e2x + 3y + (1/4) × x2y + (3/8) × x2

– (1/4) × xy – (x/2) – (x3/12).
(c) As in part (a), C.F. = )1(y – x) + e–2x)2(y + 2x).
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Non-homogeneous linear partial differential equations with constant coefficients 5.23

P.I. corresponding to xy = (1/4) × x2 + (3/8) × x2 – (1/4) × xy – (x/2) – (x3/12)
and P.I. corresponding to sin (2x + y) = –(1/6) × cos (2x + y).

( The required solution is   z = C.F. + P.I., i.e.,       z = )1(y – x) + e–2x)2(y + 2x)
     + (1/4) × x2 + (3/8) × x2 – (1/4) × xy – (x/2) – (x3/12) ×  – (1/6) × cos (2x + y).
Ex. 3. Find a particular integral of the differential equation : (D2 – D%)z = ex + y + 5 cos (x + 2y).
Sol. P.I. corresponding to ex + y

= 2 2 2
1 1 1

1
( 1) ( 1) 2

x y x y x ye e e
D D D D D D D

# # #∃ ∃
� # � # # �% % %

1

=
11 1 1

1 1 {1 ...}1
2 2 2 2 2

x y x y x yD D
e e xe

D D D

�
# # #%Η Ι: ;# � ∃ # ∃< =ϑ Κ> ?Λ Μ

P.I. corresponding to 5 cos (x + 2y)

= 5 1 2 5 1
1

2 5
1

22 2D D
x y

D
x y

D
x y

� %
# ∃

� � %
# ∃ � % #

#cos ( ) cos ( ) cos ( )

=
2 2
1 15( 1) cos ( 2 ) 5 ( 1) cos ( 2 )

1 2 1
D x y D x y

D
% %� � # ∃ � � #

% � � �
= (D% – 1) cos (x + 2y) = D% cos (x + 2y) – cos (x + 2y) = –2 sin (x + 2y) – cos (x + 2y)

( Required P.I. = (x/2) × ex + y – 2 sin (x + 2y) – cos (x + 2y).
Ex. 4. Solve (D2 – D%2 – 3D + 3D%)z = xy + ex + 2y. [Delhi Maths (Prog) 2007; Delhi

Maths (H) 2007; Meerut 1998; Bhopal 1995; Indore 1998; KU Kurukshetra 2004]
Sol. The given equation can be re–written as         (D – D%)(D + D% – 3)z = xy + ex + 2y.

( C.F. = )1(y + x) + e3x)2(y – x), )1, )2 being arbitrary functions.

P.I. corresponding to xy = 1
3

1
3

1 1
3

1 1

( )( )D D D D
xy

D
D
D

D D xy
� % # % �

∃ � �
%F

HG
I
KJ � # %F
HG

I
KJ

� �

=
21 1 ... 1 ...

3 3 3
D D D D D

xy
D D

Η Ι% % %# #: ; : ;� # # # # #ϑ Κ< = < =
> ? > ?ϑ ΚΛ Μ

= 1 2
1 ... 1 ...

3 3 9
D D D DD

xy
D D

% % %#: ; : ;� # # # # #< = < =
> ? > ?

= � # #
%

#
%

#
%

#
%

#
F
HG

I
KJ

1
3

1
3 3 3

2
9D

D D D
D

D DD xy...

= � # # # #FH IK ∃ � # # # #
F
HG

I
KJ

1
3 3

2
3

1 2
9

1
9 2 2 3 6

2
9

2 2 3

D
xy y x

D
x x y xy x x x

P.I. corresponding to ex + 2y

= 1
3

1
3

1
1 2

2 2

( ) ( )D D D D
e

D D
ex y x y

# % � � % ∃ Ν
# % � �

# #

= 1 2 1 2 21 1
1 1 1

3 ( 1) ( 2) 3
x y x y x ye e e

D D D D D D
≅ # ≅ # #Ν

� ∃ � ∃ �
# � # # # � #% % %

= 
1

2 21 11 1 (1 ...) 1x y x yD
e e

D D D

�
# #%: ;� # ∃ � #< => ?

= –x ex + 2y.

Hence the required general solution is z = C.F + P.I.,  i.e.
z = )1(y + x) + e3x)2(y – x) – (x2y/6) – (xy/6) – (x2/9) – (x3/18) – (2x/27) – xex + 2y.

Ex. 5. Solve (D – D% – 1)(D – D% – 2)z = e2x – y + x. [Meerut 2008]

Sol. Here C.F. = ex)1(y + x) + e2x)2(y + x), 1 2, ))  being arbitrary functions
Now, P.I. corresponding to e2x – y
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5.24 Non-homogeneous linear partial differential equations with constant coefficients

= 1
1 2

2

( )( )D D D D
e x y

� % � � % �
� = 1

2 1 1 2 1 2
1
2

2 2

{ ( ) }{ ( ) }� � � � � �
∃� �e ex y x y

and P.I. corresponding to x

= 1
1 2

1
2 1 1 2( )( ) { ( )}{ ( ) / }D D D D

x
D D D D

x
� % � � % �

∃
� � % � � %

= 1
2

1 1
2

1
1

[ ( )]� � % � � %RST
UVW

�
�

D D D D x = 1
2

1 1
2

[ ( ) ...] ...# � % # # � %
#

RST
UVWD D D D x

= 1
2

1
2

1
2

1 3
2

1
2

3
2

# � % # � %
#

RST
UVW

∃ # # ∃ #FH IK( ) ... ...D D D D x D x x{ } .

( General solution is z = ex)1(y + x) + e2x)2(y + x) + (1/2) × e2x – y + x/2 + 3/4.
Ex. 6. Solve (a) (D2 – DD% – 2D)z = sin (3x + 4y) – e2x + y. [Meerut 1995]
(b) (D2 – DD% – 2D)z = sin (3x + 4y) + x2y [Agra 2009, 10]
Sol. (a) The given equation can be re–written as D(D – D% – 2)z = sin (3x + 4y) – e2x + y.

( C.F. = )1(y) + e2x)2(y + x), )1, )2 being arbitrary functions.
P.I. corresponding to sin (3x + 4y)

=
2 2

1 1
sin (3 4 ) sin (3 4 )

2 3 (3 4) 2
x y x y

D DD D D
# ∃ #

� � � # 3 �%

= 2 2
1 1 3 2

sin (3 4 ) (3 2 ) sin (3 4 ) sin (3 4 )
3 2 9 4 9 4( 3 )

D
x y D x y x y

D D
#

# ∃ # # ∃ #
� � � �

= (1/45) × [3 sin (3x + 4y) + 2D sin (3x + 4y)] = (1/45) × [3 sin (3x + 4y) + 6 cos (3x + 4y)]
and P.I. corresponding to (–e2x + y)

= �
� % �

∃ �
� �

∃# # #1
2

1
2 2 1 2

1
2

2 2 2

D D D
e e ex y x y x y

( ) ( )
Hence the required general solution is z = C.F. + P.I., i.e.
z = )1(y) + e2x)2(y + x) + (1/15) × [sin (3x + 4y) + 2 cos (3x + 4y)] + (1/2) × e2x + y

(b) As in part (a), C.F. = )1(y) + e2x)2(y + x), 1 2,) )  being arbitrary functions.
P.I. corresponding to sin (3x + 4y) = (1/15) × [sin (3x + 4y) + 2 cos (3x + 4y)].

P.I. corresponding to x2y = 1
2

1
2

1
2

2
1

2

D D D
x y

D
D D x y

( )� % �
∃ � � � %F

HG
I
KJ

RST
UVW

�

   = � # � %
# � %F
HG

I
KJ # � %F
HG

I
KJ #

R
S|
T|

U
V|
W|

1
2

1
2 2 2

2 3
2

D
D D D D D D x y... = � # �

%
# �

%
�

%
#

F
HG

I
KJ

1
2

1
2 2 4 2

3
8

2 2 2
D

D D D DD D D x y.. .

   = � # � # � �
F
HG

I
KJ

1
2 2 2

3
4

2
2

D
x y xy x y x = � # � # � �

F
HG

I
KJ

1
2 3 2 6 2 2

3
4

3 2 3 2x y x y x xy x x

Hence the solution is z = C.F. + P.I., i.e. z = )1(y) + e2x)2(y + x) + (1/15) × [sin (3x + 4y)
 + 2cos (3x+4y)] – (1/6) × x3y – (1/4) × x2y + (1/12) × x3 – (1/4) × xy – (x2/4) + 3x/8

Ex. 7. Solve (!2z/!x2) – (!2z/!y2) + (!z/!x) + 3(!z/!y) – 2z = ex – y – x2y. [Rewa 1999]
Sol. The given equation can be re–written as        (D2 – D%2 + D + 3D% – 2)z = ex – y – x2y

or {(D – D%)(D + D%) + 2(D + D%) – (D – D% + 2)}z = ex – y – x2y
or  {(D + D%)(D – D% + 2) – (D – D% + 2)}z = ex – y – x2y   or     (D – D% + 2)(D + D% – 1)z = ex – y – x2y.

( C.F. = e–2x)1(y + x) + ex)2(y – x), )1, )2 being arbitrary functions.
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P.I. corresponding to ex – y

= 1
2 1

1
1 1 2 1 1 1

1
4( )( ) { ( ) }( )D D D D

e e ex y x y x y

� % # # % �
∃

� � # � �
∃ �� � �

and P.I. corresponding to (–x2y)

= 1
2 1

1
2

1
2

12
1

1 2

( )( )
( ) { ( )}

D D D D
x y D D D D x y

� % # # % �
� ∃ # � %RST

UVW
� # %

�
�

= 1
2

1
2 2 2

2 3

� � %
# � %F
HG

I
KJ � � %F
HG

I
KJ #

R
S|
T|

U
V|
W|

D D D D D D ... × { ( ) ( ) ( ) ...}1 2 3 2# # % # # % # # % #D D D D D D x y

= 1
2

1
2 2 4 2

3
8

2 2
� #

%
# �

%
#

%
#

F
HG

I
KJ

D D D DD D D ... × (1 + D + D% + D2 + 2DD% + 3D2D% + ...)x2y

= (1/2) × [1 + (1/2) × D + (3/2) × D% + (3/4) × D2 + (3/2) × DD% + (21/8) × D2D% + ···]x2y
= (1/2) × [x2y + xy + (3x2/2) + (3y/2) + 3x + 21/4].

Hence general solution is z = C.F. + P.I., i.e. z = e–2x)1(y + x) + ex)2(y – x)
– (1/4) × ex – y + (1/2) × x2y + (1/2) × xy + (3/4) × x2 + (3/4) × y + (3/2) × x + 21/8.

Ex. 8. Solve (D2 – D%)(D – 2D%)z = e2x + y + xy.
Sol. C.F. corresponding to linear factor (D – 2D%) is )(y + 2x). Now, (D2 – D%) cannot be

resolved into linear factor in D and D%. To find C.F. corresponding to it, we consider the equation
(D2 – D%)z = 0. ...(1)

Let a trial solution of (1) be z = Aehx + ky. ...(2)
( D2z = Ah2ehx + ky and D%z = Akehx + ky. Then (1) becomes
A(h2 – k)ehx + ky = 0 so that h2 – k = 0 or k = h2.

So from (2), C.F. corresponding to (D2 – D%) is Aehx h y#−
2

.
Now, P.I. corresponding to e2x + y

= 2 2 2
2 2

1 1 1 1 1 1
. 1

2 2 3 22 1
x y x y x ye e e

D D D D D DD D
# # #∃ ∃ ≅

� � �% % %� �%

= 1
3

1
2 2 1

1 1
3

1
1 2

12 2e
D D

e
D D D

x y x y# #

# � % #
∃

� %( ) ( ) ( / )
= 1

3
1 1 2 12

1

e
D

D
D

x y#
�

�
%F

HG
I
KJ

=  (1/3) × e2x + y × (1/D) (1 + ...) 1 = (x/3) × e2x + y

and P.I. corresponding to xy

= 1
2

1
2 1 2 12 2( )( ) ( )( / )( )( / )D D D D

xy
D D D D D D

xy
� % � %

∃
� % � % � % � %

= 1
2

1
2

1 1
2

1
2

12

1 2 1

2%
� %
F
HG

I
KJ � %
F
HG

I
KJ ∃

%
# % #F
HG

I
KJ #

� �

D
D
D

D
D

xy
D

D
D

xy... ( ...)

= 1
2

1
2

1
2

1
2

1
2 42 2 2

2

%
# % #F
HG

I
KJ ∃

%
# %

F
HG

I
KJ ∃

%
#

F
HG

I
KJD

D
D

xy
D

xy
D

y
D

xy y...  = 
3 41

2 6 3 4 4
xy y: ;

#< =< =3 3> ?
.

(  General solution  z =
2 2 3 4( 2 ) ( / 3) ( ) /12 / 96,hx h y x yy x Ae x e xy y# #) # # # 3 # #−

where ) is an arbitrary function and A and h are arbitrary constants.
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5.26 Non-homogeneous linear partial differential equations with constant coefficients

Ex. 9. Solve (D2 – DD% + D% – 1)z = cos (x + 2y) + ey + xy + 1.
Sol.  The given equation can be re–written as

(D – 1)(D – D% + 1)z = cos (x + 2y) + ey + xy + 1. ...(1)

Its C.F. = ex)1(y) + e–x)2(y + x), 1 2,) )  being arbitrary functions.
Now, P.I. corresponding to cos (x + 2y)

=
2 2

1 1
cos ( ) cos ( 2 )

1 1 (1 2) 1
x y x y

D DD D D
# ∃ #

� # � � # 3 # �% % %

= (1/ ) cos ( 2 ) (1/ 2) sin ( 2 )D x y x y# ∃ 3 #% ,

P.I. corresponding to ey i.e. e0.x + 1.y

= 0 1
2

1
1

1
x ye

D DD D
≅ # ≅ ≅

� # �% %
= 0 1

2
1

1
( 0) ( 0)( 1) ( 1) 1

x ye
D D D D

≅ # ≅

# � # # # # �% %

= e
D DD D

e
D

D
D

Dy y1 1 1 1 12

2 1

� % # %
∃ % # % �

F
HG

I
KJ

RS|T|
UV|W|

�

= e
D

e yy y1 1 1% # ∃{ ...}

and P.I. corresponding to (xy + 1)

= 1
1 1

1 1 1 11 1

( )( )
( ) ( ) { ( )} ( )

D D D
xy D D D xy

� � % #
# ∃ � � # � % #� �

= –{1 + D + ...}{1 – (D – D%) + (D – D%)2 – ...}(xy + 1) = –(1 + D + ...)(1 – D + D% – 2DD% + ...)(xy + 1)
= –(1 + D + ...)(xy + 1 – y + x – 2) = –(1 + D + ...)(xy – y + x – 1)= –(xy – y + x – 1 + y + 1) = –(xy + x)

(  Solution is z = ex)1(y) + e–x)2(y + x) + (1/2) × sin (x + 2y) + yey – (xy + x).

EXERCISE 5(G)
Solve the following partial differential equations:

1. 2 2 2 3( 2 2 2 ) sin(2 )x yD DD D D D z e x y#% %� � # # ∃ # # [KU Kurukshetra 2004]

Ans. 2
1 2( ) ( 2 )xz y x e y x�∃ ) � # ) # 2 3(1/10) (1/ 6) cos(2 ).x ye x y#� 3 � 3 #

2. 2( 1) .yD DD D z e xy% %� # � ∃ # [Delhi Maths (H) 2005]

Hint : Do like solved Ex. 9, Art. 5.13 Ans. 1 2( ) ( ) 1x x yz e y e y x ye xy x�∃ ) # ) # # � � #

5.14. General method of finding particular integral for only reducible non–
homogeneous linear partial differential equation, namely,

%( , ) ( , )F D D z f x y∃

Let 1 1 1 2 2 2( , ) ( ) ( )...( )n n nF D D a D b D c a D b D c a D b D c% % % %∃ # # # # # #

( P.I. of the given equation  1
( , )

( , )
f x y

F D D
∃

%

or             P.I. 
1 1 1 2 2 2 2

1
( , )

( ) ( ) ... ( )n n
f x y

a D b D c a D b D c a D b D c
∃

% % %# # # # # #
... (1)

In order to evaluate P.I. given by (1), we consider a solution of the following equation
(assuming that 0a ∋ )

(aD + bD + c)z = f(x, y) or a p + b q = f (x, y) – c z ... (2)
which is of the form Pp + Qq = R. So Lagrange’s auxiliary equations are
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Non-homogeneous linear partial differential equations with constant coefficients 5.27

( , )
dx dy dz
a b f x y c z

∃ ∃
�

Taking the first two fraction of (3),            ady – bdx = 0 ... (3)
Integrating, ay – bx = d, d being an arbitrary constant ... (4)

From (4), we have        ( ) /y d bx a∃ # , if 0a ∋ ... (5)
Taking the first and last fractions of (3) and using (5), we get

� #: ;∃ ∃ � # < => ?
( , ) 1

,
dz f x y c z c z d bx

f x
dx a a a a

or      
1

,
dz c d bx

z f x
dx a a a

#: ;# ∃ < =
> ?

... (6)

which is linear differential equation whose I.F. =
( / ) /c a dx cx ae e∃Ο

(    Solution of (6) is       #: ;∃ < => ?Ο/ 1
,cx a d bx

z e f x dx
a a

so that
� #: ;∃ ∋< =

> ?Ο
( / )

, , 0
cx ae d bx

z f x dx a
a a

      and          d = ay – bx.

(      From  (2),
( / )1

( , ) ,
( )

cx ae d bx
f x y f x dx

aD bD c a a

� #: ;∃ < =%# # > ?Ο ... (7)

where ay – bx = d and 0a ∋ d being arbitrary constant.
Similarly, if  0b ∋ , we can show that

        
( / )

/1
( , )

( )

cy b
cy be d ay

f x y e f dy
aD bD c b b

� #: ;∃ < =%# # > ?Ο , ... (8)

where bx – ay = d and 0b ∋ , d being an arbitrary constant.
Results (7) and (8) will be used to evaluate P.I. given by (1).

5.15. Working rule for finding P.I. of any reducible linear partial differential equation
(homogeneous or non–homogeneous), namely,

%( , ) ( , )F D D z f x y∃ ... (1)

Rule I. 
( / )

/1
( , ) , , 0

cx a
cx ae d bx

f x y e f x dx a
aD bD c a a

� #: ;∃ ∋< =%# # > ?Ο  where ay bx d� ∃

Note that constant d must be replaced by ay bx�  after integration is performed.

Rule II.
( / )

/1
( , )

cy b
cy be d ay

f x y e f dy
aD bD c b b

� #: ;∃ < =%# # > ?Ο , 0b ∋ , where  bx – ay = d

Note that constant d must be replaced by bx ay�  after integration is performed.

We now consider some special cases of the above rules.

Rule III. 
( / )

/1
( , ) ( , / )

cx a
cx ae

f x y e f x d a dx
aD c a

�

∃
# Ο , where ay d∃

Rule IV.
1

( , ) ( , )f x y f x d mx dx
D mD

∃ �
%� Ο , where y mx d# ∃

Rule V. 
( / )

/1
( , ) ( / , )

cy b
cy be

f x y e f d b y dy
bD c b

�

∃
% # Ο , where bx = d
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5.28 Non-homogeneous linear partial differential equations with constant coefficients

Rule VI. 
1

( , )f x y
D mD% �

= ( , )f d my y dy�Ο , where x my d# ∃

Note 1. Results IV and VI have already been obtained in Art. 4.12 of chapter 4.

Note 2. Suppose ( , )F D D%  can be factored as 
1

( )
n

r r r
r

a D b D c
∃

%# #& , then

P.I. for (1)  = ∃
# # # # # #% % % %1 1 1 2 2 2

1 1
( , ) ( , )

( , ) ( )( )....( )n n n

f x y f x y
F D D a D b D c a D b D C a D b D c

,

which is evaluated by using the above six rules for each factor, in succession, from right to the left.
5.16 SOLVED EXAMPLES BASED ON ART. 5.15.

Ex. 1. Solve ( ) ( 2) sin( 2 )D D D D z x y% %# # � ∃ # [Delhi Maths (H) 2000]

Sol. Here C.F. = 2
1 2( ) ( )xy x e y x) � # ) � , 1 2,) )  being arbitrary function

  P.I. = 1 1
sin ( 2 )

2
x y

D D D D
Α Β#∆ Ε% %# � #Φ Γ

=
1

sin (3 2 ) ,
2

x d dx
D D

#
%# � Ο  where, y x d� ∃ ,

 [using rule IV of Art. 5.15]

=
1 cos(3 2 ) 1 1

cos (2 )
2 3 3 2

x d
x y

D D D D

#Α Β� ∃ � #∆ Ε% %# � # �Φ Γ

= 2 21
cos(3 2 )

3
x xe e x d dx�� #Ο , where y x d� ∃ [using rule I of Art. 5.15]

= 2 2
2 2

1 1
{ 2cos(3 2 ) 3sin(3 2 )}

3 ( 2) 3
x xe e x d x d�� � # # #

� #

2 1cos( 2 ) sin( 2 )
39 13

x y x y∃ # � #

(  Solution is    ∃ ) � # ) � # 3 # � 3 #2
1 2( ) ( ) (2 / 39) cos( 2 ) (1/13) sin( 2 )xz y x e y x x y x y

Ex. 2. Solve 3 2 2 3( ) ( 2) /D DD D DD z x x% %� � # ∃ #

Sol. Re–writing, the given equation 3( ) ( 1) ( 2) /D D D D D z x x% %� # � ∃ #

Its C.F. = 1 2 3( ) ( ) ( )xy y x e y x) # ) # # ) � , 1 2 3, ,) ) )  being arbitrary functions

P.I. =
2 3

1 1 1 2
( )( 1)D D D D D x x

: ;#< =% %� # � > ? 2

1 1 1

( 1) ( )D D D D x x

: ;∃ � �< =%# � � > ?

=
2

1 1 1

1
dx

D D x x

: ;� �< =%# � > ?Ο =
1 1 1

log log
1

x xx e e x dx
D D x x

�: ; : ;� # ∃ � #< = < =%# � > ? > ?Ο

            = 1
logx x x xe e x dx e e dx

x
� �� #Ο Ο = � � �Η Ι� � � � # ∃ϑ ΚΛ ΜΟ Ο

1 1
( ) log ( ) logx x x x xe e x e dx e e dx x

x x

[on integration by parts first integral only]

(  General solution is 1 2 3( ) ( ) ( )xz y y x e y x∃ ) # ) # # ) �  + log x.

Ex. 3. Solve # # � ∃% %2( 1) 4sinhD DD D z x .

Sol. Re–writing, the given equation    ( 1) ( 1) 2( )x xD D D z e e�%# # � ∃ � .

C.F. = 1 2( ) ( )x xe y e y x� ) # ) � ,  where 1 2,) )  are arbitrary functions
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 P.I. =
1

2( )
( 1)( 1)

x xe e
D D D

��
%# # �

=
1

2 ( )
( 1)

x x x xe e e e dx
D

� ��
# Ο

     = 21 1 1
2 (2 )

( 1) 2 1
x x x xe x e xe e

D D
� �: ;# ∃ #< =# #> ?

= (2 )x x x xe e x e e dx� �#Ο
[using rule III of Art. 5.15]

     2 2 22 2 ( / 2) 1 ( / 2)x x x x x x xe x e dx e x e x e e dx xe� � � �Η Ι∃ # ∃ 3 � ≅ #ϑ ΚΛ ΜΟ Ο
     2 2(1/ 2) ( 1/ 2)x x x x x x x x x xx e e e dx xe xe e e xe x e xe� � � � �∃ � # ∃ � 3 3 # ∃ � #Ο

(   General solution is 1 2( ) ( ) ( 1/ 2)x x x xz e y e y x x e xe� �∃ ) # ) � # � #

Ex. 4. Solve 2( 1) 1 cos( 2 )yD DD D z xy e x y% %� # � ∃ # # # # [Delhi Maths (H) 2001]

Sol. Re–writing the given equation %� � # ∃ # # # #( 1) ( 1) 1 cos( 2 )yD D D z xy e x y

C.F. = 1 2( ) ( )x xe y e y x�) # ) # , 1 2,) )  being arbitrary functions.

P.I. = 1
{1 cos ( 2 )}

( 1) ( 1)
yxy e x y

D D D
# # # #

%� � #

=
1

{1 ( ) cos(2 )}
1

x x d xe e x d x e d x dx
D

� �# � # # �
� Ο ,  where  d = y + x

= / 0� # � # # �
� Ο Ο Ο21

(1 ) cos( 2 )
1

x x a xe d x x e dx e dx e x d dx
D

= 21
[(1 ) ( 2 ) ( 2)

1
x x x x de dx x e d x e e e x

D
� # � � � # � #

�
 + 2 2

{cos ( 2 ) sin ( 2 )}]
1 1

xe
x d x d� # �

#

= �# � � # � #
�

21
[(1 2 2)

1
d xd x x d x e x

D
# 3 � # �(1/ 2) {cos( 2 ) sin ( 2 )}]x d x d

= 21
[ 1 ( ) ( ) 2

1
yx y x x y x x e x

D
� # # � � # # #

�
# 3 � � # � �(1/ 2) {cos( 2 ) sin( 2 )}]y x y x

= � # � # # 3 # � 3 #
�
1

{ 1 (1/ 2) cos(2 ) (1/ 2) sin (2 )}
1

yxy y x xe y x y x
D

= � # # # 3 # � 3 #
1

{( 1) ( 1) (1/ 2) cos(2 ) (1/ 2) sin(2 )}
–1

yx y xe y x y x
D

= � � # # # 3 # � 3 #Ο {( 1) ( 1) (1/ 2) cos(2 ) (1/ 2) sin(2 )}x x ke e x k xe k x k x , where y = k

= � � � �Η Ι# � # # # #ϑ ΚΛ ΜΟ Ο Ο Ο
1 1

( 1) ( 1) cos(2 )] – sin(2 )
2 2

x x k x x xe k e x dx e xe dx e k x dx e k x dx

= � � � �# � # � # � �( 1) {( ) ( 1) ( ) (1)} {( )( ) ( )(1)}]x x x x k x xe k e x e e e e x e
�

# � # # #
� #2 2

{ cos(2 ) sin(2 )}
2 ( 1) 1

x xe e
k x k x

�

� � # � #
� #2 2

{ sin(2 ) cos(2 )]
2 ( 1) 1

x xe e
k x k x

= – (k + 1) x– ek  (x + 1) + (1/2) × sin (2k + x)] = – (y + 1)x – ey (x + 1) + (1/2) sin (2y + x)

(  solution is �∃ ) # ) # � # � # # 3 #1 2( ) ( ) ( 1) ( 1) (1/ 2) sin(2 ))x x yz e y e y x x y x e y x

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



5.30 Non-homogeneous linear partial differential equations with constant coefficients

Ex 5. Solve 2 2( 2 2 2 ) sin (2 )D DD D D D z xy x y% % %� � # # ∃ # #

Ans. 2
1 2( ) ( 2 )xz y x e y x�∃ ) � # ) # # 3 � # � � � 3 #2( / 24) (6 6 9 2 12) (1/ 6) cos(2 ).x xy y x x x y

5.17. Solutions under given geometrical conditions
We have seen that solutions of non–homogeneous linear partial differential equations involve

arbitrary functions of x and y. We shall now determine these functions under the given geometrical
conditions. This will lead to the required surface satisfying the given differential equation under the
prescribed geometrical conditions.

Example.  Find a surface satisfying r + s = 0, i.e., (D2 + DD%)z = 0 and touching the elliptic
paraboloid z = 4x2 + y2 along its section by the plane y = 2x + 1. [I.A.S. 1994]

Sol.  Given (D2 + DD%)z = 0. or ( ) 0D D D%# ∃ ...(1)

( Solution of (1) is z = C.F. = )1(y) + )2(y – x), ...(2)

where 1)  and 2) are arbitrary functions.

Since (2) touches the curve given by    z = 4x2 + y2 ...(3)
and y = 2x + 1, ...(4)
values of p (= !z/!x) and q (= !z/!y) obtained from (2) and (3) must be equal for any point on (4).
( –)2%(y – x) = 8x for y = 2x + 1   or    )2%(x + 1) = –8x. ...(5)
and   )1%(y) + )2%(y – x) = 2y for y = 2x + 1 or    )1%(2x + 1) + )2%(x + 1) = 4x + 2      ...(6)

From (5), )2%(x) = 8 – 8x
Integrating it, )2(x) = 8x – 4x2 + c1, c1 being an arbitrary constant ...(7)
Subtracting (5) from (6), )1%(2x + 1) = 12x + 2 = 6(2x + 1) – 4

so that )1%(x) = 6x – 4.
Integrating it, )1(x) = 3x2 – 4x + c2, c2 being an arbitrary constant ...(8)
From (8), )1(y) = 3y2 – 4y + c2.

and from (7), )2(y – x) = 8(y – x) – 4(y – x)2 + c1.
Putting the above values of )1(y) and )2(y – x) in (2), we get

z = 3y2 – 4y + c2 + 8(y – x) – 4(y – x)2 + c1
or z = –y2 + 4y – 8x – 4x2 + 8xy + c3,    where      c3 = c1 + c2. ...(9)

Equating the values of z from (3) and (9), we get
4x2 + y2 = –y2 + 4y – 8x – 4x2 + 8xy + c3, where y = 2x + 1.

( c3 = 8x2 + 2y2 – 4y + 8x – 8xy = 8x2 + 2(2x + 1)2 – 4(2x + 1) + 8x – 8x(2x + 1) = –2
Hence, from (9), the required surface is 4x2 – 8xy + y2 –  4y + z + 2 = 0.

MISCELLANEOUS PROBLEM ON CHAPTER 5
1. Find the solution of the equation 2 2 2 2/ / cos ,xz x z y e y�! ! # ! ! ∃ which tends to zero as

x Π 4  and has the value cos y when 0x ∃ Ans. z = (1 – x/2)e–x cos y
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6
Partial Differential Equations Reducible
to Equations with Constant Coefficients

6.1. INTRODUCTION
In chapters 4 and 5, we have discussed methods of solving linear partial differential equations

with constant coefficients. In this chapter, we propose to discuss the method of solving the so-
called Euler-Cauchy type partial differential equations of the form

             
–1 –2 2

0 1 2–1 –2 2
... ... ( , ),

n n n n
n n n n

nn n n n
z z z za x a x y a x y a y f x y

x x y x y y
! ! ! !

� � � � � #
! ! ! ! ! ! ...(1)

having variable coefficients in particular form (namely the term /n nz x! !  is multiplied by ,nx

/n nz y! !  is multiplied by –, / ,n n r n ry z x y! ! ! r = 1, 2, ..., n – 1 is multiplied by –r n rx y  and so on.

If /D x∃ ! !  and / ,D y% ∃ ! !  then (1) can be re-written as

     –1 –1 –2 2 –2 2
0 1 2( ... ...) ( , )n n n n n n n n

na x D a x y D D a x y D D a y D z f x y% % %� � � � � # ...(2)

Examples of such equations are: 2 2 2 2 2 2 2 2( – ) ; – – logx D y D z xy x D y D xD yD x% % %# � #

6.2. METHOD OF REDUCING EULER-CAUCHY TYPE EQUATION TO A LINEAR
PARTIAL DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS
Consider Euler-Cauchy type equation

–1 –1 –2 2 –2 2
0 1 2 ... ...) ( , )n n n n n n n n

na x D a x yD D a x y D D a y D z f x y% % %� � � � � # ...(1)

where /D x∃ ! !  and / .D y% ∃ ! !  Define two new variables u and v by

ux e#          and          y e# v           so that          logu x#         and           log y& = ...(2)

Let 1 /D u∃ ! ! and D1% ∃ !/d&      ...(3)
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so that xnDn = (D1 - n + 1)xn ( 1Dn ( 1. ...(5)
Putting n = 2, 3, ... in (5), we have
x2D2 = (D1 ( 1)xD              or                   x2D2 = D1(D1 ( 1), using (4) ...(6)

6.1
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6.2 Partial differential equations reducible to equations with constant coefficients

x3D3 = (D1 ( 2)x2D2        or             x3D3 = D1(D1 ( 1)(D1 ( 2), using (6) ...(7)
and so on.  Similarly, we have
         yD% = D1%,              y2D2 = D1%(D1%- 1),         y3D%3 = D1%(D1% ( 1)(D1% ( 2)   ...(8)
and so on.  Also, we have   xyDD%= D1D1%. ...(9)

and                        xmynDm nD% = D1(D1 ( 1)...(D1 ( m + 1)D1%(D1% ( 1)...(D1% ( n + 1). ...(10)
Using the substitutions (2) and results (4), (5), (6), (7), (8), (9) and (10), the given equation (1)

reduces to an equation having constant coefficients and now it can easily be solved by the methods
already discussed for homogeneous (refer Chapter 4) and non-homogeneous (refer Chapter 5) linear
equations with constant coefficients.  Finally, with help of (2), the solution is obtained in terms of old
variables x and y.

6.3. WORKING RULE FOR SOLVING EULER-CAUCHY TYPE PARTIAL
DIFFERENTIAL EQUATION

–1 –1 –2 –2 2
0 1 2( ... ...) ( , )n n n n n n n n

na x D a x y D D a x y D D a y D z f x y% % %� � � � � # ...(1)

Step 1 Introduce two new variables u and v :

x = eu and y e# v , i.e., u = log x and log yv = ...(2)

Step 2 We have /D x∃ ! !  and / .D y% ∃ ! ! Also let 1 / ,D u∃ ! ! 1 /D v% ∃ ! !
Step 3 Use the following results in (1)

      
2 2 2 2

1 1 1 1 1 1
3 3 3 3

1 1 1 1 1 1

, , ( –1), ( –1)

( –1)( – 2), ( –1)( – 2) and so on

xD D yD D x D D D y D D D

x D D D D y D D D D

)% % % % %# # # # ∗
+

% % % %# # ∗,
...(3)

Step 4 Using (2) and (3) in (1), we obtain the following linear partial differential (homogeneous

or non-homogeneous)     2–1 –2
0 1 1 1 1 2 1 1 1( ... ...) ( , )nn n n

nb D b D D b D D b D z g u v% % %� � � � � #    ...(4)

Step 5 If (4) is homogeneous linear partial differential equation, then it is solved with help of
methods of chapter 4. Again, if (4) is non-homogeneous linear partial differential equation, then it
is solved with help of methods of chapter 5.

Step 6 Using u = log x and log yv =  in the solution obtained in step 5, we finally obtain the
required solution in terms of the original variables x and y.
6.4. SOLVED EXAMPLES BASED ON ART. 6.3.

Ex. 1.  Solve x2(!2z/!x2) ( y2(!2z/!y2) ( y(!z/!y) + x(!z/!x) = 0. (Jabalpur 1996)
Sol.  Let x = eu, y = ev so that u = log x, v = log y.      ...(1)
Also, let D ∃ !/!x, D % ∃ !/!y, D1 ∃ !/!u and         D1% ∃ !/!v.
Then the given equation (x2D2 ( y2D %2 ( yD % + xD)z = 0 becomes

[D1(D1 ( 1) ( D1%(D1% ( 1) ( D1% + D1]z = 0
or (D2

1 ( D%21)z = 0                         or                         (D1 ( D1%)(D1 + D1%)z = 0.
Hence the required general solution is z = C.F. = −1(v + u) + −2(v ( u)

or                z = −1(log y + log x) + −2(log y ( log x), using (1)
or z = −1 log (xy) + −2 log (y/x)      or       z = f1(xy) + f2(y/x), where f1, f2 are arbitrary functions.

Ex.2. Solve x2(!2z/!x2) + 2xy(!2z/!x!y) + y2(!2z/!y2) = 0. [Delhi Maths (H) 1994, CDLU 2004]
or Solve x2r + 2xys + y2t = 0 (Purvanchal 2007)
       Sol.  Let x = eu, y = ev            so that        u = log x, v = log y. ...(1)
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Partial differential equations reducible to equations with constant coefficients 6.3

Also, let D ∃ !/!x, D% ∃ !/!y, D1 ∃ !/!u and D1% ∃ !/!v.
Then the given equation can be written as (x2D2 + 2xyDD% + y2D%2)z = 0 which reduces to

[D1(D1 ( 1) + 2DD% + D%(D% ( 1)]z = 0
[(D1 + D1%)

2 ( (D1 + D1%)]z= 0                             or                            (D1 + D1%)(D1 + D1%( 1)z= 0.
Hence the required general solution is     z = C.F. =−1(v ( u) + eu−2(v ( u)

or z = −1(log y ( log x) + x−2(log y ( log x), using (1)
or z = −1 log (y/x) + x−2 log (y/x) or z = f1(y/x) + xf2(y/x), where f1 and f2 are arbitrary functions.

Ex. 3. Solve x2(!2z/!x2) ( 3xy(!2z/!x!y) + 2y2(!2z/!y2) + 5y(!z/!y) ( 2z = 0.
Sol.  Let x = eu, y = ev, so that            u = log x, v = log y. ...(1)
Also, let D ∃ !/!x,   D% ∃ !/!y,     D1 ∃ !/!u,     D1% ∃ !/!v.
Then the given equation (x2D2 ( 3xyDD % + 2y2D %2 + 5yD% ( 2)z = 0 becomes

[D1(D1 ( 1) ( 3D1D1% + 2D1%(D1% ( 1) + 5D1% ( 2]z = 0

or 2 2
1 1 1 1 1 1( – 3 2 – 3 – 2) 0D D D D D D z� � #% % % or (D1 ( D1% ( 2)(D1 ( 2D1% + 1)z = 0.

Hence general solution is                    z = C.F. = e2u−1(v + u) + e(u−2(v + 2u)

or   z =( ) (log log ) ( ) (log log )e y x e y xu u2
1

1
2 2− −� � �( = x2−1 log (xy) + x(1 −2 log (yx2), using (1)

or z = x2f1(xy) + x(1f2(yx2), f1, f2 being arbitrary functions.

Ex. 4.  Solve (x2D2 + 2xyDD % + y2D %2)z = xmyn,  where ( ) 0,1.m n� .

 [Delhi Maths (H) 1994, KU Kurukshetra 2004]
Sol.  Let x = eu, y = ev so that u = log x, v  = log y. ...(1)
Also, let D1 ∃ !/!u                        and                          D1% ∃ !/dv.
Then the given equation reduces to [D1(D1 ( 1) + 2D1D1% + D1%(D1% ( 1)]z = emu.env

or [(D1 + D1%)
2 ( (D1 + D1%)]z = emu + nv or (D1 + D1%)(D1 + D1% ( 1) = emu + nv

Here C.F.= −1(v ( u) + eu−2(v ( u) = −1(log y ( log x) + x−2(log y ( log x), using (1)
∋  C.F. = −1 log (y/x) + x−2 log (y/x) = f1(y/x) + xf2(y/x), where f1 and f2 are arbitrary functions.

Now, P.I. =
1 1 1 1

1 1
( )( 1) ( )( 1)

mu n mu ne e
D D D D m n m n

� �#
% %� � ( � � (

v v

       
)1 1

( ) (
( ) ( 1) ( )( 1)

u m n m ne e x y
m n m n m n m n

# #
� � ( � � (

v
, using (1).

∋  Required general solution is z = f1(y/x) + xf2(y/x) + [1/{(m + n)(m + n ( 1)}]xmyn.
Ex. 5.  Solve x2(!2z/!x2) ( 4xy(!2z/!x!y) + 4y2(!2z/!y2) + 6y(!z/!y) = x3y4.

[Jabalpur 2004; Vikram 2004; Meerut 1999; Delhi Maths (H) 1995]
Sol.  Let x = eu,           y = ev  so that       u = log x,            v = log y.   ...(1)
Also, let D ∃ !/!x, D% ∃ !/!y, , D1 ∃ !/!u         and D1% ∃ !/!v.
Then the given equation (x2D2 ( 4xyDD% + 4y2D%2 + 6yD%)z = x3y4 becomes

[D1(D1 ( 1) ( 4D1D1% + 4D1%(D1% ( 1) + 6D1%]z = e3ue4v

or [(D2
1 ( 4D1D1% + 4D%21) ( (D1 ( 2D1%)]z = e3u + 4v

or  [(D1 ( 2D1%)
2 ( (D1 ( 2D1%)]z = e3u + 4v or (D1 ( 2D1%)(D1 ( 2D1% ( 1)z = e3u + 4v

Here C.F. = −1(v + 2u) + eu−2(v + 2u) = −1(log y + 2 log x) + x−2(log y + 2 log x), using (1)
  ∋  C.F. = −1 log (yx2) + x−2 log (yx2) = f1(yx2) + xf2(yx2), where f1 and f2 are arbitrary functions.
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6.4 Partial differential equations reducible to equations with constant coefficients

Now, P.I. = 3 4 3 4

1 1 1 1

1 1
( 2 )( 2 1) {3 (2 4)} {3 (2 4) 1}

u ue e
D D D D

� �#
( ( ( ( / / ( / (% %

v v

   = (1/30) × (eu)3(ev)4 = (1/30) × x3y4, using (1)
∋  The required general solution is z = C.F. + P.I.          or       z = f1(yx2) + xf2(yx2) + (1/30) × x3y4.
Ex. 6. Solve x2(!2z/!x2) + 2xy(!2z/!x!y) ( x(!z/!x) = x3/y2.
Sol.  Let x = eu, y = ev  so that  u = log x, v = log y. ...(1)
Also, let D ∃ !/!x, D % ∃ !/!y, D1 ∃ !/!u          and D1% ∃ !/!v.
Then the given equation (x2D2 + 2xyDD% ( xD)z = x3y(2 becomes

[D1(D1 ( 1) + 2D1D1% ( D1]z = (eu)3(ev)(2

or             ( 2
1D  + 2D1D1% ( 2D1)z = e3u ( 2v          or                 D1(D1 + 2D1% ( 2)z = e3u ( 2v

∋  C.F. = −1(v) + e2u−2(v ( 2u) = −1(v) + (eu)2−2(v ( 2u)= −1(log y) + x2 −2(log y ( 2 log x), using (1)
   = −1(log y) + x2−2(log (y/x2)) = f1(y) + x2f2(y/x2), where f1 and f2 are arbitrary functions.

Now, P.I. = 1
2 2 3 3 4 21 1 1

3 2 3 2

D D D
e e eu u

( ) ( )
( ) ( )

� % (
# 0

( (
( (v v

3 2 3

29 9
x y x

y

(

# ( # (

Hence the required general solution is z = C.F. + P.I.    or      z = f1(y) + x2f2(y/x2) ( (x3/9y2).
Ex. 7.  Solve x2r ( 3xys + 2y2t + px + 2qy = x + 2y.
Sol.  The given equation can be re-written as

x2(!2z/!x2) ( 3xy(!2z/!x!y) + 2y2(!2z/!y2) + x(!z/!x) + 2y(!z/!y) = x + 2y
or (x2D2 ( 3xyDD % + 2y2D %2 + xD + 2yD%)z = x + 2y. ...(1)

Let   x = eu,                  y = ev             so that             u = log x,             v = log y.   ...(2)
Also, let D ∃ !/!x,   D % ∃ !/!y, D1 ∃ !/!u   and D1% ∃ !/!v.
∋ (1) becomes    [D1(D1 ( 1) ( 3D1D1% + 2D1%(D1% ( 1) + D1 + 2D1%]z = eu + 2ev

or (D2
1 ( 3D1D1% + 2D %21)z = eu + 2ev                or                  (D1 ( D1%)(D1 ( 2D1%)z = eu + 2ev.

∋                               C.F. = −1(v + u) + −2(v + 2u) = −1(log y + log x) + −2(log y + 2 log x)
or C.F. = −1 log (xy) + −2 log (x2y) = f1(xy) + f2(x

2y), where f1 and f2 are arbitrary functions.
Also, P.I. =

1
2

2
1 1 1 1( )( )

( )
D D D D

e eu

( % ( % � v = 1 0 0 1

1 1 1 1 1 1 1 1

1 1
2

( )( 2 ) ( )( 2 )
u ue e

D D D D D D D D
1 � 1 1 � 1�

( ( ( (% % % %
v v

 = 1
1 0 1 0

2 1
0 1 0 2( )( ) ( )( )

,
( (

�
( (

�e e x yu v =  using (2)

Hence the required general solution is  z = C.F. + P.I.       or          z = f1(xy) + f2(x
2y) + x + y.

Ex. 8.  Find the general solution of   x2(!2z/!x2) + 2xy(!2z/!x!y) + y2(!2z/!y2) + nz = n{x(!z/!x)
+ y(!z/!y)} + x2 + y2 + x3.

Sol.  Let x = eu, y = ev            so that           u = log x, v = log y. ...(1)
Also, let  D ∃ !/!x,  D% ∃ !/!y,  D1 ∃ !/!u  and D1% ∃ !/!v.
Then, the given equation reduces to

 [x2D2 + 2xyDD% + y2D%2 ( n(xD + yD%) + n]z = x2 + y2 + x3

or  [D1(D1 ( 1) + 2D1D1% + D1%(D1% ( 1) ( n(D1 + D1%) + n]z = e2u + e2v + e3u

or    {(D1 + D1%)
2 ( (D1 + D1%) ( n(D1 + D1% ( 1)}z = e2u + e2v + e3u

or    {(D1 + D1%)(D1 + D1% ( 1) ( n(D1 + D1% ( 1)}z = e2u + e2v + e3u

or                                           (D1 + D1% ( 1)(D1 + D1% ( n)z = e2u + e2v + e3u.
∋ C.F. = eu−1(v ( u) + enu−2(v ( u) = eu−1(v ( u) + (eu)n−2(v - u)

= x−1(log y ( log x) + xn−2(log y ( log x) = x−1 log(y/x) + xn−2 log(y/x), using (1)
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Partial differential equations reducible to equations with constant coefficients 6.5

= xf1(y/x) + xnf2(y/x), where f1 and f2 are arbitrary functions.

Also,P.I.= 2 2 3 2 0

1 1 1 1 1 1 1 1

1 1
( )

( 1)( ) ( 1)( )
u u ue e e e

D D D D n D D D D n
� 1� � #

� ( � ( � ( � (% % % %
v v

0 2

1 1 1 1

1
( 1)( )

ue
D D D D n

1 ��
� ( � (% %

v
+ 

3 0

1 1 1 1

1
( 1)( )

ue
D D D D n

� 1

� ( � (% %
v

=
2 2 3 2 2 3( ) ( ) ( )

(2 0 1)(2 0 ) (0 2 1)(0 2 ) (3 0 1)(3 0 ) 2 2(3 )

u ue e e x y x
n n n n n

�
� � # �

� ( � ( � ( � ( � ( � ( ( (

v

Hence general solution is    z = xf1(y/x) + xnf2(y/x) + (x2 + y2)/(2 ( n) + x3/2(3 ( n).
Ex. 9. Solve x2(!2z/!x2) ( y2(!2z/!y2) = xy or (x2D2 ( y2D%2)z = xy.

(Bilaspur 1999, Jabalpur 2003, Jiwaji 2003, 04, Vikram 2004, Ravishankar 2010,
I.A.S. 1987,  Rohilkhand 1995, Delhi Maths (H) 2004, 06)

Sol.  Let x = eu, y = ev so that u = log x, v = log y. ...(1)
Also, let D ∃ !/!x, D% ∃ !/!y,  D1 ∃ !/!u and D1% ∃ !/!v.
Then the given equation (x2D2 – y2D%2)z = xy becomes

[D1(D1 ( 1) ( D1%( 1D% ( 1)]z = euev or ( 2 2
1 1–D D % ( D1 + D1%)z = eu + v

or          [(D1 ( D1%) (D1 + D1%) ( (D1 ( D1%)]z = eu + v or (D1 ( D1%) (D1 + D1% ( 1)z = eu + v.
∋                  C.F. = −1(v + u) + eu−2(v ( u) = −1(log y + log x) + x−2(log y ( log x), using (1)

or     C.F. = −1 log (xy) + x−2 log (y/x) = f1(xy) + xf2(y/x), where f1 and f2 are arbitrary functions.

Also, P.I. =
1 1 1 1 1 1

1 1 1
( )( 1) (1 1 1) 1!

u u uue e e
D D D D D D

� � �# #
( � ( ( � (% % %

v v v =  ueuev = xy log x

Hence the required general solution is      z = C.F. + P.I.    or       z =f1(xy) + xf2(y/x) + xy log x.
Ex. 10. Solve yt ( q = xy.

Sol.  The given equation can be rewritten as           2 2( / ) ( / )y z y z y xy! ! ( ! ! #

or y2(!2z/!y2) ( y (!z/!y) = xy2                     or                           (y2D%2 ( yD%)z = xy2. ...(1)
Let x = eu, y = ev        so that u = log x, v = log y. ... (2)
Also, let  D ∃ !/!x,   D% ∃ !/!y, D1 ∃ !/!u and D1% ∃ !/!v.
Then (1) becomes [D1%(D1% ( 1) ( D1%]z = eue2v             or                  D1%(D1% ( 2)z = eu + 2v

∋ C.F. = −1(u) + e2v−2(u) = −1(log x) + y2−2(log x), by (2)
       = f1(x) + y2f2(x), f1 and f2 being arbitrary functions.

Also, P.I. = 2 2 2

1 1 1

1 1 1 1 1
1

( 2) 2 2 2 2 2
u u ue e e

D D D D
� � �# # 1

( ( � �% % %
vv v

21 1
1

2
ue

D
�#

%
v = 1

2
 eu × (ev)2 × v = xy2

2
 log y.

Hence the required general solution is z = C.F. + P.I.  or z = f1(x) + y2f2(x) + (1/2) × xy2 log y.
Ex. 11.  Solve x2(!2z/!x2) + 2xy(!2z/!x!y) + y2(!2z/!y2) = (x2 + y2)n/2. [Delhi Maths 1999]
Sol.  Let x = eu, y = ev           so that               u = log x, v = log y. ...(1)
Also, let D ∃ !/!x, D % ∃ !/!y, D1 ∃ !/!u and D1% ∃ !/!v.
Then, the given equation can be re-written as         (x2D2 + 2xyDD % + y2D %2)z = (x2 + y2)n/2

or [D1(D1 ( 1) + 2D1D1% + D1%(D1% ( 1)]z = (e2u + e2v)n/2

or   [(D1 + D1%)
2 ( (D1 + D1%)]z = (e2u + e2v)n/2  or   (D1 + D1%)(D1 + D1% ( 1)z = (e2u + e2v)n/2.
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6.6 Partial differential equations reducible to equations with constant coefficients

∋   C.F. = −1(v ( u) + eu−2(v ( u) = −1(log y ( log x) + x−2(log y ( log x), using (1)
or      C.F. = −1 log(y/x) + x−2 log(y/x) = f1(y/x) + xf2(y/x), where f1 and f2 are arbitrary functions.

P.I. = 1
11 1 1 1

2 2 2

( )( )
( ) /

D D D D
e eu n

� % � % (
� v =

0
� % � % (

� (

( )( )
{ }( ) /

D D D D
e enu n

1 1 1 1

2 2

1
1 v u

= 1
1

1
2

2 2 1
21 1 1 1

2( 4

( )( )
( / ){( / ) }

!
...) ( )

D D D D
e n e n n enu u u

� % � % (
� � ( �RST

UVW
( (v v

= 0 ( 2) 2

1 1 1 1 1 1 1 1

1 1
( )( 1) 2 ( )( 1)

nu n une e
D D D D D D D D

� 1 ( ��
� � ( � � (% % % %

v v

� (
� % � % (

�( �( / ){( / ) }
! ( )( )

...( )n n
D D D D

e n u2 2 1
2

1
11 1 1 1

4 4v

= 1
0 0 1 2

1
2 2 2 2 1

2 2
( )( ) {( ) }{( ) }

( )
n n

e n
n n

enu n u
� � (

�
( � ( � (

( � v

� (
( � ( � (

�( �( / )[( / ) ]
! {( ) }{( ) }

...( )n n
n n

e n u2 2 1
2

1
4 4 4 4 1

4 4v

= 2( ) 4( ) 2( ) / 2
2 2

( / 2){( / 2) 1}
1 ... {1 }

2 2!

nu nu
u u u ne n n n ee e e

n n n n
( ( ((2 3� � � # �4 5( (6 7

v v v

2 2 2( ) / 2
2
1 { }u u u ne e e

n n
(# �

(
v = 1 1

2
2 2 2

2
2 2 2

n n
e e

n n
x yu n n

(
� #

(
�( ) ( )/ /v , using (1)

Hence the required general solution is           z = f1(y/x) + xf2(y/x) + {1/(n2 ( n)}(x2 + y2)n/2.
Ex.12.  Solve x2r ( y2t + px ( qy = log x. [KU Kurukshatra 2004; Meerut 2008]
Or (x2D2 ( y2D %2 + xD ( yD %)z = log x. [Delhi Maths (G) 2004; I.A.S. 1997]
Sol.  Let x = eu, y = ev           so that                u = log x,           v = log y. ...(1)

Also, let D ∃ !/!x, D% ∃ !/!y, D1 ∃ !/!u      and 1D % ∃ !/!v.
Then the given equation (x2D2 ( y2D%2 + xD ( yD%)z = log x becomes

[D1(D1 ( 1) ( 1D% ( 1D % ( 1) + D1 ( 1D% )]z = u        or  (D2
1 ( D1%

8)z = u

or  (D1 + 1D% )(D1 ( 1D% )z = u.

∋ C.F. = −1(v ( u) + −2(v + u) = −1(log y + log x) + −2(log y ( log x)
or           C.F. = −1 log(xy) + −2 log(y/x) = f1(xy) + f2(y/x), where f1 and f2 are arbitrary functions.

and   P.I. = 1 1
1

1 1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

D D
u

D D D
u

D
D
D

u
( %

#
( %

# (
%F

HG
I
KJ

(

( / )

2
1

2 2
1 1

1 1 ...D u
D D

9 :%
# � �; <; <

= >
 = u3/6 = (log x)3/6, using (1)

∋  Required solution is z = f1(xy) + f2(y/x) + (1/6) × (log x)3, f1, f2 being arbitrary functions.
Ex. 13.  Solve (x2D2 ( xyDD% ( 2y2D%2 + xD ( 2yD%)z = log (y/x) ( (1/2).

[Delhi B.Sc. (Hons) III 2011]
Sol.  Let x = eu, y = ev      so that     u = log x, v = log y.   ...(1)

Also, let D ∃ !/!x, D % ∃ !/!y,  D1 ∃ !/!u     and    1D % ∃ !/!v.
Then the given equation reduces to

          [D1(D1 ( 1) ( D1 1D % ( 2 1D% ( 1D % ( 1) + D1 ( 2 1D % ]z = log y ( log x ( (1/2)

or   ( 2
1D ( D1 1D% ( 2

12D% )z = v ( u ( (1/2)     or    (D1 ( 2 1D % ? (D1 + 1D % ) = v ( u ( (1/2).
∋             C.F. =  −1(v + 2u) + −2(v – u ) = −1(log y + 2log x) + −2(log y ( log x)

or       C.F. =−1 (log(yx2)) + −2 (log(y/x)) = f1(yx2) + f2(y/x), where f1 and f2 are arbitrary functions.
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Partial differential equations reducible to equations with constant coefficients 6.7

P.I. = 2 2 22 2
1 1 1 1 1 1 1 1 1

1 1 1 1
2 22 (1 / 2 / )

v u v u
D D D' D D D' D D D

9 : 9 :( ( # ( (; < ; <% %( ( = > = >( (

= 

12
1 1 1

2 2 2
1 11 1 1

21 1 1 11 1 ...
2 2

D D Du u
D DD D D

(
≅ )9 :% % %9 :∗ ∗ 9 : 9 :( � ( ( # � � ( (; <Α + ; <; < ; <; < = > = >= >∗ ∗= >Β ,

v v

= 12 2 2
1 11 1 1

1 1 1 1 1 1 1 1 1
1

2 2 2 2
u D u u u u

D DD D D
≅ ) 9 :9 : 9 :( ( � ( ( # ( ( � 1 # ( ( �%Α +; < ; <; <= > = >= >Β ,

vv v v

2 2 2
2 2

2
1

1 1 1 1 (log ) log (log ) ,
2 2 2 2 4 2 4

u x y xu u
D

09 : 9 :# ( # ( # ( # (; < ; <
= > = >
v v v  by (1)

∋ Required solution is  z = f1(yx2) + f2(y/x) + (1/2) × (log x)2log y ( (1/4) × (log x)2.
Ex. 14.  Solve (x2D2 ( 4y2D %2 ( 4yD % ( 1)z = x2y2 log y. [Delhi Maths (H) 2006]
Sol.  Let x = eu, y = ev so that u = log x, v = log y. ...(1)
Also, let D1 ∃ !/!u and 1D % ∃ !/!v.

Then the given equation reduces to  [D1(D1 ( 1) ( 4 1D% ( 1D % ( 1) ( 4 1D % ( 1]z = e2ue2vv

or  (D2
1 ( D1 ( 4 2

1D% ( 1)z = e2u + 2vv. ...(2)

Here (D2
1 ( D1 ( 4 2

1D% ( 1) cannot be resolved into linear factors in D1 and D1%.  To find C.F..
corresponding to it, we consider the equation.

(D2
1 ( D1 ( 4 2

1D% ( 1)z = 0. ...(3)
Let a trial solution of (3) be z = Aehu + kv ...(4)

∋ 2
1D z = Ah2ehu + kv, D1z = Ahehu + kv, and                 2

1D% z = Ak2ehu + kv.
Then, (3) Χ A(h2 ( h ( 4k2 ( 1)ehu + hv = 0   Χ   h2 ( h ( 4k2 ( 1 = 0.   ...(5)
∋                                    C.F. of (2) = ∆Aehu + kv = ∆A(eu)h (ev)k = ∆Axhyk

P.I. of (2)  = 1
4 11

2
1 1

2
2 2

D D D
e u

( ( % (
� vv = e

D D D
u2 2

1
2

1 1
2

1
2 2 4 2 1

�

� ( � ( % � (
v v

( ) ( ) ( )

= e
D D D D

u2 2

1
2

1 1
2

13 4 16 15
�

� ( % ( % (
v v1

= 2 2
2 2

1 1 1 1

1
( 15) [1 (16 /15) (4 /15) (1/ 5) (1/15) ]

ue
D D D D

�

( / � / � / ( / ( /% %
v v

= e D D D Du2 2
1 1

2
1 1

2
15

4
15

1
5

1
15

�
(

(
% � % ( (L

NM
O
QP

v + v1 1 16
15

1

( ) { }

= e D eu u2 2

1

2 2

15
1 16

15 15
16
15

� �

(
( % �FH IK (

(FH IK
v v

v = v
( )

...
( )

2 2( ) ( ) (16 –15 )
225

e e/
#

u v v

= (1/225) × x2y2 (16 – 15 log y) , using (1).
The required general solution is   z = ∆Axhyk + (1/225) × x2y2(16 ( 15 log y)

where h2 ( h ( 4k2 ( 1 = 0, and A, h and k are arbitrary constants.

Ex. 15. Solve 2 2 2 2 2 2( 2 )x D xy DD y D z x y% %� � # [Delhi Maths (H) 2007]

Sol. Let x = eu, y = ev so that u = log x, v = log y ... (1)

Here %∃ ! ! ∃ ! !/ , /D x D y let 1 /D u∃ ! ! and 1 /D v% ∃ ! !
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6.8 Partial differential equations reducible to equations with constant coefficients

∋  Given equation reduces to

      2 2
1 1 1 1 1 1{ ( 1) 2 ( 1)} u vD D D D D D z e e% % %( � � ( #

or 2 2
1 1 1 1( ) ( 1) u vD D D D z e �% %� � ( #

Its C.F. = 1 2 1 2( ) ( ) (log log ) (log log )uv u e v u y x x y x− ( � − ( # − ( � − ( , by (1)

= 1 2 1 2{log( / )} {log( / )} ( / ) ( / )]y x x y x y x x y x− � − # Ε � Ε . Ε Ε1 2,  being arbitrary functions.

P.I. = 2 2 2 2

1 1 1 1

1 1

( ) ( 1) (2 2)(2 2 1)
u v u ve e

D D D D
� �#

% %� � ( � � (

2 2 2 2( ) ( )
12 12

ue e x y
# #

v

Hence the required solution is given by # Ε � Ε � / 2 2
1 2( / ) ( / ) (1/12)z y x x y x x y .

Ex. 16. Solve 2 2 2 2 2( 4 4 4 )x D xyDD y D yD xD z x y% % %( � � � #

Sol. Let # #,u vx e y e      so that      u = log x, v = log y ... (1)

Here %∃ ! ! ∃ ! !/ , / ,D x D x .   Let 1 /D u∃ ! ! and 1 /D v% ∃ ! !

Then given equation reduces to   ( ( � ( � � #% % % % 2
1 1 1 1 1 1 1 1{ ( 1) 4 4 ( 1) 4 )} u vD D D D D D D D z e e

or 22 2
1 1 1 1( 4 4 ) u vD D D D z e �% %( � # or 2 2

1 1( 2 ) u vD D z e �%( # .

C.F. = 1 2( 2 ) ( 2 )v u u v u− � � − � 1 2(log 2log ) log (log 2log )y x x y x# − � � − � , by (1)

= 2 2 2 2
1 2 1 2(log ) log (log ) ( ) log ( )yx x yx yx x yx− � − # Ε � Ε , Ε Ε1 2,  being arbitrary functions.

P.I. =
2

2 2
2

1 1

1
2!( 2 )

u v u vu
e e

D D
� �#

%(
= 2 21

(log )
2

x x y

∋   General solution is         # Ε � Ε � /2 2 2 2
1 2( ) (log ) ( ) (1/ 2) (log )z yx x yx x y x .

Ex. 17. Solve 2 2 2( 2 3 ) 8 /x D xy DD y D xD yD z y x% % %( � ( � # [Delhi Maths (H) 2005]

Sol. Let ux e# , vy e# so that logu x# , logv y# ... (1)

Here /D x∃ ! ! , /D y% ∃ ! ! . Let 1 /D u∃ ! ! and 1 /D v% ∃ ! ! .

Then the given equation reduces to  1 1 1 1 1 1 1 1{ ( 1) 2 ( 1) 3 } 8 /v uD D D D D D D D z e e% % % %( ( � ( ( � #

or     22
1 1 1 1 1 1{( 2 ) 2 ( )} 8 v uD D D D D D z e (% % %( � ( ( #    or (% %( ( ( #1 1 1 1( ) ( 2) 8 v uD D D D z e

C.F. = 2
1 2( ) ( )uv u e v u− � � − �   = 2

1 2(log log ) ( ) (log log )uy x e y x− � � − � , using (1)

      = 2 2
1 2 1 2(log ) (log ) ( ) ( )xy x xy xy x xy− � − # Ε � Ε , 1 2Ε Ε  being arbitrary functions

P.I. =
1 1 1 1

1 1
8 8

( ) ( 2) ( 1 1) ( 1 1 2)
u v u ve e

D D D D
( � ( �#

% %( ( ( ( ( ( ( (
=

v

u
e y

xe
#

∋  The required solution is 2
1 2( ) ( ) /z xy x xy y x# Ε � Ε � .

Ex. 18. 2 2 2 2( 2 3 3 )x D xy DD y D xD yD z% % %( ( � ( = 2 2cos (log )x y x

Sol. Let x = eu, y = ev      so that         u = log x,       v = log y ... (1)
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Partial differential equations reducible to equations with constant coefficients 6.9

Here %∃ ! ! ∃ ! !/ , /D x D y . Let 1 /D u∃ ! ! and 1 /D v% ∃ ! ! .
Then the given equation reduces to

1 1 1 1 1 1{ ( 1) 2 3 ( 1)D D D D D D% % %( ( ( (  + 1 13 }D D z%( = 2 cos2u ve e u .

or 22 2
1 1 1 1( 2 3 ) cos2u vD D D D z e u�% %( ( #      or 2

1 1 1( 3 ) ( ) cos2u vD D D D z e u�% %( � #

Its C.F. = 1 2( 3 ) ( )u u v u− � � − ( = 1 2(log 3log ) (log log )y x y x− � � − ( , using (1)

      = 3 3
1 2 1 2(log ) (log( / )) ( ) ( / )yx y x x y y x− � − # Ε � Ε , 1 2Ε Ε  being arbitrary functions.

P.I.  = 2

1 1 1 1

1
cos2

( 3 ) ( )
u ve u

D D D D
�

% %( �
= 2u ve �

1 1 1 1

1
cos2

{( 2) 3( 1)} ( 2 1)
u

D D D D% %� ( � � � �

     #
% %( ( � �

2

1 1 1 1

( ) ( )
cos2

( 3 1) ( 3)

u ve e
u

D D D D
= � 1

% % %( ( � ( (

2

22
1 1 1 1 1 1

cos(2 0 )
2 3 2 10 3

x y
u v

D D D D D D

      =
( ( ( 1 ( 1 � ( (%

2

2 2
1 1

cos2
2 2( 2 0) 3 0 2 10 3

x y
u

D D
= 

%( �
#

%( ( %( (

2
2 1 1

2
1 1 1 1

2 10 7
cos2 cos2

2 10 7 (2 10 ) 49

D Dx y
u x y u

D D D D

      = 2 1 1
22

1 1 1 1

2 10 7
cos(2 0. )

4 40 100 49

D D
x y u v

D D D D

%( �
�

% %( � (
=

( �%
� 1

( ( ( 1 � ( (
2 1 1

2 2

2 10 7
cos(2 0 )

4( 2 ) 40( 2 0) 100( 0 ) 49

D D
x y u v

     = – (1/65) x2y (– 4 sin 2u + 7 cos 2u) = (1/65) x2y {4 sin (2 log x) – 7 cos (2 log x)}

∋  Required solution is 3 2
1 2( ) ( / ) (1/ 65)z x y y x x y# Ε � Ε �  { 2 24sin(log ) 7cos(log )x x( }.

Ex. 19. Solve 2 2 2 2 2 2 2 4( / ) ( / ) ( / ) ( / )x z x y z y x z x y z y x y! ! ( ! ! � ! ! ( ! ! #  by reducing it to the
equation with constant coefficients. [I.A.S. 2001]

Sol. Re-writing, the given equation         2 2 2 2 2 4( )x D y D xD yD z x y% %( � ( # ... (1)

Let   ux e# and    vy e#     so that logu x#    and v = log y ... (2)

Here / , /D x D y%∃ ! ! ∃ ! ! . Let 1 /D u∃ ! ! , 1 /D v% ∃ ! ! . Then (1) becomes

1 1 1 1 1 1{ ( 1) ( 1) }D D D D D D z% % %( ( ( � ( = 2 4u ve e or 22 2 4
1 1( ) u vD D z e �%( #

or        2 4
1 1 1 1( ) ( ) u vD D D D z e �% %( � # ... (3)

C.F. = 1 2 1 2( ) ( ) (log log ) (log log )v u v u y x y x− � � − ( # − � � − ( = 1 2(log ) (log( / )}xy y x− � −

or C.F. = 1 2( ) ( / )xy y xΕ � Ε , 1 2,Ε Ε  being arbitrary functions

P.I. = 2 4 2 4
2 2 22

1 1

1 1 1
12(2 4 )

u v u ve e
D D

� �# # (
% ((

2 4 2 41
( ) ( )

12
u ve e x y# (

∋ # Ε � Ε ( / 2 4
1 2( ) ( / ) (1/12)z xy y x x y  is the required solution.

Remark.  Sometimes typical substitutions are employed to reduce a given equation into a
partial differential equation with constant coefficients as shown in the following Ex. 20.
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6.10 Partial differential equations reducible to equations with constant coefficients

Ex. 20.  Solve 1 1 1 1
2

2

2 3 2

2

2 3x
z

x x
z
x y

z
y y

z
y

!
!

( !
!

# !
!

( !
!

.

Sol.  Let x2/2 = u, y2/2 = v     so that     dx/du = 1/x,    dy/dv = 1/y. ...(1)

Now,                          !
!

z
u = !

!
# !

!
z
x

dx
du x

z
x

1 , using (1). ...(2)

and !
!

2

2
z

u
= !

!
!
!
FH IK #

!
!

!
!
FH IKu

z
u u x

z
x

1 = 
2

2 2
1 1 1 1z dx z z

x x x du x x xx x

9 :! ! ! !9 : # (; < ; <= >! ! !!= >
, using (1)

∋ !
!

2

2
z

u
= 1 1

2

2

2 3x
z

x x
z
x

!
!

( !
!

. ...(3)

Similarly, !
!

2

2
z

v
= 1 1

2

2

2 3y
z

y y
z
y

!
!

( !
!

. ...(4)

Using (3) and (4), the given equation reduces to
!2z/!u2 = !2z/!v2   or (D2

1 ( D%21)z = 0  or (D1 ( D1%)(D1 + 1D% )z = 0,  ...(5)
where D1 ∃ !/!u and D1% ∃ !/!v.  Hence solution of (5) is

                z = −1(v + u) + −2(v ( u) = −1{(1/2) × (x2 + y2)} + −2{(1/2) × (y2 ( x2)}
or                      z = f1(y

2 + x2) + f2(y
2 ( x2), f1, f2 being arbitrary functions.

EXERCISE 6
Solve the following partial differential equations:

1. 2 2 2 2 2 2 2( / ) 2 ( / ) ( / ) ( / ) ( / ) – 0x y x xy z x y y z y x z x y z y z! ! � ! ! ! � ! ! � ! ! � ! ! #

Ans. –1
1 2 1 2( / ) ( / ), ,z xf y x x f y x f f# � being arbitrary functions

2. 2 2 2 2 2( – ) .x D y D z x y% # Ans. 2
1 2( ) ( / ) (1/ 2)z f xy x f y x x y# � � /

3. 2 2 2 2( – – 2 – 2 ) log( / )x D xy DD y D xD yD z y x% % %� # (Delhi Maths (H) 2005)

Ans. 2 2
1 2( ) ( / ) (1/ 2) (log ) logz f yx f y x x y# � � / , f1, f2 being arbitrary functions

4. ( 2 2 2 2 2 2– 2 – 3 – 3 ) sin(log )x D xy DD y D xD yD z x y x% % %� #               [Nagpur 2010]

Ans. 3
1 2( ) ( / ) – (1/ 65)z f x y f y x# � × 2 2{4cos(log ) 7sin(log )}x x�

6.5. SOLUTIONS UNDER GIVEN GEOMETRICAL CONDITIONS
We have seen that solution of Euler-Cauchy type partial differential equations involve

arbitrary functions of x and y. We shall now determine these functions under the given geometrical
conditions. This will lead to the required surface satisfying the given differential equation under the
prescribed geometrical conditions.

Illustrative example. Find a surface satisfying equation 2x2r – 5xys + 2y2t + 2(px + qy) = 0
and touching the hyperbolic paraboloid z = x2 – y2 along its section by the plane y = 1.

[Meerut 1998]

Sol.  Re–writing given equation,    2 5 2 22 2

2

2 2 2

2x z
x

xy z
x y

y z
y

x z
x

y z
y

!
!

( !
! !

� !
!

� !
!

� !
!

F
HG

I
KJ = 0.

or     {2x2D2 – 5xyDD% + 2y2D%2 + 2(xD + yD%)}z = 0 ...(1)
Put x = eu, y = ev so that u = log x and v = log y.
If D1 ∃ !/!u and D1% ∃ !/! v , then (1) reduces to
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Partial differential equations reducible to equations with constant coefficients 6.11

[2D1(D1 – 1) – 5D1D1% + 2D1%(D1% – 1) + 2(D1 + D1%)]z = 0
or (2D1

2 – 5D1D1% + 2D1%
2) = 0 or (2D1 – D1%)(D1 – 2D1%) = 0.

∋ solution is  z = C.F. = −1(2 v  + u) + −2(u + 2 v ), −1, −2 being arbitrary function
or z = −1(2 log y + log x) + −2(log y + 2 log x) = −1(log y2x) + −2(log yx2)
or z = f1(y

2x) + f2(yx2), f1 and f2 being arbitrary functions ...(2)
The given surface is z = x2 – y2. ...(3)
Now (2) and (3) are to touch each other along the section by the plane

y = 1. ...(4)
Therefore the values of p and q for (2) and (3) must be equal at y = 1.  Equating values of p

and q from (2) and (3), we get
y2f1%(y

2x) + 2xyf2%(x
2y) = 2x ...(5)

and 2xyf1%(y
2x) + x2f2%(x

2y) = –2y. ...(6)
Putting y = 1, (5) and (6) reduce to
f1%(x) + 2xf2%(x

2) = 2x and                        2xf1%(x) + x2f2%(x
2) = –2.

Solving these,             f1%(x) = –(2/3) × x – (4/3) × x–1 ...(7)
and            f2%(x

2) = (2/3) × x–2 + (4/3) ...(8)
Integrating (7),            f1(x) = –(1/3) × x2 – (4/3) × log x + c1

which gives          f1(y
2x) = –(1/3) × y4x2 – (4/3) × log (y2x) + c1.   ...(9)

Writing X for x2 in (8),        2f % (X) = (2/3) × (1/X) + (4/3)
Integrating it,         f2(X) = (2/3) × log X + (4/3) × X + c2

which gives                   f2(yx2) = (2/3) × log (yx2) + (4/3) × (yx2) + c2 ...(10)
Putting the values of f1(y

2x) and f2(yx2) from (9) and (10) in (2) and writing c1 + c2 = c/3, the
complete solution is

z = –(1/3) × y4x2 – (4/3) × log (y2x) + (2/3) × log(yx2) + (4/3) × (yx2) + c/3
or 3z = –y4x2 – 4(log x + 2 log y) + 2(log y + 2 log x) + 4yx2 + c
or       3z = –y4x2 – 6 log y + 4yx2 + c.

Now equating values of z from (3) and (11) and putting y = 1, we have
x2 – 1 = (1/3)[–x2 – 6 log 1 + 4x2 + c], giving c = –3.

So the required surface is    3z = 4yx2 – y4x2 – 6 log y – 3.

MISCELLANEOUS  PROBLEMS  ON  CHAPTER  6

1. Show that a linear partial differential equation of the type

          ( , )
q s

q s
qs q s

zC x y f x y
x y

�!
Φ #

! !
may be reduced to one with constant coefficients by the substitutions log x ! Γ ,  log y ! Η .

(Meerut 2008)

2. Find the general solution of 2 2 2 2 2 2( / ) ( / )x z x y z y z! ! � ! ! # [Pune 2010]

Sol. Let          x ! eu      and    y ! ev     so that     u ! log x     and     v ! log y ... (1)

Also,    let       1/ , / , /D x D y D u∃ ! ! % ∃ ! ! ∃ ! !   and  1 /D v% # ! ! ... (2)
Then, the given equation (x2 D2 + y2 D%8 – 1) z = 0   reduce to

1 1 1 1{ ( 1) ( 1) 1} 0D D D D z% %( � ( ( #            or            2
1 1 1 1( 1) 0D D D D z% %� ( ( ( # ... (3)

Let z = A ehu + kv be a trial solution of (3). Then, we have
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6.12 Partial differential equations reducible to equations with constant coefficients

2 2
1 1 1, ,hu kv hu kv hu kvD z Ah e D z Ah e D z Ak e� � �%# # #   and   2

1
hu kvD z Ak e �% #

Substituting the above values of 2
1 1 1, ,D z D z D z%  and 2

1D z%  in (3), we have

2 2( 1) 0hu kvA h k h k e �� ( ( ( #    so that  2 2 1 0,h k h k� ( ( ( #  taking 0A . ... (4)

Hence the required solution is given by

i ih u k v
i

i
z A e �# Φ                     or          

log log ,i ih x k y
i

i
z A e �# Φ  using (1)

or                           , , andi ih k
i i i iz A x y A h k# Φ being arbitrary constants.
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7
Partial Differential Equations of order

Two With Variable Coefficients

7.1 INTRODUCTION

In the present chapter, we propose to discuss partial differential equations of order two with
variable coefficients. An equation is said to be of order two, if it involves at least one of the differen-
tial coefficients r (= !2z/!x2), s (= !2z/!x!y), t (= !2z/!y2), but none of higher order ; the quantities p
and q may also enter into the equation. Thus, the general form of a second order partial differential
equation is                          f(x, y, z, p, q, r, s, t) = 0.    ...(1)

The most general linear partial differential equation of order two in two independent variables
x and y with variable coefficients is of the form

Rr + Ss + Tt + Pp + Qq +  Zz = F, ...(2)
where R, S, T, P, Q, Z, F are functions of x and y only and not all R, S, T are zero.

In what follows, we shall show how a large class of second order partial differential equations
may be solved by using the methods of solving ordinary differential equations.

Note that x and y, being independent variables, are constant with respect to each other in differ-
entiation and integration.  To understand this, note the solution of the following equation.

                      s = 2x + 2y. ...(3)

From (3), !
! !

2z
x y

=  2x + 2y                    or
z

x y
� #! !
∃ %! !& ∋

= 2x + 2y.. ...(4)

Integrating (4) w.r.t. ‘x’, (!z/!y) = x2 +2xy + f(y), where f (y) in an arbitrary functions of y. ...(5)
Integrating (5) w.r.t. ‘y’,     z = x2y + xy2 + F(y) + g(x),

where  F and g are arbitrary functions and F(y) is given by                     ( ) ( ) .F y f y dy( )

In what follows we shall use the following results.

p = !
!

z
x

,  q = !
!

z
y

,                 r = !
!

( !
!

!
!
FH IK ( !

!

2

2
z

x x
z
x

p
x

t = !
!

( !
!

!
!
F
HG
I
KJ (

!
!

2

2
z

y y
z
y

q
y

and          s =
2z z z q p

x y x y y x x y
� #! ! ! ! ! ! !� #( ( ( (∃ % ∃ %! ! ! ! ! ! ! !& ∋& ∋

.

We shall now consider some special types of equations based on (2).
7.2. Type I.  Under this type, we consider equations of the form

r = !
!

( (
2

2 1
z

x
F
R

f x y( , ) ,  t = !
!

(
2

2
z

y
F
T

= f2(x, y), s = !
! !

(
2z

x y
F
S

= f3(x, y).

These are homogeneons linear partial differential equations with constant coefficients and can
be solved by methods discussed in chapter 4.  However a more direct method of solving such equa-
tion will be used in practice.

7.1
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7.2 Partial Differential Equations Of Order Two With Variable Coefficients

7.3 SOLVED EXAMPLES BASED ON ART 7.2.
Ex 1. Solve the following partial differential equations:

(i) r = 6x.   [Agra 2009; Bhopal 2010]      (ii)  ar = xy [Meerut 2001; Vikram 2003]

(iii) 2 yr x e( [Indore 2004]     (iv)  22r y(

(v) sin( )r xy(
Sol. (i)  Given equation can be written as                   !2z/!x2 = 6x. ...(1)
Integrating (1) with respect to ‘x’, !z/!x = 3x2 + ∗1(y), ...(2)

where ∗1(y) is an arbitrary function of y.
Integrating (2) with respect to ‘x’, z = x3 + x∗1(y) + ∗2(y),

where ∗2 (y) is an arbitrary function of y.
(ii) Given equation can be written as !2z/!x2 = (1/a) × xy. ...(1)
Integrating (1) w.r.t. ‘x’, !z/!x = (y/a) × (x2/2) + ∗1(y). ...(2)
Integrating (2) w.r.t. ‘x’, z = (y/6a) × x3 + x∗1(y) + ∗2(y),

which is the required general solution, ∗1, ∗2 being arbitrary functions.
(iii) Try yourself. Ans. z = (ey/12) × x4 + x∗1(y) + ∗2(y).
(iv) Try yourself. Ans.  z = x2y2 + x∗1(y) + ∗2(y).
(v) Given equation can be written as !2z/!x2 = sin (xy). ...(1)
Integrating (1) w.r.t. ‘x’. !z/!x = + (1/y) × cos (xy) + ∗1(y). ...(2)
Integrating (2) w.r.t. ‘x’, z = + (1/y2) × sin (xy) + x∗1(y) + ∗2(y),

which is the required general solution, ∗1, ∗2 being arbitrary functions.
Ex. 2.  Solve (i) t = sin (xy) (Meerut 2008) (ii)  t = x2 cos (xy).
Sol.(i) Given equation can be written as !2z/!y2 = sin (xy). ...(1)
Integrating (1) w.r.t. ‘y’, !z/!y = + (1/x) × cos (xy) + ∗1(x). ...(2)
Integrating (2) w.r.t., ‘y’, z = + (1/x2) × sin (xy) + y∗1(x) + ∗2(x),

which is the required solution, ∗1, ∗2 being arbitrary functions.
(ii) Given equation can be written as !2z/!y2 = x2cos (xy). ...(1)
Integrating (1) w.r.t. ‘y’, !z/!y = x sin (xy) + ∗1(x). ...(2)
Integrating (2) w.r.t. ‘y’, z = + cos (xy) + y ∗1(x) + ∗2(x),

which is the required solution, ∗1, ∗2 being arbitrary functions.
Ex. 3.  Solve the following partial differential equations:
(i) xys = 1        [Agra 2007; Rewa 2004, Vikram 2005]           (ii)  xy2s = 1 + 2x2y        

(iii) log s = x + y   (iv) s = x + y
(v) s = x2 + y2 (vi) x2s = sin y
(vii) s = (x/y) + a (viii) s = 0.

Sol. (i)  Re-written the given equation,       !
!

!
!
F
HG
I
KJx

z
y

= 1
xy

. ...(1)

Integrating (1) w.r.t. ‘x’, !z/!y = (1/y)× log x + ∗1(y).
Integrating (2) w.r.t. ‘y’, z = log x log y + ∗ ,1 2( ) ( )y dy x−z

or z = log x log y + ,1(y) + ,2(x),  taking ,1(y) = ∗1( )y dyz .
which is the required general solution, ,1, ,2 being arbitrary functions.

(ii) Given equation is            !
!

!
!
F
HG
I
KJx

z
y

= 1 2
2xy

x
y

+ . ...(1)
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Partial Differential Equations Of Order Two With Variable Coefficients 7.3

Integrating (1) w.r.t. ‘x’,   !z/!y = (1/y2) × log x + (x2/y) + ∗1(y). ...(2)
Integrating (2) w.r.t. ‘y’,          z = + (1/y) × log x + x2 log y + ∗ ,1 2( ) ( )y dy xz −

or                 z = + (1/y) × log x + x2 log y + ,1(y) + ,2(x), taking ,1(y) = ∗1( )y dyz .
which is the required general solution, ,1, ,2 being arbitrary functions.

(iii) The given equation log s = x + y can be rewritten as

s = ex + y             or
!

!
!
!
F
HG
I
KJx

z
y = ex . ey. ...(1)

Integrating (1) w.r.t. ‘x’, !z/!y = ex ey + ∗1(y). ...(2)

Integrating (2) w.r.t. ‘y’, z = ex ey + ∗1 2( ) ( )y dy xz −,

or z = ex + y + ,1(y) + ,2(x), where ,1(y) = ∗1( )y dyz , 1 2,, ,  being arbitrary functions
(iv) Try yourself. Ans. z = (1/2) × (x2y + xy2) + ,1(y) + ,2(x).
(v) Try yourself. Ans. z = (1/3) × (x3y + xy3) + ,1(y) + ,2(x).

(vi)Given equation can be written as                     !
!

!
!
F
HG
I
KJx

z
y

= sin y
x2 . ...(1)

Integrating (1) w.r.t. ‘x’, !z/!y = + (1/x) × sin y + ∗1(y). ...(2)

Integrating (2) w.r.t. ‘y’,       z = (1/x) cos y + ∗1 2( ) ( )y dy xz −,
or z = (1/x) cos y + ,1(y) + ,2(x), where ,1(y) = ∗1( )y dyz , 1 2,, ,  being arbitrary functions

(vii) Try yourself. Ans. z = (1/2) × x2 log y + axy + ,1(y) + ,2(x).
(viii) Try yourself. Ans. z = ,1(y) + ,2(x).
Ex. 4.  Solve (i)  xr = p     [Agra 2007] (ii)  rx = (n + 1)p.
Sol.(i)  Given equation can be rewritten as

x !
!

2

2
z

x
= !

!
z
x                         or                                          ! !

! !

2 2z x
z x

= 1
x

.

Integrating, log (!z/!x) = log x + log ∗1(y) or !z/!x = x∗1(y).
Integrating it w.r.t. x,   z = (x2/2) × ∗1(y) + ∗2(y), where ∗1(y) and ∗2(y) are arbitrary functions.

(ii) Given x !
!

2

2
z

x
= (n + 1) !

!
z
x

       or                            
! !

! !

2 2z x
z x =

n
x
+ 1 .

Integrating,    log (!z/!x) = (n + 1) log x + log ∗1(y)  or !z/!x = xn+1 ∗1(y).

Integrating it,                      z = (xn/n) × ∗1(y) + ∗2(y), 1 2,∗ ∗  being arbitrary functions.

Ex. 5.  Solve (i)  xr + 2p = 0 (ii)  2yq + y2t = 1.
Sol.(i)  The given equation can be rewritten as

x !
!
p
x  + 2p = 0         or             x2 !

!
p
x  + 2xp = 0            or           !

!x (x2p) = 0. ...(1)

Integrating (1) w.r.t. ‘x’, x2p = ∗1(y) or p = !z/!x = (1/x2) × ∗1(y).

Integrating it w.r.t. ‘x’, z = + (1/x) × ∗1(y) + ∗2(y), 1 2,∗ ∗  being arbitrary functions.

(ii) The given equation can be rewritten as

       2yq + y2 !
!
q
y

= 1                               or                                         !
!y

(y2q) = 0. ...(1)

Integrating (1) w.r.t. ‘y’, y2q = ∗1(x)          or                 q = !z/!y = (1/y2) × ∗1(x).

Integrating it, z = + (1/y) × ∗1(x) + ∗2(x), 1 2,∗ ∗  being arbitrary functions.
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7.4 Partial Differential Equations Of Order Two With Variable Coefficients

Ex. 6.  Solve xs + q = 4x + 2y + 2.
Sol.The given equation can be re-written as

x
!
!

− !
!

p
y

z
y = 4x + 2y + 2                                        or                  

!
!y (xp + z) = 4x + 2y + 2.

Integrating it w.r.t. ‘y’, xp + z = 4xy + y2 + 2y + ∗1(x)

or                x !
!

z
x  + z = 4xy + y2 + 2y + ∗1(x)                    or            !

!x (xz) = 4xy + y2 + 2y + ∗1(x).

Integrating it w.r.t. ‘x’,                  xz = 2x2y + xy2 + 2xy + ∗1 2( ) ( )x dx y−z ,
or    . Required solution is xz = 2x2y + xy2 + 2xy + ,1(x) + ,2(y), where ,1(x) = ∗1( )x dxz .

Ex. 7.  Solve ys + p = cos (x + y) + y sin (x + y). [Meerut 1995]
Sol.The given equation can be rewritten as

y !
!

− !
!

q
x

z
x = cos (x + y) + y sin (x + y)                   or               !

!x
(yq + z) = cos(x + y) + y sin (x + y).

Integrating it w.r.t. ‘x’,               yq + z = sin (x + y) + y cos (x + y) + ∗1(y).

or   
zy
y

!
!

 + z = sin (x + y) + y cos (x + y) + ∗1(y)          or               ( )yz
y

!
!

=sin (x + y) + y cos (x + y) + ∗1(y).

Integrating it w.r.t. ‘y’, yz = sin ( ) cos( ) ( ) ( )x y dy y x y dy y dy y− − − − −z zz ∗1 2,

or yz = sin ( ) sin( ) sin( ) ( ) ( )x y dy y x y x y dy y y− − − + − − −z z , ,1 2

[Integrating by parts and taking ,1(y) = ∗1 ( )y dyz ]
Required solution is   yz = y sin (x + y) + ,1(y) + ,2(y), ,1, ,2 being arbitrary functions.
7.4. Type II.  Under this type, we consider equations of the form:

Rr + Pp = F,         i.e.,          R !
!
p
x  + Pp = F ;          Ss + Pp = F,              i.e., S

!
!
p
y  + Pp = F,

Ss + Qq = F,         i.e.,         S !
!
q
x  + Qq = F ;           Tt + Qq = F,             i.e., T

!
!
q
y  + Qq = F.

These will be treated as ordinary linear differential equations of order one in which p (or q) is
the dependent variable.

7.5 SOLVED EXAMPLES BASED ON ART 7.4
Ex. 1.  Solve (i)  t + xq = x2. [Ravishanker 2010;  Nagpur 1996]
(ii)  yt + q = xy. [Meerut 1997]
Sol. (i)  The given equation can be rewritten as                (!q/!y) + xq = x2, ...(1)

which is linear differential equation  in variables q and y,  regarding x as constant.

Integrating factor (I.F.) of (1) = e x dy( )+z = e+xy and solution of (1) is

q(I.F.) = ( ) ( . .) ( )x I F dy x2
1−z ∗                   or                             qe+xy = x e dy xxy2

1
+ −z ∗ ( )

or   qe+xy = x2× (+1/x) × e+xy + ∗1(x)                        or                             q = /z y! ! = +x + exy∗1(x).
Integrating it w.r.t. ‘y’,   z = + xy + (1/x) × ∗1(x) exy + ,2(x)

or         z = + xy + ,1(x)exy + ,2(x), where ,1(x) = (1/x) × ∗1(x).
It is the required solution, ,1, ,2 being arbitrary functions.
(ii) The given equation can be rewritten as    y(!q/!y) + q = xy   or (!q/!y) + (1/y)×q = x,

which is differential equation linear in variables q and y, regarding x as constant.

I.F. of (1) = e y dy( / )+z 1 = e+ log y = 1/y  and solution of (1) is
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Partial Differential Equations Of Order Two With Variable Coefficients 7.5

q × 1
y

= 1
1

( )x dy x
y

� #
/ − ∗∃ %& ∋)                       or                               q

y
= x log y + ∗1(x)

or   q = xy log y + y∗1(x)                            or                           !z/!y = xy log y + y∗1(x).

Integrating it, 0 12 2( / 2) log ( / 2) (1/ )z x y y y y dy2 3( / + /4 56 7)  + (y2/2) × ∗1(x) + ∗2(x)

or   z = (1/2) × xy2 log y + (1/4) × xy2 + (1/2) × y2 ∗1(x) + ∗2(x), 1 2,∗ ∗  being arbitrary functions
Ex. 2.  Solve xs + q = 4x + 2y + 2.

Sol. Re-writing x !
!
q
x  + q = 4x + 2y + 2 or         !

!
−q

x x
1 q = 4 + 2 2y

x x
− .

Its I.F. = e x dx( / )1z = elog x = x and hence its solution is

qx = x y
x x

dx4 2 2− −FH IKz  + ∗1(y) = 2x2 + 2xy + 2x + ∗1(y)

or                             q = !z/!y = 2x + 2y + 2 + (1/x) × ∗1(y).

Integrating,                     z = 2xy + y2 + 2y + (1/x) × ∗1( )y dyz  + ,2(x)

or                          z = 2xy + y2 + 2y + (1/x) × ,1(y) + ,2(x), where ,1(y) = ∗1( )y dyz .
Ex. 3.  Solve xr + p = 9x2y3. [Ranchi 2010]

Sol. The given equation can be re-written as x !
!
p
x  + p = 9x2y3             or     !

!
−p

x x
1 p = 9xy3.

Its I.F. = e x dx( / )1z = elog x = x  and hence solution is

px = 3{ (9 )}x xy dx/)  + ∗1(y)                          or                                  px = 3x3y3 + ∗1(y)

or   p = 3x2y3 + (1/x) × ∗1(y)                              or                       (!z/!x) = 3x2y3 + (1/x) × ∗1(y).
Integrating,                             z = x3y3 + ∗1(y) log x + ∗2(y),

which is the required solution, ∗1, ∗2 being arbitrary functions.
Ex. 4.  Solve ys + p = xy2 cos (xy).

Sol. Re-writing given equation,  y !
!
p
y

+ p = xy2 cos (xy) or !
!

+p
y y

1 p = xy cos (xy).

Its I.F. = e y dy( / )+z 1 = e+log y = 1/y  and so its solution is

p × (1/y) = (1/ ) [ cos( )]y xy xy dx/)  + ∗1(x)  = sin (xy) + ∗1(x)

or p = y sin (xy) + y ∗1(x)                           or                         !z/!x = y sin (xy) + y∗1(x).

Integrating, z = + cos (xy) + y ∗1 ( )x dxz  + ,2(y)

or                    z = + cos (xy) + y,1(x) + ,2(y), where ,1(x) = ∗1 ( )x dxz .

Ex. 5.  Solve t + xq = + sin y + x cos y.
Sol.Re-writting,  (!q/!y) +xq = +sin y +x cos y, which is linear differential equation in q and y.

Its I.F. = e x dy( )+z = e+xy and so its soltion is

   qe+xy= + e xy+z (sin y + x cos y)dy + ∗1(x) = + e xy+z sin y dy + x e xy+z cos y dy + ∗1(x)

     =  + e xy+z sin y dy + x + + FH IKL
NM

O
QP

+ +z1 1
x

e y
x

e y dyxy xycos sin  + ∗1(x)
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7.6 Partial Differential Equations Of Order Two With Variable Coefficients

           = + e xy+z sin y dy + e+xy cos y + e xy+z sin y dy + ∗1(x)
or (!z/!y) e+xy = e+xycos y + ∗1(x)                   or                           (!z/!y) = cos y + exy ∗1(x).

Integrating, z = sin y + (1/x) × exy ∗1(x) + ,2(x)
or z = sin y + exy ,1(x) + ,2(x), where ,1(x) = (1/x) × ∗1(x).

Ex. 6.  Solve xys + qy = x2. [Delhi Maths Hons. 1992, 93]
Sol.  Re-writing the given equation, we have

xy !
!
q
x

+ qy = x2      or    
!
!

+q
x x

1 q =
x
y . ...(1)

which is linear differential equation in variables q and x.
Integrating factor of (1) = e+f (1/x) dx = e+log x = (1/x). Hence solution of (1) is given by

q × 1
x = {( / ) (1/ )}x y x dx/) =

x
y  + f(y)           or                 !

!
(z

y
x
y

2
+ x f(y). ...(2)

Integrating (2), z = x2 log y + x∗1(y) + ∗2(x), where ∗1(y) and ∗2(x) are arbitrary functions.
Ex. 7.  Solve  xs + q + xp + z = (1 + y) (1 + log x).

Sol. Re-writing the given equations !
! !

− !
!

+ !
!

−FH IK
2 1z

x y x
z
y

z
x

z
x

=
1+ y

x
 (1 + log x)

or !
!

!
!

−FH IK + !
!

−FH IKy
z
x

z
x

z
x

z
x

=
1+ y

x  (1 + log x). ...(1)

Let u = (!z/!x) + (z/x). ...(2)

. (1)    8    !
!
u
y

+ u =
1+ y

x  (1 + log x), which is linear differential equation ...(3)

Integrating factor of (3) = e dy+z = e+y and so solution of (3) is

ue+y=
1+z y

x  (1 + log x)e+y dy =
1− log x

x
( )1+z y e+ydy

      =
1− log x

x
( )( ) ( )( )1 1+ + + +L
NM

O
QP

+ +zy e e dyy y
=

1− log x
x  [+e+y + y e+y + e+y] + ∗(x)

or                u = (y/x) × (1 + log x) + ey ∗(x). ...(4)

Then, using (2), !
!

−z
x

z
x

= y
x

(1 + log x) + ey∗(x), which is linear differential equation ...(5)

Integrating factor of (5) = e x dx( / )1z = elog x = x and solution of (5) is

zx = x
y
x

x e xy( log ) ( )1− −L
NM

O
QPz ∗ dx + ∗2(y) = y ( log ) ( ) ( )1 2− − −zz x dx e x x dx yy ∗ ∗

or zx = 0 1(1 log ) (1/ )y x x x x dx2 3− / + /4 56 7)  + ey∗1(x) + ∗2(y)       or        zx = xy log x + ey∗1(x) + ∗2(y).

Ex. 8.  Solve ys + p = cos (x + y) + y sin (x + y). [Meerut 1995]

Sol. Re-writing given equation,                        !
!

−p
y y

1 p = 1
y

cos (x + y) + sin (x + y), ...(1)

which is linear differential equation whose  I.F. = e y dy( / )1z = y and so solution of (1) is

py = y
y

x y x y dy1 cos( ) sin ( )− + −L
NM

O
QPz = sin (x + y) + y x y dysin ( )−z

 = sin (x + y) + + − + + −LNM OQPzy z y x y dycos( ) { cos( )}

= sin (x + y) + y cos (x + y) + sin (x + y) + F(x)
.       y(!z/!x) = y cos (x + y) + F(x)           or                (!z/!x) = cos (x + y) + (1/y) × F(x).
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Partial Differential Equations Of Order Two With Variable Coefficients 7.7

Integrating,           z = sin (x + y) + (1/y) × ∗1(x) + (1/y) × ∗2(y), where ∗1(x) = F x dx( )z
or          yz = y sin (x + y) + ∗1(x) + ∗2(y), ∗1, ∗2 being arbitrary functions

Ex. 9.  Solve yt + 2q = (9y + 6)e2x + 3y.

Sol.Re-writing,    !
!

−q
y y

2 q = 9 6−FHG
I
KJy e2x + 3y, which is linear differential equations    ...(1)

whose integrating factor = e y dy( / )2z = e2 log y = y2 and so solution of (1) is

qy2 = y
y

2 9 6−FHG
I
KJz e2x + 3ydy = e2x ( )9 62y y−z e3y dy

or qy2 = e2x ( ) ( )9 6 1
3

18 6 1
9

18 1
27

2 3 3 3y y e y e ey y y− FH IK + − FH IK − FH IKL
NM

O
QP+ ∗1(x)

[using chain rule of integrating by parts]
or qy2 = 3y2e2x + 3y + ∗1(x)  or y2(!z/!y) = 3y2 e2x + 3y + ∗1(x).

.  (!z/!y) = 3e2x + 3y + (1/y2) × ∗1(x).
Integrating, z = e2x + 3y + (1/y) × ∗1(x) + ∗2(x), ∗1, ∗2 being arbitrary functions.

Ex. 10. Solve (i) 22 1yq y t− ( (ii) xr + p = 9x2 y2.

Sol. (i) Re-writing given equation 22 ( / ) 1yq y q y− ! ! ( or 2/ (2 / ) 1/q y y q y! ! − ( ,
which is linear differential equation in variables q and y, regarding x as constant.

Its I.F. =
(2/ ) 2 log 2y dy ye e y( () and solution is 2 2

1(1/ ) ( )qy y dy x( − ∗)
or 2

1 ( )qy y x( − ∗ or ! ! ( − / ∗2
1/ (1/ ) (1/ ) ( )z y y y x .

Integrating it w.r.t. ‘y’, z = log y – (1/y) × 1 2( ) ( )x x∗ − ∗ , where 1 2and∗ ∗ are arbitrary functions.

(ii) Do as in Ex. 3 of Art 7.5. Ans. z = x3y2 + log x 1 2( ) ( )y y∗ − ∗ .
7. 6. Type III.  Under this type, we consider equations of the form

                          Rr + Ss + Pp = F or ( / ) ( / )R p x S p y! ! − ! ! = F + Pp
and             Ss + Tt + Qq = F               or               ( / ) ( / )S q x T q y! ! − ! ! = F + Qq.

These are linear partial differential equations of order one with p (or q) as dependent variable
and x, y, as independent variables.  In such situations we shall apply well known Lagrange’s method
(for more details refer chapter 2).

Recall that Pp + Qq = R is solved by considering its auxiliary equatrions dx/P = dy/Q = dz/R.
Sometimes the given equation can be reduced to Pp + Qq = R with help of integration of the given
equation.
7.7 SOLVED EXAMPLES BASED ON ART 7.6

Ex. 1.  Solve t + s + q = 0. [Meerut 1994]
Sol.Re-writing the given equation,                     (!q/!y) + (!p/!y) + (!z/!y) = 0.
Integrating w.r.t. ‘y’, q + p + z = f(x)    or     p + q = f(x) + z, ...(1)

which is in Lagrange’s form Pp + Qq = R.  Its Lagrange’s auxiliary equations are

     dx
1 =

dy
1 = dz

f x z( )+
. ...(2)

From first and second fractions of (2), dx + dy = 0
Integrating,    x + y = c1, c1 being an arbitrary constant. ...(3)
From first and third fraction of (2), (dz/dx) = f(x) + z or (dz/dx) + z = f(x).
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7.8 Partial Differential Equations Of Order Two With Variable Coefficients

Its I.F. = e dxz = ex  and hence its solution is zex = e f x dx cx ( ) −z 2

or      zex + ∗(x) = c2, where ∗(x) = e x dxx( )z  and c2 is an arbitrary constant ...(4)
From (3) and (4), the required general solution is
zex + ∗(x) = ,(x + y)      or    zex = ∗(x) + ,(x + y), where ∗ and , are arbitrary functions.
Ex. 2.  Solve p + r + s = 1. [Kanpur 2004; Meerut  2005, 10]
Sol. Re-writing the given equation (!z/!x) + (!p/!x) + (!q/!x) = 1
Integrating w.r.t. ‘x’,   z + p + q = x + f(y)              or             p + q  =  x + f(x) + z,   ...(1)

which is in Langrange’s form Pp + Qq= R.  Its Lagrange’s auxiliary equations are

                                      dx
1 =

dy dz
x f y z1

(
− +( ) . ... (2)

From first and second fractions of (2),                                dx + dy = 0.
Integrating,                            x + y = c1,  c1 being an arbitrary constant. ...(3)
From second and third fractions of (2),  (dz/dy) = x+ f(y) + z or (dz/dy) + z = x + f(y).

Its I.F. = e dyz = ey and hence its solution is

zey = { ( )}x f y e dy cy− −z 2 = x e dy e f y dy cy yz z− −( ) 2

or zey + xey + ∗(y) = c2, where ∗(y) = e f y dyy ( )z . ...(4)
From (3) and (4), the required general solution is            zey + xey + ∗(y) = ,(x + y)

or (z + x)ey = ∗(y) + ,(x + y), where ∗ and , are arbitrary functions.
Ex. 3.  Solve s + t = x/y2. [Ravishankar 2005; I.A.S. 1988]

Sol. The given equation can be re-written as !
!

+ !
!

p
y

q
y

= x
y2 or !

!y
 (p + q) = xy+2.

Integrating it w.r.t.   ‘y’, p + q = + (x/y) + f(x), ...(1)
which is in Lagrange’s form Pp + Qq = R.  Its auxiliary equations are

                        dx
1

= 
dy dz

x y f x+
(

+ −1 ( / ) ( )
. ... (2)

Taking first two fractions of (2), dx + dy = 0 so that x + y = c1. ...(3)
Taking first and third fractions of (2), dz = [+ (x/y) + f(x)] dx

or                       dz = 9 :1{ /( – )} ( )x c x f x+ − dx,  since from (3), y = c1 + x
or dz = 1 1[1–{ /( – )} ( )]c c x f x− dx.

Integrating,          z = x + c1 log (c1 + x) + ∗(x) + c2,  where ∗(x) = f x dx( )z
or                                z + x + (x + y) log y + ∗(x) = c2,  using (3). ...(4)

From (3) and (4), the required general solution is        z + x + (x + y) log y + ∗(x) = ,(x + y)
or            z = x + (x + y) log y + ∗(x) + ,(x + y), where ∗ and , are arbitrary functions.

Ex. 4.  Solve xyr + x2s + yp = x3ey.
Sol. Re-writing the given equations,       xy(!p/!x) + x2(!p/!y) = yp + x3ey. ...(1)

Here Lagrange’s auxiliary equations for (1) are                dx
xy

= 
dy
x

dp
yp x ey2 3(

−
. ...(2)

From the first two fractions of (2), 2xdx + 2ydy = 0    so that       x2 – y2 = c1. ... (3)
From second and third fractions of (2),                 dp/dy = (yp + x3ey)/x2
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Partial Differential Equations Of Order Two With Variable Coefficients 7.9

or dp
dy

yp
x

+ 2 = xey                or dp
dy

y
y c

+
−2

1
p = 2 1/ 2

1( ) ,yy c e−

[� from (3), x2 = y2 + c1 so that x = 2 1/ 2
1( )y c− ]

         Its I.F. =
2 21 1

{ /( )} (1/ 2) log( )y y c dy y ce e
+ − + / −() = (y2 + c1)

+1/2 and solution of above equation is

       p (y2 + c1)
+1/2 =

2 1/ 2
1{( )y c +−) . ey(y2 + c1)

1/2} dy + c2 = e dy cy −z 2 = ey + c2

or px+1 = ey + c2,  as from (3)  y2 + c1 = x2. ... (4)
From (3) and (4), the general solution of (1) is (p/x) + ey = f(x2 + y2)

or   p = x ey + x f (x2 +y2)    or !z/!x = x ey + x f (x2 +y2), f being an arbitrary function.

Integrating the above equation w.r.t. ‘x’, z = ey x dx x f x y dx yz z− + −( ) ( )2 2 ∗

or                  z = (1/2) × x2ey + ,(x2 + y2) + ∗(y), where ,(x2 + y2) = x f x y dx( )2 2+z
which is the required solution, ∗ and , being arbitrary functions.

Ex. 5.  (i)  Solve xr + ys + p = 10xy3 [Delhi Maths Hons. 1993]
(ii)  xs + yt + q = 10x3y.
Sol. Re-writing the given equation              x(!p/!x) + y(!p/!y) = 10xy3 + p. ...(1)

Its Lagrange’s auxiliary equations are dx
x =

dy
y

dp
xy p

(
+10 3 . ...(2)

Taking the first two ratios (2),       (1/ ) (1/ )x dx y dy(   so that    /x y = c1.  ...(3)
Taking the second and third ratios of (2), we have

dp
dy =

10 3xy p
y

+ or dp
dy y

− 1  p = 10xy2             or          dp
dy y

− 1  p = 10c1y
3, using (3). ...(4)

I.F. of (4) = e y dy( / )1z = elog y = y and so solution is

py = y c y dy( )10 1
3z = 2c1y

5 + c2              or    py + 2xy4 = c2, using (3) ...(5)
From (3) and (5), the general solution of (1) is
py + 2xy4 = ∗(x/y)              or               (!z/!x) = 2xy3 + (1/y) × ∗(x/y).

Integrating w.r.t. ‘x’, z = x2y3 + ∗1
x
y
F
HG
I
KJ  + ∗2(y), where !

!
F
HG
I
KJx

x
y

∗  1 = 1
y

x
y

∗ FHG
I
KJ .

(ii) Do yourself. Ans. zx = x3y2 + ∗1(y/x) + ∗2(x).
Ex. 6.  Solve sy + 2xr + 2p = 6xy.
Sol. Re-writing the given equation ,              2x(!p/!x) + y(!p/!y)= + (6xy + 2p). ...(1)

Lagrange’s auxiliary equations are dx
x2

=
dy

y
dp

xy p+
(

+ +6 2
. ...(2)

Taking the first and second ratios in (2), we get
(1/ ) (2 / ) 0x dx y dy− (            so that         xy2 = c1. ...(3)

Now, each ratio of (2) = 
2 2 2

0

3 2 2y dx yp xy dy y dp+ − −( )

8 (2yp + 2xy2)dy + 2y3dx + y2dp = 0  8  2y (p + 2xy)dy + y2(dp + 2xdy + 2ydx) = 0.

8 2y (p + 2xy)dy + y2d (p + 2xy) = 0 8 + 
2 2

2
dy
y

d p xy
p xy

−
−

−
( )

= 0

Integrating it,      + 2 log y + log (p + 2xy) = log c1, being an arbitrary constant
or log {(p + 2xy)/y2} = log c1                          or                      (p + 2xy)/y2 = c1.   ...(4)

From (3) and (4), the general solution of (1) is
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7.10 Partial Differential Equations Of Order Two With Variable Coefficients

(p + 2xy)/y2 = ∗(xy2)               or               (!z/!x) = + 2xy + y2∗(xy2).   ... (5)

Integrating (5) w.r.t. ‘x’, z = + x2y + ∗1(xy2) + ∗2(y),  where !
!x ∗1(xy2) = y2∗(xy2).

Ex. 7.  Solve r + (y/x)s = 15xy2.
Sol. Re-writing the given equation, (!p/!x) + (y/x) (!p/!y) = 15xy2. ...(1)

So Lagrange’s auxiliary equations are     dx
1 =

dy
y x

dp
xy/

(
15 2 . ...(2)

From (2), (1/ ) (1/ )y dy x dx(   8 log y – log x = log c1 8 y/x = c1. ...(3)

Taking the first and third ratios of (2), dp = 15xy2dx = 15c1
2x3dx, by (3)

Integrating,   p = (15/4) × c1
2x4 + c2     8      p + (15/4) × (y/x)2 × x4 = c2, by (3)

or                                                p + (15/4) × x2y2 = c2, c2 being an arbitrary constant  ...(4)
Using (3) and (4), the general solution of (1) is

p + 15
4 x2y2=∗

y
x
FH IK                              or                                !

!
z
x =

15
4 x2y2 + ∗

y
x
FH IK . ...(5)

Integrating (5) w.r.t. ‘x’,  z =
5
4 x3y2 + y 1

2 2( / )+
FH IK FH IKz y x

y
x

d y
x

∗  + ∗2(y)

or                  z = (5/4) × x3y2 + y∗1(y/x) + ∗2(y), where ∗1 and ∗2 are arbitrary functions.
Ex. 8.  Solve the following partial differential equations :
(i) 2xr + ys + 2p = xy2. (ii)  2yt + xs + 2q = 4yx2.
Ans. (i) z = ∗1(xy2) + ∗2(y) + (1/4) × x2y2. (ii) z = ∗1(x

2y) + ∗2(x) + x2y2.
Ex. 9. Solve cos ( )s r x x y− ( −

Sol. Re-writing the given equation,                    / / cos ( )p x p y x x y! ! − ! ! ( − ... (1)

Its Lagrange’s auxiliary equations are 
1 1 cos( )

dx dy dp

x x y
( (

−
.... (2)

Taking the first two ratios, dx – dy = 0      so that       x – y = c1 ... (3)
Taking the first and the last fractions of (2) and using (3), we get

1cos ( )dp x x x c( − + or 1cos (2 )dp x x c( +

Integrating, ( / + 1(1/ 2) sin (2 )p x x c + / + −) 1 2(1/ 2) sin(2 )x c dx c

or    + / + + / + (1 1 2(1/ 2) sin (2 ) (1/ 4) cos(2 )p x x c x c c

or + / − + / − ( 2(1/ 2) sin ( ) (1/ 4) cos( )p x x y x y c , using (2). ... (4)
From (3) and (4), the general solution of (1) is given by

+ / − + / − ( +(1/ 2) sin( ) (1/ 4) cos( ) ( ).p x x y x y f x y

or ! ! ( / − − / − − +/ (1/ 2) sin( ) (1/ 4) cos( ) ( )z x x x y x y f x y ... (5)

Integrting (5) w.r.t. ‘x’,        z = (1/2) × [– x cos (x + y) + ) cos (x + y) dx]

+ (1/4) × sin (x + y) + 1∗  (x – y) + 2∗  (y),  where 1( ) ( )x y f x y dx∗ + ( +)
or          z = – (x/2) × cos (x + y) + (3/4) × sin (x + y) + 1∗  (x – y) + 2∗  (y).

Ex. 10. Solve 2 28 9yt xs q y x y− − ( − .

Sol. Re-writing the given equation, 2 2( / ) ( / ) 8 9x q x y q y yx y q! ! − ! ! ( − + ... (1)
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Its Lagrange’s auxiliary equations are             
2 28 9

dx dy dq

x y yx y q
( (

− +
... (2)

Taking the first two ratios of (2), log y – log x = log c1 or y/x = c1 ... (3)
Taking the last two ratios of (2), we get

29 8
dq q

y x
dy y

( − +                    or                  − ( − ( −
2

2
2
1

1 8
9 8 9

dq y
q y x y

dy y c
, by (3)

which is linear differential equation. Its I.F. =
(1/ ) logy dy ye e y( ()  and solution is

     2 2 3 4 2
1 2 1 2(9 8 / ) 3 (2 / )qy y y y c dy c y y c c( − − ( − −)

or   qy – 3y3 – (2y4/c1
2) = c2         or       qy – 3y3 – 2y2 x2 = c2, by (3) ... (4)

From (3) and (4), the general solution of (1) is

qy – 3y3 – 2y2 x2 = ( / )f y x or ! ! ( − − /2 2/ 3 2 (1/ ) ( / )z y y x y y f y x
Integrating it w.r.t. ‘y’ while treating x as constant, we get

( − − − ∗)3 2 2
1

1
( / ) ( )z y x y f y x dy x

y     or     3 2 2
1

( / )
( )

( / )
f y x y

z y x y d x
y x x

� #( − − − ∗∃ %
& ∋)

or z = − − ∗ − ∗3 2 2
2 1( / ) ( )y x y y x x , 1 2,∗ ∗  being arbitrary functions

Ex. 11. Solve 2 3 yxyr x s yp x e− + (

Sol. Re-writing the given equation,               2 3( / ) ( / ) yxy p x x p y yp x e! ! − ! ! ( − ... (1)

Its Lagrange’s auxiliary equations are            
2 3 y

dx dy dp

xy x yp x e
( (

−
... (2)

Taking the first two ratios of (2), + (2 2 0xdx ydy so that x2 – y2 = c1 ... (3)
Taking the first and the last ratios of (2), we get

3 2y ydp yp x e p x e

dx xy x y

−
( ( − or

2 1/ 2
1

2
( )

2 1/ 2
1

1

( )
x cdp x

p e
dx x x c

++ (
+

, by (3)

Its I.F. = ( 1/ ) log 1/
x dx xe e x

+ +( ()  and solution is

+/ ( ( ( −
+) )

2 1 / 2
1

2
( )

22 1/ 2
1

1 1

( )
x c t tx

p e dx e dt e c
x x x c

[on putting 2 1/ 2 2 2 1/ 2
1 1( ) t and { /( ) } ]x c x x c dx dt+ ( + (

or      (p/x) – 
2 1 / 2

1( )x ce + = c2                or                      (p/x) – ey = c2, using (3) ... (4)
From (3) and (4), the general solution of (1) is

(p/x) – ey = f (x2 – y2)                 or                     2 2/ ( )yz x x e xf x y! ! ( − +  ... (5)
Integrating (5) w.r.t. ‘x’ (while treating y as constant), we get

( / − ∗ + − ∗2 2 2
1 2(1/ 2) ( ) ( )yz x e x y y ,  where 2 2 2 2

1( ) ( )x y x f x y dx∗ + ( +) .

7.8. Type IV.  Under this type, we consider equations of the form

Rr + Pp + Zz = F         or R !
!

− !
!

2

2
z

x
P z

x  + Zz = F ...(1)
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7.12 Partial Differential Equations Of Order Two With Variable Coefficients

and Tt + Qq + Zz = F         or T !
!

− !
!

2

2
z

y
Q z

y  + Zz = F, ...(2)

which are linear ordinary differential equations of order two with x as independent variable in (1) and
y as independent variable in (2).
7.9 SOLVED EXAMPLES BASED ON ART 7.8

Ex. 1.  Solve t + 2xq + x2z = (x + 2)e3x + 2y. [Delhi Math (G) 1999; Poona 1996]
Sol.Taking D ; < !/!y, the given equation becomes

(D ;2 + 2x D ; + x2)z = (x + 2)e3x + 2y          or         2 3 2( ) ( 2) x yD x x e −; + ( +   ...(1)

. Complementary function of (1) = exy {∗1(x) + x∗2(x)}.

and particular integral of (1) =  1
2( ); +D x

(x + 2)e3x + 2y =
( )

( )
x e

x
e
x

x y x y+
+

(
+

− −2
2 2

3 2

2

3 2
.

          .   Required solution is   z = exy {∗1(x) + x∗2(x)} + e
x

x y3 2

2

−

+ , 1 2,∗ ∗  being arbitrary functions.

Ex. 2.  Solve (i) t + q + (1/x) {(1/x) + 1}z = xy2 + x2y2 + 2x3y + 2x3. [Calicut 1999]
(ii)  r + p + (1/y) {(1/y) + 1}z = x2y + x2y2 + 2xy3 + 2y3.
Sol. (i)  Let D ; < !/!y.  Then given equation can be re-written as

                 [D ;2 + D ;– (1/x) {(1/x) + 1}] z = xy2 + x2y2 + 2x3y + 2x3. ...(1)

or     ; +FH IK ; − +FH IKRST
UVWD

x
D

x
1 1 1 z = xy2 + x2y2 + 2x3y + 2x3. ...(1);

So C.F.  = ey/x ∗1(x) + ey + (y/x)∗2(x), 1 2,∗ ∗  being arbitrary functions

In order to determine a particular integral of (1), we assume that
z = F1 y

2 + F2 y + F3, where F1, F2, F3 are functions of x or constants. ...(2)
                                     (2)8 !z/!y = 2F1y + F2     8   !2z/!y2 = 2F1.

so that q = 2F1y + F2  and     t = 2F1. ...(3)
Using (2) and (3), given equation reduces to

2F1 + (2F1y + F2) +
1 1 1
x x

+FH IK (F1 y
2 + F2 y + F3) = xy2 + x2y2 + 2x3y + 2x3.

Equation coefficients of various powers of y in the above identity, we obtain
                                      + {(1/x2) + (1/x)}F1 = x (1 + x), ...(4)
                                       + 2F1 + {(1/x2) + (1/x)}F2 = 2x3 ...(5)

and                                2F1 + F2 + {(1/x2) + (1/x)}F3 = +2x3. ...(6)
From (4),  F1 = + x3.  Then, from (5),  F2 = 0.  So (6) 8       F3 = 0.
. from (2),  P.I.  = + x3y2 and so the required solution is

z = ey/x∗1(x) + ey + (y/x)∗2(x) + x3y2.
(ii) Do your as in part (i). Ans. z = e(x/y)∗1(y) + ex + (x/y)∗2(y) + x2y3.

7.10. SOLUTIONS OF EQUATIONS UNDER GIVEN GEOMETRICAL CONDITIONS.
Working rule.  As explained in this chapter, we first find the solution of the given equation

containing some arbitrary functions of x and y, which are determined with help of the given geometri-
cal conditions.  Substituting the values of arbitrary functions in the general solution, we shall obtain
surfaces which satisfy the given geometrical conditions.
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7.11 SOLVED EXAMPLES BASED ON ART 7.10
Ex. 1.(a)  Find the surface satisfying t = 6x2y containing two lines y = 0 = z and y = 2 = z.

[Kanpur 2001; Sagar 2004]
Sol.Re-writing the given equation, we get !q/!y = 6x2y.
Integrating it w.r.t. ‘y’, q = 3x2y2 + f(x)               or               !z/!y = 3x2y2 + f(x).
Integrating it w.r.t. ‘y’, z = x2y3 + y f(x) + ∗(x), ...(1)

which is the general solution, f and ∗ being arbitrary functions.
Since (1) contains the given lines y = 0 = z and y = 2 = z, we get 0 = ∗(x) ...(2)

and      2 = 8x2 + 2 f(x) + ∗(x). ...(3)
Using (2), (3) becomes 2 = 8x2 + 2 f(x)          or           f(x) = 1 + 4x2.
Putting ∗(x) = 0 andf(x) = 1 + 4x2 in (1),  the required surface is z = x2y3 + y(1 + 4x2).
Ex. 1.(b)  Find a surface satisfying t = 6x3y and containing the two lines y = 0 = z, y= 1 = z.
Sol. Re-writing the given equation, we get (!q/!y) = 6x3y
Integrating w.r.t. y, q = 3x3y2 + f(x)          or !z/!y = 3x3y2 + f(x)
Integrating it w.r.t. y  z = x3y3 + y f(x) + ∗(x). ...(1)
Since (1) contains the lines y = 0 = z and y = 1 = z, we get 0 = ∗(x) ...(2)

and 1 = x3 + f(x) + ∗(x). ...(3)
From (2) and (3), ∗(x) = 0 and f(x) = 1+ x3.
Putting these values in (1), the required surface is              z = x3y3 + y(1 + x3).
Ex. 2.  Find the surface passing through the parabolas z = 0,  y2 = 4ax  and z = 1, y2 = + 4ax and

satisfying the equation xr + 2p = 0. [Kanpur 2000; Agra 1996 ; Meerut  1993 ; I.A.S. 2006]
Sol. Re-writing the given differential equation, x(!p/!x) + 2p = 0

or          x2(!p/!x) + 2px = 0             or !(x2p)/!x = 0
Integrating it w.r.t. x, x2p = f(y)       or         p = f(y)/x2   or       (!z/!x) = (1/x2) × f(y).
Integrating it w.r.t. x, z = + (1/x) × f(y) + ∗(y). ...(1)
Since (1) passes through  z = 0,  y2 = 4ax,      0 = + (4a/y2) × f(y) + ∗(y). ...(2)
Again since (1) passes through z = 1,  y2 = + 4a x, 1 = (4a/y2) × f(y) + ∗(y).      ...(3)
Adding (2) and (3), 1 =2∗(y)                        so that                       ∗(y) = 1/2. ...(4)
Putting ∗(y) = 1/2 in (2), we get               f(y) = y2/8a. ...(5)
Putting the values of ∗(y) and f(y) given by (4) and (5) in (1),  the desired surface is

z = + y2/(8ax) + 1/2                         or                                     8axy = 4ax + y2.
Ex. 3.  Show that a surface satisfying r = 6x + 2 and touching z = x3 + y3 along its section by

the plane x + y + 1 = 0 is z = x3 + y3 + (x + y + 1)2. [Agra 1994; KU Kurukshetra 2004]
Sol. Given r = 6x + 2 or               !p/!x = 6x + 2. ...(1)
Integrating (1) w.r.t. x, p = 3x2 + 2x + f(y) or !z/!x = 3x2 + 2x + f(y). ...(2)
Integrating (2) w.r.t. ‘x’, z = x3 + x2 + xf(y) + F(y), ...(3)

where f(y) and F(y) are arbitrary functions.
The given surface is                                      z = x3 + y3 ...(4)

and the given plane is                                            x + y + 1= 0. ...(5)
Since (3) and (4) touch each other along their section by (5), the values of p and q at any point

on (5) must be equal.  Thus we must have
3x2 + 2x + f(y) = 3x2 ...(6)

and xf ;(y) + F;(y) = 3y2. ...(7)
From (5) and (6),                    f(y) = + 2x = 2(y + 1) ...(8)
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7.14 Partial Differential Equations Of Order Two With Variable Coefficients

From (8), f ;(y) = 2.  Using this value, (7) gives
2x + F;(y) = 3y2    or          F ;(y) = 3y2 + 2x      or       F ;(y) = 3y2 + 2(y + 1),  using (5)
Integrating it,          F(y) = y3 + y2 + 2y + c, ...(9)

where c is an arbitrary constant.  Using (8) and (9), (3) gives
                                                 z =x3 + x2 + 2x(y + 1) + y3 + y2 + 2y + c ...(10)
Now at the point of contact of (4) and (10) values of z must be the same and hence we have
x3 + x2 + 2x(y + 1) + y3 + y2 + 2y + c = x3 + y3 or   x2 + 2x(y + 1) + y2 + 2y + c = 0

or   x2 + 2x(+x) + (x + 1)2 + 2(x + 1) + c = 0, as  from (5), y + 1 = +x and y = + (x + 1)
which gives c = 1.  Putting c = 1 in (10), the required surface is

z = x3 + x2 + 2x(y + 1) + y3 + y2 + 2y + 1 or z = x3 + y3 + (x + y + 1)2

Ex. 4(a).  Show that a surface passing through the circle z = 0, x2 + y2 = 1 and satisfying the
differential equation s = 8xy is z = (x2 + y2)2 + 1. [Agra 1993 ; Meerut 1994]

Sol. Re-writing the given equation,                      !
!

!
!
F
HG
I
KJx

z
y

= 8xy. ...(1)

Integrating (1) w.r.t. ‘x’,                        !z/!y = 4x2y + f(y). ...(2)

Integrating (2) w.r.t. ‘y’,               z = 2x2y2 + f y dy x( ) ( )−z ∗1
or z = 2x2y2 + ∗2(y) + ∗1(x), ...(3)
where ∗2(y) = f y dy( )z  and ∗1 ∗2 are arbitrary functions.

Given circle is given by              x2 + y2 = 1            and                 z = 0. ...(4)
Putting z = 0 in (3), we have        2x2y2 + ∗2(y) + ∗1(x) = 0. ...(5)
Now,  x2 + y2 = 1         8        (x2 + y2)2 = 12          8             2x2y2 + x4 + y4 = 1. ...(6)
Comparing (5) and (6), ∗2(y) + ∗1(x) = x4 + y4 + 1.
Substituting the above value of ∗2(y) + ∗1(x) in (3), we have
z = 2x2y2 + x4 + y4 + 1                                      or                               z = (x2 + y2)2 + 1.
Ex. 4(b).  Find the surface passing through the cirlce x2 + y2 = a2, z = 0 and satisfying the

differential equation s = 8xy.
Sol. Proceed as in Ex. 4(a).
Ex. 5.  Show that a surface of revolution satisfying the differential equation r = 12x2 + 4y2 and

touching the plane z = 0 is z = (x2 + y2)2. [Kanpur 1999; Agra 2000, 02 ; Meerut 1993, 97]
Sol. The given equation can be re-written as

!
!

2

2
z

x
= !

!
!
!
FH IKx

z
x

= 12x2 + y2           or                !
!
p
x = 12x2 + 4y2. ...(1)

Integrating (1) w.r.t. ‘x’, p = !z/!x = 4x3 + 4xy2 + f(y). ...(2)
Integrating (2) w.r.t., ‘x’, z = x4 + 2x2y2 + xf(y) + g(y). ...(3)
Given the required surface (3) touches the plane z = 0. Now, for z = 0,  !z/!x = 0 and so (2)

reduces to 4x3 + 4xy2 + f(y) = 0 or                +f(y) = 4x3 + 4xy2.       ...(4)
Since L.H.S. of (4) is function of y alone and R.H.S. is not a function of y alone, (4) shows

that we must take each side of (4) equal to zero. Thus, we take                      f(y) = 0 ...(5)
and         4x3 + 4xy2 = 0                                    so that                                                 x2 = +y2.

Putting z = 0,  x2 = +y2 and f(y) = 0 in (3), we have
        0 = y4 + 2y4 + 0 + g(y)                      so that                            g(y) = y4.  ...(6)

Putting the values of f(y) and g(y) given by (5) and (6) in (3), desired surface is
z = x4 + 2x2y2 + y4                   or                                    z = (x2 + y2)2.
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8
Classification of P.D.E. Reduction to

Canonical or Normal Forms. Riemann Method

8.1. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER.
Consider a general partial differential equation of second order for a function of two indepen-

dent variables x and y in the form:

                                      ( , , , , ) 0,R r S s T t f x y z p q! ! ! � ...(1)
where R, S and T are continuous functions of x and y only possessing partial derivatives defined in
some domain D on the xy-plane. Then (1) is said to be

(i) Hyperbolic at a point (x, y) in domain D if 2 – 4 0S RT #

(ii) Parabolic at a point (x, y) in domain D if 2 – 4 0S RT �

(iii) Elliptic at a point (x, y) in domain D if 2 – 4 0S RT ∃ .

Observe that the type of  (1) is determined solely by its principal part (R r S s T t! ! , which
involves the highest order derivatives of z) and that the type will generally change with position in
the xy-plane unless R, S and T are constants

Remark. Some authors use u in place of z. Then, we have
2 2/ ,r u x� % % 2 /s u x y� % % %  and 2 2/ .t u t� % %  etc.

Examples: (i) Consider the one-dimensional wave equation 2 2 2 2/ /z x z y% % � % % i.e. r – t = 0.
Comparing it with (1), here R = 1,         S = 0         and          T = – 1.
Hence S2 – 4RT = 0 – {4 × 1 × (– 1)} = 4 > 0 and so the given equation is hyperbolic.
(ii) Consider the one-dimensional diffusion equation         2 2/ /z x z y% % � % %   i.e.    r – q = 0.
Comparing it with (1), here             R = 1                   and                    S = T = 0.
Hence S2 – 4RT = 0 – (4 × 1 × 0) = 0 and so the given equation is parabolic.
(iii) Consider two dimensional Laplace’s equation   2 2 2 2/ / 0z x z y% % ! % % �        i.e.       r + t = 0.
Comparing it with (1), here R = 1, S = 0 and T = 1.
Hence S2 – 4RT = 0 – (4 × 1 × 1) = – 4 < 0 and so the given equation is elliptic.
Ex. 2. Classify the following partial differential equations:

(i) 2 2 2 2 22( / ) 4( / ) 3( / ) 2u x u x y u y% % ! % % % ! % % � [Meerut 2006]

(ii) 2 2 2 2 2/ 4( / ) 4( / ) 0u x u x y u y% % ! % % % ! % % �         [I.F.S. 2005]

(iii) 2 2 2 2– ( – ) – – 2( – )xyr x y s xyt py qx x y! � [Delhi Maths (G) 2006]

(iv) 2 2( 1) ( 1) ( 1) 0x y r x y s y y t xyp q& & & ! & ! & � [Delhi Maths (Prog) 2007]

(v) 2 2( 1) ( 1) ( 1) 0x xy r x y s y xy t xp yq& & & ! & ! ! � [Delhi 2008]
(vi) ( ) ( ) ( ) ( )x y xr xs ys yt x y p q& & & ! � ! & [Delhi  BA (Prog) II  2011]

8.1

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



8.2 Classification of P.D.E Reduction to Canonical or normal forms Riemann Method

Sol. (i) Re-writing the given equation, we get 2 4 3 – 2 0r s t! ! �                    ...(1)

Comparing (1) with ( , , , , ) 0,Rs Ss Tt f x y u p q! ! ! �  we get 2, 4 and 3.R S T� � �  So
2 2– 4 (4) – (4 2 3) – 8 0,S RT � ∋ ∋ � ∃  showing that the given equation is elliptic at all points .

(ii) Re-writing the given equation, we get 4 4 0r s t! ! �                        ...(1)

Comparing (1) with ( , , , , ) 0,Rr Ss Tt f x y u p q! ! ! � we get 1, 4 and 4.R S T� � �  So
2 2– 4 (4) – (4 1 4) 0,S RT � ∋ ∋ �  showing that the given equation is parabolic at all points.

(iii) Given        2 2 2 2– ( – ) – – – 2( – ) 0xyr x y s xyt py qx x y! � ...(1)

Comparing (1) with ( , , , , ) 0,Rs Ss Tt f x y z p q! ! ! �  we get 2 2, –( – )R xy S x y� �  and

– .T xy�  So, here                                     2 2 2 2 2 2 2 2 2– 4 ( – ) 4 ( ) 0,S RT x y x y x y� ! � ! #

showing that the given equation is hyperbolic at all points.
(iv) Hyperbolic                           (v)  Hyperbolic
(vi) Hyperbolic

8.2. CLASSIFICATION OF A PARTIAL DIFFERENTIAL EQUATION IN THREE
INDEPENDENT VARIABLES.
A linear partial differential differential equation of the second order in 3 independent variables

1 2 3, ,x x x  is given by                
3 3 32

1 1 1

0ij i
i j ii j i

u u
a b cu

x x x� � �

% %
! ! �

% % %( ( (   ... (1)

where ( )ij jia a� , ib  and c are constants or some functions of the independent variables 1 2 3, ,x x x

and u is the dependent variable.
Since ij jia a� , 3 3[ ]ijA a ∋�  is a real symmetric matrix of order 3 × 3. The eigen values of

matrix A are roots of the characteristic equation of A, namely, | | 0A I& ) � .
With help of matrix A, (1) is classified as follows:
I. If all the eigenvalues of A are non-zero and have the same sign, except precisely one of

them, then (1) is known as hyperbolic type of equation.
II. If |A| = 0, i.e., any one of the eigenvalues of A is zero, then (1) is known as parabolic type

of equation
III. If all the eigenvalues of A are non-zero and of the same sign, then (1) is known as elliptic

type of equation.
Note. the matrix A can be remembered as indicated below:

Coeff. of Coeff. of Coeff of

Coeff. of Coeff. of Coeff of

Coeff. of Coeff.of Coeff of

xx xy xz

yx yy yz

zx zy zz

u u u

A u u u

u u u

∗ +
, −

� , −
, −
, −. /

8.2.A SOLVED EXAMPLES BASED ON ART. 8.2
Ex. 1. Classify xx yy zzu u u! � [Delhi Maths (H) 2007; Kanpur 2011]

The matrix A of the given equation is given by
1 0 0

0 1 0

0 0 1

A

∗ +
, −� , −
, −&. /

The eigenvalues of A are given by | | 0A I& ) � , i.e.,
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Classification of P.D.E Reduction to Canonical or normal forms Riemann Method 8.3

1 0 0

0 1 0

0 0 1

& )
& )

& & )

= 0 or 2(1 ) (1 )& ! ) & )  = 0.

Hence 1) � & , 1, 1, showing that all the eigenvalues are non-zero and have the same sign
except one. Hence the given equation is of hyperbolic type.

Ex. 2. Classify ! ! ! ! � 0xx yy zz yz zyu u u u u .
Sol. The given equation can be re-written as

! 0 ! 0 ! 0 ! ! ! 0 ! ! �0 0 0 0 0xx xy xz yx yy yz zx zy zzu u u u u u u u u

1 The matrix A of the given equation is given by              
1 0 0

0 1 1

0 1 1

A

∗ +
, −� , −
, −. /

Now,   
1 0 0 1 0 0

| | 0 1 1 0 1 1 0

0 1 1 0 0 0

A � � � , using properties of determinents

Since |A| = 0, the given equation is of parabolic type.

Ex. 3. Classify 0xx yy zzu u u! ! � [Meerut 2007, 08; Kanpur 2011]
Sol. The given equation can be re-written as

! 0 ! 0 ! 0 ! ! 0 ! 0 ! 0 ! �0 0 0 0 0 0 0xx xy xz yx yy yz zx zy zzu u u u u u u u u

1  The matrix A of the given equation is given by        
1 0 0

0 1 0

0 0 1

A

∗ +
, −� , −
, −. /

The eigen values of A are given by | | 0A I& ) � ,

i.e.
1 0 0

0 1 0

0 0 1

& )
& )

& )

= 0 or 3(1 ) 0& ) �    giving   1,1,1) � .

Since all eigenvalues are non-zero and of the same sign, the given equation is of parabolic
type.

Ex. 4. Classify the following equations:

(i) xx yy zu u u! �        [Kanpur 2011]     (ii) 2xx yy zzu u u! ! = 2 2xy yzu u! .   [Delhi 2008]
Sol. Try yourself Ans. (i) parabolic (ii) parabolic
8.3. Cauchy’s problem for second order partial differential equation.

Characteristic equation and characteristic curves (or simply characteristics) of the
second order partial differential equations. (Delhi Maths (H) 2001)

Cauchy’ problem. Consider the second order partial differential equation
Rr + Ss + Tt + f (x, y, z, p, q) = 0 ... (1)

in which R, S and T are functions of x and y only. The Cauchy’s problem consists of the problem of
determining the solution of (1) such that on a given space curve C it takes on prescribed values of
z and /z n% % , where n is the distance measured along the normal to the curve.

As an example of Cauchy’s problem for the second order partial differential equation, consider
the following problem :
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8.4 Classification of P.D.E Reduction to Canonical or normal forms Riemann Method

To determine solution of 2 2 2 2/ /z x z y% % � % % with the following data prescribed on the x-axis:
z (x, 0) = f (x), zy (x, 0) = g (x). Observe that y-axis is the normal to the given curve (x-axis here)

Characteristic equations and characteristic curves.
Corresponding to (1), consider the ) -quadratic

2 0R S T) ! ) ! �   ... (2)

where 2 4 0S RT& 2 , (2) has real roots. Then, the ordinary differential equations
( / ) ( , ) 0dy dx x y! ) � ... (3)

are called the characteristic equations.
The solutions of (3) are knwon as characteristic curves or simply the characteristics of the

second order partial differential equation (1).
Now, consider the following three cases:
Case (i) If S2 – 4RT > 0 (i.e., if (1) is hyperbolic), then (2) has two distinct real roots 1 2,) )

say so that we have two characteristic equations 1( / ) ( , ) 0dy dx x y! ) �  and 2( / ) ( , ) 0dy dx x y! ) � .
Solving these we get two distinct families of characteristics.
Case (ii). If S2 – 4RT = 0 (i.e. (1) is parabolic), then (2) has two equal real roots ,) )  so that

we get only one characteristic equation (3). Solving it, we get only one family of characteristics.
Case (iii) If S2 – 4RT < 0 (i.e. (1) is elliptic), then (2) has complex roots. Hence there are no

real characteristics. Thus we get two families of complex characteristics when (1) is elliptic
8.4 ILLUSTRATIVE SOLVED EXAMPLES BASED ON ART. 8.3

Ex. 1. Find the characteristics of y2r – x2t = 0       [I.A.S. 2009]
Sol. Given y2r – x2t = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = y2, S = 0 and T = – x2. Then

S2 – 4RT = 0 – 4 × y2 × (– x2) = 4x2y2 > 0 and hence (1) is hyperbolaic everywhere except on the
coordinate axes x = 0 and y = 0.

The ) -quadratic is         2 0R S T) ! ) ! �       or        2 2 2 0y x) & �   ... (2)

Solving (2), /x y) � , – x/y (two distinct real roots). Corresponding characteristic equations are
(dy/dx) + (x/y) = 0 and    (dy/dx) – (x/y) = 0

or       x dx + y dx = 0 and        xdx – y dy = 0
Integrating, x2 + y2 = c1 and x2 – y2 = c2, which are the required families of characteristics.
Here these are families of circles and hyperbolas respectively.
Ex. 2. Find the characteristics of x2r + 2xys + y2t = 0.
Sol. Given     x2r + 2xys + y2t = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = x2, S = 2xy and T = y2. Then,

S2 – 4RT = 4x2y2 – 4x2y2 = 0 and hence (1) is parabolic everywhere.

The ) -quadratic is    2 0R S T) ! ) ! � or       2 2 22 0x xy y) ! ) ! � ... (2)

Solving (2), 2( ) 0x y)! �  so that / , /y x y x) � & &  (equal roots). The characteristic equation is
(dy/dx) – (y/x) = 0 or (1/y) dy – (1/x) dx = 0 giving y/x = c1               or                  y = c1 x,
which is the required family of characteristics. Here it represents a family of straight lines passing
through the origin.

Ex. 3. Find the characteristics of 4r + 5s + t + p + q – 2 = 0.
Sol. Try yourself. Ans. y – x = c1 and y – (x/y) = c2.
Ex. 4. Find the characteristics of (sin2 x) r + (2 cos x) s – t = 0
Sol. Try yourself Ans. y + cosec x – cot x = c1, y + cosec x + cot x = c2

8.5. Laplace transformation. Reduction to Canonical (or normal) forms.
[Himanchal 2007; Avadh 2001; Delhi Maths (H) 2004, 09]

Consider partial differential equation of the type Rr + Ss + Tt + f(x, y, z, p, q) = 0, ...(1)
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where R, S, T are continuous functions of x and y possessing continuous partial derivatives of as high
an order as necessary.  Laplace transformation on (1) consists of changing the independent variables
x, y to new set of continuously differentiable independent variables u, v where

u = u(x, y) and v = v(x, y) ...(2)
are to be chosen so that the resulting equation in independent variables u, v is transformed into one of
three canonical forms, which are easily integrable.  From (2), we have

  p = %
%

z
x = %

%
%
%

! %
%

%
%

z
u

u
x

z
xv
v               and         q = %

%
z
y = %

%
%
%

! %
%

%
%

z
u

u
y

z
yv
v ...(3)

(3)  3  %
%x = %

%
%

%
! %

%
%

%
u
x u x

v
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%
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Putting the above values  of p, q, r, s, t, in (1) and simplifying, we get

   A %
%

2

2
z

u
 + 2B %

% %

2z
u v

 + C %
%

2

2
z

v
 + F(u, v, z, / , /z u z% % % %v ) = 0, ...(5)

where                      A = R %
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2
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                         B = R %
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x x
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v
y

2

...(8)

and F(u, v, z, %z/%u, %z/%v) is the transformed form of f(x, y, z, p, q).
Now we shall find out u and v so that (5) reduces to simplest possible form.  The method of

evaluation of desired values of u and v becomes easy when the discriminant S2 & 4 RTof the quadratic
equation             R)2 + S) + T = 0    ...(9)
is everywhere either positive, negative or zero, and now we shall present these three cases separately.

Case I.  Let S2 & 4 RT > 0.  When this condition is satisfied, then the roots )1, )2 of the equation
(9) are real and distinct.  The coefficients of %2z/%u2 and %2z/%v2 in the equation (5) will vanish if we
choose u and v such that

                   %u/%x = )1 (%u/%y) ...(10)
and               %v/%x = )2 (%v/%y). ...(11)
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Since )1 is a root of (9), we have   R)1
2 + S)1 + T = 0. ...(12)

Using (10),  (6) gives               A = (R)1
2 + S)1 + T) (%u/%y)2 = 0, by (12) ...(13)

Again, since )2 is a root of (9), we have R)2
2 + S)2 + T = 0 ...(14)

Using (11), (8) gives             C = (R)2
2 + S)2 + T) (%v/%y)2 = 0, by (14) ...(15)

Re-writing (10), we have                (%u/%x) & )1(%u/%y) = 0. ...(16)
Lagrange’s auxiliary equation for (16) are             /1dx = 1/( ) / 0dy du&) � ...(17)
Taking third fraction of (17), du = 0     so that   u = c1, c1 being an arbitrary constant ...(18)
Taking first and second fractions of (17), we get (dy/dx) + )1 = 0 ...(19)
Let the solution of (19) be  f1(x, y) = c2, c2 being an arbitrary constant ...(20)
From (18) and (20), the general solution of (16) [i.e. (10)] is  u = f1(x, y). ...(21)
Similarly, the general solution of (11) can be taken as     v = f2(x, y). ...(22)
Here f1 and f2 are arbitrary function

We can easily verify that AC & B2 = 1
4 (4RTT & S2) %

%
%
%

& %
%

%
%

F
HG

I
KJ

u
x y

u
y x

v v
2

or B2 = 1
4

 (S2 & 4RTT) %
%

%
%

& %
%

%
%

F
HG

I
KJ

u
x y

u
y x

v v
2

, as A = C = 0. ...(23)

Let the Jacobian J of u and v be non-zero, i.e., let
           J = ( , ) / ( , ) ( / ) ( / ) ( / )( / ) 0u x y u x y u y x% % � % % % % & % % % % 4v v v

Since S2 & 4 RT > 0, (23) shows that B2 > 0.  Hence we may divide both sides of (5) by B2.  Then

noting that A = C = 0, (5) transforms to the form     2 /z u% % %v = 5 6 7, , , / , /u z z u z% % % %vv ,
...(24)

which is the canonical form of (1) in this case.
Case II.  Let S2 & 4RT = 0.  When this condition is satisfied, the roots )1, )2 of (9) are real and

equal.  We now take u exactly as in case I and take v to be any function of x, y which is independent
of u.  We have, as in case I, A = 0.  Also, since S2 & 4RT = 0, (23) shows that B2 = 0 so that B = 0.

Moreover in this case C 4 0, otherwise v would be a function of u and consequently v would not
be independent of u as already assumed.

Putting A = 0, B = 0 and dividing by C, (5) transforms to the form
        %2z/%v2 = 5(u, v, z, %z/%u, %z/%v). ...(25)

which is the canonical form of (1) in this case.
Case III.  Let S2 & 4RT < 0.  When this condition is satisfied, the roots )1, )2 of (9) are complex.

Hence this case III is formally the same as case I.  Therefore, proceeding as in case I, we find that (1)
reduces to (24) but that the variables u, v instead of being real are now complex conjugates.  To obtain
a real canonical form we make further transformation u = 8 + i9 and v = 8 & i9 so that

8 = (u + v)/2,                and                                  9 = i (v & u)/2. ...(26)

Now,         %
%

z
u

=
%
%8

%8
%

!
%
%9

%9
%

�
%
%8

&
%
%9

F
HG

I
KJ

z z z i z
u u

1
2

, by (26) ...(27)

and     %
%

z
v

= %
%8

%8
%

! %
%9

%9
%

z z
v v

=
1
2

%
%8

! %
%9

F
HG

I
KJ

z i z , by (26) ...(28)

1         %
% %

2z
u v

= %
%

%FH IKu
z

dv
= 1 1

2 2
z zi i

8 9 8 9
: ; : ;% % % %

& ∋ !< = < => % % ? > % % ?
, by (27) and (28)

               = 1
4

%
%8

%
%8

! %
%9

F
HG

I
KJ &

%
%9

%
%8

! %
%9

F
HG

I
KJ

L
NM

O
QP

z i z i z i z = 1
4

2

2

2 2 2

2
%
%8

! %
%8%9

& %
%9%8

! %
%9

F
HG

I
KJ

z i z i z i z

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Classification of P.D.E Reduction to Canonical or normal forms Riemann Method 8.7

or         %
% %

2z
u v

= 1
4

2

2

2

2
%
%8

! %
%9

F
HG

I
KJ

z z ,       as %
%8%9

2z = %
%9%8

2z ...(29)

Putting u = 8 + i9, v = 8 & i9 and using (27), (28) and (29), (24) reduces to
(%2z/%82) + (%2z/%92) = ≅(8, 9, z, %z/%8, %z/%9), ...(30)

which is the canonical form of (1) in this case.
8.6 Working rule for reducing a hyperbolic equation to its canonical form

Step 1. Let the given equation              ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � ... (1)
be hyperbolic so that    S2 – 4RT > 0.

Step 2. Write ) -quadratic equation 2 0R S T) ! ) ! � ... (2)

Let 1 2and) ) be its two distinct roots of (2).
Step 3. Then corresponding characteristic equations are

1( / ) 0dy dx ! ) �          and 2( / ) 0dy dx ! ) �
Solving these, we get   f1 (x, y) = c1            and        f2 (x, y) = c2    ... (3)
Step 4. We select u, v such that      u = f1 (x, y) and              v = f2 (x, y)    ... (4)

Step 5. Using relations (4), find p, q, r, s and t in terms of u and v as shown in Art. 8.5.
Step 6. Substituting the values of p, q, r, s, t obtained in step 4 in (1) and simplifying we shall

get the following canonical form of (1):
2 / ( , , , / , / )z u v u v z z u z u% % % � 5 % % % % .

8.7. SOLVED EXAMPLES BASED ON ART. 8.6
Ex.1. (a) Write canonical form of  2 2 2 2/ / 0z x z y% % & % % � . [Sagar 2004; Delhi Maths (H)

2002]
(b) Reduc 2 2 2 2 23( / ) 10 ( / ) 3 ( / ) 0z x z x y z y% % ! % % % ! % % � to canonical form and hence solve it

(Himanchal 2008)
Sol. (a) Re-writing the given equation, we get        r – t = 0 ... (1)
Comparing (1) with Rs + Ss + Tt + f (x, y, z, p, q) = 0, here R = 1, S = 0 and T = – 1 so that

S2 – 4RT = 4 > 0, showing that (1) is hyperbolic

The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to 2 1 0) & �
Hence 1, 1) � & . So 1 21, 1) � ) � &  (Real and distinct roots).

Then the characteristic equations 1/ 0dy dx ! ) � , 2/ 0dy dx ! ) �  reduces to
(dy/dx) + 1 = 0    and            (dy/dx) – 1 = 0.
Integrating these, y + x = c1 and y – x = c2.
In order to reduce (1) to its canonical form, we choose

 u = y + x                  and     v = y – x ... (2)

1             
z z u z v z z

p
x u x v x u v

% % % % % % %
� � ! � &

% % % % % % %
, using (2) ... (3)

and             
z z u z v z z

q
y u y v y u v

% % % % % % %
� � ! � !

% % % % % % % , using (2)  ... (4)

From (3) and (4),     
x u v

% % %
� &

% % %
          and    

y u v

% % %
� !

% % %
. ... (5)

1              
2

2

z z z z
r

x x u v u vx

% % % % % % %: ; : ;: ;� � � & &< = < =< =% % % % % %% > ? > ?> ?
, using (3) and (5)

or                   
2 2 2

2
2

z z z z z z z
r

u u v v u v u u v v

% % % % % % % % %: ; : ;� & & & � & !< = < =% % % % % % % % % %> ? > ?
... (6)
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and                   
2

2

z z z z
t

y y u v u vy

: ;% % % % % % %: ;: ;� � � ! !< = < =< =% % % % % %% > ?> ?> ?
, by (3) and (5)

or                   
2 2 2

2 2
2

z z z z z z z
t

u u v v u v u vu v

% % % % % % % % %: ; : ;� ! ! ! � ! !< = < =% % % % % % % %% %> ? > ?
... (7)

Using (6) and (7) in (1), the required canonical form is
2 2 2 2 2 2

2 2 2 2
2 2 0

z z z z z z

u v u vu v u v

: ;% % % % % %
& ! & ! ! �< =< =% % % %% % % %> ?

or                  
2

0
z

u v
%

�
% %

.

(b) 2 / 0; ( 3 ) (3 )z u v z f y x g y x% % % � � & ! &

Ex. 2. Reduce 2 2 2 2 2/ (1 ) ( / )z x y z y% % � ! % %  to canonical form
Sol. Re-writing the given equation,         r – (1 + y2) t = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = 1, S = 0, and T = – (1 + y)2 so

that S2 – 4RT = (1 + y2) > 0 for 1y 4 & , showing that (1) is hyperbolic. The ) -quadratic equation
2 0R S T) ! ) ! �  reduces to 2 2(1 ) 0y) & ! �  so that 1 y) � ! , – (1 + y). Hence the corresponding

characteristic equations are given by
                            (dy/dx) + (1 + y) = 0               and             (dy/dx) – (1 + y) = 0
Integrating these, log (1 + y) + x = C1               and log (1 + y) – x = C2.
In order to reduce (1) to its canonical form, we choose

u = log (1 + y) + x and v = log (1 + y) – x ... (2)

1
z z u z v z z

p
x u x v x u v

% % % % % % %
� � ! � &

% % % % % % %
, using (2) ... (3)

and
1

1
z z u z v z z

q
y u y v y y u v

% % % % % % %: ;� � ! � !< =% % % % % ! % %> ?
... (4)

From (3) / / /x u v% % Α % % & % % ... (5)

1
2

2

z z z z
r

x x u v u vx

% % % % % % %: ; : ;: ;� � � & &< = < =< =% % % % % %% > ? > ?> ?
, using (3) and (5)

or      2 2 2 2 2/ 2 ( / ) /r z u z u v z v� % % & % % % ! % % ... (6)
2

2

1
1

z z z z
t

y y y y u vy

Β Χ: ;% % % % % %: ;� � � !∆ Ε< = < =% % % ! % %% > ?> ? Φ Γ
=

2

1 1
1(1 )

z z z z

u v y y u vy

% % % % %: ; : ;& ! ! !< = < =% % ! % % %! > ? > ?
, by (4)

=
2

1 1

1(1 )

z z z z u z z v

u v y u u v y v u v yy

∗ +% % % % % % % % % %: ; : ; : ;& ! ! ! ! !, −< = < = < =% % ! % % % % % % % %! > ? > ? > ?. /

=
2 2 2 2

2 2 2

1 1 1 1
1 1 1(1 )

z z z z z z
u v y u v y v u yy u v

∗ +: ; : ;% % % % % %: ;& ! ! ! ! !, −< = < =< = < = < =% % ! % % ! % % !! % %> ? , −> ? > ?. /
, by (2)

or t =
2 2 2

2 2 2

1
2

(1 )

z z z z z
u v u vy u v

: ;% % % % %
! ! & &< =< =% % % %! % %> ?

... (7)

Using (6) and (7) in (1), the required canonical form is
2 2 2 2 2 2

2 2 2 2
2 2 0

z z z z z z z z

u v u v u vu v u v

: ;% % % % % % % %
& ! & ! ! & & �< =< =% % % % % %% % % %> ?

      or % % %
� !

% % % %

2

4 .
z z z

u v u v
.

Ex. 3. Reduce the differential equation t – s + p – (1 1/ ) ( / ) 0q x z x! ! � to canonical form.
[Delhi Maths (H) 2004]
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Sol. Given 0.r – s + t + p – q (1 + 1/x) + (z/x) = 0 ...(1)
Comparing (1) with ( , , , , ) 0,Rr Ss Tt f x y z p q! ! ! �  here  R = 0,    S = – 1   and   T = 1.

Hence 2 – 4 1 0,S RT � #  showing that the given equation is hyperbolic.
The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to – 1 0) ! �  giving 1.) �  Hence the

corresponding characteristic equation / 0dy dx ! ) �  yields / 1 0dy dx ! �     or       0dx dy! �
Integrating it, x + y = c, c being an arbitrary constant
Choose u = x + y and v x,= ...(2)

where we have chosen v x=  in such a manner that u and v are independent as verified below:

Jacobian of u and 
/ / 1 1

1 0
/ / 1 0

u x u y
v

v x v y
% % % %

� � � 4
% % % %

3   u and v  are independent functions.

Now,        ,
z z u z v z z

p
x u x v x u v

% % % % % % %
� � ! � !

% % % % % % %
 using (2) ...(3)

        ,z z u z zq
y u y y u

% % % % % %
� � ! �

% % % % % %
v

v  using (2)                             ...(4)

From (4), we have        / /y u% % Α % % ...(5)
2z zs

x y y x
% % %: ;� � < => ?% % % %

,
z z

u u
% % %: ;� !< => ?% % %v  using (3) and (5) ...(6)

and
2

2 , using (5)z z zt
y y u uy

: ;% % % % %: ;� � � < =< = > ?% > % ? % %%

or 2 2/ .t z u� % % ...(6)
Using (2), (3), (4), (6) and (7), (1) reduces to

2 2 2

2 2
1– – 1 0z z z z z z z

u u uu u
: ;% % % % % % : ;! ! ! ! ! ! �< = < =< =% % % % %% % > ?> ?v v v v

or     2 / ( ) (1/ ) ( / ) – ( / ) 0,z u v z v v z u z v% % % % % ∋ % % �– / +  which is the required canonical form.
Ex. 4. Reduce the equation yr + (x + y) s + xt = 0 to canonical form and hence find its

general solution. (Delhi Maths (Hons) 2007)
Sol. Given yr + (x + y) s + xt = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = y, S = (x + y) and T = x so

that S2 – 4RT = (x + y)2 – 4xy = (x – y)2 > 0 for x y4  and so (1) is hyperbolic. Its ) -quadratic

equation 2 0R S T) ! ) ! �  reduces to    2 ( ) 0y x y x) ! ! ) ! � or     ( ) ( 1) 0y x) ! ) ! �

so that 1) � & , /x y& . Then the corresponding characteristic equations are given by
(dy/dx) – 1 = 0       and (dy/dx) – (x/y) = 0

Integrating these, y – x = c1       and y2/2 – x2/2 = c2
In order to reduce (1) to its canonical form, we choose

u = y – x and v = y2/2 – x2/2 ... (2)

1
z z u z v z z

p x
x u x v x u v

% % % % % % %: ;� � ! � & !< =% % % % % % %> ?
, using (2) ... (3)

% % % % % % %
� � ! � !

% % % % % % %
z z u z v z z

q y
y u y v y u v

, using (2) ... (4)
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2

2

z z z z
r x

x x x u x vx

% % % % % % %: ; : ; : ;� � � & &< = < = < =% % % % % %% > ? > ? > ?
, using (3)

  =
z z z z z z

x x
x u x v v x u x v v

∗ +% % % % % % % % % %: ; : ; : ; : ;& & ! � & & &, −< = < = < = < =% % % % % % % % % %> ? > ? > ? > ?. /

    =
z u z v

x
u u x v u x

∗ +% % % % % %: ; : ;& ! &, −< = < =% % % % % %> ? > ?. /

z u z v z

u v x v v x v

∗ +% % % % % % %: ; : ;! &, −< = < =% % % % % % %> ? > ?. /

  =
2 2 2 2

2 2

z z z z z
x x x
v u u v vu v

: ; : ;% % % % %
& & & & & & &< = < =< = < =% % % % %% %> ? > ?

, using (2)

1
2 2 2

2
2 2

2
z z z z

r x x
u v vu v

% % % %
� ! ! &

% % %% %
... (5)

Now, 
2

2

z z z z z z
t y y

y y y u v y u y vy

: ;% % % % % % % % % %: ; : ; : ;� � � ! � !< = < = < = < =% % % % % % % % %% > ? > ? > ?> ?
, using (4)

=
z z z

y
y u y v v

% % % % %: ; : ;! !< = < =% % % % %> ? > ?
=

Β Χ% % % % % % % % % % % % %: ; : ; : ; : ;! ! ! !∆ Ε< = < = < = < =% % % % % % % % % % % % %> ? > ? > ? > ?Φ Γ

z u z v z u z v z
y

u u y v u y u v y v v y v

1 t =
2 2 2 2

2 2

z z z z z
y y y
u v u v vu v

: ;% % % % %
! ! ! !< =< =% % % % %% %> ?

% % % %
� ! ! !

% % %% %

2 2 2
2

2 2
2

z z z z
y y
u v vu v

...(6)

Also,  
2z z z z

s y
x y x y x u v

: ;% % % % % %: ;� � � !< = < =% % % % % % %> ?> ?
=

z z z z
y y

x u x v x u x v
% % % % % % % %: ; : ; : ; : ;! � !< = < = < = < =% % % % % % % %> ? > ? > ? > ?

=
z u z v z u z v

y
u u x v u x u v x v v x

Β Χ% % % % % % % % % % % %: ; : ; : ; : ;! ! !∆ Ε< = < = < = < =% % % % % % % % % % % %> ? > ? > ? > ?Φ Γ
=

2 2 2 2

2 2

z z z z
x y xy
v u u vu v

% % % %
& & & &

% % % %% %
, using (2)

1         
2 2 2

2 2
( )

z z z
s x y xy

u vu v

% % %
� & & ! &

% %% %
... (7)

Using (5) (6) and (7) in (1), we get
: ;% % % %

! ! &< =< =% % %% %> ?

2 2 2
2

2 2
2

z z z z
y x x

u v vu v

Β Χ% % %Η Η! ! & & ! &∆ Ε
% %% %Η ΗΦ Γ

2 2 2

2 2
( ) ( )

z z z
x y x y xy

u vu v
 + 

2 2 2
2

2 2
2 0

z z z z
x y y

u v vu v

: ;% % % %
! ! ! �< =< =% % %% %> ?

or     
2

2{4 ( ) } 0
z z z

xy x y y x
u v v v
% % %

& ! & ! �
% % % %

or
2

2( ) ( ) 0
z z

y x y x
u v v
% %

& ! & �
% % %

or
2

2 0
z z

u u
u v v
% %

! �
% % %

, by (2) or
2

0
z z

u
v v v
% %

! �
% % %

, as 0u 4   ... (8)

(8) is the required canonical form of (1).
Solution of (8). Multiplying both sides of (8) by v, we get

2( / ) ( / ) 0uv z u v v z v% % % ! % % �      or                ( ) 0uv DD vD zΙ Ι! � ... (9)

where /D uΑ % %  and /D vΙ Α % % . To reduce (9) into linear equation with constant coefficients, we
take new variables X and Y as follows. For details refer Art. 6.3.
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Let      u = eX and v = eY  so that X = log u and   Y = log v ... (10)

Let   1 /D XΑ % %    and   1 /D YΙ Α % % . Then (9) reduces to

1 1 1( ) 0D D D zΙ Ι! � or Ι ! �1 1( 1) 0D D z

Its general solution is 1
1 2 1 2( ) ( ) (log ) (log )Xz e Y X u v u& &� 5 ! 5 � 5 ! 5 [See Art. 5.6]

or 1 1 2 2
1 2 1 2( ) ( ) ( ) ( ) ( )z u v u y x y x y x& &� ≅ ! ≅ � & ≅ & ! ≅ & ,  where 1 2and≅ ≅  are arbitrary functions.

Ex.5. Reduce the equation 2(2sin ) (cos ) (cos ) 0r x s x t x q& & & �  to canonical form and hence
solve it. (Himanchal 2008)

Sol. Given 2(2sin ) (cos ) (cos ) 0r x s x t x q& & & � ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = 1, S = – 2 sin x and

T = – cos2 x so that S2 – 4RT = 4 (sin2 x + cos2 x) = 4 > 0, showing that (1) is hyperbolic. The
) -quadratic equation 2 0R S T) ! ) ! �  reduces to 2 2(2sin ) cos 0x x) & ) & �  so that

sin 1,x) � ! sin 1x & . Hence the corresponding characteristic equations become
dy/dx + sin x + 1 = 0         and dy/dx + sin x – 1 = 0
Integrating these, y – cos x + x = c1        and y – cos x – x = c2
Choose u = y – cos x + x            and v = y – cos x – x ... (2)

1 (1 sin ) (sin 1)
z z u z v z z

p x x
x u x v x u v

% % % % % % %
� � ! � ! ! &

% % % % % % %
, by (2) ... (3)

   z z u z v z z
q

y u y v y u v

% % % % % % %
� � ! � !

% % % % % % %
, using (2) ... (4)

From (4), we have       / / /y u v% % � % % ! % % ... (5)

1
2

2

z z z z
t

y y u v u vy

: ;% % % % % % %: ;: ;� � � ! !< = < =< =% % % % % %% > ?> ?> ?
, using (4) and (5)

or
2 2 2

2 2
2

z z z z z z z
t

u u v v u v u vu v

% % % % % % % % %: ; : ;� ! ! ! � ! !< = < =% % % % % % % %% %> ? > ?
... (6)

Now, 
2

(1 sin ) (sin 1)
z z z z

s x x
y x y x y u v

% % % % % %: ; Β Χ� � � ! ! &∆ Ε< =% % % % % % %> ? Φ Γ
, by (3)

  = (sin 1) (sin 1)
z z

x x
y u y u

% % % %: ; : ;! ! &< = < =% % % %> ? > ?

= (sin 1)
z u z v

x
u u y v u y

Β Χ% % % % % %: ; : ;! !∆ Ε< = < =% % % % % %> ? > ?Φ Γ
+ (sin 1)

z u z v
x

u v y v v y

Β Χ% % % % % %: ; : ;& !∆ Ε< = < =% % % % % %> ? > ?Φ Γ

=
2 2 2 2

2 2
(sin 1) (sin 1)

z z z z
x x

u v u xu v

: ; : ;% % % %
! ! ! & !< = < =< = < =% % % %% %> ? > ?

or
2 2 2 2 2

2 2 2 2
sin 2

z z z z z
s x

u vu v u v

: ;% % % % %
� ! ! ! &< =< =% %% % % %> ?

... (7)

  (sin 1) (sin 1)
z z z

r x x
x x x u v

% % % % %: ; Β Χ� � ! ! &∆ Ε< =% % % % %> ? Φ Γ
= cos (sin 1) cos (sin 1)

z z z z
x x x x
u x u v x v

% % % % % %: ; : ;! ! ! ! &< = < =% % % % % %> ? > ?
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    = cos (sin 1)
z z z u z v

x x
u v u u x v u x

Β Χ% % % % % % % %: ; : ; : ;! ! ! !∆ Ε< = < = < =% % % % % % % %> ? > ? > ?Φ Γ
(sin 1)

z u z v
x

u v x v v x

Β Χ% % % % % %: ; : ;! & !∆ Ε< = < =% % % % % %> ? > ?Φ Γ

    =
2 2

2 2
cos (sin 1) (sin 1) (sin 1)

z z z z
x x x x

u v u v

Β Χ% % % %: ; Η Η! ! ! ! ! &∆ Ε< =% % % %> ? Η ΗΦ Γ

Β Χ% %Η Η! & ! ! &∆ Ε
% % %Η ΗΦ Γ

2 2

2
(sin 1) (sin 1) (sin 1)

z z
x x x

u v v

1
2

2
2

cos (1 sin )
z z z

r x x
u v u

% % %: ;� ! ! !< =% % %> ?

2 2
2 2

2
(sin 1) 2cos

z z
x x

u vv

% %
! & &

% %%
... (8)

Using (4) (6), (7) and (8) in (1), we get
2 2

2 2
2 2

cos (1 2sin sin ) (sin 1 2sin )
z z x z

x x x x x
u v u v

% % % %: ;! ! ! ! ! ! &< =% % % %> ?

%
&

% %

2
22cos

z
x
u v

Β Χ: ;% % % % %Η Η& ! ! ! &< =∆ Ε< =% %% % % %Η Η> ?Φ Γ

2 2 2 2 2

2 2 2 2
2sin sin 2

z z z z z
x x

u vu v u v

2 2 2
2

2 2
cos 2 cos 0

z z z z z
x x

u v u vu v

: ;% % % % %: ;& ! ! & ! �< = < =< =% % % %% % > ?> ?

or 2 2 2(1 2sin sin 2sin 2sin cos )x x x x x! ! & & & × 2 2( / )z u% % 2(sin 1 2sinx x! ! & – 2sin2x

! & 22sin cos )x x × 2 2( / )z v% % 2 2(2 cos 4sinx x& ! ! ∋ % % % �2 22cos ) ( / ) 0x z u v

or     2 / 0z u v% % % � , on simplification. ... (9)
(9) is the required canonical form of (1).
Solution of (9). Integrating (9) w.r.t. ‘u’, % % � 5 5/ ( ),z v v  being an arbitrary function  ... (10)

Integrating (10) w.r.t. ‘v’, ( ) ( ) ( ) ( )z v dv F u G v F u� 5 ! � !ϑ ,

where ( ) ( )G v v dv� 5ϑ , F and G are arbitrary functions.

1    ( cos ) ( cos )z G y x x F y x x� & & ! & !  is the required solution.
Ex. 6.  Reduce %2z/%x2 = x2(%2z/%y2) to canonical form.

[Agra 2005; Himanchal 2005; Delhi B.Sc. (Prog) II 2002, 07; Kurukshetra 2004;
Ravishankar 2004; Nagpur 2010, Kanpur 2011]

Sol.Re-writing the given equation becomes              r & x2t = 0. ...(1)
Comparing (1) with Rr + Ss + Tt + f(x, y, z, p, q) = 0,  we have   R = 1,  S = 0,  T = & x2.
Now, the )-quadratic   R)2 + S) + T = 0         gives     )2 & x2 = 0       so that       ) = ± x.
1 Here )1 = x  and )2 = & x (Real and disticnt roots)

Hence characterstic equations    dy/dx + )1 = 0              and                dy/dx + )2 = 0
become                                         dy/dx + x = 0             and                        dy/dx & x = 0.
Integrating these,   y + (x2/2) = c1                                and                        y & (x2/2) = c2.
Hence in order to reduce (1) to canonical form, we change x, y, to u, v by taking
u = y + (x2/2)                                       and                  v = y & (x2/2)   ...(2)

Now, p = %
%

� %
%

%
%

! %
%

%
%

� %
%

& %
%

z
x

z
u

u
x

z
x

x z
u

x z
v

v
v

, using (2) ...(3)

q = %
%

� %
%

%
%

! %
%

%
%

� %
%

! %
%

z
y

z
u

u
y

z
y

z
u

z
v

v
v

, using (2) ...(4)

1 r = %
%

� %
%

%
%
FH IK � %

%
%
%

& %
%

FH IK
RST

UVW
2

2
z

x x
z
x

x z
u

z
x v

= x %
%

%
%

& %
%

FH IK !
%
%

& %
%

FH IKx
z
u

z z
u

z
v v

1. , using (3)

= x z z u z z z z
u u x u x u

∗ % % % % % % % % + % %: ; : ;& ! & ! &< = < =, −> ? > ?% % % % % % % % % %. /

v
v v v v

  = x2 %
%

& %
% %

! %
%

F
HG

I
KJ !

%
%

& %
%

2

2

2 2

22z
u

z
u

z z
u

z
v v v2
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and t = %
%

� %
%

%
%
F
HG
I
KJ �

%
%

! %
%

FH IK %
%

! %
%

FH IK
2

2
z

y y y u
z
u

z
v v

= %
%

! %
% %

! %
%

2

2

2 2
2z

u
z

u
z

v v2 , using (4)

Putting the above values of r and t in (1), we get

    x2 %
%

& %
% %

! %
%

F
HG

I
KJ !

%
%

& %
%

& %
%

! %
% %

! %
%

F
HG

I
KJ

2

2

2 2
2

2

2

2 2
2 2z

u
z

u
z z

u
z x z

u
z

u
z

v v v v v2 2 = 0

or %
% %

2z
u v

= 1
4 2x

z
u

z%
%

& %
%

FH IKv or          %
% %

2z
u v

= 1
4( )u

z
u

z
&

%
%

& %
%

FH IKv v
, by (2)

which is the required canonical form of the given equation.
Ex. 7.  Reduce the equation (n& 1)2 (%2z/%x2) &y2n(%2z/%y2) = ny2n & 1 (%z/%y)  to canonical form, and

find its general solution.   [Delhi Maths. (H)  2000, 01, 05; Himanchal 2004; Ravishankar 2004]
Sol. Given         (n & 1)2r & y2n t & n y2n & 1  q = 0. ...(1)
Comparing (1) with Rr + Ss + Tt + f(x, y, z, p, q) = 0,  we have  R = (n & 1)2,  S = 0,  T = &y2n.
Now, the )—quadratic R)2 + S) + T = 0  gives
(n & 1)2 )2 & y2n= 0                     so that ) = ± (n & 1)&1yn.
1 Here )1 = (n & 1)&1yn              and )2 = & (n & 1)&1 yn.
Hence, characterstic equations  dy/dx + )1 = 0     and dy/dx + )2 = 0

become                                 dy/dx + (n & 1)&1yn = 0       and    dy/dx & (n & 1)&1yn = 0.
Integrating these,                     x & y& n + 1 = c1      and x + y& n + 1 = c2.
Hence in order to reduce (1) to canonical form, we change x, y to u, v by taking

u = x & y& n + 1        and     v = x + y& n + 1. ...(2)

1 p = %
%

� %
%

%
%

! %
%

%
%

� %
%

! %
%

z
x

z
u

u
x

z
x

z
u

z
v

v
v

  so that %
%

Α %
%

! %
%x u v

,

                                q = %
%

� %
%

%
%

! %
%

%
%

z
y

z
u

u
y

z
yv
v = (n & 1)y&n %

%
& %

%
FH IK

z
u

z
v

,

r = %
%

%
%
FH IKx

z
x

= %
%

! %
%

FH IK
%
%

! %
%

FH IKu
z
u

z
v v

= %
%

! %
% %

! %
%

2

2

2 2
2z

u
z

u
z

v v2

t = %
%

%
%
F
HG
I
KJy

z
y

=
%
%

&
%
%

&
%
%

F
HG

I
KJ

RST
UVW

&

y
n y z

u
zn( )1
v

= & n(n & 1)y& n & 1 %
%

& %
%

FH IK
z
u

z
v

 + (n & 1)y&n %
%

%
%

& %
%

FH IKy
z
u

z
v

      = & n(n & 1)y& n & 1 %
%

& %
%

FH IK
z
u

z
v

+ (n & 1)y& n z z u z z
u u y u y

∗ +% % % % % % % %: ; : ;& ! &< = < =, −> ? > ?% % % % % % % %. /

v
v v v

  = & n(n & 1)y& n & 1 %
%

& %
%

FH IK
z
u

z
v

 + (n & 1)2 y&2n %
%

& %
% %

! %
%

F
HG

I
KJ

2

2

2 2
2z

u
z

u
z

v v2

Substituting the above values of r, t, q in (1) and simplifying, we obtain

      2 / 0,z u% % %v = ...(3)

which is the required canonical form of the given equation
Integrating (3) w.r.t. ‘v’,   %z/%u = F(u),   where F(u) is an arbitrary function of u, ...(4)
Integrating (4) w.r.t. ‘u’, z = G(u) + H(v),

where G(u) = F u( )z du and G(u), H(v) are arbitrary functions

Using (2), the solution of the given equation is z = G(x & y& n + 1) + H(x + y& n + 1).
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Ex. 8.  Reduce the equation (y & 1) r & (y2 & 1)s + y(y & 1)t + p & q = 2ye2x(1 & y)3 to canonical
form and hence solve it. [Delhi B.Sc. (Hons) III 2008; Rohilkhand 1992]

Sol. Given        (y & 1) r & (y2 & 1)s + y(y & 1)t + p & q & 2ye2x (1 & y)3 = 0. ...(1)
Comparing (1) with Rr + Ss + Tt + f(x, y, z, p, q) = 0, we get
R = y & 1,             S = & (y2 & 1)                                   and                          T = y(y & 1). ...(2)
1 The )–quardratic R)2 & S) + T = 0 gives
 (y & 1))2 & (y2 & 1)) + y (y & 1) = 0        3       )1 = 1           and      )2 = y (real and distinct roots)
Hence characterstic equations   (dy/dx) + )1 = 0         and               (dy/dx) + )2 = 0  become

                                (dy/dx) + 1 = 0          and (dy/dx) + y = 0.
Integrating these,                              x + y = c1        and             y ex = c2.
To reduce (1) to canonical form, we change the independent variables x, y, to new independent

variables u, v by taking
u = x + y                         and             v = y ex. ...(3)

1              p = %
%

z
x = %

%
%
%

! %
%

%
%

z
u

u
x

z
xv
v = %

%
z
u  + y ex %

%
z
v

= %
%

! %
%

z
u

zv
v

, by (3) ...(4)

                 q = %
%

z
y

= %
%

%
%

! %
%

%
%

z
u

u
y

z
v

v
y

= %
%

z
u  + ex %

%
z
v

, by (3) ...(5)

r = %
%

%
%
FH IKx

z
u = %

%
! %

%
FH IK

%
%

! %
%

FH IKu
z
u

v
v

v
v
z = %

%
! %

% %
! %

%
! %

%

2

2

2
2

2
2z

u
z

u
z zv

v
v

v
v

v2 , by (4)

s = %
%

%
%
F
HG
I
KJx

z
y = %

%
%
%

! %
%

FH IKx
z
u

e zx

v
= %

%
%
%
FH IKx

z
u  + ex %

%
%
%
FH IKx

z
v

 + ex %
%

z
v

= %
%

! %
%

FH IK
%
%
FH IK

z
u

z
u

v
v
z  + ex  %

%
! %

%
FH IK %

%
FH IKu

zv
v v

 + ex %
%

z
v

= %
%

2

2
z

u
 + (ex + v) %

% %

2z
u v

 + vex %
%

2z
v2  + ex %

%
z
v

and t = %
%

%
%
F
HG
I
KJy

z
y

= %
%

%
%

! %
%

FH IKy u
e zx

v
= %

%
%
%
FH IKy

z
u

 + ex %
%

%
%
FH IKy

z
v

= %
%

%
%
FH IK

%
%

! %
%

%
%
FH IK

%
%u

z
u

u
y

z
u

z
yv

 + ex %
%

%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z u
y

z
v v v

v
y

= %
%

! %
% %

! %
%

2

2

2
2

2
2z

u
e z

u e zx x
v v2 .

Substituting the above values in (1) and simplifying, we have

(1 & y)3ex %
% %

2z
u v

= 2y e2x (1 & y)3                 or %
% %

2z
u v

= 2v, ...(6)

which is the canonical form of (1).
Integrating (6) w.r.t. ‘v’, %z/%u = v2 + 5(u), 5(u) being an arbitrary function ...(7)

Integrating (7) w.r.t. ‘u’, z = uv2 + 51(u) + 52(v), where 51(u) = ( )u du5ϑ
1Using (3) z = (x + y)y2e2x + 51(x + y) + 52(yex), where 51 and 52 are arbitrary functions.

Ex. 9.  Solve x2(y & 1) r & x (y2 & 1) s + y(y & 1) t + xyp & q = 0.
Sol. Given x2(y & 1) r & x(y2 & 1) s + y(y & 1)t + xyp & q = 0. ...(1)
Comparing (1) with   Rr + Ss + Tt + f(x, y, z, p, q) = 0,  we get
R = x2(y & 1),         S = & x (y2 & 1) and T = y (y & 1).
1 )–quadratic R)2 + S) + T = 0 reduces to
x2(y & 1) )2 & x(y2 & 1) ) + y(y & 1) = 0                3            )1 = y/x     and         )2 = 1/x   (real and distinct)
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So characterstic equations   (dy/dx) + )1 = 0   and  (dy/dx) + )2 = 0  become
(dy/dx) + (y/x) =0                        and                               (dy/dx) + (1/x) = 0

Integrating these, xy = c1  and  xey = c2 so for canonical form, we take
u = xy                and                                  v = xey. ...(2)

1               p = %
%

z
x = %

%
%
%

! %
%

%
%

z
u

u
x

z
xv
v = y %

%
z
u

 + ey %
%

z
v

, by (2) ...(3)

  q = %
%

z
y

= %
%

%
%

! %
%

%
%

z
u

u
y

z
yv
v = x %

%
z
u

 + xey %
%

z
v

, by (2) ...(4)

r = %
%

2

2
z

x
= %

%
%
%
FH IK �

%
%

%
%

! %
%

FH IKx
z
x x

y z
u

e zy

v
= y

x
z
u

e
x

zy%
%

%
%
FH IK !

%
%

%
%
FH IKv , by (3)

= y
z u z

u u x u x
∗ % % % % % % +: ; : ;!< = < =, −> ? > ?% % % % % %. /

v
v

+ey z u z
u x x

∗ % % % % % % +: ; : ;!< = < =, −> ? > ?% % % % % %. /

v
v v v

= y2 %
%

! %
% %

! %
%

2

2

2
2

2

22z
u

ye z
u

e z
y

x y

v
,

s = %
% %

2 z
x y = %

%
%
%
FH IKx

z
x

= %
%

%
%

! %
%

FH IKx
x z

u
xe zy

v
= %

%
! %

%
%
%
FH IK

z
u

x
x

z
u

 + ey %
%

! %
%

%
%
FH IK

z xe
x

zy

v v

    = %
%

! %
%

z
u

e zy

v
 + x %

%
%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z
u

u
x

z
u xv

v  + x ey %
%

%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z u
x

z
xv v v
v

    = %
%

z
u

 + ey %
%

z
v

 + xy %
%

2

2
z

u
+ (yxey + eyx) %

% %

2z
u v

 + xe2y %
%

2

2
z

v

and     t = %
%

2

2
z

y
= %

%
%
%
F
HG
I
KJy

z
y =

%
%

%
%

!
%
%

F
HG

I
KJy

x
z
u

xe
zy

v
= x %

%
%
%
FH IK !

%
%

! %
%

%
%
FH IKy

z
u

xe z x e
y

zy y

v v

    = x %
%

%
%
FH IK

%
%

! %
%

%
%
FH IK

%
%

L
NM

O
QPu

z
u

u
y

z z
u yv

v  + xey %
%

z
v

+ xey %
%

%
%
F
HG
I
KJ

%
%

!
%
%

%
%
F
HG
I
KJ

%
%

L
NM

O
QPu

z u
y

z
yv v v
v

     = x2 %
%

2

2
z

u
 + 2x2ey %

% %

2z
u v

 + x2e2y %
%

2

2
z

y
 + xey %

%
z
v

.

Substituting the above values in (1) and simplifying, we get      2 / 0,z u v% % % � ... (5)

which is canonical form of (1).

Integrating (5) w.r.t.  ‘u’,                            %z/%v = 5(v), ( )5 v  being an arbitrary function.

Integrating it w.r.t. ‘v’,                z = 51(v) + 52(u), where 51(v) = ( ) d5ϑ v v .

1 z = 51(xey) + 52(xy), by (2). This is the required solution, 1 2,5 5  being arbitrary functions

Ex. 10.  Solve (i) xyr & (x2 & y2) s & xyt + py & qx = 2(x2 & y2). [Delhi Maths (H) 2006]
(ii) x(y & x) r & (y2 & x2) s + y (y & x) t + (y + x)(p & x) = 2x + 2y + 2.
Sol. (i) Given xyr – (x2 – y2)s – xyt + py – qx – 2(x2 – y2) = 0 ...(1)
Comparing (i) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, we have

R = xy,  S = & (x2 & y2) and             T = & xy.
So )–quadratic R)2 + S) + T = 0 becomes xy)2 & (x2 & y2)) & xy = 0   giving    ) = & y/x, x/y.

1   dy
dx  + )1 = 0     and     dy

dx
 + )2 = 0     3     dy

dx
y
x

& = 0       and       dy
dx

y
x

! = 0.

Integrating, y/x = c1,  and x2 + y2 = c2.  So, we take
u = y/x                     and v = x2 + y2. ...(2)
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1 Proceeding as usual, we obtain

p = %
%

z
x

= %
%

%
%

! %
%

%
%

z
u

u
x

z
xv
v = &FHG

I
KJ

%
%

!
%
%

y
x

z
x

z
2 2

u v
,   q = %

%
z
y

= %
%

%
%

! %
%

%
%

z
u

u
y

z
yv
v = 1 2

x
z
u

y z%
%

! %
%v

,

                 r =
2 2 2 2

2
2 2 2 2 3

22 (2 ) 4 2y z y z z y z zx x
u ux u x x

% % % % %: ; : ;& ! ∋ & ! ! !< = < => ? > ? % % % %% %v vv

                 s = &FHG
I
KJFH IK

%
%

y
x x

z
u2

2

2
1 + 

2 2

2 2 2
1 12 2 4y z z zy x xy
x u ux x

Β Χ % % %: ;& ! ∋ ! &∆ Ε< => ? % % %%Φ Γ v v

and t =
2 2 2 2

2
2 2

1 12 (2 ) 4 2z z z zy y
x x uu

% % % %: ; ! ∋ ∋ ! !< => ? % % %% %v vv
.

Substituting these in (1) we get

(x2 + y2)2 %
% %

2z
u v = (y2 & x2)x2         or                   %

% %

2z
u v

=
( )
( ) ( )
y x x
x y

u
u

2 2 2

2 2 2

2

2 2
1
1

&
!

� &
!

, by (2) ...(3)

Integrating (3) w.r.t. ‘u’, we have

%
%

z
v

=
u
u

2

2 2
1
1

&
!z ( )

du + 5(v) = du
u

du
u2 2 21

2
1!

&
!z z ( )

 + 5(v) ... (4)

We have,                          2
11

1
du

u
0 �

!ϑ 2 2 2
1 2 ,

1 ( 1)
uu u du

u u
: ;&

∋ & ∋ < =! > ! ?ϑ  integrating by parts

or        
2

2 2 2 2 2 2 2 2
( 1) 12 2 2

1 1 ( 1) 1 1 ( 1)
du u u u du dudu

u u u u u u
! &

� ! � ! &
! ! ! ! ! !ϑ ϑ ϑ ϑ

Then, 2 2 2 22
1 ( 1) 1

du du u
u u u

& � &
! ! !ϑ ϑ ... (4)

Using (5), (4) gives            %z/%v = &u/(u2 + 1) + 5(v), ( )5 v being an arbitrary function   ...(6)

Integrating (6) w.r.t. v,      z = & (uv)/(u2 + v2) + 51(v) + 52(u),     where   51(v) =

( ) d5ϑ v v

1 Using (2), 2 2
1 2 1 2– ( ) ( / ), ,z xy x y y x5 5 5 5� ! ! ! being arbitrary functions.

(ii) Hint.  Since R = x(y & x),    S = & (y2 & x2),    T = y(y & x),    so here     )1 = y/x,     )Κ = 1.
So we get (dy/dx) + (y/x) = 0 and (dy/dx) + 1 = 0 as characteristic equations
These give xy =c1 and         x + y = c2.  Hence take

u = xy                                 and v = x + y.   ...(1)

As usual,      p =  y %
%

! %
%

z
u

z
v

                              and                             q = x %
%

! %
%

z
u

z
v

,

     r = y2 %
%

! %
% %

! %
%

2

2

2 2

22z
u

y z z
v vu ,  t = x2 %

%
! %

% %
! %

%

2

2

2 2

22z
u

x z z
v vu

, s = xy %
%

2

2
z

u
 + (x + y) %

% %
! %

%
! %

%

2 2

2
z z z

uv vu
.

1 Given equation becomes  & (y & x)3 %
% %

2z
v u = 2x + 2y + 2 ... (2)
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or %
% %

2z
v u

 = & 2 1
3

( )
( )
x y
y x

! !
&

= & 2 1
42 3 2

( )
[( ) ] /

x y
y x xy

! !
! &

=
2 1

42 3 2
( )

( ) /
v

v
!

& u
, by (1)

Integrating (2) w.r.t. ‘u’, we get    %
%

z
v

=
v

v

!

&

1

42( )u
 + 5(v). ... (3)

Integrating, (3) w.r.t. ,v z = ( )v2 4& u  + log [v + ( )v2 4& u ] + 51(v) + 52(u)

or z = x & y + log (2x) + 51(x + y) + 52(xy), 1 2,5 5  being arbitrary functions.

Ex. 11.  Solve (i) y(x + y) (r & s) – xp & yq & z = 0    [Delhi Maths (H) 1998]
(ii)  xys & x2r & px & qy + z = & 2xy2y.
Sol.  (i)  Given y(x + y) r & y (x + y)s & xp & yq & z = 0. ...(1)
Comparing (1) with Rr + Ss + Tt + f(x, y, z, p, q) = 0, R = y (x + y),   S = & y (x + y),  T = 0.

  So, the )–quadratic 2 0R S T) )! ! �  reduces to

y(x + y))2 & y(x + y)) = 0,  giving ) = 0, 1.  Thus )1 = 1      and        )2 = 0   and so

dy
dx  + )1 = 0      and          dy

dx  + )2 = 0        3          dy
dx  + 1 = 0         and         dy

dx = 0

Integrating these, x + y = c1,            and                          y = c2.
So we take u = x + y                         and                      v = y ...(2)

Now,  p = %
%

z
x

= %
%

%
%

! %
%

%
%

z
u

u
x

z
xv
v = %

%
z
u , by (2) ...(3)

 q = %
%

z
y =

z u z
u y y

% % % %
!

% % % %
v

v
= %

%
! %

%
z
u

z
v

, by (2) ....(4)

r = %
%

2

2
z

x
= %

%
%
%
FH IKx

z
x

= %
%

%
%
FH IKu

z
u

= %
%

2

2
z

u
, by (3) ...(5)

s = %
% %

2z
v u

= %
%

%
%
F
HG
I
KJx

z
y

= %
%

%
%

! %
%

FH IKu
z
u

z
v

= %
%

! %
% %

2

2

2z
u

z
v u

, using (3) and (4) ...(6)

t = %
%

2

2
z

y
= %

%
%
%
F
HG
I
KJy

z
y = %

%
! %

%
FH IK %

%
! %

%
FH IKu

z
u

z
v v

= %
%

%
%

! %
%

FH IK !
%

%
%
%

! %
%

FH IKu
z
u

z z
u

z
v v v

=
%
%

!
%

% %
!

%
%

2

2

2 2

22z
u

z z
v vu

Substituting these values in (1), we have

y(x + y) & %
% %
F
HG

I
KJ &

%
%

& %
%

! %
%

FH IK
2z x z

u
y z

u
z

v vu
& z = 0           or           uv %

% %

2z
v u  + u %

%
z
u  + v %

%
z
v  + z = 0.

or   %
% %

! %
%

! %
%

!
2 1 1 1z z

u u
z

uv v v vu
z = 0          or                   %

%
%
%

!FH IK !
%
%

!FH IKu
z z

u
z z

v v v v
1 = 0.   ... (7)

Let       / ( / )z z% %v + v = w. ...(8)
Then, the above equation (7) becomes                          / /w u w u% % ! = 0.
Integrating, wu = 5(v)                   or w = (1/u) × 5(v).

Substituting this value of w in (8), we have               %
%

!z
v v

1 z = 1
u

5(v), ...(9)

I.F. of (9) = e d( / )1 v vz = v  and solution of (9) is

zv =
1
u

d5( )v vz + 52(u)        or         z = 1
uv

51(v) + 1
v

52(u), where 1( ) ( ) d5 � 5ϑv v v
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or z = 1
y x+ y( )

51(y) + 1
y 52(x + y),  by (2); 1 2,5 5  being arbitrary functions

(ii) Hint.  Given                                   xys & x2r & px & qy + z = &2x2y. ...(1)
Here, R = & x2,  S = xy,  T = 0 and )–quadratic is          & x2)2 + xy) = 0

so that )1 = y/x and )2 = 0.  Hence, characterstic equations

dy
dx  + )1 = 0           and           dy

dx  + )2 = 0     3      dy y
dx x

! = 0          and                dy
dx = 0

Integrating these,    xy = c1,  y = c2.  So we take u = xy       and       v = y. ...(2)

Then,     p = %
%

z
x

= %
%

%
%

! %
%

%
%

z
u

u
x

z
xv
v = %

%
z
u

y = v %
%

z
u

, by (2) ...(3)

q = %
%

z
y

= %
%

%
%

! %
%

%
%

z
u

u
y

z
yv
v = x %

%
! %

%
z
u

z
v

= u
v v

%
%

! %
%

z
u

z , by (2) ...(4)

r = %
%

2

2
z

x
= %

%
%
%
FH IKx

z
x

= v %
%

%
%
FH IKu

z
u

v = v2 %
%

2

2
z

u
, by (3)

 s = %
% %

2 z
x y = %

%
%
%
F
HG
I
KJx

z
y

= v
v v

%
%

%
%

! %
%

FH IKu
u z

u
z = v 1 2 2

v v v
%
%

! %
%

! %
% %

F
HG

I
KJ

z
u

u z z
uu2 , by (3) and (4)

Substituting these values in (1), we have

xy
%
%

! %
%

! %
% %

F
HG

I
KJ

z
u

u z z
u

2 2

u2 v
v & x2v2 %

%

2z
u2 & v %

%
z
u x & y

u z
u

z
v v

%
%

! %
%

FH IK + z = &2x2y

or u %
%

z
u  + u2 %

%

2

2
z

u
 + uv %

% %

2z
u v

& u2 %
%

2

2
z

u
& u %

%
z
u & u %

%
z
u & v %

%
z
v  + z = &2(u2/v2)v,  by (2)

or uv %
% %

2z
u v

& u %
%

z
u

& v %
%

z
v

 + z = &2 2u
v

      or           %
% %

& %
%

& %
%

!
2 1 1z

u
z
u u

z z
uv v v v

= &2u
v2 .

or
%

%
%
%

&FH IK & %
%

&FH IK � &
u

z z
u

z z u
v v v v v

1 2
2 . ...(5)

Let       / /z z% % &v v = w. ...(6)

Then (5) becomes %
%

&w
u u

1 w =& 2u
v2 , which is linear differential equation ...(7)

I.F. of (7) =
– (1/ )u du

e ϑ = e eu u& �
&log log 1

= (1/u) and so its solution is

w
u

= & 2
2 1u

du
u

: ;∋< => ?ϑ v
= & 2u

v2  + 5(v) or                  
2

2
2 ( )uw u v
v

� & ! 5

Substituting this value of w in (6), we get     %
%

&z
v v

1 z = & 2 2u
v2  + u5(u).

Its I.F. =
– (1/ )d

e ϑ v v
= 

1log loge e
&& �v v = (1/v)  and so its solution is

z
v

= 1 2 2

v v
v v& !

L
NM

O
QPz u u d2 5( ) = u2

v2  + u≅(v) + 52(u)

or z = (u2/v) + uv≅(v) + v52(u) = (u2/v) + u51(v) + v52(u)  or   z = x2y + xy51(y) + y52(xy),  by (2).
Ex. 12. Solve x2r & y2t + px & qy = x2.   [Kurukshetra 2003; Delhi Maths (H) 1998]
Sol. Given                                          x2r & y2t + (px & qy & x2) = 0. ...(1)
Comparing (1) with Rr + Ss + Tt + f(x, y, z, p, q) = 0,  we get
R = x2,  S = 0                     and T = & y2.   ...(2)
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Now, the )-quadratic  R)2 + S) + T = 0 and (2) give
x2)2 & y2 = 0 so that                     ) = ± y/x. (real and distinct roots)
Take )1 = y/x                      and )2 = & y/x.
Hence characterstic equations  (dy/dx) + )1 = 0        and (dy/dx) + )2 = 0

become (dy/dx) + (y/x)  = 0                     and (dy/dx) & (y/x) = 0
or    (1/x)dx + (1/y)dy = 0                      and (1/x)dx & (1/y)dy = 0

Integrating, log x + log y = log c1              and log x & log y = log c2
or xy = c1               and x/y = c2.

To reduce (1) to canonical form, we change the independent variables x, y to new independent
variables u, v by taking

u=xy                   and v = x/y. ...(3)

1           p = %
%

z
x = %

%
%
%

! %
%

%
%

z
u

u
x

z
xv
v = y %

%
! %

%
z
u y

z1
v

, using (3). ...(4)

          q = %
%

z
y

= %
%

%
%

! %
%

%
%

z
u

u
y

z
yv
v = x %

%
& %

%
z
u

x
y

z
2 v

, using (3). ...(5)

          r = %
%

%
%
FH IKx

z
x = %

%
%
%

! %
%

F
HG

I
KJx

y z
u y

z1
v

= y %
%

%
%
FH IK !

%
%

%
%
FH IKx

z
u y x

z1
v

                         =  y %
%

%
%
FH IK %% ! %

%
%
%
FH IK %%

L
NM

O
QP!

%
%

%
%
FH IK %% ! %

%
%
%
FH IK %%

L
NM

O
QPu

z
u

u
x

z
u x y u

z u
x

z
xv

v
v v v

v1

                                     =  y
2 2 2 2

2 2
1 1 1z z z zy y

u y y u yu

: ; : ;% % % %
∋ ! ∋ ! ∋ ! ∋< = < =% % % %% %> ? > ?v v v

, using (3)

1        r = y2 %
%

! %
% %

! %
%

2

2

2

2

2

22 1z
u

z
u y

z
yv

. ...(6)

t = %
%

%
%
F
HG
I
KJy

z
y = %

%
%
%

& %
%

F
HG

I
KJy

x z
u

x
y

z
2 v

=x %
%

%
%
FH IK & & %

%
! %

%
%
%
FH IK

L
NM

O
QPy

z
u

x
y

z x
y

z2
3 2v v v

  = x %
%

%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z
u

u
y

z
u yv

v + 2
3 2
x

y
z x

y
%
%

&
v

%
%

%
%
FH IK %% ! %

%
%
%
FH IK %

%
L
NM

O
QPu

z u
y

z
yv v v
v

  = x
2 2 2 2

2 2 3 2 2 2
2z z x x z x z z xx x

u uu y y y y

∗ + ∗ +: ; : ;% % % % %
∋ ! ∋ & ! & ∋ ! ∋ &, − , −< = < =% % % % %% > ? % > ?, − , −. / . /v v v v

1 t = x2 z
u

% % % %& ! !
% % %% %

2 2 2 2 22 2
2 2 3 4 2
z x z x z x

u y y yv v v
. ...(7)

Substituting the values of r, t, p and q given by (6), (7) (3) and (4) in (1),  we obtain

    x2 y z
u

z
y

z
u

y x z
u

x
y

z x
y

x
y

2
2

2

2

2

2

2
2 2

2

2

2

2

2

3

2

4

2
2 1 2 2%

%
! %

% %
! %

%
F
HG

I
KJ &

%
%

& %
% %

! %
%

! %
%

F
HG

I
KJu u

z z
v v v v2

+ x y z
u y

%
%

! %
%

F
HG

I
KJ

1 z
v

& y x z
u

x
y

%
%

& %
%

F
HG

I
KJ2

z
v

& x2 = 0

or 4x2 %
% %

2z
u v

= x2 so that                                            %
%

%
%
FH IKu

z
v

=
1
4 , ...(8)

which is the canonical form of (1).
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Now, integrating (8) w.r.t. ‘u’,      %z/%u = (u/4) + f(v). ...(9)

Integrating (9) w.r.t. ‘v’,       z = (uv)/4 + f dx u( ) ( )v !z 5

or z = (uv)/4 + ≅(v) + 5(u), where ≅(v) = f d( )v vz
or z = x2/4 + ≅(x/y) + 5(xy), which is the required solution, 5, ≅ being arbitrary functions.

Ex. 13. (a) Reduce 2 2 2 2 2 2( / ) ( / ) 0x z x y z y% % & % % �  to canonical form and hence solve it.

(b) Reduce 2 2 2 2 2 2( / ) ( / ) 0y z x x z y% % & % % �  to canonical form.
Sol. (a) Re-writing the given equation,  x2 r – y2 t = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = x2, S = 0 and T = – y2 so that

S2 – 4RT = 4x2 y2 > 0 for 0, 0x y4 4  and hence (1) is hyperbolic. The ) -quadrate equation
2 0R S T) ! ) ! �  reduces to 2 2 2 0x y) & �  so that / , /y x y x) � &  and hence the corresponding

characteristic equations become (dy/dx) + (y/x) = 0 and (dy/dx) – (y/x) = 0
Integrating these, xy = c1 and x/y = c2
In order to reduce (1) to its canonical form, we choose         u = xy  and  v = x/y ... (2)
Now, doing exactly as in solved Ex. 12, we get

2 2 2
2

2 2 2

1
2

z z z
r y

u vu y v

% % %
� ! !

% %% %
              and

2 2 2 2 2
2

2 2 3 4 2

2 2z x z x z x z
t x

u v vu y y y v

% % % %
� & ! !

% % %% %
Putting these values of r and t in (1), we get

2 2 2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 3 4 2

1 2 2
2

z z z z x z x z x z
x y y x

u v u v vu y v u y y y v

: ; : ;% % % % % % %
! ! & & ! !< = < =< = < =% % % % %% % % %> ? > ?

= 0

or
2

2 2
4 0

z x z
x

u v y v

% %
& �

% % %
or

2

2 0
z z

xy
u v v
% %

& �
% % %

or 22 ( / ) ( / ) 0u z u v z v% % % & % % � , using (2). ... (3)
This is the required canonical form of (1).
We now proceed to find solution of (1). Multiplying both sides of (3) by v, we get

2

2 0
z z

uv v
u v v

% %
& �

% % % or (2 ) 0uv DD vD zΙ Ι& � ... (4)

where /D uΑ % %  and /D vΙ Α % % . We now reduce (4) to a linear equation with constant coefficients
by usual method (refer Art. 6.3 of chapter 6).

Let u = eX and v = eY so that X = log u and y = log v    ... (5)
Let 1 /D XΑ % %  and 1 /D YΙ Α % % . Then (4) reduces to

1 1 1(2 ) 0D D D zΙ Ι& � or & �Ι1 1(2 1) 0D D z
Its general solution is given by (use Art. 5.6 of chapter 5)

/ 2 1/ 2
1 2 1 2( ) ( ) (log ) (log )Xz e Y X u v u� 5 ! 5 � 5 ! 5 = ≅ ! ≅1/ 2

1 2( ) ( ),u v u  using (5)

  � ≅ ! ≅1/ 2
1 2( ) ( / ) ( )xy x y xy � ≅ ! ≅ � ! ≅1/ 2

1 2 2( / ) ( / ) ( ) ( / ) ( ),x y x x y xy xf x y xy  using (2)

where f and 2≅  are arbitrary functions
(b) Try yourself. Choose u = (y2 – x2)/2, v = (y2 + x2)/2.

Ans.  
2

2 2

1

2( )

z z z
v u

u v u vu v

% % %: ;� &< =% % % %& > ?
.
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Ex. 14.  Reduce the equation x(xy & 1)r & (x2y2 & 1)s + y(xy & 1)t + (x & 1)p + (y & 1)q = 0 to
canonical form and hence solve it.

Sol. Comparing the given equation with Rr + Ss + Tt + f(x, y, z, p, q) = 0,
here, R = x (xy & 1),              S = & (x2y2 & 1),      T = y(xy & 1). ...(1)

Now, the )-quadratic equation  R)2 + S) + T = 0  and (1) give
x(xy & 1))2 & (x2y2 & 1)) + y(xy & 1) = 0                  or x)2 & (xy + 1)) + y = 0

or (x) & 1) () & y) = 0 so that        ) = 1/x, y.    Take    )1 = 1/x       and       )2 = y.
Hence characterstic equations (dy/dx) + )1 = 0          and (dy/dx) + )2 = 0

become (dy/dx) + (1/x) = 0                           and        (dy/dx) + y = 0
or             dy + (1/x)dx = 0                   and                     (1/y)dy + dx = 0. ...(2)

Intergrating (2),    y + log x = log c1       and                      log y + x = log c2
or    log ey + log x = log c1   and  log y + log ex = log c2

                        x ey = c1                and   y ex = c2.
To reduce the given equation to canonical form, we change the independent variables x, y to

new independent variables u, v, by taking
        u= x ey                  and           v = y ex. ...(3)

1     p = %
%

z
x

= %
%

%
%

! %
%

%
%

z
u

u
x

z
xv
v = ey %

%
z
u

 + y ex %
%

z
v

,  using (3) ...(4)

    q = %
%

z
y

= %
%

%
%

! %
%

%
%

z
u

u
y

z
yv
v = xey %

%
z
u

 + ex %
%

z
v

, using (3). ...(5)

r = %
%

%
%
FH IKx

z
x

= %
%

%
%

! %
%

FH IKx
e z

u
y e zy x

v
= ey %

%
%
%
FH IKx

z
u

 + yex %
%

z
v

 + y ex %
%

%
%
FH IKx

z
v

           = ey %
%

%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z
u

u
x

z
u xv

v + y ex %
%

z
v

 + yex %
%

%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z u
x

z
xv v v
v

           = ey %
%

! %
% %

L
NM

O
QP

2

2

2z
u

e z
u

y ey x

v
 + y ex %

%
z
v

 + y ex %
% %

! %
%

L
NM

O
QP

2 2

2
z

u
e z y ey x

v v

1 r = e2y %
%

2z
u2  + 2y ex + y %

% %

2z
u v

 + y2 e2x %
%

2

2
z

v
 + yex %

%
z
v

.

         s =
%
%

%
%
F
HG
I
KJx

z
y

= %
%

%
%

! %
%

FH IKx
x e z

u
e zy x

v
= ey %

%
z
u

 + x ey %
%

%
%
FH IKx

z
u

 + ex %
%

z
v  + ex %

%
%
%
FH IKx

z
v

           = ey %
%

z
u  + x ey %

%
%
%
FH IK %

%
! %

%
%
%
FH IK %

%
L
NM

O
QPu

z
u

u
x

z
u xv

v  + ex %
%

z
v

 + ex %
%

%
%
F
HG
I
KJ

%
%

!
%

%
%
%
F
HG
I
KJ

%
%

L
NM

O
QPu

z
x

z
xv v v
vu

           = e z
u

xe z
u

e z
u

ye e z e z
u

e z yey y y x x x y x%
%

! %
%

! %
% %

L
NM

O
QP !

%
%

! %
% %

! %
%

L
NM

O
QP

2

2

2 2 2

2v v v v

           = x e2y %
%

2z
u2  + (xy + 1) ex + y %

% %

2z
u v

 + y e2x %
%

2z
v2  + ey %

%
z
u

+ ex %
%

z
v

         t = %
%

%
%
F
HG
I
KJy y

z = %
%

%
%

! %
%

FH IKy u
zx e z ey x

v
= x ey %

%
z
u

 + x ey %
%

%
%
FH IKy u

z + ex %
%

%
%
FH IKy

z
v

= x ey %
%

z
u

 + x ey %
%

%
%
FH IK

%
%

! %
%

%
%
FH IK

%
%

L
NM

O
QPu u u u y

z u z
v

v  + ex %
%

%
%
FH IK

%
%

! %
%

%
%
FH IK

%
%

L
NM

O
QPu y y

z u z
v v v

v

= x ey %
%

z
u  + x ey

2 2

2
y xz zx e e

uu

∗ +% %
!, −% %%. /v

 + ex %
% %

! %
%

L
NM

O
QP

2 2z x e ey x

u
z

v v2 ,
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1 t = x2 e2y %
%

2z
u2  + 2x ex + y %

% %

2z
u v

 + x ey %
%

z
u !

%
%

e zx2
2

2v
.

Putting the above values of r, s, t, p, q in the given equation and simplifying, we obtain the
required canonical form

%
% %

2z
u v

= 0                       or                                     %
%

%
%
FH IKv

z
u

= 0. ...(6)

Integrating (6) w.r.t. ‘v’,               %z/%u = f(u), f being an arbitrary function ...(7)
Integrating (7) w.r.t. ‘u’, z = f u du( ) ( )!z ≅ v   or   z = 5(u) + ≅(v),  where 5(u) = f u du( )z .
Using (3), the required solution is         z = 5(xey) + ≅(yex), 5 and ≅ being arbitrary functions.

Ex. 15. (a) Reduce the one-dimensional wave equation 2 2/z x% % = ∋ % %2 2 2(1/ ) ( / )c z t , (c > 0)
to canonical form and hence find its general solution.

(b) Find the D’Alembert’s solution of the Cauchy’s problem: % % � ∋ % %2 2 2 2 2/ (1/ ) ( / )z x c z t ,
(c > 0) satisfying z (x, 0) = f (x) and ( ,0) ( )tz x g x�  where f (x) and g (x) are given functions
representing the initial displacement and initial velocity, respectively. Also, zt = /z t% %

Sol. (a) Given    % % & ∋ % % �2 2 2 2 2/ (1/ ) ( / ) 0z x c z t , c > 0. ... (1)
To re-write (1), put y = ct, ... (2)

Then, (1) reduces to 2 2 2 2/ ( / ) 0z x z y% % & % % �     or r – t = 0 ... (3)
Proceed now exactly as in solved Ex. 1 to reduce (3) to its canonical form

2

0
z

u v
%

�
% %

or                 0
z

u v

% %: ; �< =% %> ?
... (4)

where   u = y + x, v = y – x       or u = ct + x and v = ct – x. ... (5)
Integrating (4) w.r.t. ‘u’,      / ( )z v f v% % � , where f is an arbitrary function ... (6)

Integrating (6) w.r.t. ‘v’,  � ! ≅ � ! ≅ϑ ( ) ( ) ( ) ( ),z f v dv u F v u where ( ) ( )f f d� ϑv v v

or       ( , ) ( ) ( )z x t F ct x ct x� & ! ≅ ! , using (5)

or � 5 & ! ≅ !( , ) ( ) ( ),z x t x ct x ct ... (7)

where we take 5 & � &( ) ( ) andx ct F ct x 5 , ≅ as arbitrary functions.
(7) is the required general solution of (1).

(b) We are to solve   % % & ∋ % % �2 2 2 2 2/ (1/ ) ( / ) 0z x c z t ... (i)
subject to the conditions           ( ,0) ( )z x f x� ... (ii)
and      0( / ) ( )tz t g x�% % � ... (iii)

Proceed exactly as in part (a) and get solution of (i) as
( , ) ( ) ( )z x t x ct x ct� 5 & ! ≅ ! ... (iv)

Differentiating (iv) partially w.r.t. ‘t’, we get
% % � & 5 & ! ≅ !Ι Ι/ ( ) ( )z t c x ct c x ct ... (v)

where dash denotes the derivative w.r.t. the argument. Putting t = 0 in (iv) and (v) and using (ii) and
(iii) respectively, we get ( ) ( ) ( )x x f x5 ! ≅ �  ... (vi)
and ( ) ( ) ( )c x c x g xΙ Ι& 5 ! ≅ � ... (vii)

Integrating (vii),                         ( ) ( ) ( )
x

a
c x c x g u du& 5 ! ≅ � ϑ , ... (viii)
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where a is an arbitrary constant. Solving (vi) and (viii) for ( )x5  and ( )x≅ , we have

5 � & ≅ � !ϑ ϑ1 1 1 1
( ) ( ) ( ) , and ( ) ( ) ( )

2 2 2 2

x x

a a
x f x g x du x f x g u du

c c

so that 1 1
( ) ( ) ( )

2 2

x ct

a
x ct f x ct g u du

c

&
5 & � & & ϑ ... (ix)

and   1 1
( ) ( ) ( )

2 2

x ct

a
x ct f x ct g u du

c

!
≅ ! � ! ! ϑ ... (x)

Using (ix) and (x) in (iv), we get the required so called D’Alembert’s solutiion of the Cauchy
problem (which represents the vibrations of an infinite string in the present problem)

1 1
( , ) ( ) ( ) ( ) ( )

2 2

a x ct

x ct a
z x t f x ct f x ct g u du g u dx

c

!

&

∗ +� & ! ! ! !∗ +. / , −. /ϑ ϑ
or 1 1

( , ) { ( ) ( )} ( )
2 2

x ct

x ct
z x t f x ct f x ct g u du

c

!

&
� & ! ! ! ϑ ... (xi)

Particular Case I. If in the above problem, we take g (x) = 0 so that the initial velocity of
the string is zero, then (xi) reduces to

( , ) { ( ) ( )}/ 2z x t f x ct f x ct� & ! ! ,
where f (x – ct) represents a right travelling wave travelling with the speed c (along OX) and
f (x + ct) represents a left travelling wave travelling with the speed c.

Particular case II. If f (x) = sin x and g (x) = cos x in the above problem, then the
corresponding solution (xi) reduces to

1 1
( , ) {sin ( ) sin( )}

2 2
z x t x ct x ct

c
� & ! ! ! cos

x ct

x ct
u du

!

&ϑ
or � !( , ) sin cos (1/ 2 )z x t x ct c × ! & &{sin ( ) sin( )}x ct x ct or � ! ∋( , ) sin cos (1/ ) cos sinz x t x ct c x ct .

Particular case III. If f(x) = sin x and g(x) = x2, then (xi) gives
z(x, t) = sin x cos ct + x2t + (c3t3)/3, on simplification.

8.8 Working rule for reducing a parabolic equation to its canonical form.
Step 1. Let the given equation      ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � ... (1)

be parabolic so that      & �2 4 0S RT .

Step 2.  Write ) -quadratic equation ) ! ) ! �2 0R S T ... (2)

Let 1 1,) )  be two equal roots of (2)

Step 3. Write the characteristic equation corresponding to 1) � ) ,  i.e., 1( / ) 0dy dx ! ) �

Solving it, we get 1 1( , )f x y C� , C1 being an arbitrary constant ... (3)

Step 4. Choose 1( , )u f x y�         and           2 ( , )v f x y� ... (4)
where f2 (x, y) is an arbitrary function of x and y and is independent of f1 (x, y). For this verify that
Jacobian J of u and v given by (4) is non-zero,

i.e.
% % % %% % % % %

� � � & 4
% % % %% % % % %

/ /( , )
0

/ /( , )

u x u yu v u v u v
J

v x v yx y x y y x ... (5)

Step 5. Using relations (4), find p, q, r, s and t in terms of u and v as shown in Art. 8.5.
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Step 6. Substituting the values of p, q, r, s and t obtained in step (1) and simplifying we get
the following canonical forms of (1)

6 7% % � 5 % % % %2 2/ , , , / , /z u u v z z u z v or            6 7% % � 5 % % % %2 2/ , , , / , /z v u v z z u z v

8.9 SOLVED EXAMPLES BASED ON ART. 8.8

Ex. 1. Reduce the equation 2 2 2 2 2/ 2( / ) / 0z x z x y z y% % ! % % % ! % % �  to canonical form and
hence solve it.  [Delhi Maths (H) 2000, 06; 08; Jabalpur 2004; Delhi Maths (Prog) II 2008;
            Delhi B.Sc. (Prog) II 2008, 11; Himanchal 2001; 05 Rajasthan 2003; Lucknow 2010]

Sol. Re-writing the given equation, we get   r + 2s + t = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = 1, S = 2, T = 1 so that S2 – 4RT

= 0, showing that (1) is parabolic.

The ) -quadrate equation reduces to     2 2 1 0) ! ) ! �      so that      1, 1) � & &  (equal roots).
The corresponding characteristic equation is (dy/dx) – 1 = 0  or dx – dy = 0
Integrating, x – y = c, c being an arbitrary constant.
Choose u = x – y    and    v = x + y, ... (2)

where we have chosen v = x + y in such a manner that u and v are independent functions as
verified below.

J =
% % % %% % % % %

� � & � 0 ! 0 � 4
% % % %% % % % %

/ /( , )
1 1 1 1 2 0

/ /( , )

u x u yu v u v u v
v x v yx y x y y x

.

Now,     z z u z v z z
p

x u x v x u v

% % % % % % %
� � ! � !

% % % % % % %
, using (2) ... (3)

     z z u z v z z
q

y u y v y u v

% % % % % % %
� � ! � & !

% % % % % % %
, using (2) ... (4)

From (3) and (4),
x u v

% % %
� !

% % %
and % % %

� & !
% % %y u v

     ... (5)

1
2

2

z z z z
r

x x u v u vx

% % % % % % %: ; : ; : ;� � � ! !< = < = < =% % % % % %% > ? > ? > ?
, by (3) and (5)

  =
2 2 2

2 2
2

z z z z z z z

u u v v u v u vu v

% % % % % % % % %: ; : ;! ! ! � ! !< = < =% % % % % % % %% %> ? > ?
... (6)

         
2

2
,

z z z z
t

y y u v u vy

: ;% % % % % % %: ; : ;� � � & ! & !< = < = < =% % % % % %% > ? > ?> ?
 by (4) and (5)

            =
2 2 2

2 2
2

z z z z z v z

u u u v u v u vu v

% % % % % % % % %: ; : ;& & ! ! & ! � & !< = < =% % % % % % % %% %> ? > ?
... (7)

and
2z z z z

s
x y x y u v u v

: ;% % % % % % %: ; : ;� � � ! & !< = < = < =% % % % % % % %> ? > ?> ?
, by (4) and (5)

=
2 2

2 2

z z z z z z

u u v v u v u v

% % % % % % % %: ; : ;& ! ! & ! � & !< = < =% % % % % % % %> ? > ?
... (8)

Using (6), (7) and (8) in (1), the required canonical form is
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2

2
0

z

v

%
�

%
or   0

z

v v

% %: ; �< =% %> ?
... (9)

To find the required solution. Integrating (9) partially w.r.t. ‘v’, we get

      / ( ),z v u% % � 5 5  being an arbitrary function. ... (10)

Integrating (10) partially w.r.t ‘v’,            z = 5 ! ≅ � 5 ! ≅ϑ ( ) ( ) ( ) ( )u dv u v u u

or z � ! 5 & ! ≅ &( ) ( ) ( )x y x y x y , which is the desired solution, ,5 ≅  being arbitrary functions.

Ex. 2. Reduce the equation 2 2 2 2 2 2 2( / ) 2 ( / ) ( / )y z x xy z x y x z x% % & % % % ! % % = 2 2( / ) ( / ) ( / )( / )y x z x x y z y% % ! % %

to canonical form and hence solve it.      [Nagpur 2005; Delhi Maths (H) 2001, 05, 09; Avadh 2001,
Himanchal 2009; Delhi B.Sc. (Prog) II 2007; Meerut 2005, 06, 11; G.N.D.U. Amritsar 2005]

Sol. Re-writing the given equation,    2 2 2 22 ( / ) ( / ) 0y r xys x t y x p x y q& ! & & � ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here R = y2, S = – 2 xy, T = x2  so that
S2 – 4RT = 0, showing that (1) is parabolic.

The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to
2 2 22 0y xy x) & ) ! � or 2( ) 0y x) & � so that / , /x y x y) � .

The corresponding characteristic equation is / / 0dy dx x y! �

or 0x dx y dy! � so that       2 2
1/ 2 / 2x y C! �

Choose 2 2/ 2 / 2u x y� ! and 2 2/ 2 / 2v x y� & , ... (2)

where we have chosen 2 2/ 2 / 2v x y� &  in such a manner that u and v are independent functions as
verified below

% % % %% % % % %
� � � & � & 4

% % % %% % % % %
/ /( , )

2 0
/ /( , )

u x u yu v u v u v
J xy

v x v yx y x y y x
.

Now, z z u z v z z
p x

x u x v x u v

% % % % % % %: ;� � ! � !< =% % % % % % %> ?
, using (2) ... (3)

z z u z v
q

y u y v y

% % % % %
� � !

% % % % %
=

z z
y

u v

% %: ;&< =% %> ?
, using (2) ... (4)

2

2

z z z
r x

x u vx

Β Χ% % % %: ;� � !∆ Ε< =% % %% > ?Φ Γ
=

z z z z
x

u v x u v

% % % % %: ;! ! !< =% % % % %> ?
, by (3)

   =
z z z z u z z v

x
u v u u v x v u v x

∗ +% % % % % % % % % %: ; : ;! ! ! ! !, −< = < =% % % % % % % % % %> ? > ?. /

   =
2 2 2

2
2 2

2
z z z z z

x
u v u vu v

: ;% % % % %
! ! ! !< =< =% % % %% %> ?

, using (2) ... (5)

2

2

z z z
t y

y u vy

∗ +% % % %: ;� � &, −< =% % %% > ?. /
=

z z z z
y

u v y u v

% % % % %: ;& ! &< =% % % % %> ?
, by (4)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



8.26 Classification of P.D.E Reduction to Canonical or normal forms Riemann Method

=
z z z z u z z v

y
u v u u v y v u v y

Β Χ% % % % % % % % % %: ; : ;& ! & ! &∆ Ε< = < =% % % % % % % % % %> ? > ?Φ Γ
=

2 2 2
2

2 2
2

z z z z z
y

u v u vu v

: ;% % % % %
& ! & !< =< =% % % %% %> ?

... (6)

and
2z z z z

s y
x y x y x u v

Β Χ: ;% % % % % %: ;� � � &∆ Ε< = < =% % % % % % %> ?> ? Φ Γ
=

z z u z z v
y

u u v x v u v x

Β Χ% % % % % % % %: ; : ;& ! &∆ Ε< = < =% % % % % % % %> ? > ?Φ Γ

or s = 2 2 2 2( / / )xy z u z v% % & % % ... (7)
Using (3), (4), (5), (6) and (7) in (1) and simplifying, we get

2 2 2 24 ( / ) 0x y z v% % � so that       2 2/ 0z v% % � ,  ... (8)

which is the required canonical form.

Integrating (8) partially w.r.t. ‘v’,       / ( )z v u% % � 5 , 5  being arbitrary function. ... (9)

Integrating (9) partially w.r.t. ‘v’,        z = 5 ! ≅( ) ( )v u u , ≅  being arbitrary function.

or 2 2 2 2 2 2[( ) / 2] {( ) / 2} {( ) / 2}z x y x y x y� & 5 ! ! ≅ ! , using (2)

or 2 2 2 2 2 2( ) ( ) ( ),z x y F x y G x y� & ! ! !  F, G being arbitrary functions

Ex. 3. (a) Reduce r + 2xs + x2 t = 0 to canonical form
(b) Reduce 6 9 2 3 0r s t p q z& ! ! ! & �  to canonical form

(c) Reduce 2 0r s t p q& ! ! & �  to canonical form and hence solve it.

Sol. (a) Given 22 0r xs x t! ! � ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here   R = 1,    S = 2x    and    T = x2

so that S2 – 4 RT = 0, showing that (1) is parabolic.

The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to
2 22 0x x) ! ) ! � or 2( ) 0x) ! � so that ,x x) � & & .

The corresponding characteristic equation is (dy/dx) – x = 0       or      dy – x dx = 0

Integrating, 2
1/ 2y x c& � ,  c1 being an arbitrary constant. ... (2)

Choose 2 / 2u y x� &         and            v = x ... (2)

where we have chosen v = x in such a manner that u and v are independent functions as verified
below.

J =
% % % %% % % % %

� � & � & 4
% % % %% % % % %

/ /( , )
1 0

/ /( , )

u x u yu v u v u v
v x v yx y x y y x

Now, z z u z v z z
p x

x u x v x u v
% % % % % % %

� � ! � & !
% % % % % % %

, by (2) ... (3)

z z u z v z
q

y u y v y u

% % % % % %
� � ! �

% % % % % %
, using (2) ... (4)

2

2

z z z z
r x

x x x u vx

% % % % % %: ; : ;� � � & !< = < =% % % % %% > ? > ?
=

z z z
x

u x x x v

% % % % %: ; : ;& & !< = < =% % % % %> ? > ?

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Classification of P.D.E Reduction to Canonical or normal forms Riemann Method 8.27

      = z z u z v
x

u u u x v u x

∗ +% % % % % % %: ; : ;& & !, −< = < =% % % % % % %> ? > ?. /
 + 

z u z v

u v x v v x

% % % % % %: ; : ;!< = < =% % % % % %> ? > ?

      =
2 2 2 2

2 2

z z z z z
x x x

u v u u vu v

: ;% % % % %
& & & ! & !< =< =% % % % %% %> ?

=
2 2 2

2
2 2

2
z z z z

x x
u v uu v

% % % %
& ! &

% % %% %
... (5)

2z z z
s

x y x y x u

: ;% % % % %: ;� � �< = < =% % % % % %> ?> ?
=

z u z v

u u x v u x

% % % % % %: ; : ;!< = < =% % % % % %> ? > ?
=

2 2

2

z z
x

v uu

% %
& !

% %%
, by (4)     ... (6)

2

2

z z z
t

y y y uy

: ;% % % % %: ;� � �< = < =% % % %% > ?> ?
=

2

2

z u z v z

u u y v u y u

% % % % % % %: ; : ;! �< = < =% % % % % % %> ? > ?
, by (4) ... (7)

Using (5), (6) and (7) in (1), we finally obtain 2 2/ /z v z u% % � % % , which is required canonical form.
3. (b) Hint. Here 3) � , u = y + 3x. Choose v = y. The canonical form will be

% % � & % % ! ∋ % %2 2/ / 9 ( / ) (1/ 3) ( / ).z v z z u z v

3. (c) Hints. Here 1, .u x y� � !�  Choose v = y. The canonical form is 2 2/ /z v z v% % � % % .

Solution is � 5 ! ! ≅ !( ) ( ),yz x y e x y 5Λ ≅ being arbitrary functions

Ex. 4. Reduce the following to canonical form and hence solve
(a) x2 r + 2xy s + y2 t = 0
(b) r – 4s + 4t = 0
(c) x2 r + 2xys + y2t + xyp + y2q = 0
(d) 2r – 4s + 2t + 3z = 0.
Sol. (a) Given x2r + 2xys + y2t = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, here R = x2, S = 2xy and T = y2 so that

S2 – 4RT = 0, showing that (1) is parabolic.

The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to
2 2 22 0x xy y) ! ) ! � or 2( ) 0x y) ! �   giving      / , /y x y x) � & & .

The corresponding characteristic equation is / / 0dy dx y x& �

or (1/ ) (1/ ) 0y dy x dx& � so that 1log logy x c& � or            1/y x c�

Choose u = y/x and   v = y, ... (2)
where we have chosen v = y in such a manner that u and v are independent functions as verified
below.

           
% % % %% % % % %

� � � & � & 4
% % % %% % % % % 2

/ /( , )
0

/ /( , )

u x u yu v u v u v y
J

v x v yx y x y y x x
.

Now, % % % % % %
� � ! � &

% % % % % %2

z z u z v y z
p

x u x v x ux
, using (2) ... (3)

1z z u z v z z
q

y u y v y x u v

% % % % % % %
� � ! � !

% % % % % % %
, using (2) ... (4)

   
2

2 2

z z y z
r

x x x ux x

% % % % %: ; : ;� � � &< = < =% % % %% > ? > ?
=

3 2

2y z y z

u x ux x

% % %: ;& < =% % %> ?
, by (3)
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     =
3 2

2y z y z u z v
u u u x v u xx x

∗ +% % % % % % %: ; : ;& !, −< = < =% % % % % % %> ? > ?. /
=

2 2

3 4 2

2y z y z

ux x u

% %
!

% %
... (5)

   
2 1z z z z

s
x y x y x x u v

: ;% % % % % %: ;� � � !< = < =% % % % % % %> ?> ?
=

2

1 1z z z

u x x u x vx

% % % % %: ; : ;& ! !< = < =% % % % %> ? > ?

=
2

1 1z z u z v

u x u u x v u xx

Β Χ% % % % % % %: ; : ;& ! !∆ Ε< = < =% % % % % % %> ? > ?Φ Γ
+ .

z u z v

u v x v v x

% % % % % %: ; : ;!< = < =% % % % % %> ? > ?

   =
2 2

2 3 2 2

1 z y z y z

u u vx x u x

% % %
& & &

% % %%
... (6)

2

2

1y z z z
t

y y y x u vy

: ;% % % % % %: ;� � � !< = < =% % % % %% > ?> ?
 using (4)

=
1 z u z v

x u u y v u y

∗ +% % % % % %: ; : ;!, −< = < =% % % % % %> ? > ?. /
 + 

z u z v

u v y v v y

% % % % % %: ; : ;!< = < =% % % % % %> ? > ?

  =
2 2 2

2 2 2

1 2z z z

x x yx u v

% % %
! !

% %% %
... (7)

Using (5), (6) and (7) in (1), we finally get as the canonical form       2 2/ 0z v% % �  ... (8)

Integrating (8) partially w.r.t. ‘v’, / ( )z v u% % � 5 ... (9)

Integrating (9) partially w.r.t ‘v’, z = ( ) ( )v u u5 ! ≅

or ( / ) ( / ), ,z y y x y x� 5 ! ≅ 5 ≅  being arbitrary functions.

(b) Hint. Here 2) � , u = y + 2x. Choose v = y. The canonical form is 2 2/ 0z v% % �  and
solution is ( 2 ) ( 2 )z y y x y x� 5 ! ! ≅ ! .

(c) Hint. Here /y x) � & , /u y x� . Choose v = y. The canonical form is 2 2/ ( / )z v z v% % � & % %

and solution is &� 5 ! ≅( / ) ( / )yz y x e y x

(d) Hint. Here ) = 1, u = x + y. Choose v = y. The canonical form is % % � &2 2/ (3 / 2)z v z

and solution is &� 5 ! ! ≅ !( 3 / 2) ( 3 / 2)( ) ( )i y iz e y x e y x ,
Ex. 5. Reduce the following in canonical form and solve them

(a) 2 (2 3)x yr s t p q e y e& ! ! & � & &

(b) 2 x yr s t p q e !& ! ! & �
Sol. (a) Given r – 2s + t + p – q – ex (2y – 3) + ey = 0 ... (1)
Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here  R = 1,  S = – 2 and T = 1 so that

S2 – 4RT = 0, showing that (1) is parabolic.
The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to

2 2 1 0) & ) ! � or 2( 1) 0) & � so that 1, 1) �  (equal roots)
So the corresponding characteristic equation is      / 1 0dy dx! �        or        dx + dy = 0
Integrating it, x + y = c1 , c1 being an arbitrary constant.
Choose u = x + y and v = y ... (2)
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where we have chosen v = y in such a manner that u and v are independent functions as verified
below

% % % %% % % % %
� � � & � 4

% % % %% % % % %
/ /( , )

1 0
/ /( , )

u x u yu v u v u v
J

v x v yx y x y y x
.

Now,
z z u z v z

p
x u x v x u

% % % % % %
� � ! �

% % % % % % , using (2) ... (3)

z z u z v z z
q

y u y v y u v

% % % % % % %
� � ! � !

% % % % % % % , using (2) ... (4)

         
2 2

2 2

z z z z
r

x x u ux u

% % % % % %: ; : ;� � � �< = < =% % % %% %> ? > ?
 by (3) ... (5)

: ;% % % % % % %: ; : ;� � � ! !< = < =< = > ? > ?% % % % % %> ?%

2

2

z z z z
t

y y u v u vy
, using (4)

  =
2 2 2

2 2
2

z z z z z z z

u u v v u v u vu v

% % % % % % % % %: ; : ;! ! ! � ! !< = < =% % % % % % % %% %> ? > ?
... (6)

2 2 2

2

z z z z z z
s

x y x y u u v u vu

: ;% % % % % % % %: ;� � � ! � !< = < =% % % % % % % % %%> ?> ?
, using (4) ... (7)

Using (2) (3), (4), (5), (6) and (7) in (1), we get
2 2 2 2 2 2

2 2 2 2
2 2

z z z z z z z

u v u v uu u u v

: ;% % % % % % %
& ! ! ! ! !< =< =% % % % %% % % %> ?

(2 3)u v vz z
e v e

u v
&% %: ;& ! � & &< =% %> ?

or 2 2/ / (2 3)u v vz v z v e v e&% % & % % � & & ... (8)

which is the required canonical form of (1) Let /D xΑ % % , /D yΙ Α % % .

Then (8) can be re-written as ( 1) (2 3)u v vD D z e v e&Ι Ι & � & & , ... (9)
which is non-honmogeneous linear partial differential equation with constant coefficients. To solve
it, we shall use results of chapter 5. Accordingly, we have

C.F. = ( ) ( ) ( ) ( )v yu e u x y e x y5 ! ≅ � 5 ! ! ≅ ! , by (2)

P.I. corresponding to (2 3)u ve v& &

= ( 1)1
(2 3)

( 1)
u ve v

D D
! & &

Ι Ι &
= ( 1) 1

(2 3)
( 1) ( 1 1)

u ve v
D D

! & &
Ι Ι& & &

= (1/2)× 1 1(1 ) (1 / 2) (2 3)u ve D D v& & &Ι Ι& & & = (1/2) × (1 ...)(1 / 2 ...)u ve D D& Ι Ι! ! ! ! (2 3)v &

= (1/2)× (1 3 / 2 ...) (2 3)u ve D v& Ι! ! & = (1/2)× & & !(2 3 3)u ve v = u v x y yv e y e& ! &� = xye , using (2)
P.I. Corresponding to (– ev)

=
1

( )
( 1)

ve
D D

&
Ι Ι &

= – 
1 1

1
ve

D DΙ Ι&
  = 1

1D
&

Ι &
 ( ∋ � &

! &Ι
1

1) 1
1 1

ve e
D

v 1 1ye
D

� &
Ι

� & � & ,v ye v e y  using (2)

Hence the required general solution is given by   y = 5  (x + y) + ey ≅  (x + y) + y ex – y ey

or y = 5  (x + y) + ey ≅  (x + y) + yex – (x + y) ey + x ey

or y = 5  (x + y) + ey { 5  (x + y) + (x + y)} + y ex + x ey
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or      y = 5  (x + y) + ey F (x + y) + y ex + x ey,

where 5  and F are arbitrary functions and F (x + y) = 5  (x + y) + x + y

(b) Hint. Here 1) � , u = x + y, choose v = y. The canonical form is 2 2/ / uz v z v e% % � % % !

and solution is !� 5 ! ! ≅ ! &( ) ( )y x yz x y e x y y e , ,5 ≅ being arbitrary functions.
Ex. 6. Reduce the equation x2r – 2xys + y2t – xp + 3yq = 8y/x to canonical form.

[Delhi B.Sc. (H) 1999]
Sol. Given x2r – 2xy s + y2t – xp + 3yq – 8y/x = 0 ... (1)
Comparing (1) with Rr + Ss + Tt + f (x, y, y, p, q) = 0, here   R = x2,   S = – 2xy,    T = y2

so that S2 – 4RT = 0, showing that (1) is parabolic.
The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to

2 2 22 0x xy y) & ) ! � or 2( ) 0x y) & �    so that / , /y x y x) � .
The corresponding characteristic equation is

dy/dx + y/x = 0 or (1/y) dy + (1/x) dx = 0 so that xy = C1
Choose u = xy and v = x ... (2)

where we have chosen v = x in such a manner that u and v are independent functions as verified
below.

% % % %% % % % %
� � � & � & 4

% % % %% % % % %
/ /( , )

0
/ /( , )

u x u yu v u v u v
J x

v x v yx y x y y x .

Now, z z u z v z z
p y

x u x v x u v

% % % % % % %
� � ! � !

% % % % % % %
,  by (2) ... (3)

z z u z v
q

y u y v y

% % % % %
� � !

% % % % %
=

z
x
u

%
%

, by (2) ... (4)

2

2

y z z z
r y

x x x u vx

% % % % % %: ; : ;� � � !< = < =% % % % %% > ? > ?
=

z z
y
x u x v

% % % %: ; : ;!< = < =% % % %> ? > ?

  =
z u z v

y
u u x v u x

∗ +% % % % % %: ; : ;!, −< = < =% % % % % %> ? > ?. /
 + 

z u z v

u v x v v x

% % % % % %: ; : ;!< = < =% % % % % %> ? > ?

    =
2 2 2 2

2 2

z z z z
y y y

v u u vu v

: ;% % % %
! ! !< =< =% % % %% %> ?

=
2 2 2

2
2 2

2
z z z

y y
u vu v

% % %
! !

% %% %
, .... (5)

2z z
s

x y x y x

: ;% % % %
� � �< =% % % % %> ?

z z z
x x
u u x u

% % % %: ; : ;� !< = < =% % % %> ? > ?

        =
z z u z v

x
u u u x v u x

∗ +% % % % % % %: ; : ;! !, −< = < =% % % % % % %> ? > ?. /
=

2 2

2

z z z
xy x

u u vu

% % %
! !

% % %%
... (6)

and          
2

2

z z z
t x x

y y y uy

: ;% % % % %: ;� � � �< = < =% % % %% > ?> ?

z

y u

% %: ;
< =% %> ?

, by (4)

=
z u z v

x
u u y v u y

∗ +% % % % % %: ; : ;!, −< = < =% % % % % %> ? > ?. /
=

2
2

2

z
x

u

%
%

, by (2) ... (7)

Using (2), (3), (4), (5), (6) and (7) in (1), we have
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2 2 2
2 2

2 2
2

z z z
x y y

u vu v

: ;% % %
! !< =< =% %% %> ?

2 2 2
2 2

2 2
2

z z z z
xy xy x y x

u u vu u

: ;% % % %
& ! ! !< =< =% % %% %> ?

8
3 0

z z z y
x y y x

u v u x

% % %: ;& ! ! & �< =% % %> ?

or     
2

2
2

8z z y
x x

v xv

% %
& & �

%%
or

2
2

2 2

8z z u
v v

vv v

% %
& �

%%
, by (2)

or 2 2 2( ) 8 /v D vD z u vΙ Ι& � ,  where        ΙΑ % % Α % %/ , /D u D v ... (8)
As explained in chapter 6, we shall reduce (8) to linear partial differential equation with

constant coefficients and then use methods of chapter 5 to solve the resulting equation.

To solve (8), let Xu e� and Yv e� so that � �log , logX u Y v    ... (9)

Then (8) becomes 2{ ( 1) } 8 X yD D D z e &Ι Ι Ι& & � or 2( 2) 8 X yD D z e &Ι Ι & � .

C.F. = 2 2( ) ( ) (log ) (log )YX e X u v u5 ! ≅ � 5 ! ≅ , using (9)

  = 2 2( ) ( ) ( ) ( )F u v G u F xy x G xy! � ! , using (2)

P.I. = 21
8

( 1)
X Ye

D D
&

Ι Ι &
= & 0

Ι Ι& & &
2 1

8 1
( 2) ( 2 2)

X Ye
D D

1 1

2 2 2 2
8 1 1 1 1 1 ... 1 ... 1 1

8 2 4 2 4( )

X

Y
e D D u D D u xy y

xe v v x

& &Ι Ι Ι Ι: ; : ; : ;: ;� ∋ & & 0 � ! ! ! ! 0 � ∋ � �< = < = < =< =
> ? > ? > ?> ?

, by (2)

1  Required solution is    2( ) ( ) /z F xy x G xy y x� ! ! , F, G being arbitrary functions.
8.10 Working rule for reducing an elliptic equation to its canonical form.

Step 1. Let the given equation ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � ... (1)

be ellipitic so that 2 4 0S RT& ∃ . ... (2)

Step 2. Write )  quadratic equation 2 0R S T) ! ) ! � ... (2)
Let roots 1 2,) )  of (2) be complex conjugates.
Step 3. Then corresponding charactersitic equations are

1( / ) 0dy dx ! ) � and 2/ 0dy dx ! ) �
Solving these, we shall obtain solutions of the form

1 2 1( , ) ( , )f x y i f x y c! � and 1 2 2( , ) ( , )f x y i f x y c& � ... (3)

Step 4. Choose 1 2( , ) ( , )u f x y i f x y� ! , 1 2( , ) ( , )v f x y i f x y� &

Let 8  and 9  be two new real independent variables such that u i� 8 ! 9 and v i� 8 & 9 ,

so that 1( , )f x y8 � and 2 ( , )f x y9 � ... (4)

Step 5. Using relations (4), find p, q, r, s and t in terms of and8 9  (in place of u and v as we
did in Art 8.6 and 8.8 corresponding to the cases of hyperbolic and parabolic equations).

Step 6. Substituting the values of p, q, r, s and t and relations (4) in (1) and simplifying we
shall get the following canonical form of (1)

2 2 2 2/ /z z% %8 ! % %9 = ( , , , / , / )z z z5 8 9 % %8 % %9 .

8.11 SOLVED EXAMPLES ON ART 8.10
Ex. 1. Reduce the following partial differential equations to canonical forms:

(a) 2 2 2 2 2/ ( / ) 0z x x z y% % ! % % �  or        r + x2t = 0
[Delhi B.Sc. (Prog) II 2010; Delhi B.Sc. (Hons) III 2011; Kanpur 2011]
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 (b) 2 2 2 2 2( / ) /y z y z x% % ! % % = 0 [Delhi Math (Hons.) 1995, 98, 2005]

Sol. (a) Re-writing the given equations, we get          2 0r x t! � ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here   R = 1,   S = 0,   T = x2   so that
2 24 4 0S RT x& � & ∃ , 0,x 4  showing that (1) is elliptic.

The ) -quadratic 2 0R S T) ! ) ! �  reduces to 2 2 0x) ! � giving ,ix ix) � & .
The corresponding characteristic equations are given by

              / 0dy dx ix! � and / 0dy dx ix& �

Integrating, 2
1( / 2)y i x c! � and 2

2( / 2)y i x c& � .

Choose 2( / 2)u y i x i� ! � 8 ! 9 and 2( / 2)v y i x i� & � 8 & 9 ,

where y8 � and 2 / 2x9 �    ... (2)
are now two new independent variables.

Now, z z z z
p x

x x x

% % %8 % %9 %
� � ! �

% %8 % %9 % %9
, by (2) .... (3)

z z z z
q

y y y

% % %8 % %9 %
� � ! �

% %8 % %9 % %8  , by (2) ... (4)

2

2

z z
r

x x xx

% % % %: ;� � �< =% % %% > ?

z z z
x x

x

: ; : ;% % % %
� !< = < =%9 %9 % %9> ? > ?

, by (3)

  = z z z
x

x x

∗ +: ; : ;% % % %8 % % %9
! !, −< = < =%9 %8 %9 % %9 %9 %> ? > ?. /

=
2

2
2

z z
x

% %
!

%9 %9
... (5)

and     : ;% % % % % %: ;� � � �< =< = > ?% % %8 %8> ?% %8

2 2

2 2

z z z z
t

y yy
, by (4) ... (6)

Using (5) and (6) in (1) the required canonical form is
2 2

2 2
2 2

0
z z z

x x
% % %

! ! �
%9 %9 %8

or
2 2

2 2

1
2

z z z% % %
! � &

9 %9%8 %9
, as 

2

2
x

9 � .

(b) Do as in part (a). Ans. % %8 ! % %9 � & 8 ∋ % %82 2 2 2/ / (1/ 2 ) ( / )z z z , where 2 / 2y8 � , x9 � .

Ex. 2. Reduce 2 2 2 2 2 2( / ) ( / ) 0y z x x z y% % ! % % �  to canonical form

Sol. Re-writing the given equation, we get 2 2 0y r x t! � ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here 2R y� , 20,S T x� �  so that
2 2 24 4 0S RT x y& � & ∃  for 0x 4 , 0y 4 , showing that (1) is elliptic.

The ) -quadratic equation ) ! ) ! �2 0R S T  reduces to
2 2 2 0y x) ! � or 2 2 2/x y) � & so that       ) � &/ , /ix y ix y

The corresponding characteristic equations are
/ / 0dy dx ix y! � and           / / 0dy dx ix y& �

Integrating,   2 2
1y ix C! � and      2 2

2y ix C& �

Choose 2 2u y ix i� ! � 8 ! 9 and 2 2v y ix i� & � 8 & 9 ,
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where 8 � 9 �2 2andy x ... (2)
are now two new independent variables

Now, z z z
p

x x x

% % %8 % %9
� � !

% %8 % %9 %
= 2

z
x

%
%9

, by (2) ... (3)

% % %8 % %9
� � !

% %8 % %9 %
z z z

q
y y y

= 2 ,
z

y
%
%8

 by (2) ... (4)

2

2

z z
r

x x xx

% % % %: ;� � �< =% % %% > ?
2 2 2

z z z
x x

x

: ; : ;% % % %
� !< = < =%9 %9 % %9> ? > ?

, by  (3)

= 2 2
z z z

x
x x

Β Χ: ; : ;% % % %8 % % %9Η Η! !∆ Ε< = < =%9 %8 %9 % %9 %9 %Η Η> ? > ?Φ Γ
=

2
2

2
2 4
z z

x
% %

!
%9 %9

... (5)

and
2

2

z z
t

y yy

: ;% % %
� � < =% %% > ?

= 2 2 2
z z z

y y
y y

% % % % %: ; : ;� !< = < =% %8 %8 % %8> ? > ?

  = 2 2
z z z

y
y y

Β Χ% % % %8 % % %9: ; : ;! !∆ Ε< = < =%8 %8 %8 % %9 %8 %> ? > ?Φ Γ
=

2
2

2
2 4
z z

y
% %

!
%8 %8

... (6)

Using (5) and (6) in (1), the required canonical form is
2 2

2 2 2 2 2 2
2 2

2 4 2 4 0
z z z z

y x y x x y
% % % %

! ! ! �
%9 %8%9 %8

      or      
2 2

2 2
2 0

z z z z: ;% % % %
89 ! ! 8 ! 9 �< =< = %9 %8%8 %9> ?

or
2 2

2 2

1 1 1
0

2
z z z z: ;% % % %

! ! ! �< =8 %8 9 %9%8 %9 > ?

Ex. 3. Reudce 2 2 2 2 2/ ( / )z x y z y y% % ! % % �  to canonical form.

Sol. Re-writing the given equation, we get 2 0r y t y! & � ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here R = 1, S = 0 and T = y2 so that
2 24 4 0S RT y& � & ∃  for 0y 4 , showing that (1) is elliptic.

The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to    2 2 0y) ! �   3   iy) � , iy& .
The corresponding characteristic equations are given by

/ 0dy dx iy! � and / 0dy dx iy& �

Integrating  these,   1log y ix c! � and 2log y ix c& �

Choose logu y ix i� ! � 8 ! 9 and logv y ix i� & � 8 & 9 ,
where              log y8 �            and          x9 �     ... (2)
are now two new independent variables.

Now,
z z z z

p
x x x

% % %8 % %9 %
� � ! �

% %8 % %9 % %9 , using (2) ... (3)

1z z z z
q

y y y y

% % %8 % %9 %
� � ! �

% %8 % %9 % %8 , using (2) .... (4)

2 2

2 2

z z z z
r

x xx

: ;% % % % % %: ;� � � �< =< =% % %9 %9% %9> ? > ?
, by (3)         ... (5)
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2

2

z z
t

y y yy

: ;% % % %
� � �< =% % %% > ? 2

1 1 1z z z
y y yy

: ;% % % %: ;� & !< = < =%8 %8 % %8> ?> ?

  =
2

1 1z z z

y y yy

Β Χ: ;% % % %8 % % %9: ; : ;Η Η& ! !∆ Ε< =< = < =%8 %8 %8 % %9 %8 %> ? > ?Η Η> ?Φ Γ

=
2 2

2 2 2 2

1 1 1 1z z z z
y yy y

: ; : ;% % % %
& ! � &< = < =< = < =%8 %8%8 %8> ? > ?

... (6)

Using (5) and (6) in (1), the required canonical form is
2 2

2 2
0

z z z
y

% % %
! & & �

%8%9 %8
or

2 2

2 2

z z z
e8% % %

! � !
%8%8 %9

,   using (2)

Ex. 4. Reduce 2 2 2 2 2( / ) /x z x z y x% % ! % % �  (x > 0) to canonical form. [Delhi Maths(H) 2007, 11]

Sol. Re-writing the given equation, we get     2 0xr t x! & � , ( 0)x #  ... (1)
Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here R = x, S = 0 and T = 1 so that

2 4 4 0S RT x& � & ∃ , showing that (1) is elliptic.

The ) -quadratic equation 2 0R S T) ! ) ! �  reduces to
2 1 0x) ! � or 2 2(1/ )x) � & so that / 2 1/ 2/ , /i x i xΜ) � &

The corresponding characteristic equations are given by
1/ 2/ 0dy dx i x&! � and       1/ 2/ 0dy dx i x&& � .

Integrating these, 1/ 2
12y i x C! � and 1/ 2

22y i x C& �

Choose 1/ 22u y i x i� ! � 8 ! 9 and 1/ 22v y i x i� & � 8 & 9 ,

where y8 � and 1/ 22x9 � ... (2)
are now two new independent variables.

Now, z z z
p

x x x

% % %8 % %9
� � !

% %8 % %9 %
= 1/ 2 z
x& %

%9
, by (2) ... (3)

z z z z
q

y y y

% % %8 % %9 %
� � ! �

% %8 % %9 % %8
, by (2) ... (4)

&: ;% % % % %: ;� � �< = < => ?% % % %9> ?%

2
1/ 2

2

z z z
r x

x x xx
= 3/ 2 1/ 21

2

z z z
x x

x x
& & Β Χ: ; : ;% % % %8 % % %9Η Η& ! !∆ Ε< = < =%9 %8 %9 % %9 %9 %Η Η> ? > ?Φ Γ

or r =
2 2

3/2 1/ 2 1/ 2
2 3/ 2 2

1 1 1
2 2

z z z z
x x x

xx
& & &: ;% % % %

& ! � & !< =< =%9 %9%9 %9> ?
 ... (5)

and                               
: ;% % % % % %: ;� � � �< = < =% % %8 %8% %8> ?> ?

2 2

2 2

z z z z
t

y yy
, using (4) ... (6)

Using (5) and (6) in (1), the required canonical form is
2 2

2
3/2 2 2

1 1

2

z z z
x x

xx

: ;% % %
& ! ! �< =< =%9 %9 %8> ?

    or
2 2

2
2 2 1/ 2

1

2

z z z
x

x

% % %
! � !

%9%8 %9
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or % %8 ! % %9 � 9 ! 9 ∋ % %92 2 2 2 2/ / ( / 4) (1/ ) ( / )z z z , as 1/ 22 x9 � .

Ex. 5. Reduce 
2 2 2

2 2
2 5 2 3 0

z z z z z
z

x y x yx y

% % % % %
! ! ! & & �

% % % %% %
 to canonical form.

Sol. Re-writing the given equation, we get    2 5 2 3 0r s t p q z! ! ! & & � ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q! ! ! � , here R = 1,     S = 2     and     T = 5

so that 2 4 16 0S RT& � & ∃ , showing (1) is elliptic.

The ) -quadratic 2 0R S T) ! ) ! �  reduces to
2 2 5 0) ! ) ! � so that 1/ 2{ 2 (4 20) }/ 2 1 2i) � & Ν & � & Ν

The corresponding characterisitc equations are given by
/ ( 1 2 ) 0dy dx i! & ! �    and / ( 1 2 ) 0.dy dx i x! & & �

Integrating these, 1( 1 2 )y i x C! & ! � and 2( 1 2 )y i x C! & & �

Let 2u y x ix i� & ! � 8 ! 9    and 2v y x ix i� & & � 8 & 9 ,
where y x8 � & and   2x9 � ... (2)
are now two new independent variables.

Now,
z z z

p
x x x

% % %8 % %9
� � !

% %8 % %9 %
= 2

z z% %
& !

%8 %9
, using (2) ... (3)

z z z z
q

y y y

% % %8 % %9 %
� � ! �

% %8 % %9 % %8 , using (2) ... (4)

2 2

2 2

z z z z
t

y yy

: ;% % % % % %: ;� � � �< = < =% % %8 %8% %8> ?> ?
, using (3) ... (5)

2

2
2

z z z z
r

x x xx

: ;% % % % % %: ;� � � & !< =< =% % % %8 %9% > ? > ?
= 2

z z

x x

: ;% % % %: ;& ! < =< =% %8 % %9> ? > ?

=
z z

x x

Β Χ% % %8 % % %9: ; : ;& !∆ Ε< = < =%8 %8 % %9 %8 %> ? > ?Φ Γ
 + 2 

z z

x x

Β Χ: ; : ;% % %8 % % %9Η Η!∆ Ε< = < =%8 %9 % %9 %9 %Η Η> ? > ?Φ Γ

=
2 2 2 2

2 2
2 2 2

z z z a: ; : ;% % % %
& & ! ! & !< = < =< = < =%9%8 %8%9%8 %9> ? > ?

, by (2)

1 r = 2 2 2 2 2/ 4 ( / ) 4 ( / )z z z% % 8 ! % %9 & % %8%9 ... (6)

2z z z
s

x y x y x

: ;% % % % %: ;� � �< = < =% % % % % %8> ?> ?
=

z z

x x

% % %8 % % %9: ; : ;!< = < =%8 %8 % %9 %8 %> ? > ?

or 2 2 2( / ) 2 ( / )s z z� & % %8 ! % %8 %9 , using (2) ... (7)
Using (3), (4), (5), (6) and (7) in (1), we get

       
2 2 2 2 2 2

2 2 2 2
4 4 2 2 5

z z z z z z: ;% % % % % %
! & ! & ! !< =< =%8%9 %8%9%8 %9 %8 %8> ?

2
z z% %

& !
%8 %9

%
& & �

%8
2 3 0

z
z

or      
2 2

2 2
4 3 3

z z z
z

: ;% % %
! � !< =< = %8%8 %9> ?

2
z%

&
%9

or
2 2

2 2

3 3 1
4 4 2

z z z z z% % % %
! � ! &

%8 %9%8 %9
,

which is the required canonical form of given equation (1).
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8.12. The solution of linear hyperbolic equations.  It what follows we aim at sketching
the existence theorems for two types of initial conditions on the linear hyperbolic equation

      %2z/%x%y = f(x, y, z, p, q). ...(1)
For both kinds of initial condition, we assume that the function f(x, y, z, p, q) satisfies the

following two conditions :
(i) f is continuous at all points of a rectangular region R defined by 8 < x < 9, Ο < y < Π for all

values of x, y, z, p, q concerned.
(ii) f satisfies the so called Lipschitz condition, namely,

Θ f (x, y, z2, p2, q2) & f (x, y, z1, p1, q1) Θ Ρ M {Θ z2 & z1 Θ + | p2 & p1 | + Θ q2 & q1 Θ }
in all bounded subrectangles r of R.

We now state (without proof) two existence theorems.
Theorem 1.  Initial conditions of the first kind.  If F(x) and G(x) are defined in the open

intervals (8, 9), (ΟΛ Π), respectively, and have continuous first derivatives, and if (Σ, Τ) is a point
inside R such that F(Σ) = G(Τ), then (1) has at least one integral z = 5(x, y) in R such that

( ), when
( , )

( ), when .
F x y

x y
G y x

� ΤΒ
5 � ∆ � ΣΦ

Theorem II.  Initial conditions of the second kind.  Let C1 be a space curve defined by
x = x()), y = y ()), z  = z()) in terms of a single parameter ) and also let C0 be the projection of C1
on the xy-plane.  If we are given (x, y, z, p, q) along a strip C1, then (1) has an integral which takes on
the given values of z, p, q along the curve C0.  This intergral exists at every point of the region R,
which is defined as the smallest rectangle completely enclosing the curve C0.

8.13. Riemann method of solution of general linear hypobolic equation of the
second order.  [Himanchal 2002; Meerut 2005,  07, 08; Delhi Maths (Hons.) 1995, 1999, 2000]

Assume that the given linear hyperbolic equation is reducible to canonical form
L(z) = f(x, y), ...(1)

where L denotes the linear operator given by L Α %
% %

! %
%

! %
%

!
2

x y a x b y c , ...(2)

where a, b, c are functions of x and y only.
Let w be another function with continuous derivatives of the first order.  Again, let M be another

operator defined by the relation

Mw = %
% %

& %
%

& %
%

!
2w
x y

aw
x

bw
y

cw( ) ( ) . ...(3)

The operator M defined by (4) is called the adjoint operator to the operator L.

1 w Lz & z Mw = w %
% %

! %
%

! %
%

!
F
HG

I
KJ

2z
x y

a z
x

b z
y

c & z %
% %

& %
%

& %
%

!
F
HG

I
KJ

2w
x y

aw
x

bw
y

cw( ) ( )

= w z
x y

z w
x y

wa z
x

z aw
x

wb z
y

z bw
y

%
% %

& %
% %

F
HG

I
KJ !

%
%

! %
%

F
H

I
K !

%
%

! %
%

F
HG

I
KJ

2 2 ( ) ( ) = ( ) ( )z w awz bwzw z
y x x y x y

: ;% % % % % %: ; & ! !< =< =% % % % % %> ? > ?

=
%
%

&
%
%

F
HG

I
KJ !

%
%

!
%
%

F
HG

I
KJx

awz z w
y y

bwz w z
x

= %
%

! %
%

U
x

V
y , ...(4)

where U = awz & z(%w/%y)           and             V = bwz + w(%z/%x).   ...(5)
Now if C Ι is a closed curve enclosing an area S, then

( )w Lz z Mw dxdy
S

&zz = %
%

! %
%

F
HG

I
KJzz U

x
V
y

dxdy
S

= Udy Vdx
C'

&z b g, by Green’s theorem     ...(6)
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Assume that the values of z and %z/%x (or %z/%y) are
prescribed along a curve C in the xy-plane (refer figure 1) and
further assume that we are required to determine the solution
of (1) at the point P (ΣΛ Τ) agreeing with these boundary
conditions.  Draw PA, PB parallel to x-axis and y-axis and cutting
the curve C in the points A and B respectively.  The closed
circuit PABP can be taken as the closed curve C Ι .  Then (6)
reduces to

( )w Lz z Mw dxdyS &zz = Udy Vdx Udy Vdx Udy Vdx
AB BP PA

& ! & ! &z z zb g b g b g
  = Udy Vdx Udy Vdx

AB BP PA
& ! &z z zb g , ...(7)

where we have used the following facts:
along BP, x = constant so that   dx = 0 and along  PA, y = constant so that dy = 0.

Now,  VdxPAz = bwz w z
x

dx
PA

! %
%

FH IKz , by (5)

                = bwzdz w z
x

dx bwzdz wz z w
x

dx
PA PA P

A

PA PAz z z z!
%
%

� ! &
%
%

, integrating by parts

               =  [wz]A & [wz]P + z bw w
x

dx
PA

& %
%

FH IKz . ...(8)
Using (5) and (8), (7) becomes

( )w Lz z Mz
S

&zz dxdy = ( )Udy Vdx awz z w
y

dy
AB BP

& ! & %
%

F
HG

I
KJz z & [wz]A + [wz]P & z bw w

x
dx

PA
& %

%
FH IKz .

1 [wz]P = [wz]A + z bw w
x

dx z aw w
y

dy
BPPA

&
%
%

F
HG

I
KJ & &

%
%

F
HG

I
KJzz

                                          & & ! &z zz( ) ( )Udy Vdx w Lz z Mw dxdy
AB S

  ...(9)

So far we have treated w as an arbitrary function.  Now, we choose a function w (x, y, Σ, Τ)
which has the following four properties, namely,

(i) Mw = 0, (ii)  w= 1,  when x = Σ,  y = Τ  i.e., at P (Σ, Τ),
(iii) %w/%x = bw when y = Τ, (iv) %w/%y = aw  when x = Σ.

Such a function w(x, y, ξ, η ) is known as Green’s function for the problem or sometimes a
Riemann-Green function.  Using the above four properties of w, (9) may be re-written as

[z]P = [wz]A & ( )Udy Vdx w Lz dxdy
AB S

& !z zz
       =[wz]A & awz z w

y
dy bwz w z

x
dx wf dxdy

AB AB S
& %

%
F
HG

I
KJ ! ! %

%
FH IK !z z zz ( ) , using (1) and (5)

       =[wz]A & wz ady bdx z w
y

dy w z
x

dx wf dxdy
AB AB S

( )& ! %
%

! %
%

F
HG

I
KJ !z z zz . .(10)

Equation (10) may be used to determine the value of z at the point P when %z/%x is prescribed
along the curce C.

Suppose, in place of the prescribed value of %z/%x, we are now given a prescribed value of
%z/%y.  Then, we make use of the following relation

d wz
AB

( )z = %
%

! %
%

F
HG

I
KJz ( ) ( )wz

x
dx wz

y
dy

AB

3 0 = [wz]B & [wz]A & %
%

! %
%

F
HG

I
KJz ( ) ( )wz

x
dx wz

y
dy

AB
. ...(11)

y

A 

O
B

P( )ΣΛ  Τ

C
x

Fig. 1.
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Adding the corresponding sides of (10) and (11), we get

       [z]P = [wz]B& wz ady bdx z w
y

dy w z
x

dx
AB AB

( )& ! %
%

! %
%

F
HG

I
KJz z & %

%
! %

%
F
HG

I
KJ !z zz( ) ( ) ( )wz

x dx wz
y dy wf dxdy

AB S

    = [wz]B & wz ady bdx z w
x

dx w z
y

dy wf dxdy
AB AB S

( ) ( )& & %
%

! %
%

F
HG

I
KJ !z zz zz ..(12)

Equation (12) may be used to determine the z at the point P when %z/%y is precribed along the
curve C.

Finally, by adding (10) and (12), we get the following symmetrical result which can be used to
find value of z at the point P when both %z/%x and %z/%y are prescribed along the curve C.

[z]P = 1
2

Υ ς[ ] [ ] ( ) ( )! & & !ϑ ϑϑA B
AB S

wz wz wz ady bdx wf dxdy

&
1
2

1
2

w z
y

dy z
x

dx z w
x

dx w
y

dy
AB AB

%
%

&
%
%

F
HG

I
KJ &

%
%

&
%
%

F
HG

I
KJz z . ...(13)

By means of whichever of the formulas (10), (12) and (13) is suitable, we may determine the
solution of (1) at any point in terms of the prescribed values of z, %z/%x or/and %z/%y along a given
curve C.

We now discuss four particular cases:
Particular Case I Determine the solution of

2 / ( / ) ( / ) ( , )z x y a z x b z y cz f x y% % % ! % % ! % % ! � ... (i)
which satisfies the boundary conditions that z and /z x% %  are prescribed along curve C in the xy-
plane. [Delhi Maths (H) 1995, 99, 2000, 06, 08; Meerut 2010]

Hint. Proceed as in Art. 8.13 upto equation (10), i.e.,

[ ] [ ] ( )P A
AB AB

w z
z wz wz a dy bdx z dy w dx

y x

: ;% %
� & & ! !< =% %> ?ϑ ϑ + 

S
wfdxdyϑϑ ... (ii)

Relation (ii) may be used to determine the value of z at the point P when z and /z x% %  are
prescribed along a curve C.

Particular case II  To determine the solution of the equation
2 / ( , )z x y f x y% % % � ... (iii)

which satisfies the boundary conditions that z and /z x% %  are prescribed along a curve C in the
xy-plane. [Meerut 2010; Delhi. Maths (H) 1995, 99, 2000, 06, 08, 09, 10]

Hint. First state and prove that above particular case I. Note that (ii) is solution of (i).
Comparing (iii) with (i), we have a = b = c = 0 and hence for the present equation (iii), (ii) gives

        [ ] [ ]P A
AB

w z
z wz z dy w dx

y x

: ;% %
� ! !< =% %> ?ϑ  + 

S
wf dx dyϑϑ  ... (iv)

where the Green’s function w satisfies the following four properties (refer Art. 8.13 and note that a
= b = c = 0 for the present case).

(a) 2 / 0w x y% % % �  at all points of S (b)  w = 1 at P (Σ, Τ)

(c) / 0w x% % �  when y � Τ (d) / 0w y% % �  when x � Σ
Hence Green’s function can be taken as w = 1 so as to satisfy the above four conditions.

Substituting w = 1 in (iv), the required solution takes the following form

[ ] [ ] ( , )P A
AB S

z
z z dx f x y dx dy

x

%
� ! !

%ϑ ϑϑ ... (v)

The relation (v) may be used to determine the value of z at the point P when z and /z x% %  are
prescribed along a curve C.
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Particular Case III Determine the solution of
2 / ( / ) ( / ) ( , )z x y a z x b z y cz f x y% % % ! % % ! % % ! � ... (vi)

which satisfies the boundary conditions that z and /z y% %  are prescribed along a curve C in the
xy-plane.

Hint. Proceed as in Art. 8.13 upto equation (12), i.e.

[ ] [ ] ( )P B
AB AB

w z
z wz wz ady bdx z dx w dy

x y

: ;% %
� & & & !< =% %> ?ϑϑ ϑϑ + 

S
wf dx dyϑϑ ... (vii)

Relation (vii) may be used to determine the value of z at the point P when z and /z y% %  are
prescribed along a curve C in the xy-plane.

Particular Case IV To determine the solution of
2 / ( , )z x y f x y% % % � ... (viii)

which satisfies the boundary conditions that z and /z y% %  are prescribed along a curve C in the
xy-plane. [Delhi Maths (H) 1974, 97, 2001]

Hint. First state and prove the above particular case III. Note that (vii) is solution of (vi).
Comparing (viii) with (vi), we have a = b = c = 0 and hence for the present equation (viii), (vii)

reduces to [ ] [ ]P B
AB S

w z
z wz z dx w dy wf dx dy

x y

: ;% %
� & ! !< =% %> ?ϑϑ ϑϑ  ... (ix)

where the Green’s function w satisfies the following four properties (refer Art. 8.13 and note that a
= b = c = 0 for the present case)

(a) 2 / 0w x y% % % �  at all points of S   (b) w = 1 at ( , )P Σ Τ

(c) / 0w x% % �  when y � Τ (d) / 0w y% % �  when x � Σ .
Hence Green’s function can be taken as w = 1 so as to satisfy the above four conditions.

Substituting w = 1 in (ix), the required solution takes the following form.

[ ] [ ]P B
AB

z
z z dy

y

%
� & !

%ϑϑ ( , )
S
f x y dx dyϑϑ . ... (x)

The relation (x) may be used to determine the value of z at the point P when z and /z y% %  are
prescribed along a curve.

Note: Relations (10), (12)  (13) (ii), (v), (vii) and (x) must be remembered and may be used
directly in solving problems based on them.
8.14 SOLVED EXAMPLES BASED ON ART 8.13

Ex 1. Find the solution, valid when x, y>0, xy > 1 of the equation 2 / 1/( )z x y x y% % % � !

such that z = 0, (2 ) /( )p y x y� !  on the hyperbola xy = 1.                           [Meerut 2007
Delhi Maths (H) 1999, 2006 Himanchal 1997, K.U. Kurukshatra 1999]

Sol. Comparing the given equation with L(z) = f(x, y), we have
a = b = c = 0 and f(x, y) = 1/(x + y). Hence the adjoint

operator M of the operator L is given by   M Α %2/%x%y.
So Green’s function can be taken as w = 1.   ...(1)

In the present problem, the values of z and %z/%x (=p) are
given by

z = 0,  %z/%x = (2y)/(x + y), ...(2)
along the curve C, which is hyperbola.

                  xy = 1. ...(3)
Fig. 2.

y

O

P( )ΣΛ Τ

x

A(1/ )ΤΛ Τ M

dxdy x = Σ

B (ΣΛ ΜΩΣ7

y = Τ
N

M Ι N Ι C
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8.40 Classification of P.D.E Reduction to Canonical or normal forms Riemann Method

Then we wish to find the solution of given equation at the point P (Σ, Τ) agreeing with these
boundary conditions.  Through P we draw PA parallel to the x-axis and cutting xy = 1 in the point A
and PB parallel to the y-axis and cutting xy = 1 in B.  Then region enclosed by xy = 1, x = Σ, y = Τ is
denoted by S.  Now, we know that (refer equation (10) of Art 8.13.)

      [ z]P  = [wz]A & wz ady bdx z w
y

dy w z
x

dx wf dxdy
AB AB S

( )& !
%
%

!
%
%

F
HG

I
KJ !z z zz

or      [z]P = 2 1y
x y

dx
x y

dxdy
AB S!

!
!z zz , by (1) and (2). ...(4)

Now, 2y
x y

dx
AB !z = 2 xy

x xy
dx

x
dx

A

B

2 21
2 1

1!
�

!z z / Τ

Σ
= 2 {tan&1 Σ & tan&1 (1/Τ)} ...(5)

and               1
1!zz x dxdy

S
= 1

11 x y
dy dx

y xx !
RST

UVW�� zz //

Τ

Τ

Σ
, ...(6)

since to integrate over area bounded by PABP, we first integrate along the strip MNN ΙM Ι  by fixing x
and varying y from y = 1/x at M Ι  to y = Τ at M and then integrate from A to P (keeping y fixed) by
varying x from x = 1/Τ to x = Σ.  Evaluating the double integral on R.H.S. of (6) by the usual rule,

    1
x y dxdy

S !zz = log( ) [log( ) log( / )]// /
x y dx x x x dxx! � ! & !z z11 1

1Τ

Τ

Σ

Τ

Σ
Τ

= {log( ) log( ) log }
/

x x x dx! & ! !z Τ
Τ

Σ
1 2

1

= {log( ) log( ) log }
/

x x x x! & ! !Τ
Τ

Σ
1 2

1
& x

x
x
x x

dx1 2
1

1
21 !

&
!

!
F
HG

I
KJz ΤΤ

Σ

/

= Σ {log (Σ + Τ) & log (1 + Σ2) + log Σ)} & 1 1 1 1
Τ Τ

Τ
Τ

log log!FHG
I
KJ & !
F
HG
I
KJ

RS|T| 2
1log

Χ
! Ε

ΤΓ

            –
21/

2
1

dx
xx

Σ

Τ

: ;Τ
&< =< =!Τ!> ?

ϑ , on re-arranging*

= Σ log Σ Σ Τ7
Σ

Τ Τ
Τ

Σ( tan log( )
/

!
!

& & !&

1
2 1

12 x x = Σ log Σ Σ Τ7
Σ

Σ
Τ

Τ Τ Σ Τ
Τ

( tan tan log ( )!
!

& &F
HG

I
KJ !

!
!

& &

1
2 1

1
1 1

22 ...(7)

Using (5) and (7), (4) reduces to              [z]P = Σ log  Σ Σ Τ
Σ

Τ Τ Σ Τ
Τ

( ) log ( )!
!

! !
!1 12 2 . ...(8)

Replacing Σ and Τ by x and y respectively in (8), the value of z (i.e., solution of the given

equation) at any point (x, y) is given by                        z = x log x x y
x

y y x y
y

( ) log ( )!
!

! !
!1 12 2 .

Ex. 2.  Prove that, for the equation (%2z/%x%y) + (z/4) = 0, the Green’s function is w (x, y ; Σ, Τ)
= J0 ( )( )x y& &Σ Τ , wheree J0 (z) denotes Bessel’s function of the first kind of order zero.

[Himanchal 1998, 2004, Kerala 2001; Kurukshetra 2000; Nagpur 2000, 03, 05
Delhi Maths Hons. 2004, 07, 09]

Sol. Here L(z) = (%2z/%x%y) + (z/4) = 0. ...(1)

1   L Α %
% %

! %
%

! %
%

!
2

x y a x b y c = %
% %

!
2

4x y
z .        3         a= 0,        b = 0,        c = z/4.     ...(2)

          
*

  x
1 2

1
1 2

1
12

2

2x
x
x x

x
x

x
x!

&
!

!
F
HG

I
KJ � !

&
!

!
Τ Τ

 = ( ( )x
x

x
x x x

!
!

& ! &
!

! � &
!

!
!

Τ7& Τ
Τ

Τ
Τ

2 1 1
1

1 2
1

2

2 2
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So the adjoint operator M to the operator L is given by     M  Α 2( / ) (1/ 4) 0.x y% % % ! � ...(3)

Given,    w = J0 ( )( )x y& &Σ Τ . ...(4)

From (4) %
%
w
x

=
( )
( )
y
x

J
&

&
Ι

Τ

Σ2 0 ...(5)

From (5), %
% %

2w
y x = 1

4
1

( )( )x y& &Σ Τ
J0Ι + 0

( ) ( )
2 ( ) 2 ( )

y x
J

x y
& Τ & Σ

∋ ΙΙ
& Σ & Τ

or                
2w
y x

%
% %

=
1
4

1
0 0ΙΙ!

& &
Ι

R
S|
T|

U
V|
W|

J
x y

J
( )( )Σ Τ

. ...(6)

So (3) and (6)      3   Mw  =  1
4

1
0 0 0ΙΙ!

& &
Ι !

R
S|
T|

U
V|
W|

J
x y

J J
( )( )Σ Τ

. ...(7)

Now, Bessel’s eqution of order zero is given by
x2yΞ + xyΙ + x2y = 0                          or                             yΞ + (1/x) × yΙ + y = 0. ...(8)

Since y = J0{ ( )( )x y& &Σ Τ } is a solution of (8), we get

ΙΙ!
& &

Ι !J
x y

J J0 0 0
1

( )( )Σ Τ
= 0        or                       Mw = 0, by (7) ...(9)

Again,               (5)  3          (%w/%x) = 0 = bw  when y = Τ, as b = 0 ...(10)
Similarly,                                     (%w/%y) = 0 = aw  when x = Σ, as a = 0 ...(11)
Finally, when x = Σ, y = Τ,  w = J0(0) = 1. ...(12)
Since w satisfies four properties (9), (10), (11) and (12) of a Green’s function, it follows that w

must be a Green’s function of the given equation (1).

Ex. 3.  Prove that for the equation %
% %

!
!

%
%

! %
%

F
HG

I
KJ

2 2z
y x x y

z
x

z
y

= 0, the Green’s function is

w(x, y ; Σ, Τ) = ( ){ ( )( ) }
( )

x y xy x y! ! & ! !
!

2 2
3

Σ Τ ΣΤ 
Σ Τ

.

Hence find the solution of the differential equation which satisfies the conditions z = 0,  %z/%x
= 3x2 on y = x. [Bangalore 2003, Himanchel 2001; Kurukshetra 2004; Delhi Maths (H) 2001,05,11]

Sol. Compare the given equation with L(z) = f(x, y) where L Α %
% %

! %
%

! %
%

!
2

y x
a

x
b

y
c , we find

a = 2/(x + y), b = 2/(x + y),         c = 0, f(x, y) = 0. ...(1)
So the adjoint operator M to the operator L is given by

                           Mw Α %
% %

& %
% !
F
HG

I
KJ & %

% !
F
HG

I
KJ

2 2 2w
y x x x y

w
y x y

w . ...(2)

Given w(x, y ; Σ, Τ) = 
( ){ ( ) ( ) }

( )
x y xy x y! ! & & !

!
2 2

3
Σ Τ ΣΤ 
Σ Τ

. ...(3)

(3) 3      %
%
w
x =

2 2
3

xy x y y y! & & !
!

( )( )
( )

Σ Τ ΣΤ !6 ! 76Κ ! Σ & Τ7
Σ Τ

x . ...(4)

(3) 3     %
%
w
y

  = 2 2
3

xy x y y y! & & !
!

( ) ( )
( )

Σ Τ ΣΤ ! 6 ! 76Κ & Σ ! Τ7
Σ Τ

x . ...(5)

(5) 3   %
% %

2w
x y =

2 2 2 4
3 3

y x y x y! & ! &
!

� !
!

Σ Τ Σ ! Τ ! 6 ! 7
Σ Τ Σ Τ

x
( )

( )
( )

. ..(6)
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Using (6) and (3), (2) reduces to

Mw = 4 2 2 2
3

( )
( )

( )( )x y
x

xy x y!
!

& %
%

! & & !RST
UVWΣ Τ

Σ Τ ΣΤ
6Σ!Τ73 & 2 %

%
! & & !RST

UVWy
xy x y2 2( )( )Σ Τ ΣΤ

6Σ!Τ73

             = 
4 2 2 2 2

3
( )

( )
( ) (x y y x!

!
& ! & ! &

Σ Τ
Σ Τ Σ ! Τ7

6Σ ! Τ73 = 0.                   ...(7)

At y = Τ, %
%
w
x

=
2 2 2x x xΤ Σ Τ Τ ΣΤ Τ Τ Σ&Τ7

6Σ!Τ7
! & & ! ! ! !( )( ) ( )(

3 , by (4)

 = 
2{ ( ) }x Σ Τ Τ ΣΤ

6Σ ! Τ7
! ! !2

3 . ...(8)

From (1) and (3),            bw =
2 2 2{ ( )( ) }xy x y! & & !Σ Τ ΣΤ

6Σ ! Τ73 . ...(9)

So at y = Τ, (9) reduces to

bw =  2 2 2{ ( ) ( ) }x x yΤ! & & !Σ Τ ΣΤ
6Σ ! Τ73 =

2 2{ ( ) }x Σ Τ Τ ! ΣΤ
6Σ ! Τ7
! !

3 . ...(10)

From (8) and (10),  %w/%x = bw  when y = Τ. ...(11)
Similarly, %w/%y = aw   when  x = Σ. ...(12)

From (3),  when x = Σ,  y = Τ, we get            w =
( ){ ( ) }Σ Τ ΣΤ Σ Τ ! Τ

6Σ ! Τ7
! ! &2 2 2

3 = 1. ...(13)

Since w satisfies four properties (7), (11), (12) and (13) of a Green’s function, it follows that w
must be a Green’s function of the given equation.

To find the solution of the equation. In the present problem, the values of z and
%z/%x (= p) are given by

z = 0                  and %z/%x = 3x2. ...(14)
along the line AB, y = x. ...(15)

Then we wish to find the solution of given equation at the
point P(Σ, Τ) agreeing with these boundary conditions.  Through
P we draw PA parallel to the x-axis and cutting y = x in the point
A and PB parallel to the y-axis and cutting y = x in B.  Then
triangular region enclosed by straight lines y = x, y = Τ and x = Σ
is denoted by S.  Then we know that (refer equation (10) of Art
8.13).

         [z]P = [wz]A & ( )
AB AB S

w z
wz ady bdx z dy w dx wf dxdy

y x

: ;% %
& ! ! !< =% %> ?ϑ ϑ ϑϑ . ..(16)

Now on line AB, from (3), w =
4 2

2
x x( )
( )

!
!

ΣΤ
Σ Τ

, as y = x. ...(17)

Using (1), (14) and (17), (16) reduces to

[z]P = Σ

Τ

! ΣΤ
� ! ΣΤ

Σ ! Τ Σ ! Τϑ ϑ
2

2 5 3
3 3

4 ( ) 12
3 ( )

( ) ( )

B

A

x x
x dx x x dx

=
6 4 6 6

4 4
3 3

12 12
( )

6 4 6 4( ) ( )

x x
Σ

Τ

∗ + ∗ +Σ & Τ ΣΤ
!ΣΤ � ! Σ & Τ, − , −

Σ ! Τ Σ ! Τ. / . /

Υ ς3 3 3 3 3 2 2 2 2( ) 2( ) ( ) 3 ( )( )&� Σ ! Τ Σ ! Τ Σ & Τ ! ΣΤ Σ & Τ Σ ! Τ

y

O

B( )ΣΛ  Σ

x
Figure-3

y = x

x = Σ
y = Τ

A (Τ Λ Τ 7 P( )ΣΛ  Τ
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Υ ς3 3 3 2 2 2 2( ) 2( ) ( ) ( ) 3 ( )( )( )&� Σ ! Τ Σ ! Τ Σ & Τ Σ ! Τ ! ΣΤ ! ΣΤ Σ & Τ Σ ! Τ Σ ! Τ

Υ ς3 3 3 2 2 3 3 2 2( ) ( ) 2( ) ( ) 2 ( ) 3 ( )( )&� Σ ! Τ Σ & Τ Σ ! Τ Σ ! Τ ! ΣΤ Σ ! Τ & ΣΤ Σ ! Τ Σ ! Τ

Υ&� Σ ! Τ Σ & Τ Σ ! Τ Σ ! Τ ! ΣΤ Σ ! Τ Σ ! Τ3 3 3 2 2 2 2( ) ( ) 2( ) ( ) 6 ( ) ( ) ς& ΣΤ Σ ! Τ Σ ! Τ ! ΣΤ Σ ! Τ2 2 3 33 ( )( ) 2 ( )

Υ ς3 2 2 3 3( ) ( ) 2( ) 3 ( )& ∗� Σ ! Τ Σ & Τ Σ ! Τ Σ ! Τ ! ΣΤ Σ ! Τ. Υ ς2 2 3 33( ) ( ) 2 ( ) +&ΣΤ Σ ! Τ Σ ! Τ & Σ ! Τ /

Υ ς3 2 2 3 3( ) ( ) 2( )( ) ( )&� Σ ! Τ Σ & Τ Σ ! Τ Σ ! Τ & ΣΤ Σ ! Τ 2 2( )(2 2 )� Σ & Τ Σ ! Τ & ΣΤ

or � Σ ! ΣΤ & Σ Τ & Τ3 2 2 3[ ] 2 3 3 2 .Pz ....(18)

Replacing Σ and Τ by x and y respectively in (18), the value of z (i.e., solution of the given
equation) at any point (x, y) is given by

z = 2x3 + 3xy2 – 3x2y – 2y3.

Ex.4.  Obtain the solution of 2 / 1/( )z x y x y% % % � !  such that z = 0, p = 2 /( )y x y!  on y = x.

[Delhi Maths (H) 1998]

Sol. Here we are solve 2 / 1/( )z x y x y% % % � ! , ... (1)

where z = 0 and /p z x� % % = 2 /( )y x y!    on   y = x        ... (2)
Here the given curve C is straight line y = x. Then we wish to find the solution of (1) at

( , )P Σ Τ  agreeing with boundary conditions (2). Through P we draw PA parallel to the x-axis and
cutting y = x at the point A and PB parallel to the y-axis and cutting y = x in B. The triangular-
region enclosed by stright lines y = x, y = Τ, x = Σ is denoted by S (draw figure as shown in
figure 3 of solved Ex. 3). Then we know that (refer particular case II of Art. 8.13).

       [ ] [ ] ( , )P A
AB S

z
z z dx f x y dx dy

x

%
� ! !

%ϑ ϑϑ ... (3)

Comparing (1) with 2 / ( , )z x y f x y% % % � , here ( , ) 1/( )f x y x y� ! .

Since A lies on given curve AB and it is given that z = 0 on AB, hence           [ ] 0Az � .

From (2), / 2 /( )z x y x y% % � ! on    AB.    i.e. y x�

so that / 2 /( )z x x x x% % � ! = 1 on             y = x.
Using the above facts, (3) reduces to

1
[ ]

x

P
x y

z dx dy dx
x y

Σ Σ

Τ �Τ �Τ

Β Χ
� ! ∆ Ε!Φ Γϑ ϑ ϑ = log( ) [log(2 ) log( )]

x

y
x y dx x x dx

Σ Σ

Τ Τ�Τ
Σ & Τ ! ! � Σ & Τ ! & ! Τ∗ +. /ϑ ϑ

=
2 1 1

log
x

x x dx
x x x

Σ
Σ

Τ
Τ

∗ + : ;
Σ & Τ ! & &< =, −! Τ ! Τ. / > ?ϑ =

2
log log1 dx

x

Σ

Τ

Σ Τ
Σ & Τ ! Σ & Τ &

Σ ! Τ ! Τϑ
= Ψ ΖΣ

Τ
Σ

Σ & Τ ! Σ & Τ ! Τ
Σ ! Τ
2

log log ( )x
2 2

log log
Σ Τ

� Σ & Τ ! Σ ! Τ
Σ ! Τ Σ ! Τ

Replacing Σ  and Τ  by x and y respectively in the above equation, the value of z (i.e.,
solution of (1) at any point (x, y) is given by

logz x y x� & ! {2 /( )} log{2 /( )}x x y y y x y! ! ! .
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8.15. Riemann-Volterra method for solving the Cauchy problem for the one-
dimensional wave equation

The entire procedure of solution will become clear from the following solved examples.

Ex. 1. Using Riemann-Volterra method, solve 2 2 2 2/ /z x z y, , ∃ , , , when , /z z x, , , /z y, ,
are prescribed along a curve C in the xy-plane

Sol. Given 2 2 2 2/ / 0z x z y, , # , , ∃ or 0r t# ∃ ... (1)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p p& & & ∃ , here R = 1, S = 0 and T = – 1. Hence
the >-quadratic equation 2 0R S T> & > & ∃  reduces to 2 1 0> # ∃  so that 1, 1> ∃ # . TheThe
corresponding characteristic equations of (1) are given by

/ 1 0dy dx & ∃ and / 1 0dy dx # ∃
Integrating these,
 x + y = C1    and        x – y = C2, ... (2)

which are characteristics of (1) and these are two families of
straight lines. Let ( , )P % ∋  be any point in xy-plane. We now
obtain characteristics of (1) passing through P. So putting x ∃ %

and y ∃ ∋  in (2), we have 1C ∃ % & ∋  and 2C ∃ % # ∋ . Hence
the characteristics of (1) passing through P are given by

x y& ∃ % & ∋ and x y# ∃ % # ∋, ... (3)
which have been shown by straight lines PB and PA respectively in the figure. Let the characteristics
PA and PB cut the given curve C in A and B respectively. Let C?  denote the closed curve PABP
(which is made up of straight line PA, curve C (i.e. AB) and straight line BP). Let S be the region
enclosed by C? .

Integrating both sides of (1) over S, we have

  
2 2

2 2
0

S

z z
dx dy

x y

4 5, ,
# ∃6 76 7, ,: ;

−−   or      0
S

z z
dx dy

x x y y

. /4 5, , , ,4 5≅ ≅# ∃0 16 76 7, , , ,: ;≅ ≅: ;2 3
−−

or
?

4 5, ,
& ∃6 7, ,: ;−� 0

C

z z
dx dy

y x
, by Green’s theorem.*

or 4 5 4 5 4 5, , , , , ,
& & & & & ∃6 7 6 7 6 7, , , , , ,: ; : ; : ;− − − 0

C BP PA

z z z z z z
dx dy dx dy dx dy

y x y x y x

Equation of BP is x y& ∃ % & ∋  and hence  dx = – dy on BP. Similarly, equation of PA is
x y# ∃ % # ∋  and hence dx dy∃  on PAA. Using these facts in the above equation, we get

P

C B

z z z z
dx dy dy dx

y x y x

4 5 4 5, , , ,
& & # #6 7 6 7, , , ,: ; : ;− −  + 0

A

P

z z
dy dx

y x

4 5, ,
& ∃6 7, ,: ;−

or 0
P A

C B P

z z
dx dy dz dz

y x

4 5, ,
& # & ∃6 7, ,: ;− − − , as z z

dz dx dy
x y

, ,
∃ &

, ,

or
C

z z
dx dy

y x

4 5, ,
&6 7, ,: ;−  – ( ) ( ) 0P B A Pz z z z# & # ∃

* Green’s theorem. Let C? be a closed curve bounding the region S on xy-plane and ( , ),u x y ( , )v x y

be differential functions in S and continusou on ,C?  then 
C ?−� ( ) –

S

v u
udx vdy dx dy

x y
, ,

& ∃
, ,

4 5
6 7: ;−−

y

O x

x
+

y
=

%  & ∋

x –y =
–%  ∋

P( )%Α  ∋

A

B

C
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Β 1 1
( )

2 2P A Bz z z∃ & &
C

z z
dx dy

y x

4 5, ,
&6 7, ,: ;− , ... (4)

which is the required solution of (1) at any point P.
Ex. 2. Solve one dimensional wave equation by Riemann Volterra method.

[Kurukshetra 2001; Delhi Maths (H) 1996]

or  Solve homogeneous one-dimensional wave equation 2 2/z x, , ∃ Χ , ,2 2 2(1/ ) ( / )c z t , when
, / , /z z x z t, , , ,  are prescribed along a curve C.

Sol. Given , , ∃ Χ , ,2 2 2 2 2/ (1/ ) ( / )z x c z t ... (i)
Let y be a new variable such that y = ct ... (ii)

Then (i) becomes 2 2 2 2/ / 0z x z y, , # , , ∃               or                 0r t# ∃ ... (iii)

for which z, /z x, ,  and /z y, ,  are now prescribed along C.
Proceed with (iii) as we did in solved Ex. 1 upto equation (4).

Ex. 3. Find z (x, y) such that 2 2 2 2/ /z x z y, , ∃ , ,  and ( )z f x∃  and / ( )z y g x, , ∃  on y = 0.
[Kanpur 2003; Delhi Maths (H) 2000, 08]

Sol. Given 2 2 2 2/ / 0z x z y, , # , , ∃ or 0r t# ∃ , ... (1)

where ( ,0) ( )z x f x∃ ,          i.e.,     ( )z f x∃           on       y = 0    i.e. x – axis ... (2)

and       0( / ) ( )yz y g x∃, , ∃       i.e.,       / ( )z y g x, , ∃       on    y = 0 i.e. x – axis ...(3)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q& & & ∃ , here R = 1, S = 0 and T = – 1. Hence the

> -quadratic equation > & > & ∃2 0R S T  reduces to 2 1 0> # ∃  so that 1, 1.> ∃ #  The corresponding
characteristic equations of (1) are given by   / 1 0dy dx & ∃      and         / 1 0dy dx # ∃

Integrating these   1x y C& ∃    and    2x y C# ∃   ... (4)
which are the characteristics of (1) and these are two families of
straight lines. Let ( , )P % ∋  be any point in xy-plane. We now

obtain characteristics of (1) passing through P. So putting x ∃ %
and y ∃ ∋  in (4), we get 1C ∃ % & ∋  and 2C ∃ % # ∋ . Hence the
characteristics of (1) passing through P are given by

x y& ∃ % & ∋                and        x y# ∃ % # ∋ ... (5)
which have been shown by straight lines PB and PA respectively in the figure. Let the characteristics
PA and PB cut given curve (here y = 0 i.e. x-axis) in A ( , 0)% # ∋  and B ( , 0)% & ∋  respectively. Let
C?  denote the closed curve PA BP (which is made up of straight lines PA, AB and BP). Let S be the
region enclosed by C? .

Integrating both sides of (1) over S, we have

2 2

2 2
0

S

z z
dxdy

x y

4 5, ,
# ∃6 76 7, ,: ;

−− or       0
S

z z
dx dy

x x y y

. /4 5, , , ,4 5≅ ≅# ∃0 16 76 7, , , ,: ;≅ ≅: ;2 3
−−

or ?

4 5, ,
& ∃6 7, ,: ;−� 0

C

z z
dx dy

y x , by Green’s theorem

or
AB BP

z z z z
dx dy dx dy

y x y x

4 5 4 5, , , ,
& & &6 7 6 7, , , ,: ; : ;− − + 

PA

z z
dx dy

y x

4 5, ,
&6 7, ,: ;− = 0

y

O x

x
+

y
=

% &  ∋x
–

y
=

–% 
 ∋

P( )%Α  ∋

B (  + , 0)% ∋A (  – , 0)% ∋
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On AB (i.e., x-axis), y = 0 so that dy = 0. Also, from (3), /z y, , = g (x) on y = 0. On BP (i.e., x
+ y = % & ∋ ), dx = – dy. Similarly, on PA (i.e., x y# ∃ % # ∋), dx = dy. Using these facts, the above
equation reduces to

( )
B P

A B

z z
g x dx dy dx

y x

4 5, ,
& # #6 7, ,: ;− −  + 0

A

P

z z
dy dx

y x

4 5, ,
& ∃6 7, ,: ;−

or ( ) 0
B P A

A B P
g x dx dz dz# & ∃− − − ,    as z z

dy dx dz
y x

, ,
& ∃

, ,

or ( ) ( ) 0
B

P B A P
A

g x z z z z# # & # ∃−    or
1 1

( ) ( )
2 2

B

P A B
A

z z z g x dx∃ & & − ... (6)

From (2), z = f (x) on y = 0 (i.e., x-axis). Since x-coordinates of A and B are % # ∋  and % & ∋

respectively, it follows that ( )Az f∃ % # ∋  and ( )Bz f∃ % & ∋ . Hence (6) reduces to

  
1 1

{ ( ) ( )} ( )
2 2Pz f f g x dx

%&∋

%#∋
∃ % # ∋ & % & ∋ & − ... (7)

Replacing %  and ∋  by x and y respectively in (7), the value of z (i.e., solution of (1) at any
point P (x, y)) is given by

1 1
( , ) { ( ) ( )} ( )

2 2

x y

x y
z x y f x y f x y g u du

&

#
∃ # & & & −

Ex. 4. Find the solution of one-dimensional non-homogeneous wave equation
2 2 2 2/ / ( , ) 0z x z y f x y, , # , , & ∃  by Riemann-Vatterra method.

[A.M.I.E. 2005; Delhi Maths (H) 1998, 2002; Kanpur 1998]

Sol. Given 2 2 2 2/ / ( , ) 0z x z y f x y, , # , , & ∃  or ( , ) 0r t f x y# & ∃ .  ... (1)

Suppose that z, /z x, ,  and /z y, ,  are prescribed along a given curve C. Comparing (1) with
( , , , , ) 0Rr Ss Tt f x y z p q& & & ∃ , here R = 1, S = 0, T = – 1 and so > -quadratic equation

2 0R S T> & > & ∃  reduces to 2 1 0> # ∃  giving 1, 1> ∃ # . The corresponding characteristic
equations dy/dx + 1 = 0 and dy/dx – 1 = 0 give, on integration,

x + y = C1 and       x – y = C2 ... (2)
which are characteristics of (1). Draw figure as in solved Ex. 1. Let ( , )P % ∋  be any point in xy-
plane. Then characteristics of (1) passing through ( , )P % ∋  are given by

x y& ∃ % & ∋ and x y# ∃ % # ∋ ... (3)
which have been shown by straight lines PB and PA respectively. Let the characteristics PA and PB
cut the given curve C in A and B respectively. Let C?  denote the closed curve PABP and let S
denote the region enclosed by C? .

Integrating both sides of (1) over S, we have

S

z z

x x y y

. /4 5, , , ,4 5≅ ≅#0 16 76 7, , , ,: ;≅ ≅: ;2 3
−− ( , ) 0

S
dx dy f x y dx dy& ∃−−

or ?

4 5, ,
&6 7, ,: ;−�C

z z
dx dy

y x  + ( , )
S

f x y dx dy−− = 0, by Green’s theorem

or
C BP

z z z z
dx dy dx dy

y x y x

4 5 4 5, , , ,
& & &6 7 6 7, , , ,: ; : ;− −  + 

PA

z z
dx dy

y x

4 5, ,
&6 7, ,: ;− + ∃−− ( , ) 0

S
f x y dxdy
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Equation of BP is x y& ∃ % & ∋  and so dx = – dy on BP. Similarly, equation of PA is x – y
= % # ∋  and so dx = dy on PAA. Using these facts, the above equation reduces to

P

C B

z z z z
dx dy dy dx

y x y x

4 5 4 5, , , ,
& & # #6 7 6 7, , , ,: ; : ;− − + 

4 5, ,
& & ∃6 7, ,: ;− −− ( , ) 0

A

P S

z z
dy dx f x y dx dy

y x

or       ( , ) 0
P A

C B P S

z z
dx dy dz dz f x y dx dy

y x

4 5, ,
& # & & ∃6 7, ,: ;− − − −−

or ( ) ( , ) 0P B A P
C S

z z
dx dy z z z z f x y dx dy

y x

4 5, ,
& # # & # & ∃6 7, ,: ;− −−

or
1 1 1

( ) ( , ) 0
2 2 2P A B

C S

z z
z z z dx dy f x y dx dy

y x

4 5, ,
∃ & & & & ∃6 7, ,: ;− −− ,

which is the required solution of (1) at any point P.

Ex. 5. Solve 2 2 2 2/ / 1z x z y, , # , , ∃ , when z (x, 0) = sin x, zy (x, 0) = x.

Sol. Given 2 2 2 2/ / 1 0z x z y, , # , , # ∃     or        1 0r t# # ∃ ... (1)

where ( ,0) sinz x x∃ , i.e., sinz x∃  on      0y ∃ ,  i.e., x-axis ... (2)

and             zy (x, 0) = x, i.e., /z y x, , ∃ on       ∃ 0,y i.e., x-axis ... (3)
Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q& & & ∃ , here R = 1, S = 0 and T = – 1. Hence the

> -quadratic equation 2 0R S T> & > & ∃  reduces to 2 1 0> # ∃  so that 1, 1> ∃ # . The corresponding
characteristic equations of (1) are

dy/dx + 1 = 0    and        dy/dx – 1 = 0
Integrating these, x + y = C1 and x – y = C2 ... (4)

which are the characteristics of (1) and these are two families of straight lines Draw a figure as in
solved Ex. 3. Let ( , )P % ∋  be any point in xy-plane. Putting x = %, y = ∋ in (4), we get 1C ∃ % & ∋ ,

2C ∃ % # ∋ . Hence the characteristics of (1) passing through P are given by

x y& ∃ % & ∋ and x y# ∃ % # ∋ ... (5)
which have been shown by straight lines PB and PA respectively in the figure. Let the characteristics
PA and PB cut the given line y = 0 i.e., x-axis in ( , 0)A % # ∋  and ( , 0)B % & ∋  respectively. Let C?
denote the closed curve PABP and let S denote the region enclosed by C? .

Integrating both sides of (1) over S, we have

0
S S

z z
dx dy

x x y y

. /4 5, , , ,4 5≅ ≅# # ∃0 16 76 7, , , ,: ;≅ ≅: ;2 3
−− −−

or ?

4 5, ,
&6 7, ,: ;−�C

z z
dx dy

y x
0

S
dx dy# ∃−− , by Green’s theorem ... (5)

Now,  
S

dx dy−− = area of the triangle SAB = (1/2) × AB × perpendicular distance of P from AB

          = (1/2) × % & ∋# % # ∋ Χ ∋ ∃ ∋2{ ( )}
Hence (5) reduces to

  
AB BP

z z z z
dx dy dx dy

y x y x

4 5 4 5, , , ,
& & &6 7 6 7, , , ,: ; : ;− − + 2 0

PA

z z
dx dy

y x

4 5, ,
& # ∋ ∃6 7, ,: ;− ... (6)
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On AB (i.e., x-axis), y = 0 so that dy = 0. Also from (3), /z y x, , ∃  on y = 0. On BP (i.e., x +
y = % & ∋), dx = – dy. Similarly on PA (i.e., x – y = % # ∋ ), dx = dy. Using these facts, (6) reduces to

        
B P

A B

z z
x dx dy dx

y x

4 5, ,
& # #6 7, ,: ;− −  + 

A

P

z z
dy dx

y x

4 5, ,
&6 7, ,: ;− 2 0#∋ ∃

or 2 0
B P A

A B P
x dx dz dz# & # ∋ ∃− − − , as z z

dz dx dy
x y

, ,
∃ &

, ,

or 2( ) 0
B

P B A P
A

x dx z z z z# # & # # ∋ ∃−      or     21 1 1
( )

2 2 2

B

P Z B
A

z z z x dx∃ & & # ∋−    ... (7)

From (2), z = sin x on y = 0 (i.e., x-axis). Since x-coordinates of A and B are % # ∋  and % & ∋

respectively, it follows that sin( )Az ∃ % # ∋  and sin( )Bz ∃ % & ∋ . Hence (7) reduces to

1
{sin ( ) sin ( )}

2Pz ∃ % # ∋ & % & ∋  + 
%&∋

%#∋

∋
#−

21
2 2

x dx    or      
%&∋

%#∋

∋( ∗∃ % ∋# #) +

2
21

sin cos
4 2Pz x

or ∃ % ∋ # Χ ∆% & ∋ # % # ∋ # Χ ∋2 2 2sin cos (1/ 4) { ) ( ) } (1/ 2)Pz

or ∃ % ∋ # %∋ # ∋2sin cos ( / 2)Pz ... (8)

Replacing %  and ∋  by x and y respectively in (8), the value of z (i.e., solution of (1)) at any
point (x, y) is given by z (x, y) = sin x cos y – xy – (y2/2).

Ex. 6. A function z (x, y) satisfies the non-homogeneous equation 2 2 2 2/ / ( , ) 0z x z y f x y, , #, , & ∃

and the initial conditions / 0z z y∃ , , ∃  when  y = 0. Show that (using Riemann - Volterra method)

z (x, y) =
1
2

f (u,v) du dv
Ε−− ,

where Ε  is the triangle cut off from the upper half of uv-plane by two characteristics through the
point (x, y). [Delhi Maths (Hons) 2002, 07, 11; A.M.I.E. 2005; Amaravati 2003;

Kanpur 1999; Rohilkhand 2004]

Sol. Given 2 2 2 2/ / ( , ) 0z x z y f x y, , # , , & ∃      or ( , ) 0r t f x y# & ∃ , ... (1)
where z (x, 0) = 0,         i.e.,  z = 0      on         y = 0  (x-axis)  ... (2)
and 0( / ) 0yz y ∃, , ∃ , i.e.,    ( / ) 0z y, , ∃  on        y = 0   (x-axis) ... (3)

Comparing (1) with ( , , , , ) 0Rr Ss Tt f x y z p q& & & ∃ , here R = 1, S = 0 and T = – 1 and so
> -quadratic equation 2 0R S T> & > & ∃  reduces to 2 1 0> # ∃  giving 1, 1> ∃ # . The corresponding
characteristic equations are given by

         dy/dx + 1 = 0 and        dy/dx – 1 = 0
Integrating these,        x + y = c1   and            x – y = c2,  ... (4)

which are characteristics of (1). Draw figure as in solved Ex. 3. Let ( , )P % ∋  be any point in
xy-plane. We now obtain characteristics of (1) passing through P. So putting x ∃ %  and y ∃ ∋  in (4),
we get 1C ∃ % & ∋  and 2C ∃ % # ∋ . Hence the characteristics of (1) passing through P are given by

x y& ∃ % & ∋ and     x y# ∃ % # ∋ ... (5)
which have been shown by straight lines PB and PA respectively in the figure. Let the characteristics
PA and PB cut y = 0 (i.e., x-axis) at A and B respectively. Let C?  denote the closed curve PA BP
and let Ε  denote the triangular region enclosed by C? .

Integrating both sides of (1) over Ε , we have
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( , ) 0
z z

dx dy f x y dx dy
x x y yΕ Ε

4 54 5, , , ,4 5 # & ∃6 76 76 76 7, , , ,: ; : ;: ;
−− −−

or
?

4 5, ,
&6 7, ,: ;−�C

z z
dx dy

y x
 + ( , ) 0f x y dx dy

Ε
∃−− , using Green’s theorem

or   
AB BP

z z z z
dx dy dx dy

y x y x

4 5 4 5, , , ,
& & &6 7 6 7, , , ,: ; : ;− −  + 

PA

z z
dx dy

y x

4 5, ,
&6 7, ,: ;− + ( , ) 0x y dx dy

Ε
∃−−   ... (6)

On AB (i.e., x-axis), y = 0 so that dy = 0. Also, from (3), / 0z y, , ∃  on y = 0. On BP (i.e.,
x y& ∃ % & ∋ ), dx = – dy. Similarly, on PA (i.e., x – y = % # ∋ ), dx = dy. Using these facts, (6)
reduces to

P

B

z z
dy dx

y x

4 5, ,
# #6 7, ,: ;−  + ( , ) 0

A

P

z z
dy dx x y dxdy

y x Ε

4 5, ,
& & ∃6 7, ,: ;− −−

or       ( , )
P A

B P
dz dz f x y dxdy

Ε
# & &− − −− = 0, as z z

dz dx dy
x y

, ,
∃ &

, ,

or – (zP – zB) + zA – zP + ( , ) 0f x y dx dy
Ε

∃−− ... (7)

From (2), z = 0 on y = 0 (i.e., x-axis) and so zA = zB = 0, because A and B both lie on y = 0.
Hence (7) becomes

2 ( , )Pz f x y dxdy
Ε

∃ −− or z (x, y) =
1

( , )
2

f u v du dv
Ε−− ,

which gives the value of z (i.e., solution of (1)) at any point (x, y)
Ex.7. Find the solution of the non-homogeneous wave equation 2 2 2 2 2/ (1/ )( / ) ( , ) 0z x c z t f x t, , # , , & ∃

with initial conditions z (x, 0) = f(x), zt (x, t) = g (x).
Sol. Let y be a new variable such that    y = c t ... (1)
Then the given problem may be re-written as

2 2 2 2/ / ( , ) 0z x z y F x y, , # , , & ∃              or           ( , ) 0r t F x y# & ∃ , ... (2)
with the modified initial conditions given below
z (x, 0) = f (x),    i.e.,         z = f (x)      on         y = 0, i.e., x-axis ... (3)

0( / )yz y ∃, , = G (x),    i.e.,     / ( )z y G x, , ∃     on      y = 0,  i.e., x-axis ... (4)
       Here     F (x, y) = f (x, t)                       and                G (x) = (1/c) × g (x) ... (5)

Comparing (2) with ( , , , , ) 0Rr Ss Tt f x y z p q& & & ∃ , here R = 1, S = 0 and T = – 1. Hence the
> -quadratic equation 2 0R S T> & > & ∃  reduces to 2 1 0> # ∃  so that 1, 1> ∃ # . The corresponding
characteristic equations of (1) are given by

/ 1 0dy dx & ∃ and dy/dx – 1 = 0 ... (6)
Integrating these,      x + y = C1 and x – y = C2,

which are characteristics of (1). Draw a figure same as in Ex. 3.
Let ( , )P % ∋  be any point in xy-plane. Then characteristics (2) passing through ( , )P % ∋  are

      x y& ∃ % & ∋        and x y# ∃ % # ∋ ... (7)
which have been shown by straight lines PB and PA respectively in the figure. Here lines given by
(7) cut x-axis (i.e., y = 0) in ( , 0)A % # ∋  and ( , 0)B % & ∋  respectively. Let C?  denote the closed
curve PABP and let S be the region enclosed by C? .
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Integrating both sides of (2) over S, we have

S

z z

x x y y

. /4 5, , , ,4 5≅ ≅#0 16 76 7, , , ,: ;≅ ≅: ;2 3
−− ( , ) 0

S
dx dy F x y dx dy& ∃−−

or
?

4 5, ,
&6 7, ,: ;−�C

z z
dx dy

y x  + ( , ) 0
S

F x y dx dy ∃−− , using Green’s theorem

or   
AB

z z
dx dy

y x

4 5, ,
&6 7, ,: ;−  + 

4 5, ,
&6 7, ,: ;−BP

z z
dx dy

y x
+ 

PA

z z
dx dy

y x

4 5, ,
&6 7, ,: ;−  + ( , ) 0

S
F x y dx dy ∃−−    ... (8)

On AB (i.e., x-axis), y = 0 so that dy = 0. Also, from (4), / ( )z y G x, , ∃  on y = 0. On BP (i.e.,
x + y = % & ∋ ), dx = – dy. Similarly, on PA (i.e., x – y = % # ∋ ), dx = dy. Using these facts, (8)
reduces to

( )
B P

A B

z z
G x dx dy dx

y x

4 5, ,
& # #6 7, ,: ;− −  + 

A

P

z z
dy dx

y x

4 5, ,
&6 7, ,: ;−  + ( , ) 0

S
F x y dx dy ∃−−

or            ( ) ( , ) 0
B P A

A B P S
G x dx dz dz F x y dx dy# & & ∃− − − −−

or ( ) ( )
B

P B A P
A

G x dx z z z z# # & # &− ( , )
S

F x y dx dy−− = 0

or
1 1

( ) ( )
2 2

B

P A B
A

z z z G x∃ & & −
1

( , )
2 S

dx F x y dx dy& −− ... (9)

From (3), z = f (x) on y = 0 (i.e., x-axis). Since x-coordinates of A and B are % # ∋  and % & ∋
respectively, it follows that ( )Az f∃ % # ∋  and ( )Bz f∃ % & ∋ . Hence (9) reduces to

–

1 1 1{ ( – ) ( )} ( ) ( , )
2 2 2p

s
z f f G x dx F x y dx dy

%&∋

% ∋
∃ % ∋ & % & ∋ & &− −− ... (10)

Replacing %  and ∋  by x and y (= ct) respectively and using (5), (10) reduces to

–

1 1 1
( , ) { ( – ) ( )} ( ) ( , )

2 2 2

x ct

x ct s
z x y f x y f x y g u du f x t dx dt

c

&
∃ & & & &− −−
Miscellaneous Problems on chapter 8

Ex. 1. 2 2 2 2 2/ ( / )u t c u x, , ∃ , ,  is hyperbolic or parabolic. Classify it. [Agra 2008]
Hint.  See Art 8.1 Ans. Hyperbolic
Ex. 2. The equation  2 2 2 2/ /u t u x, , ∃ , ,  is
 (a) parabolic  (b) hyperbolic  (c) elliptic  (d) Nonw of these [Agra 2007]
Sol. Ans. (b.) See Art 8.1.

Ex. 3. Classify and solve the following equation 2 2 2 2 2/ ( / ).z x x z y, , ∃ , , [Bhopal 2010]
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9
Monge’s Methods

9.1 INTRODUCTION
The most general form of partial differential equation of order two is

f(x, y, z, p, q, r, s, t) = 0. ...(1)
It is only in special cases that (1) can be integrated. Some well known methods of solutions

were given by Monge. His methods are applicable to a wide class (but not all) of equations of the
form (1). Monge’s methods consists in finding one or two first integrals of the form

u = !( v ), ...(2)
where u and v are known functions of x, y, z, p and q and ! is an arbitrary function. In other words,
Monge’s methods consists in obtaining relations of the form (2) such that equation (1) can be
derived from (2) by eliminating the arbitrary function. A relation of the form (2) is known as an
intermediate integral of (1). Every equation of the form (1) need not possess an intermediate
integral. However, it has been shown that most general partial differential equations having (2) as
an intermediate integral are of the following forms

Rr + Ss + Tt = V     and Rr + Ss + Tt + U(rt – s2) = V,
...(3)

where R, S, T, U and V are functions of x, y, z, p and q. Even equations (3) need not always possess
an intermediate integral. In what follows we shall assume that an intermediate integral of (3) exists.
9.2. MONGE’S METHOD OF INTERGRATING Rr + Ss + Tt = V. [Agra 2005; Delhi Maths

(Hons) 2000, 02, 08, 09, 11; Garhwal 1994; Patna 2003; Kanpur 1997; Meerut 2000]
Given Rr + Ss + Tt = V, ...(1)

where R, S, T and V are functions of x, y, z, p and q.
We know that p = �z/�x, q = �z/�y,

r = �
�

2

2
z

x
= �

�
�
�
FH IKx

z
x

= �
�
p
x

, t = �
�

2

2
z

y
= �

�
�
�
F
HG
I
KJy

z
y

=
�
�
q
y ,

s = �
� �

2z
x y

= �
�

�
�
F
HG
I
KJx

z
y = �

�
q
x

and s = �
� �

2z
y x = �

�
�
�
FH IKy

z
x

= �
�
p
y

Now, dp = ( / ) ( / )p x dx p y dy� � # � � = rdx + sdy, using (2) ...(3)

and dq = ( / ) ( / )q x dx q y dy� � # � � = sdx + tdy, using (2) ...(4)

From (3) and (4), r = ( ) /dp s dy dx∃ and t = ( ) /dq s dx dy∃ ...(5)
Substituting the values of r and s given by (5) in (1), we get

R
dp sdy

dx
∃FH IK  + Ss + T

dq sdx
dy
∃F

HG
I
KJ = V     or     R(dp – sdy)dy + Ss dxdy + T(dq – sdx)dx = V dxdy

or (Rdpdy + Tdqdx – Vdxdy) – s{R(dy)2 – Sdxdy + T(dx)2} = 0. ...(6)
Clearly any relation between x, y, z, p and q which satisfies (6) must also satisfy the following

two simultaneous equations

9.1

... (2)

%
&
&
∋
&
&(
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9.2 Monge’s Methods

        Rdpdy + Tdq dx – Vdxdy = 0.       ...(7)
and (dy)2 – Sdxdy + T(dx)2 = 0. ...(8)

The equations (7) and (8) are called Monge’s subsidiary equations and the relations which
satisfy these equations are called intermediate integrals.

Equation (8) being a quadratic, in general, it can be resolved into two equations, say
      dy – m1 dx = 0 ...(9)

and       dy – m2 dx = 0. ...(10)
Now the following two cases arise :
Case I. When m1 and m2 are distinct in (9) and (10).
In this case (7) and (9), if necessary by using well known result dz = pdx + qdy, will give two

integrals u1 = a and v 1 = b, where a and b are arbitrary constants. These give
u1 = f1( v 1), ...(11).

where f1 is an arbitrary function. It is called an intermediate integral of (1).
Next, taking (7) and (10) as before, we get another intermediate integral of (1), say

u2 = f2( v 2), where f2 is an arbitrary function. ...(12)
Thus we have in this case two distinct intermediate integrals (11) and (12). Solving (11) and

(12), we obtain values of p and q in terms of x, y and z. Now substituting these values of p and q
in well known relation   dz = pdx + qdy             ...(13)
and then integrating (13), we get the required complete integral of (1).

Case II . When m1 = m2 i.e., (8) is a perfect square.
As before, in this we get only one intermediate integral which is in Lagrange’s form

Pp + Qq= R. ...(14)
Solving (14) with help of Lagrange’s method (refer Art. 2.3, chapter 2), we get the required

complete integral of (1).
Remark 1. Usually while dealing with case I, we obtain second intermediate integral directly

by using symmetry. However sometimes in absence of any symmetry, we find the complete integral
with help of only one indetermediate integral. This is done with help of using Lagrange’s method.

Remark 2. While obtaining an intermediate integral, remember to use the relation dx = pdx
+ qdy as explained below :

(i)  pdx + qdy + 2xdx = 0 can be re–written as dz + 2xdx = 0 so that z + x2 = c.
(ii) xdp + ydq = dx can be re–written as    xdp + ydq + pdx + qdy = dx + pdx + qdy

or d(xp) + d(yq) = dx + dz so that xp + yq = x + z + c, on integration
Remark 3. While integrating, we shall use the following types of calculations. In what follows,

f and g are arbitrary functions and k and a are a constants.

(i) k f t dt( )z = g(t) (ii) k
t

t dt1 f ( )z = g(t). (iii) k
t

t d t1
2

2 2f ( ) ( )z = g(t2)

(iv) k f x y d x y( ) ( )# #z = g(x + y). (v) k t f
t

d
t

2 1 1FH IK FH IKz = k
t

f t d t1
1 1

2b g
FH IK FH IKz = g 1

t
FH IK

(vi) k
t

f at d t2
2 2( ) ( )z = k

at
f at d at

( )
( ) ( )2

2 2z = g(at2)

Proof of (vi). Putting at2 = u, and d(at2) = du we have
k
t

f at d t2
2 2( ) ( )z = k

u
f u d u( ) ( )z = g(u) = g(at2), as u = at2.

Similarly, other results can be proved. In examination we shall not use substitution as explained
above. With good practice, the students will be able to write direct results of integration very
easily.
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Monge’s Methods 9.3

Important Note. For sake of convenience, we have divided all questions based on
Rr + Ss + Tt = V in four types. We shall now discuss them one by one.
9.3. Type 1. When the given equation Rr + Ss + Tt = V leads to two distict intermediate
intergrals and both of them are used to get the desired solution.

Working rule for solving problems of type 1.
Step 1. Write the given equation in the standard form Rr + Ss + Tt = V.
Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations:
Rdpdy  +  Tdqdx  –  Vdxdy = 0    ...(1)           R(dy)2 – Sdxdy  + T(dx)2 = 0  ... (2)
Step 3. Factorise (1) into two distinct factors.
Step 4. Using one of the factors obtained in (1), (2) will lead to an intermediate integral. In

general, the second intermediate integral can be obtained from the first one by inspection, taking
advantage of symmetry. In absence of any symmetry, the second factor obtained in step 3 is used in
(2) to arrive at second intermediate integral. You should use remark 2 of Art. 9.2 while finding
intermediate integrals.

Step 5. Solve the two intermediate integrals obtained in step 4 and get the values of p and q.
Step 6. Substitute the values of p and q in dz = pdx + q dy and integrate to arrive at the

required general solution. You should use remark 3 of Art. 9.2 while integrating dz = pdx + qdy.
9.4. SOLVED EXAMPLES BASED ON ART. 9.3.

Ex. 1. (a) Solve r = a2t.     [Agra 2008; Lucknow 2010; Patna 2003; Meerut 2008]
(b) r = t. [Agra 2006]

(c) Solve one-dimensions wave equation by Monge’s method: 2 2 2 2 2/ ( / ).y dx a y t� ) � �
[Meerut 2003]

Sol. (a) Given equation is r – a2t = 0.
Comparing it with Rr + Ss + Tt = V, we have  R = 1, S = 0, T = – a2, V = 0.
Hence Monge’s subsidiary equations
Rdpdy + Tdq dx – Vdxdy = 0    and            R(dy)2 – S dxdy + T (dx)2 = 0

become dpdy – a2dqdx = 0 ...(1)
and (dy)2 – a2(dx)2 = 0. ...(2)

Equation (2) may be factorised as (dy – adx) (dy + adx) = 0
Hence two systems of equations to be considered are

dpdy – a2 dqdx = 0,            dy – adx = 0. ...(3)
and dpdy – a2 dqdx = 0,            dy + adx = 0. ...(4)

Integrating the second equation of (3), we get y – ax = c1. ...(5)
Eliminating dy/dx between the equations of (3), we get
dp – adq = 0 so that p – aq = c2. ...(6)
Hence the intermediate integral corresponding to (3) is   p – aq = !1(y – ax). ...(7)
Similarly another intgermediate integral corresponding to (4) is    p + aq = !2(y + ax). ...(8)
Here !1 and !2 are arbitrary functions.
Solving (7) and (8) for p and q, we have
  p = (1/2) × {!2(y + ax) + !1(y – ax)}     and       q = (1/2a) × {!2(y + ax) – !1(y – ax)}.
Substituting these values of p and q in dz = pdx + qdy, we get

dz = (1/2) × {!2(y + ax) + !1(y – ax)}dx + (1/2a) × {!2(y + ax) – !1(y – ax)}dy
    = (1/2a) × !2(y + ax) (dy + adx) – (1/2a) × !1(y – ax)(dy – adx)

Integrating, z = ∗2(y + ax) + ∗1(y – ax), ∗1, ∗2 being arbitrary functions.
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9.4 Monge’s Methods

(b) This is a particular case of part (a). Here a = 1. Ans. z = ∗2(y + x) + ∗1(y – x).

(c) Refer part (a). Note that 2 2/y x r� � )  and 2 2/y t t� � )

Ex. 2. Solve r + (a + b)s + abt = xy. [Vikram 2003]
Sol. Comparing the given equation with Rr + Ss + Tt = V, we have
R = 1, S = a + b, T = ab, V = xy. The usual Monge’s subsidiary equations
Rdpdy + Tqdx – Vdxdy = 0 and    R(dy)2 – Sdxdy + T(dx)2 = 0.

become dp dy + a b dq dx – xy dx dy = 0 ...(1)
and (dy)2 – (a + b) dxdy + ab (dx)2 = 0. ...(2)

Factorizing, (2) gives (dy – bdx) (dy – adx) = 0.
Hence two systems to be considered are

dp dy + ab dq dx – xy dx dy = 0,     dy – b dx = 0. ...(3)
and dp dy + ab dq dx – xy dx dy = 0,     dy – a dx = 0. ...(4)

Integrating the second equation of (3), y – bx = c1. ...(5)
Eliminating dy/dx between the equations of (3), we get
dp + a dq – xy dx = 0 or dp + a dq – x(c1 + bx) dx = 0, by (5)  ...(6)
Integrating (6), p + aq – (c1/2)x2 – (b/3)x3 = c2  or  p + aq – (x2/2) (y – bx) – (b/3)x3 = c2, using (5)

or        p + aq – (1/2) × yx2 + (1/6) × bx3 = c2. ...(7)
Using (5) and (7), the first intermediate integral corresponding to (3) is

               p + aq – (1/2) × yx2 + (1/6) × bx3 = !1(y – bx), !1 being an arbitrary function     ...(8)
Similarly, another intermediate integral corresponding to (4) is

              p + bq – (1/2) × yx2 + (1/6) × ax3 = !2(y – ax), !2 being an arbitrary functionJ   ...(9)
Solving (8) and (9) for p and q, we have

p = (1/2) × x2y – (1/6) × (a + b)x3 + (a – b)–1 [a!2(y – ax) – b!1(y – ax)]
and q = (1/6) × x3 + (a – b)–1 [!1(y – bx) – !2(y – ax)].

Substituting these values in dz = pdx + qdy, we get
dz = (1/2) × x2ydx – (1/6) × (a + b)x3dx + (a – b)–1 [!2(y – bx)dx – !1(y – ax)dx]

+ (1/6) × x3dy + (a – b)–1 [!1(y – bx)dy – !2(y – ax)dy]
or     dz = (1/6) × (3x2ydx + x3dy) – (1/6) × (a + b) x3dx – (b – a)–1 [!2(y – bx)dx

– !1(y – ax)dx] – (b – a)–1 [(!1(y – bx)dy – !2(y – ax)dy]
or     dz = (1/6) × d(x3y) – (1/6) × (a + b) x3dx + (b – a)–1!2(y – ax) (dy – adx)

– (b – a)–1!1(y – bx) (dy – bdx)
or     dz = (1/6) × d(x3y) – (1/6) × (a + b) x3dx + (b – a)–1 !2(y – ax) d(y – ax)

– (b – a)–1 !1(y – bx) d(y – bx)
Integrating, z = (1/6) × x3y – (1/24) × (a + b)x4 + ∗2(y – ax) + ∗1(y – bx),

where ∗1 and ∗2 are arbitrary functions.
Ex. 3. Solve r – t cos2 x + p tan x = 0. [K.U. Kurukshetra 2005; Meerut 1993]
Sol. Given r – t cos2x = – p tan x ...(1)
Comparing (1) with Rr + Ss + Tt = V, we find
R = 1, S = 0, T = – cos2x and V = – p tan x. ...(2)
Monge’s subsidiary equations are          Rdp dy + Tdq dx – V dx dy = 0 ...(3)

and R (dy)2 – S dx dy + T (dx)2 = 0 ...(4)
Putting the values of R, S, T and V, (3) and (4) become

dp dy – cos2 x dq dx + p tan x dx dy = 0 ...(5)
and (dy)2 – cos2x (dx)2 = 0 ...(6)
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Equation (6) may be factoriesed as          (dy – cos x dx) (dy + cos x dx) = 0
+ dy – cos x dx = 0 ...(7)

or dy + cos x dx = 0 ...(8)
Putting the value of dy from (7) in (5), we get
dp cos x dx – cos2 x dq dx + p tan x dx cos x dx = 0    or    dp – cos x dq + p tan x dx = 0

or sec x dp + p sec x tan x dx – dq = 0 or d (p sec x) – dq = 0.
Integrating it, p sec – q = c1, c1 being an arbitrary constant ....(9)
Integrating (7), y – sin x = c2, c2 being an arbitrary constant ...(10)
From (9) and (10), one integral of (1) is         p sec x – q = f(y – sin x). ...(11)
In a similar manner, (8) and (5) give another integral of (1)

p sec x + q = g(y + sin x). ...(12)
Solving (11) and (12) for p and q, we find

p = (f + g)/2 sec x = (1/2) × (f + g) cos x and    q = (g – f)/2   ...(13)
Now,  dz = p dx + q dy    or     dz = (1/2) × (f + q) cos x dx + (1/2) × (g – f) dy, by (13)

or      dz = – (1/2) × f(y – sin x) (dy – cos x dx) + (1/2) × g(y + sin x) (dy + cos x dx)
Integrating, z = F(y – sin x) + G(y + sin x), F and G being arbitrary functions.
Ex. 4. Solve t – r sec4y = 2q tan y. [Delhi Maths Hons 1995; Kanpur 1995; Meerut 1995]
Sol. Given t – r sec4y = 2q tan y. ...(1)
Comparing (1) with   Rr + Ss + Tt = V,    R = – sec4y,   S = 0,   T = 1,   V = 2q tan y.     ...(2)
Monge’s subsidiary equations are             Rdp dy + T dq dx – V dx dy = 0      ...(3)

and R(dy)2 – S dxdy + T (dx)2 = 0 ...(4)
Putting the values of R, S, T and V, (3) and (4) become

–sec4y dp dy + dq dx – 2q tan y dx dy = 0 ...(5)
and –sec4y (dy)2 + (dx)2 = 0. ...(6)

Equation (6) may be factorised as (dx – sec2 y dy) (dx + sec2 y dy) = 0 so that
dx – sec2 y dy = 0 ...(7)

or dx + sec2 y dy = 0. ...(8)
Putting the value of dx from (7) in (5), we get

–sec4y dp dy + dq sec2 y dy – 2q tan y dy × sec2 y dy = 0  or  –dp + cos2 y dq – 2q sin y cos y dy = 0
or     dp – (cos2 x dq – q × 2 sin y cos y dy) = 0         or dp – d(q cos2 y) = 0.

Integrating it,      p – q cos2 y = c1, c1 being an arbitrary constant ...(9)
Integrating (7),               x – tan y = c2, being an arbitrary constant ...(10)
From (9) and (10), one integral of (1) is              p – q cos2 y = f(x – tan y).    ...(11)
Similarly, from (8) and (5) the other integral of (1) is  p + q cos2 y = g(x + tan y). ...(12)
Solving (11) and (12) for p and q, we find
p = (f + g)/2 and q = (g – f)/(2 cos2 y) = (1/2) × (g – f) × sec2y  ...(13)
Now, we have dz = pdx + qdy

or dz = (1/2) × (f + g)dx + (1/2) × (g – f) × sec2y dy, using (13)
or dz = (1/2) × f(x – tan y) (dx – sec2y dy) + (1/2) × g(x + tan y) (dx + sec2y dy)
or dz = (1/2) × f(x – tan y) d(x – tan y) + (1/2) × g(x + tan y) d(x + tan y).

Integrating,        z = F(x – tan y) + G(x + tan y), F, G being arbitrary functions.
Ex. 5. Solve q(yq + z)r – p (2yq + z)s + yp2t + p2q = 0. [Delhi 2008]
Sol. As usual, here Monge’s subsidiary equations are

q(yq + z)dp dy + yp2dqdx + p2qdxdy = 0 ... (1)
and q(yq + z)(dy)2 + p(2yq + z)dxdy + yp2(dx)2 = 0. ... (2)
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9.6 Monge’s Methods

On factorization, (2) gives (qdy + pdx) {(yq + z)dy + ypdx} = 0.
Hence two systems to be considered are

q(yq + z)dpdy + yp2dqdx + p2qdxdy = 0,             qdy + pdx = 0 ... (3)
and q(yq + z)dpdy + yp2dqdx + p2q dxdy = 0,          (yq + z)dy + ypdx = 0 ... (4)

Using dz = pdx + qdy, the second equation of (3) reduces to
dz = 0  so that z = c1. ... (5)
From second equation of (3), qdy = – pdx. Hence first equation of (3) reduces to

(yq + z)dp – ypdq – pqdy = 0 or (yq + z)dp – p d(yq) = 0
or (yq + z)dp – pd(yq+ z) = 0, as     dz = 0, by (5)

or ( ) 0d yq z dp
yq z p

#
∃ )

#
          so that             log (yq + z) – log p = log c1

or         (yq + z)/p = c2, c2 being an arbitrary constant ... (6)
From (5) and (6), the intermediate integral corresponding to (3) is
(yq + z)/p = !1(z) or yq + z = p!1(z), ...(7)

where !1 is an arbitrary function.
Using dz = pdx + qdy, the second equation of (4) becomes
y(qdy + pdx) + zdy = 0 or     ydz + zdy = 0 or    d(yz) = 0.
Integrating it,    yz = c3, c3 being an arbitrary constant ...(8)
From second equation of (4), (yq + z)dy = – ypdx.
Using this fact, first equation of (4) reduces to
qdp – pdq – (pq/y)dy = 0 or – (1/p)dp + (1/q)dq + (1/y)dy = 0.
Integrating, – log p + log q + log y = log c1      or  (yq)/p = c2      ...(9)
From (8) and (9), another intermediate integral corresponding to (4) is

(qy)/p = !2(yz), where 2!  is an arbitrary function. ...(10)

Solving (7) and (10) for p and q, we have     p =
z

z yz! !1 2( ) ( )∃ ,         q =
z yz

y z yz
!

,! !
2

1 2

( )
( ) ( )}∃ .

Substituting these in dz = pdx + qdy, dz =
z

z yz! !1 2( ) ( )∃ {dx + (1/y) × !2(yz) dy}

or      !1(z)dz = zdx + !2(yz) zdy ydz
y
# or       

!1( )z dz
z = dx + 

!1( ) ( )yz d yz
yz

.

Integrating,       ∗1(z) = x + ∗2(yz), where ∗1 and ∗2 are arbitrary functions.
Ex. 6. Solve (r – t)xy – s(x2 – y2) = qx – py. [Delhi Maths 2005, Kurukshetra 2005 (H)]
Sol. Usual Monge’s auxiliary equations are

xydpdy – xydqdx – (qx – py)dxdy = 0 ...(1)
and xy(dy)2 + (x2 – y2) dxdy – xy (dx)2 = 0. ...(2)

On factorizing, (2)gives (xdy – ydx) (ydx + xdy) = 0.
Hence, two systems to be considered are

xydpdy – xydqdx – (qx – py) dxdy = 0,    xdy – ydx = 0 ...(3)
and xydpdy – xydqdx – (qx – py) dxdy = 0,    ydx + xdy = 0. ...(4)

Second equation of (3) gives      y/z = c1, c1 being an arbitrary constant ...(5)
Using second equation, first equation of (3) reduces to
ydp – xdq – qdx + pdy = 0 or d(yp – xq) = 0
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Integrating, yp – xq = c2, c2 being an arbitrary constant ...(6)
From (5) and (6), intermediate integral corresponding to (3) is

yp – xq = !1(y/x), where !1 is an arbitrary function. ...(7)
Second equation of (4) gives x2 + y2 = c3, c3 being arbitrary constant ...(8)
Using second equation, first equation of (4) reduces to
xdp + ydq + qdy + pdx = 0 or d(xp) + d(yq) = 0
Integrating,        xp + yq = c4, c4 being an arbitrary constant ...(9)
From (8) and (9), another intermediate integral corresponding to (4) is

           xp + yq = !2(x
2 + y2), where 2!  is an arbitrary function. ...(10)

Solving (7) and (10) for p and q, we have

p = 1
2 2 1 2

2 2

x y
y y

x
x x y

#
FH IK # #RST

UVW! ! ( )                and q = 1
2 2 2

2 2
1x y

y x y x y
x#

# ∃ FH IK
RST

UVW! !( ) .

Substituting these values in dz = pdx + qdy, we get

dz = 1
2 2 1 2

2 2
2

2 2
1x y

y y
x

x x y dx y x y x y
x

dy
#

FH IK # #RST
UVW # # ∃ FH IK
RST

UVW
L
NM

O
QP! ! ! !( ) ( )

or    dz =
ydx xdy
x y

y
x

xdx ydy
x y

x y∃
#
FH IK #

#
#

#2 2 1 2 2 2
2 2! ! ( )  or   dz = – ! !1

2
2

2 2

2 2
2 2

1
1
2

y x
y x

d y
x

x y
x y

d x yb g
b g#

FH IK #
#

#
#

( )
( ) .

Integrating, z = ∗1(y/x) + ∗2(x
2 + y2), ∗1, ∗2 being arbitrary functions.

Ex. 7. Solve (r – s) x = (t – s) y. (M.D.U Rohtak 2005)
Sol. Usual Monge’s subsidiary equations are xdpdy – ydqdx = 0 ...(1)

and x(dy)2 + (x – y) dxdy – y(dx)2 = 0. ...(2)
Factorising,  (2) − (xdy – ydx) (dy + dx) = 0.
Hence two systems to be considered are

xdpdy – ydqdx = 0, xdy – ydx = 0 ...(3)
and xdpdy – ydqdx = 0,    dy + dx = 0. ...(4)

Integrating second equation of (3),         y/x = c1, c1 being an arbitrary constant   ...(5)
Eliminating dy/dx between equations of (3), we get
dp – dq = 0      so that                          p – q = c2, c2 being an arbitrary constant   ...(6)
Hence the intermediate integral corresponding to (3) is      p – q = !1(y/x). ...(7)
Integrating second equation of (4),            x + y = c3, c3 being an arbitrary constant   ...(8)
Eliminating dy/dx between equations of (4), we get
xdp + ydq = 0 or           xdp + ydq + pdx + qdy = pdx + qdy

or     d(xp) + d(yq) – dz = 0, as                  dz = pdx + qdy.
Integrating, xp + yq – z = c4, c4 being an arbitrary constant ...(9)
Hence the intermediate integral corresponding to (4) is
xp + yq – z = !2(x + y) or xp + yq = z + !2(x + y), ...(10)
Solving (7) and (10) for p and q, we have

p = 1
2 1x y

z x y y y
x#

# # # FH IK
RST

UVW! !( ) and  q = 1
2 1x y

z x y x y
x#

# # ∃ FH IK
RST

UVW! !( ) .

Substituting these values in dz = pdx + qdy, we have

dz = 1
2 1 2 1x y

z x y y y
x

dx z x y x y
x

dy
#

# # # FH IK
RST

UVW # # # ∃ FH IK
RST

UVW
L
NM

O
QP! ! ! !( ) ( )

−
( )

( )
x y dx zdx

x y
# ∃

# 2 = 
! !2

2
1
2

( ) ( )
( )

( ) ( / )
( )

x y d x y
x y

ydx xdy y x
x y

# #
#

#
∃

#
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− d z
x y#
F
HG
I
KJ =

!2
2

( )
( )

x y
x y

#
#

d(x + y) –
!1

21
( / )
( / )
y x
y x

d y
x#
FH IK .

Integrating,    z/(x + y) = ∗2(x + y) + ∗1 (y/x), ∗1, ∗2 being arbitrary functions.
Ex. 8. Solve r + ka2t – 2as = 0.
Sol. Given r – 2as + ka2t = 0. ...(1)
Comparing (1) with Rr + Ss + Tt = V,     we have      R = 1,    S = –2a,    T = ka2,     V = 0.
Hence the Monge’s subsidiary equations
Rdp dy + Tdq dx – Vdx dy = 0 and R(dy)2 – S dx dy + T(dx)2 = 0

become dp dy + ka2 dq dx = 0 ...(2)
and  (dy)2 + 2a dx dy + ka2 (dx)2 = 0. ...(3)

From (3),       dy = [–2a dx .  {4a2(dx)2 – 4ka2 (dx)2}1/2]/2 = – a dx ± a ( )1∃ k dx

or dy + a {1 ± ( )1∃ k }dx = 0 or dy + a (1 ± l) dx = 0, where l = ( )1∃ k .

Hence (3) reduces to the following two equations :
dy + a(1 + l)dx = 0 ...(4)

and dy + a(1 – l)dx = 0. ...(5)
From (2) and (4) , eliminating dy, we have
dp{–a (1 + l) dx} + ka2 dqdx = 0 or (1 + l)dp – ka dq = 0.
Integrating it, (1 + l)p – kaq = c1, c1 being an arbitrary constant ...(6)
Again, integrating (4),   y + a(1 + l)x = c2, c2 being an arbitrary constant ...(7)
From (6) and (7), first intermediate integral is

(1 + l)p – kaq = f1{y + a(1 + l)x}, where f1 is an arbitrary function. ...(8)
Similary, from (2) and (5), second intermediate intgegral is given by (replacing l by –l in (8)

since (5) differs from (4) in having –l in place of l)
(1 – l)p – kaq = f2{y + a(1 – l)x}, where f2 is an arbitrary function ...(9)

Solving (8) and (9) for p and q, p = (1/2l) × [f1{y + a(1 + l)x} – f2{y + a(1 – l)x}]
and q = (1/2akl) × [(1 – l)f1{y + a(1 + l)x} – (1 + l) f2{y + a(1 – l)x}].

Substituting these values of p and q in dz = pdx + qdy, we get
dz = (1/2l) × [f1{y + a(1 + l)x} – f2{y + a(1 – l)x}]dx

+ (1/2akl) × [(1 – l) f1{y + a(1 + l)x} – (1 + l) f2{y + a(1 – l)x}]dy
or dz = (1/2l) × [f1{y + a(1 + l)x} – f2{y + a(1 – l)x}]dx

+ 1
2 1 2al l( )∃

 [ (1 – l) f1{y + a(1 + l)x} – (1 + l) f2{y + a(1 – l)x}]dy, as l = (1 – k)1/2 − k = 1 –

l2

or  dz = (1/2l) [dx f1 {y + a(1 + l)x} – dx f2{y + a(1 – l)x}] +  1
2 1

1
1

11 2al
dy

l
f y a l x dy

l
f y l x

#
# # ∃

∃
# ∃L

NM
O
QP{ } { ( ) }b g

= 1
2 1al l( )#

f1{y + a(1 + l)x}{dy + a(1 + l)dx} –  1
2 1al l( )∃

f2{y + a(1 – l)x} {dy + a(1 – l)dx}

or   dz = 1
2 1al l( )#

 f1{y + a(1 + l)x} d{y + a(1 + l)x} – 1
2 1al l( )∃

f2{y + a(1 – l)x} d{y + a (1 – l)x}.

Integrating, z = F1{y + a(1 + l)x} + F2{y + a (1 – l)x}, where F1 and F2 are arbitrary functions.
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Ex. 9. Solve x–2r – y–2t = x–3p – y–3q.
Sol. Comparing the given equation with Rr + Ss + Tt = V, we get
R = x–2, S = 0, T = y–2, V = x–3p – y–3q. Then Monge’s subsidiary equations
Rdpdy + Tdqdx + Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become x–2dpdy + y–2dqdx – (x–3p – y–3q) dxdy = 0. ...(1)
and      x–2(dy)2 – y–2(dx)2 = 0. ...(2)

Multiplying both sides of (1) by x3y3, we get
xy3dpdy – x3ydqdx – py3dxdy + qx3dxdy = 0. ...(3)

Again, (2) − x2y2(y2dy2 – x2dx2) = 0 or x2y2(ydy + xdx) (ydy – xdx) = 0
Hence (2) is equivalent to the equations
ydy + xdx = 0 i.e., ydy = –xdx ...(4)

and       ydy – xdx = 0. ...(5)
Integrating (4), y2/2 + x2/2= c1/2 or x2 + y2 = c1. ...(6)
From (3), xy2dp(ydy) – x2ydq(xdx) – py2dx(ydy) + qx2dy(xdx) = 0

or     xy2dp(–xdx) – x2ydq(xdx) – py2dx (–xdx) + qx2dy(xdx) = 0, using (4)
or –xy2dp – x2ydq + py2dx + qx2dy = 0 or y2(xdp – pdx) + x2(ydq – qdy) = 0

or xdp pdx
x

ydq qdy
y

∃ # ∃
2 2 = 0 or d p

x
d q

y
FH IK #
F
HG
I
KJ = 0.

Integrating,  (p/x) + (q/y) = c2, c2 being an arbitrary constant ...(7)
From (6) and (7), an intermediate integral is
                           (1/x)p + (1/y)q = f(x2 + y2), where f is an arbitrary function. ...(8)
Similarly, from (3) and (5), another intermediate integral is
                            (1/x)p – (1/y)q = g(x2 – y2), where g is an arbitrary function ...(9)
Solving (8) and (9) for p and q, we obtain
p = (x/2) × {f(x2 + y2) + g(x2 – y2)}       and         q = (y/2) × {f(x2 + y2) – g(x2 – y2)}.
Substituting these values of p and q in dz = pdx + qdy, we get

dz = (x/2) × {f(x2 + y2) + g(x2 – y2)}dx + (y/2) × {f(x2 + y2) – g(x2 – y2)}dy
or dz = (1/4) × f(x2 + y2) (2xdx + 2ydy) + (1/4) × g(x2 – y2) (2xdx – 2ydy)  ... (10)

Putting x2 + y2 = u, x2 – y2 = v so that 2xdx + 2ydy = du and 2xdx – 2ydy = dv, (10) gives
dz = (1/4) × f(u) du + (1/4) × g(v)dv, ... (11)

Integrating (11), z = F(u) + G(v) = F(x2 + y2) + G(x2 – y2),
where F and G are arbitrary functions.

Ex. 10. Solve rx2 – 3s xy + 2t y2 + px + 2qy = x + 2y.
Sol. Comparing the given equation with Rr + Ss + Tt = V, we get
R = x2, S = –3xy, T = 2y2, V = x + 2y – px – 2qy.
Hence Monge’s subsidiary equations are
Rdpdy + Tdqdy – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become x2 dpdy + 2y2dqdx – (x + 2y – px – 2qy) dxdy = 0 ...(1)
and x2(dy)2 + 3xy dxdy + 2y2(dx)2 = 0. ...(2)

Here                     (2) −  (xdy + 2ydx) (xdy + ydx) = 0.
Hence (2) resolves into the following two equations

xdy + 2ydx = 0 i.e., 2ydx = – xdy         ...(3)
and xdy + ydx = 0. ...(4)

Re–writing (3),   (1/y)dy + 2(1/x)dx = 0
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9.10 Monge’s Methods

Integrating, log y + 2 log x = log c1 or yx2 = c1. ...(5)
Re–writing (1), (xdp) (xdy) + ydq (2ydx) – dx(xdy) – dy (2ydx) + pdx (xdy) + qdy (2ydx) = 0

or (xdp) (xdy) + ydq(–xdy) – dx(xdy) – dy(–xdy) + pdx(xdy) + qdy(–xdy) = 0, using (3)
or                      xdp – ydq – dx + dy + pdx – qdy = 0
or (xdp + pdx) – (ydq + qdy) – dx + dy = 0     or   d(xp) – d(yq) – dx + dy = 0.

Integrating,                     xp – yq – x + y = c2, c2 being an arbitrary constant ...(6)
From (5) and (6), an intermediate integral is

xp – yq – x + y = f(x2y), where f  is an arbitrary function. ...(7)
Similarly from (1) and (4), another intermediate integral is

xp – 2yq – x + 2y = g(xy), where g is an arbitrary function. ...(8)
Solving (7) and (8) for p and q, we have
p = (1/x) × {x + 2f(x2y) – g(xy)}, and     q = (1/y) × {y + f(x2y) – g(xy)}.
Substituting these values of p and q in dz = pdx + qdy, we get

dz = (1/x) × {x + 2f(x2y) – g(xy)}dx + (1/y) × {y + f(x2y) – g(xy)}]dy

or dz = dx + dy + f(x2y)
2 1
x

dx
y

dy#F
HG

I
KJ – g(xy) 

dx
x

dy
y

#FHG
I
KJ

or dz = dx + dy + f(x2y) d[log (x2y)] – g(xy) d[log (xy)].
Integrating,  z = x + y + F(x2y) + G(xy), G, and F being arbitrary functions.

       Ex. 11. Find the general solution of the equation r + 4t = 8 xy, by Monge’s method. Find also the

particular solution for which 2 0z y and p) ) , when x = 0            [Delhi Maths (Hons) 2006, 09]

Sol. Given 4 8r t xy# ) ... (1)

Comparing (1) with # # ) ,Rr Ss Tt V  here R = 1, S = 0, T = 4 and V = 8 xy. Hence Monge’s

subsidians equations    # ∃ ) 0Rdp dy Tdq dx Vdxdy  and ∃ #2 2( ) ( )R dy Sdx dy T dx = 0 become

4 8 0dpdy dqdx xydxdy# ∃ ) ... (2)

and # )2 2( ) 4 ( ) 0dy dx ... (3)

Re–writing (3), 2 2 24 0dy i dx∃ ) or ( 2 ) ( 2 ) 0dy idx dy idx∃ # )

so that 2 0dy idx∃ ) or 2dy idx) ... (4)

and 2 0dy idx# ) or 2dy idx) ∃ ... (5)

We first consider (4) and (2). Integrating (4), 12y ix C∃ ) ... (6)

Using (4) and (6), (2) gives # ∃ # )1(2 ) 4 8 ( 2 ) (2 ) 0dp i dx dq dx x C ix i dx dx

or i # ∃ # )12 8 ( 2 ) 0, by (6)dp dq xi C ix or 2
12 8 16 0idp dq C ix dx x dx# ∃ # )

Integrating,     # ∃ # )2 3
1 22 4 (16 / 3) ,ip q C ix x C C2 being an arbitrary constant

or # ∃ ∃ # / )2 3
22 4 ( 2 ) (16 /3)ip q ix y ix x C , by (6) ... (7)

From (6) and (7) first intermediate integral of (1) is ip + 2q – 4ix2(y – 2ix) + (16/3)x3 = f(y – 2ix)

or # ) / # # ∃3 22 (8 /3) 4 ( 2 )ip q x ix y f y ix ,  f being an abritrary function ... (8)

Similarly considering the pair (5) and (2), the second intermediate integral of (1) is
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∃ ) ∃ / # # #3 22 (8 / 3) 4 ( 2 )ip q x ix y g y ix , g being an arbitrary function ... (9)

Solving (8) and (9) for p and q, 2{8 ( 2 ) ( 2 )}/ 2p ix y f y ix g y ix i) # ∃ # #

and ) / # ∃ ∃ #3{(16 / 3) ( 2 ) ( 2 )}/ 4q x f y ix g y ix

Putting the above values of p and q in dz pdx qdy) # , we get

) / # ∃ # #2(1/ 2 ) {8 ( 2 ) ( 2 )}dz i ix y f y ix g y ix dx  + / / # ∃ ∃ ∃3(1/ 4) {(16 / 3) ( 2 ) ( 2 )}x f y ix g y ix dy

    = / # # / ∃ ∃ ∃ / # #2 3(4 /3) (3 ) (1/ 4) ( 2 ) ( 2 ) (1/ 4) ( 2 ) ( 2 )x ydx x dy f y ix d y ix g y ix d y ix

+           ) / # / ∃ ∃ ∃ / # #3(4 / 3) ( ) (1/ 4) ( 2 ) ( 2 ) (1/ 4) ( 2 ) ( 2 )dz d x y f y ix d y ix g y ix d y ix

Integrating, ) / # ∃ # #3(4 / 3) ( 2 ) ( 2 ),z x y F y ix G y ix ... (10)
which is the general solution of (1) containing F and G as arbitrary functions

To find particular solution of (1) Given conditions are
2z y) and        ) � � )/ 0p z x                 when 0x ) ... (11)

From (11), / 2z y y� � ) when x = 0 ... (12)
Differentiating (10) partially w.r.t. ‘x’ and ‘y’, we get

2/ 4 2 ( 2 ) 2 ( 2 )z x x y i F y ix i G y ix0 0� � ) ∃ ∃ # # ... (13)

and � � ) / # ∃ # #0 03/ (4 / 3) ( 2 ) ( 2 )z y x F y ix G y ix ... (14)

Using (11) and (12), (10), (13) and (14) reduce to
2( ) ( )F y G y y# ) ... (15)

( ) ( ) 0F y G y0 0∃ ) ... (16)

and ( ) ( ) 2F y G y y0 0# ) ... (17)

From (16) and (17), ( )F y y0 ) and      ( )G y y0 )

Integrating these, 2( ) / 2F y y) and 2( ) / 2G y y)    ... (18)

which also satisfy (15).

From (18), 2( 2 ) ( 2 ) / 2F y ix y ix∃ ) ∃ and 2( 2 ) ( 2 ) / 2G y ix y ix# ) #

Putting these values in (10), the required particular solution is

) / # ∃ # #3 2 2(4 / 3) ( 2 ) / 2 ( 2 ) / 2z x y y ix y ix or z = (4/3) × x3y + y2 – 4x2.

9.5. Type 2. When the given equation Rr + Ss + Tt = V leads to two distinct intermediate
integrals and only one is employed to get the desired solution.

Working rule for solving problems of type 2.
Step 1. Write the given equation in the standard form Rr + Ss + Tt = V.
Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations
Rdpdy  +  Tdqdx  –  Vdxdy = 0 ... (1)      R(dy)2 – Sdxdy + T(dx)2 = 0   ... (2)
Step 3. Factorise (1) into two distinct factors.
Step 4. Take one of the factors of step 3 and use (2) to get an intermediate integral. Don’t

find second intermediate integral as we did in type 1. If required use remark 1 of Art. 9.2.
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9.12 Monge’s Methods

Step 5. Re–write the intermediate integral of the step 4 in the form of Lagrange equation,
namely, Pp + Qq = R (refer chapter 2). Using the well known Lagrange’s method we arrive at the
desired general solution of the given equation.
9.6 SOLVED EXAMPLES BASED ON ART. 9.5.

Ex. 1. Solve (r – s)y + (s – t)x + q – p = 0.
Sol. The given can be written as yr + s(x – y) – tx = p – q. ...(1)
Comparing (1) with    Rr + Ss + Tt = V,    R = y,     S = x – y,    T = –x    and     V = p – q.
Hence Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become ydpdy – xdqdx + (q – p)dxdy = 0 ...(1)
and y(dy)2 – (x – y) dxdy – x (dx)2 = 0. ...(2)

Re–writing (2),        (dy + dx) (ydy – xdx) = 0.
so that dy + dx = 0 or dy = – dx ...(3)
and ydy – xdx = 0. ...(4)

Using (3), (1) becomes      – ydpdx – xdqdx + q dx(– dx) – p dxdy = 0
or ydp + xdq + qdx + pdy = 0 or (ydp + pdy) + (xdq + qdx) = 0
or d(yp) + d(xq) = 0    so that yp + xq = c1. ...(5)

Integrating (3),   x + y = c2, c2 being an arbitrary constant ...(6)
From (5) and (6), one intermediate integral is        yp + xq = f(x + y), ...(7)

which is of the Lagrange’s form and so its subsidiary equations are

      dx
y =

dy
x = dz

f x y( )# . ...(8)

From first and second fractions of (8),               2xdx – 2ydy = 0.
Integrating, x2 – y2 = a, a being an arbitrary constant ...(9)
Taking first and third fractions of (8), we get
dx
y = dz

f x y( )#
or dx

x a( ) /2 1 2∃
= dz

f x x a# ∃( ) /2 1 2 , as (9)   − y = (x2 – a)1/2

or        dz = f[x + (x2 – a2)1/2] (x2 – a2)–1/2dx ...(10)

Put       x + (x2 – a)1/2 = v          so that          1 2 1 2# ∃x x a dx( ) / = dv ...(11)

or x x a
x a

# ∃
∃

( )
( )

/

/

2 1 2

2 1 2 dx = dv or             dx
x a( ) /2 1 2∃

= dv
v

, using (11)1)

Then, (10) reduces to   dz – (1/v) f(v)dv = 0.
Integrating, z – F(v) = b or          z – F[x + (x2 – a)1/2] = b, by (11)

or z – F(x + y) = b, as y = (x2 – a)1/2, by (9) ...(12)
From (9) and (12), the required general solution is    z – F(x + y) = G(x2 – y2)

or z = F(x + y) + G(x2 – y2), where F and G are arbitrary functions.
Ex. 2. Solve : q(1 + q)r – (p + q + 2pq)s + p(1 + p)t = 0.       [Meerut 1994; I.A.S. 1974]
Sol. Comparing the given equation with Rr + Ss + Tt = V, we find

  R = q(1 + q),     S = – (p + q + 2pq),     T = p(1 + p),       V = 0 ...(1)
Monge’s subsidiary equations are                 Rdpdy + Tdq dx – Vdxdy = 0 ...(2)

and R(dy)2 – Sdxdy + T(dx)2 = 0 ...(3)
Using (1), (2) and (3) become    (q + q2)dpdy + (p + p2)dqdx = 0      ...(4)

and        (q + q2) (dy)2 + (p + q + 2pq)dxdy + (p + p2) (dx)2 = 0. ...(5)
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In order to factorise (5), we re–write it as
q(1 + q)(dy)2 + (p + pq)dxdy + (q + pq)dxdy + p(1 + p)(dx)2 = 0

or q(1 + q)(dy)2 + p(1 + q)dxdy + q(1 + p)dxdy + p(1 + p)(dx)2 = 0
or (1 + q)dy(qdy + pdx) + (1 + p)dx(qdy + pdx) = 0
or (qdy + pdx) [(1 + q)dy + (1 + p)dx] = 0. ... (6)

Then, from (6), we get qdy + pdx = 0 i.e., qdy = –pdx ...(7)
and (1 + q)dy + (1 + p)dx = 0. ...(8)

Keeping (7) in view, (4) may be re–written as (1 + q)dp (qdy) – (1 + p)dq (–pdx) = 0
From (7), qdy and (–pdx) are equivalent. Hence dividing each term of the above equation by

qdy, or its equivalent (–pdx), we get
(1 + q)dp – (1 + p)dq = 0 or dp/(1 + p) – dq/(1 + q) = 0.
Integrating it, log (1 + p) – log (1 + q) = log c1 or      (1 + p)/(1 + q) = c1.    ...(9)
Using dz = pdx + qdy, (7) becomes dz = 0 so that     z = c2.  ...(10)
From (9) and (10), one intermediate integral of (1) is given by
(1 + p)/(1 + q) = f(z) or p – f(z)q = f(z) – 1,  ...(11)

which is of the form Pp + Qq = R. Here Lagrange’s auxiliary equations for (11) are
dx
1

= dy
f z∃ ( )

= dz
f z( ) ∃1

. ...(12)

Choosing 1, 1, 1 as multipliers, each fraction in (12) =       dx dy dz
f z f z

# #
∃ # ∃1 1( ) ( )

= dx dy dz# #
0

+ dx + dy + dz = 0 so that     x + y + z = c2.   ...(13)
From first and third fractions in (12), we get        dx – [f(z) – 1]–1 dz = 0.
Integrating it, x + F(z) = c4, c4 being an arbitrary constant ...(14)
From (13) and (14), the required general solution is

x + F(z) = G(x + y + z), F, G being arbitrary functions.
Ex. 3. Solve (x – y) (xr – xs – ys + yt) = (x + y)(p – q).

[Delhi Maths (H) 97, 2000; Meerut 1999; Garhwal 1996]
Sol. Given                (x – y)xr – (x2 – y2)s + (x – y)yt = (x + y)(p – q) ...(1)
Comparing (1) with Rr + Ss + Tt = V, we find
R = x(x – y), S = –(x2 – y2),         T = y(x – y),  V = (x + y)(p – q).   ...(2)
Monge’s subsidiary equations are Rdpdy + Tdqdx – Vdxdy = 0 ...(3)

and R(dy)2 – Sdxdy + T(dx)2 = 0. ...(4)
Using (2), (3) and (4) become

x(x – y)dpdy + y(x – y)dqdx – (x + y)(p – q)dxdy = 0 ...(5)
and x(x – y)(dy)2 + (x2 – y2)dxdy + y(x – y)(dx)2 = 0. ...(6)

Since x2 – y2 = (x – y)(x + y), dividing (6) by (x – y) gives
xdy2 + (x + y)dxdy + ydx2 = 0 or      (xdy + ydx) (dx + dy) = 0
Thus we get xdy + ydx = 0 or         xdy = – ydx  ...(7)

and          dx + dy = 0. ...(8)
Keeping (7) in view, (5) may be rewritten as

(x – y)dp (xdy) – (x – y) dq (–ydx) – (p – q) dx (xdy) + (p – q)dy(– ydx) = 0.
From (7), x dy and (–y dx) are equal. So dividing each term of the above equation by x dy, or

its equivalent (–y dx), we get
(x – y) dp – (x – y)dq – (p – q) dx + (p – q)dy = 0   or    (x – y) (dp – dq) – (p – q) (dx – dy) = 0
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or dp dq
p q

dx dy
x y

∃
∃

∃ ∃
∃

= 0      so that p q
x y

∃
∃

= c1 ...(9)

Integrating (7), xy = c2, c2 being an arbitrary constant ...(10)
From (9) and (10), one intermediate integral of (10) is
(p – q)/(x – y) = f(xy) or p – q = (x – y)f(xy)  ...(11)

which is of the form Pp + Qq = R. Its Lagrange’s auxiliary equations are

dx
1

= dy
∃1

= dz
x y f xy( ) ( )∃

. ...(12)

Taking the first two fractions of (12), we get
dx + dy = 0 so that   x + y = c3, c3 being an arbitrary constant ...(13)

Taking y f(xy), x f(xy), 1 as multipliers, each fraction of (12) =     y f xy dx x f xy dy dz( ) ( )# #
0

so that f(xy) × (ydx + x dy) + dz = 0 or f(xy) × d(xy) + dz = 0.
Integrating it, F(xy) + z = c4, c4 being an arbitrary constant ...(14)
From (13) and (14), the required general solution is

F(xy) + z = G(x + y), where F and G are arbitrary functions.
Ex. 4. xy (t – r) + (x2 – y2) (s – 2) = py – qx. [Delhi Maths (H) 2001]
Sol. Given – xyr + (x2 – y2) s + xyt = py – qx + 2(x2 – y2). ...(1)
Comparing (1) with Rr + Ss + Tt = V, we find
R = –xy, S = x2 – y2, T = xy, V = py – qx + 2(x2 – y2). ...(2)
Monge’s subsidiary equations are Rdp dy + Tdq dx – V dx dy = 0 ...(3)

and R(dy)2 – Sdxdy + T(dx)2 = 0. ...(4)
Using (2), (3) and (4) become

– xy dp dy + xydqdx – [py – qx + 2(x2 – y2)]dxdy = 0 ...(5)
and        – xy (dy)2 – (x2 – y2)dxdy + xy(dx)2 = 0. ...(6)

From (6),     xy(dy)2 + x2dxdy – y2dxdy – xy(dx)2 = 0
or xdy(ydy + xdx) – ydx (ydy + xdx) = 0 or (xdy – ydx) (ydy + xdx) = 0.

So, we get xdx + ydy = 0,                   i.e., xdx = –ydy ...(7)
and      xdy – ydx = 0. ...(8)

Keeping (7) in view, (5) may be re–written as
xdp(–ydy) + ydq (xdx) + pdx (–ydy) + qdy(xdx) – 2xdy(xdx) – 2ydx(–ydy) = 0.

From (7), xdx and (–ydy) are equivalent. So dividing each term of the above equation by xdx,
or its equivalent (–ydy), we get
xdp + ydq + pdx + qdy – 2xdy – 2ydx = 0    or   (xdp + pdx) + (ydq + qdy) – 2(xdy + ydx) = 0.

Integrating it, xp + yq – 2xy = c1, being an arbitrary constant ...(9)
Integrating (7), x2/2 + y2/2 = c2/2  or x2 + y2 = c2. ...(10)
From (9) and (10), one intgegral of (1) is
xp + qy – 2xy = f(x2 + y2) or xp + yq = 2xy + f(x2 + y2),    ...(11)

which is of the form Pp + Qq = R. So Lagrange’s auxiliary equations for (11)are

dx
x

= 
dy
y

= dz
xy f x y2 2 2# #( )

. ..(12)

Taking the first two fractions in (12), we get
log y – log x = log c3     or          y/x = c3          or              y = xc3 ...(13)
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Taking the first and the last fractions in (12) and using y = xc3 in it, we get
dz = (1/x) × [2c3x

2 + f(x2 + x2c3
2)]dx    or dx = 2c3xdx + (1/x) × f{(1 + c3

2)x2}dx
or dz = 2c3xdx + (1/2x2) × f{(1 + c3

2)x2}d (x2).
Integrating z – 2c3(x

2/2) + F{(1 + c3
2)x2} = c4   or    z – (y/x)x2 + F{(1 + y2/x2)x2} = c4, by (13)

or      z – xy + F(x2 + y2) = c4, c4 being an arbitrary constant ...(14)
From (13) and (14), the required general solution is

z – xy + F(x2 + y2) = G(y/x), where F and G are arbitrary functions.
Ex. 5. Solve x2r – y2t – 2xp + 2z = 0.
Sol. Given       x2r – y2t = 2xp – 2z. ...(1)
Comparing (1) with Rr + Ss + Tt = V,      R = x2,    S = 0,    T = –y2,     V = 2xp – 2z.
Hence the usual Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0        and                  R(dy)2 – Sdxdy + T(dx)2 = 0

become x2dpdy – y2dqdx – (2xp – 2z)dxdy = 0 ...(2)
and            x2(dy)2 – y2(dx)2 = 0. ...(3)

On factorizing,              (3) − (xdy – ydx) (xdy + ydx) = 0
Thus, we have xdy – ydx = 0 i.e., xdy = ydx. ...(4)

and xdy + ydx = 0. ...(5)
Re–writing (2), xdp (xdy) – ydq(ydx) – 2(xp – z) (xdy)(1/x)dx = 0

or xdp(xdy) – ydq(xdy) – 2(xp – z) (xdy) (1/x)dx = 0, using (4)
or              xdp – ydq – 2(xp – z) (1/x)dx = 0
or    xdp – dz + pdx + qdy – ydq – 2(xp – z) (1/x)dx = 0 as dz = pdx + qdy − –dz + pdx + qdy = 0
or               d(xp – z) – d(yq) + 2qdy – 2(xp – z) (1/x)dx = 0
or d(xp – yq – z) + 2qy(1/x)dx – 2(xp – z) (1/x)dx = 0, as from (4), dy = (y/x)dx

or d(xp – yq – z) – 2 (xp – yq – z) (1/x) dx = 0         or      
d xp yq z

xp yq z
dx
x

( )∃ ∃
∃ ∃

∃ 2
= 0.

Integrating, log (xp – yq – z) – 2 log x = log c1    or (xp – yq – z)/x2 = c1. ...(6)
From (4), (1/y)dy – (1/x)dx = 0 so that log y – log x = log c2

or            y/x = c2, c2 being an arbitrary constant ...(7)
From (6) and (7), an intermediate integral is
(xp – yq – z) /x2 = !1(y/x) or          xp – yq = z + x2!1(y/x). ...(8)

Lagrange’s auxiliary equations for (8) are       dx
x

= 
dy

y∃
= dz

z x y x# 2
1! ( / )

. ...(9)

From the first two ratios of (9), we get
(1/x) dx + (1/y) dy = 0          so that             xy = c3.    ...(10)
Taking the second and third ratios of (9), we get

dz
dy

z
y# = – x

y
y
x

2

1! FH IK = – 
c
y

y
c

3
2

3 1

2

3
!
F
HG
I
KJ , by (10)

Its I.F = e(1/y)dy = y and so solution is zy = –
c
y

y
c

dy3
2

2 1

2

3
2!
F
HG
I
KJz  + c4

or zy + 
c c

y
y
c

c
y

d y
c

3
3 2

3
2 1

2

3

3
2

3
2

/ F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJz ! = c4 or zy + c3

3/2 ∗1
y
c

2

3

F
HG
I
KJ = c4
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9.16 Monge’s Methods

or zy + (xy)3/2 ∗1(y/x) = c4, using (10). ...(11)
From (10) and (11), the required general solution is

zy + (xy)3/2 ∗1(y/x) = ∗2(xy), where ∗1 and ∗2 are arbitrary functions.
Ex. 6. Solve (r – t)xy – s(x2 – y2) = qx – py.
Sol.  Given xyr – (x2 – y2)s – xyt = qx – py. ...(1)
Hence the usual Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become xy dpdy – xy dqdx – (qx – py) dxdy = 0 ...(2)
and xy (dy)2 + (x2 – y2) dxdy – xy (dx)2 = 0. ...(3)

Now, (3) − (xdx + ydy) (xdy – ydx) = 0
Hence, xdx + ydy = 0 i.e.,       xdx = – ydy ...(4)

and                            xdy – ydx = 0 ...(5)
Re–writing (2),      (xdp) (ydy) – ydq(xdx) – qdy(xdx) + pdx (ydy) = 0

or (xdp) (ydy) – ydq(–ydy) – qdy(–ydy) + pdx(ydy) = 0, using (4)
or xdp + ydq + qdy + pdx = 0 or d(xp) + d(yq) = 0.

Integrating, xp + yq = c1, c1 being an arbitrary constant ...(6)
Integrating (4) x2/2 + y2/2 = c2/2 or x2 + y2 = c2. ...(7)
From (6) and (7), are intremediate integral is

xp + yq = f(x2 + y2), f being an arbitrary function. ...(8)

Lagrange’s subsidiary equations for (8) are              dx
x = 

dy
y = dz

f x y( )2 2#
. ...(9)

Taking the first and second fractions of (9),                       (1/y)dy – (1/x)dx = 0.
Integrating, log y – log x = log a or y/x = a, ...(10)

where a is an arbitrary constant.
Taking the first and third fraction of (9), we get

dx
x

= dz
f x y( )2 2#

or dx
x

=
dz

f x a x( )2 2 2#
, using (10)

or  dz = (1/x) × f[x2 (1 + a2)] dx = (1/x2) ×  f[x2 (1 + a2)] xdx. ...(11)
Putting x2(1 + a2) = v and 2x(1+ a2)dx = dv, (11) gives

dz = 
21 a

v
#

  f(v) × 1
2 1 2( )# a

dv =
1
2v

1 2
3 45 6

 f(v)dv.

Integrating,      z = F(v) + b            or               z – F[x2 (1 + a2)] = b
or                z – F(x2 + x2a2) = b                        or     z – F(x2 + y2) = b, using (10). ...(12)

Here b is an arbitrary constant. From (10) and (12), general solution of (1) is
z – F(x2 + y2) = G(y/x) or z = F(x2 + y2) + G(y/x),

where F and G are arbitrary functions.
Ex. 7. Solve 2xr – (x + 2y)s + yt = [(x + 2y) (2p – q)]/(x – 2y)
Sol. Comparing the given equation with Rr + Ss + Tr = V, we have
R = 2x,       S = –(x + 2y),   T = y, V = [(x – 2y) (2p – q)]/(x – 2y).
Hence the usual Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become 2xdpdy + ydqdx – x y
x y

#
∃

2
2

 (2p – q) dxdy = 0 ...(1)
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and            2x(dy)2 + (x + 2y)dxdy + y(dx)2 = 0. ...(2)
The equation (2) can be resolved into the following two equations
          xdy + ydx = 0 i.e.,                  xdy = – ydx ...(3)

and     dx + 2ydy = 0. ...(4)

Re–writing (1),              2dp(xdy) + dq(ydx) – 2
2

p q
x y

∃
∃

[(xdy)dx + 2(ydx)dy]

or                2dp(–ydx) + dq(ydx) – 2
2

p q
x y

∃
∃

 {(–ydx)dx + 2(ydx)dy} = 0 using (3)

or –2dp + dq – 2
2

p q
x y

∃
∃

 (–dx + 2dy) = 0            or             2
2

2
2

dp dq
p q

dx dy
x y

∃
∃

∃ ∃
∃

= 0.

Intergrating, log (2p – q) – log (x – 2y) = log c1       or         (2p – q)/(x – 2y) = c1.  ...(5)
Re–writing (3), (1/y)dy + (1/x)dx = 0   so that log x + log y = log c2

+ xy = c2, c2 being an arbitrary constant ...(6)
From (5) and (6), an intermediate integral is
(2p – q)/(x – 2y) = f(xy) or 2p – q = (x – 2y) f(xy), ...(7)

where f is an arbitrary function. The equation (7) is of Lagrange’s form Pp + Qq = R. So Lagrange’s,
subsidiary equation for (7) are

dx
2 =

dy
∃1 = dz

x y f xy( ) ( )∃ 2 . ...(8)

Taking the first and second fractions of (8), dx + 2dy = 0.
Integrating,        x + 2y = a, a being an arbitrary constant ...(9)
Taking y f(xy), x f(xy), 1 as multipliers, each fraction of (8)

= y f xy dx x f xy dy dz
y f xy x f xy x y f xy

( ) ( )
( ) ( ) ( ) ( )

# #
∃ # ∃2 2

= f xy ydx x dy dz( )( )# #
0

This − f(xy) d(xy) + dz, as ydx + xdy = d(xy)
Integrating,       F(xy) + z = b, b being an arbitrary constant. ...(10)
From (9) and (10), the required complete integral is

F(xy) + z = G(x + y), F and G being arbitrary functions.
Ex. 8. Solve xr + (x + y)s + yt + p + q = 0 by Monge’s method.
Sol. Given xr + (x + y)s + yt = –(p + q) ...(1)
Comparing (1) with Rr + Sr + Tt = V, here   R = x,   S = x + y,   T = y  and  V = –(p + q).
Hence Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0 become

              xdpdy + ydqdx + (p + q)dxdy = 0 ...(2)
and    x(dy)2 – (x + y)dxdy + y(dx)2 = 0 ...(3)

Re–writing (3),                (xdy – ydx) (dy – dx) = 0
so that       xdy – ydx = 0 ...(4)
and dy – dx = 0 i.e., dy = dx ...(5)

For the required solution, we consider relation (5) only.
Integrating (5),       x – y = c1, being an arbitrary constant ... (6)
Using (5), (2) becomes xdpdx + ydqdx + (p + q)(dx)2 = 0

or xdp + ydq + pdx + qdx = 0, on dividing by dx (as dx 7 0)
or (xdp + pdx) + (ydq + qdx) = 0      or    (xdp + pdx) + (ydq + qdy) = 0 by(5)
or d(xp) + d(yq) = 0                       so that              xp + yq = c2. ...(7)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



9.18 Monge’s Methods

From (6) and (7), one intermediate integral of (1) is
   xp + yq = f(x – y), f being an arbitrary function ...(8)

which is of Lagrange’s form. Its Lagrange’s auxiliary equations are

) )
∃( )

dx dy dz

x y f x y ...(9)

Taking the first two fractions of (9), (1/ ) (1/ ) 0x dx y dy∃ )

Integrating, ∃ ) 3log log logx y c    or            x/y = c3 ...(10)

Now, each fraction of (9) =
∃ ∃

)
∃ ∃

( )dx dy d x y

x y x y
...(11)

Combining this fraction with last fraction of (9), we get

∃ ∃
) ) ∃ )

∃ ∃ ∃
( ) ( ) ( )

or ( )
( )

dz d x y f x y f u du
dz d x y

f x y x y x y u
, if         u = x – y

Integrating, ) # ) ∃ #4 4( ) ( ) ,z F u c F x y c where      ) 8
1

( ) ( )F u f u du
u

or        z – F(x – y) = c4, c4 being an arbitrary constant ...(12)
From (10) and (12), the required solution is

( ) ( / )z F x y G x y∃ ∃ ) or ( / ) ( )z G x y F x y) # ∃ ,
where F and G are arbitrary functions.

Ex. 9. Solve rq2 – 2pqs + p2t = pt – qs by Monge’s method.    [Delhi Maths (Hons) 2002]
Sol. Given q2r – q (2p – 1)s + p(p – 1)t = 0 ...(1)
Comparing (1) with Rr + Ss + Tt = V, here R = q2,    S = – q(2p – 1),    T = p(p – 1), V = 0.
Hence Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – S dxdy + T(dx)2 = 0 become

          q2dpdy + p(p – 1)dqdx = 0 ...(2)
and           q2(dy)2 + q(2p – 1)dxdy + p (p – 1) (dx)2 = 0 ...(3)

Re–writing (3), (qdy + pdx) {qdy + (p – 1)dx} = 0
so that   qdy + pdx = 0  i.e., qdy = –pdx ...(4)
and qdy + (p – 1) dx = 0 ...(5)

For the required solution, we consider relation (4) only.
Since dz = pdx + qdy, (4) reduces to dz = 0 and           so z = c1 ...(6)
Re–writing (2), (qdp) (qdy) + (p – 1) dq(pdx) = 0

or (qdp) (–pdx) + (p – 1) dq(pdx) = 0, since from (4), qdy = –pdx
or –qdp + (p – 1)dq = 0 or               {1/(p – 1)}dp – {1/q}dq = 0

Integrating,             ∃ ∃ ) ∃ )2 2log( 1) log log or ( 1) /p q c p q c  ...(7)
From (6) and (7), one intermediate integral of (1) is
(p – 1)/q = f(z) or p – qf(z) = 1, ...(8)

which is of Lagrange’s form. Its Lagrange’s auxiliary equations are

1 ( ) 1

dx dy dz

f z
) )

∃ ...(9)

From the first and the last fractions of (9),   dx – dz = 0      so that x – z = c3       ...(10)
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From the last two fractions of (9), dy – f(z)dz = 0

Integrating, y – F(z) = c4, where               F(z) = 8 f(z)dz ...(11)
From (10) and (11), the required solution is y – F(z) = G(x – z)

or y = F(z) + G(x – z), where F, G are arbitrary functions.
Ex. 10. Solve e2y(r – p) = e2x(t – q) by Monge’s method.
Sol. Given     e2yr – e2xt = pe2y – qe2x ...(1)
Comparing (1) with Rr + Ss + Tt = V, here R = e2y, S = 0, T = –e2x and   V = pe2y – qe2x.
Hence Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0      and     R(dy)2 – Sdxdy + T(dx)2 = 0

become        e2ydxdy – e2xdqdx – (pe2y – qe2x)dxdy = 0 ...(2)
and          e2y(dy)2 – e2x(dx)2 = 0 ...(3)

From (3),       (eydy – exdx) (eydy + exdx) = 0
so that  eydy – exdx = 0          , that is, exdx = eydy ...(4)
and         eydy + exdx = 0 ...(5)

For the required solution, we consider relation (4) only.
Integrating (4),    ex – ey = c1, c1 being arbitrary constant ...(6)
Rewriting (2),  (eydp)(eydy) – (exdq)(exdx) – p(eydy)(eydx) + q(exdx)(exdy) = 0

or                    (eydp)(exdx) – (exdq)(exdx) – p(exdx)(eydx) + q(xxdx)(eydy) = 0, by (4)
or  eydp – exdq – peydx + qexdy = 0     or    {d(eyp) – peydy} – {d(exq) – qexdx} = peydx – qexdy
or  d(eyp) – d(exq) = pey(dx + dy) – qex(dx + dy)      or       d(eyp – exq) = (eyp – exq) (dx + dy)

or
∃

) #
∃

( )
( )

y x

y x

d e p e q
d x y

e p e q

Integrating,        #∃ ∃ ) # ∃ )2 2log( ) log or ( ) /y x y x x ye p e q c x y e p e q c e

or                   (eyp – exq)/ex+y = c2, c2 being an arbitrary constant ...(7)
From (6) and (7), one intermediate integral of (1) is

(   ) / ( )y x x y x ye p e q e f e e#∃ ) ∃ or eyp – exq = ex + yf(ex – ey)
which is of Lagrange’s form. Its Lagrange’s auxiliary equations are

        ( )y x x y x y

dx dy dz

e e e f e e#) )
∃ ∃ ...(8)

From the first two fractions of (8),     # ) # ) 30   so thatx y x ye dx e dy e e c ...(9)

Taking the first and third fraction of (8) and noting that ) ∃3
y xe c e  from (9), we get

)
∃ #3( )y x y x x

dx dz

e e e f e c e or 3(2 )x xdz e f e c dx) ∃

or ∃ / ∃ ∃ )3 3(1/ 2) (2 ) (2 ) 0x xdz f e c d e c    or ∃ / )(1/ 2) ( ) 0dz f u du , taking u = 2ex – c3

Integrating,           z – F(u) = c3,                 where                  ) /8( ) (1/ 2) ( )F u f u du

or ∃ ∃ )3 4(2 )xz F e c c or            ∃ ∃ ) 4( )x yz F e e c , by (9) ...(10)
From (9) and (10), the required solution is             z – F(ex – ey) = G(ex + ey)

or                  z = F(ex – ey) + G(ex + ey), where F, G are arbitrary functions.
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Ex. 11. Solve x2r – y2t = xp – yq by Monge’s method.
Sol. Given           x2r – y2t = xp – yq ...(1)
Comparing (1) with   Rr + Ss + Tt = V,  here   R = x2,  S = 0,  T = –y2   and    V = xp – yq.
Hence Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0    and R(dy)2 – Sdxdy + T(dx)2 = 0 become

x2dpdy – y2dqdx – (xp – yq)dxdy = 0 ...(2)
and      x2(dy)2 – y2(dx)2 = 0 ...(3)

Re–writing (3),                (xdy – ydx) (xdy + ydx) = 0
so that xdy – ydx = 0  that is, xdy = ydx ...(4)
and xdy + ydx = 0 ...(5)

From (4), (1/ ) (1/ ) 0y dy x dx∃ )      so that y/x = c1 ...(6)

For the required solution, we consider relation (4) only.

Re–writing (2),      ∃ ∃ # )( )( ) ( )( ) ( )( ) ( )( ) 0xdp xdy ydq ydx pdx xdy qdy ydx

or ∃ ∃ # )( )( ) ( )( ) ( )( ) ( )( ) 0xdp ydx ydq ydx pdx ydx qdy ydx , by (4)

or    ∃ ∃ # ) 0xdp ydq pdx qdy or ∃ ∃ ∃ ∃ # ){ ( ) } { ( ) } 0d xp pdx d yq qdy pdx qdy

or    ∃ ∃ # )( ) 2 2 0d xp yq pdx qdy or ( ) 2 2( / )d xp yq pdx y x dx∃ ∃ # = 0, by (4)

or    ( ) (2 / )( ) 0d xp yq x xp yq dx∃ ∃ ∃ ) or ( ) 2
0

d xp yq dx

xp yq x

∃
∃ )

∃

Integrating, ∃ ∃ ) 2log( ) 2 logxp yq x c          or   2
2( ) /xp yq x c∃ )    ...(7)

From (6) and (7), one intermediate integral of (1) is
2( ) / ( / )xp yq x f y x∃ ) or    2 ( / )xp yq x f x y∃ ) ...(8)

which is of Lagrange’s form. Its Lagrange’s auxiliary equations are

2 ( / )

dx dy dz

x y x f y x
) )

∃
...(9)

Taking the first two ratios of (9), (1/x) dx + (1/y) dy = 0       so that       # ) 3log logx y c

or      xy = c3, c3 being an arbitrary constant ...(10)
Taking the first and last fractions of (9), we get

( / )dz x f y x dx) or 2
3( / )dz x f c x) , since by (10), 3 /y c x)

+
24

3 3 3
2 3 2

3 3

2
( )

2 2

c c cx
z f dx f t dt

c x x c t

1 21 2 1 21 2) ∃ ∃ ) ∃3 43 4 3 43 4
5 65 65 6 5 6

8 8 , putting 3
2

c t
x

)  and 3
3

2c dx dt
x

∃ )

or ) ∃ # ) #83
4 3 42

( )
( ) ,

2

c f t
z dt c c F t c

t
      where ) ∃ 8 2

1 ( )
( )

2
f t

F t dt
t

or ∃ )2
3 3 4( / )z c F c x c          or          ∃ ) 4( / )z xy F y x c , by (10) ... (11)

From (10) and (11), the required solution is

( / ) ( )z xy F y x G xy∃ ) or 2( / ) ( / ) ( )z x y x F y x G xy) #

or     2 ( / ) ( )z x H y x G xy) #  where  )( / ) ( / ) ( / )H y x y x F y x  and H, G are arbitrary functions.
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Ex. 12. Solve 2x2r – 5xys + 2y2t + 2(px + qy) = 0.
and hence find the surface satisfying the above equation and touching the hyperbolic paraboloid
z = x2 – y2 along its section by the plane y = 1.   [Meerut 2001, I.A.S. 1978, Ranchi 2010]

Sol. Given 2x2r – 5xys + 2y2t = –2(px + qy). ...(1)
Comparing (1) with  Rr + Ss + Tt = V,    R = 2x2,    S = –5xy,    T = 2y2,    V = –2 (px + qy)
Hence Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0         and        R(dy)2 – S dxdy + T(dx)2 = 0.

become       2x2dpdy + 2y2dqdx + 2(px + qy)dxdy = 0. ...(2)
and       2x2(dy)2 + 5xydxdy + 2y2(dx)2 = 0. ...(3)

Re–writing (3),          (xdy + 2ydy) (2xdy + ydx) = 0.
so that xdy + 2ydx = 0, i.e., xdy = – 2ydx ...(4)
and 2xdy + ydx = 0. ...(5)

Keeping (4) in view, (2) may be re–written as
2xdp(xdy) – ydq (– 2ydx) + 2pdx (xdy) – qdy (– 2ydx) = 0.

or 2xdp(xdy) – ydq (xdy) + 2pdx (xdy) – qdy (xdy) = 0, using (4)
or 2xdp – ydq + 2pdx – qdy = 0 or 2(xdp + pdx) – (ydq + qdy) = 0
or 2d(xp) – d(yq) = 0       so that       2xp – yq = c1. ...(6)

From (4),   (1/y)dy + 2(1/x)dx = 0          so that         log y + 2 log x = log c2
or log y + log x2 = log c2 or x2y = c2. ...(7)

From (6) and (7), one intermediate integral is
2xp – yq = f(x2y), f being an arbitrary function. ...(8)

which is of Lagrange’s form. Hence Lagrange’s subsidiary equations are

dx
x2

= dy
y∃

= dz
f x y( )2 . ...(9)

Taking the first two fractions of (9), 2(1/y)dy + (1/x)dx = 0.
Integrating,    2 log y + log x = log a   or  y2x = a           or           x = a/y2.  ...(10)
Taking the second and third fractions of (9) and using (10), we get

dy
y∃

= dz
f a y( / )2 3 or dz + 1

y f a
y

2

3
F
HG
I
KJ dy = 0. ...(11)

Putting (a2/y3) = v  so that – (3a2/y4) dy = d v , (11) gives

dz + 1
y  f( v ) × ∃

F
HG
I
KJ

y
a

4

23
d v = 0   or dz – 2 3

( )
3( / )

f
a y
v d v = 0

or dz – (1/3 v ) × f( v ) dv = 0, as v = a2/y3.
Integrating,    z – F( v ) = b         or            z – F(a2/y3) = b, b being an arbitrary constant.

or z – F(x2y) = b,      as   y2x = a. ...(12)
From (10) and (12), the required complete solution is

z – F(x2y) = G(xy2), F and G being arbitrary fucntions.
or     z = F(x2y) + G(xy2). ...(13)

Second Part. The given surface is               z = x2 – y2. ...(14)
(13) −   p = �z/�x = 2xy F 0 (x2y) + y2G 0 (xy2)  and q = �z/�y = x2F 0 (x2y) + 2xyG0(xy2).  ...(15)
From (14), p = �z/�x = 2x           and q = �x/�y = –2y. ...(16)
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9.22 Monge’s Methods

Since (13) and (14) touch each other along their section by the plane y = 1, the values of p
and q given by (15) and (16) at any point on y = 1 must be equal

Thus,         2xyF 0 (x2y) + y2G0(xy2) = 2x, where y = 1 ...(17)
and       x2F 0 (x2y) + 2xy G0(xy2) = –2y, where y = 1. ...(18)

From (17), 2xF 0 (x2) + G0(x) = 2x. ...(19)
From (18), x2F 0 (x2) + 2xG0(x) = –2. ...(20)
Solving (19) and (20) for F 0 (x2) and G0(x), we have

F0(x2) = (4/3) + (2/3) × (1/x2). ...(21)
and G0(x) = – (2/3)× x – (4/3) × (1/x). ...(22)

(21)  − F0(u) = (4/3) + (2/3) × (1/u), on putting x2 = u
Integrating,    F(u) = (4/3) × u + (2/3) × log u + c1, c1 being an arbitrary constant
This − F(x2y) = (4/3) × x2y + (2/3) × log (x2y) + c1. ...(23)
Integrating (22),  G(x) = – (2/3) (x2/2) – (4/3) log x + c2, being an arbitrary constant
This − G(xy2) = – (1/3) × x2y4 – (4/3) × log (xy2) + c2. ...(24)
Putting values of F(x2y) and G(xy2) given by (23) and (24) in (13), we get

z = (4/3) × x2y + (2/3) × log (x2y) + c1 – (1/3) × x2y4 – (4/3) × log (xy2) + c2

or z = (4/3) × x2y – (1/3)× x2y4 + (2/3) × [log (x2y) – 2 log (xy2)] + c, taking c1 + c2 = c
or         z = (4/3)× x2y – (1/3) × x2y4 + (2/3) × [log (x2y) – log (xy2)2]
or                  z = (4/3) × x2y – (1/3) × x2y4 + (2/3) × [log {(x2y)/(x2y4)} + c
or                            z = (4/3) × x2y – (1/3) × x2y4 + (2/3) × log y–3 + c
or z = (4/3) × x2y – (1/3) × x2y4 – 2 log y + c. ...(25)

Now at the point of contact of (14) and (25), the values of z must be the same and hence
x2 – y2 = (4/3) × x2y – (1/3) × x2y4 – 2 log y + c, where y = 1

− x2 – 1 = (4/3) × x2 – (1/3) × x2 + c, putting y = 1

− x2 – 1 = x2 + c −        c = –1.
Putting c = –1 in (25), the required surface is
z = (4/3) × x2y – (1/3) × x2y4 – 2 log y – 1   or 3z = 4x2y – x2y4 – 6 log y – 3.

9.7. Type 3. When the given equation Rr + Ss + Tt = V leads to two identical
intermediate intergrals.

Working rule for solving problems of type 3
Step 1. Write the given equation in the standard form  Rr + Ss + Tt = V.
Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations
Rpdy + Tdqdx – Vdx dy = 0 ... (1)       R(dy)2 – S dxdy + T(dx)2 = 0  ... (2)
Step 3. R.H.S. of (2) reduces to a perfect square and hence it gives only one distinct factor in

place of two as in type 1 and type 2.
Step 4. Start with the only one factor of step 3 and use (2) to get an intermediate integral.
Step 5. Re–write the intermediate integral of the step 4 in the form of Pp + Qq = R and use

Lagrange’s method to obtain the required general solution of the given equation.
9.8. Solved examples based on Art 9.7

Ex. 1. Solve : (1 + q)2r – 2(1 + p + q + pq)s + (1 + p)2t = 0
    [Meerut 2002, Delhi Maths (H) 1999 2007, 10; Rohailkhand 1997; Kanpur 1994]
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Sol. Comparing the given equation with    Rr + Ss + Tt = V, ...(1)
   R = (1 + q)2,       S = –2(1 + p + q + pq),    T = (1 + p)2,    V = 0.   ...(2)

Monge’s subsidiary equations are Rdpdy + Tdqdx – Vdxdy = 0 ...(3)
and R(dy)2 – Sdxdy + T(dx)2 = 0. ...(4)

Using (2), (3) and (4) become
(1 + q)2dpdy + (1 + p)2dqdx = 0 ...(5)

and (1 + q)2(dy)2 + 2(1 + p + q + pq)dxdy + (1 + p)2 (dx)2 = 0. ...(6)
Since  1 + p + q + pq = (1 + p) (1 + q), (6) becomes          [(1 + q)dy + (1 + p)dx]2 = 0

so that (1 + q)dy + (1 + p)dx = 0                or        (1 + q)dy = –(1 + p)dx.  ...(7)
Keeping (7) in view, (5) may be re–written as

(1 + q)dp {(1 + q)dy} – (1 + p)dq {– (1 + p)dx} = 0. ...(8)
Dividing each term of (8) by (1 + q)dy, or its equivalent –(1 + p)dx, we get
(1 + q)dp – (1 + p)dq = 0             or dp/(1 + p) – dq/(1+ q) = 0.
Integrating it, (1+ p)/(1 + q) = c1, c1 being an arbitrary constant ...(9)
From (7), dx + dy + pdx + qdy = 0 or dx + dy + dz = 0,    as    dz = pdx + qdy
Integrating it, x + y + z = c2, c2 being an arbitrary constant ...(10)
From (9) and (10), one intermediate integral of (1) is
(1 + p)/(1 + q) = F(x + y + z) or 1 + p = (1 + q) F(x + y + z)

or p – q F(x + y + z) = F (x + y + z) – 1, ...(11)
which is of the form Pp + Qq = R. So Lagrange’s auxiliary equations are

dx
1 = 

dy
F x y z∃ # #( )

= dz
F x y z( )# # ∃1

...(12)

Choosing 1, 1, 1 as multipliers, each fraction of (12) = (dx + dy + dz)/0
so that dx + dy + dz = 0                giving          x + y + z = c2         ... (13)

Using (13) and taking the first two fractions of (12), we have
          dx = – dy/F(c2) or dy + F(c2)dx = 0.
Integrating it, y + xF(c2) = c3 or y + x F(x + y + z) = c3 ...(14)
From (13) and (14), the required general solution is

y + x F(x + y + z) = G(x + y + z), F, G being arbitrary functions.
Ex. 2. Solve y2r + 2xys + x2t + px + qy = 0. [Bilaspur 2004]
Sol. Given y2r + 2xys + x2t = – (px + qy). ...(1)
Comparing (1) with Rr + Ss + Tt = V, here  R = y2,  S = 2xy,   T = x2,  V = – (px + qy).   ...(2)
Monge’s subsidiary equations are Rdpdy + Tdqdx + Vdxdy = 0 ...(3)

and R(dy)2 – Sdxdy + T(dx)2 = 0. ...(4)
Using (2), (3) and (4) become

y2dpdy + x2dqdx + (px + qy) dxdy = 0 ...(5)
and y2(dy)2 – 2xydxdy + x2(dx)2 = 0. ...(6)

From (6),   (xdx – ydy)2 = 0         so that xdx – ydy = 0    or       xdx = ydy. ...(7)
Keeping (7) in view, (5) may be re–written as

ydp (ydy) + xdq (xdx) + pdy (xdx) + qdx (ydy) = 0. ...(8)
Dividing each term of (8) by xdx, or its equivalent ydy, we get
ydp + xdq + pdy + qdx = 0 or (ydp + pdy) + (xdq + qdx) = 0
Integrating it,    yp + xq = c1, being an arbitrary constant ...(9)
Integrating (7), x2/2 – y2/2 = c2/2        or                   x2 – y2 = c2.  ...(10)
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From (9) and (10), one intermediate integral of (1) is yp + xq = F(x2 – y2), ...(11)
which is of the form Pp + Qq = R. Its Lagrange’s auxiliary equations are

dx
y

= dy
x = dz

F x y( )2 2∃
. ...(12)

From the first two fractions of (2),      xdx – ydy = 0   so that     x2 – y2 = c2. ...(13)
Taking the last two fractions and using (13), we get

dy
y c( ) /2

2
1 2#

= dz
F c( )2

   or dz – F(c2)
dy

y c( ) /2
2

1 2#
= 0.

Integrating,      z – F(c2) log [y +(y2 + c2)
1/2] = c3

or z – F(x2 – y2) log [y + ( )y x y2 2 2# ∃ ] = c3, using  (13)

or z – F(x2 – y2) log (x + y) = c3, c3 being an arbitrary constant ...(14)
From (13) and (14), the required general solution is
z – F(x2 – y2) log (x + y) = G(x2 – y2), F, G being arbitrary functions.
Ex. 3(a). Obtain the integral of q2r – 2pqs + p2t = 0 in the form y + xf(z) = F(z).

[Delhi Maths Hons. 1999, 2007; Meerut 1994, 95; Nagpur 2005]
(b) Show also that this solution represents a surface generated by straight lines that are

parallel to a fixed plane.
Sol. (a) Given q2r – 2pqs + p2t = 0. ...(1)
As ususal Monge’s subsidiary equations are q2dpdy + p2dp dx = 0 ...(2)

and q2(dy)2 + 2pqdxdy + p2(dx)2 = 0 or (qdy + pdx)2 = 0. ...(3)
From (3), we have qdy + pdx = 0 or qdy = –pdx. ...(4)
In view of (4), (2) may be re–written as qdp (qdy) – pdq (–pdx) = 0. ...(5)
Dividing each term of (5) by qdy, or its equivalent (–pdx), we find
qdp – pdq = 0 or (1/p)dp – (1/q) dp = 0.
Integrating it, p/q = c1, c1 being an arbitrary constant ...(6)
From (4),  dz = 0,  (as dz = pdx + qdy) so that     z = c2.     ...(7)
From (6) and (7), one integral of (1) is p/q = f(z) or        p – f(z)q = 0,     ...(8)

which is of the form Pp + Qq = R. Here f is an arbitrary function. Its Lagrange’s auxiliary equations

are dx
1

= 
dy
f z∃ ( )

= dz
0

. ...(9)

The last fraction in (9) gives dz = 0 so that z = c2 ...(10)
From the first two fractions in (9) and (10), we find

dx
1 = dy

f c∃ ( )2
or   dy + f(c2)dx = 0.

Integrating,    y + xf(c2) = c3 or y + xf(z) = c3, by (10). ...(11)
From (10) and (11), the required integral is y + xf(z) = F(z). ...(12)
Part (b). Let z = k, k being an arbitrary constant. Then (12) is the locus of the straight lines

given by the intersection of the planes
z = k and y + xf(k) – F(k) = 0. ...(13)

Clearly the lines are parallel to the plane z = 0 (which is a fixed plane) because these lie on
the plane z = k for different values of k.

Ex. 4. Solve y2r – 2ys + t = p + 6y. [Agra 1993; Bhopal 2004; Vikram 2004;
Meerut 2009; Delhi Maths Hons 1994, 98, 2006, 09, 10]

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



Monge’s Methods 9.25

Sol. As usual Monge’s subsidiary equations are
   y2dpdy + dqdx – (p + 6y)dxdy = 0 ...(1)

and y2(dy)2 + 2ydydx + (dx)2 = 0 or (ydy + dx)2 = 0. ...(2)
From (2),   ydy + dx = 0 or     dx = –ydy. ...(3)
Putting the value of dx from (3) in (1), we find

y2dpdy + dq(–ydy) – (p + 6y) dy (–ydy) = 0
or ydp – dq + (p + 6y) dy = 0 or (ydp + pdy) – dq + 6ydy = 0.

Integrating it, yp – q + 3y2 = c1, c1 being an arbitrary constant ...(4)
Integrating (4), y2/2 + x = c2/2 or y2 + 2x = c2. ...(6)
From (5) and (6), one integral of (1) is
yp – q + 3y2 = F(y2 + 2x) or yp – q = F(y2 + 2x) – 3y2,   ...(7)

which is of the form Pp + Qq = R. Its Lagrange’s auxiliary equations are

dx
y

= dy
∃1

= dz
F y x y( )2 22 3# ∃

. ...(8)

From the first two fractions of (8), 2ydy + 2dx = 0 so that y2 + 2x = c2.     ...(9)
Taking the last two fractions of (8) and using (9),    dz + [F(c2) – 3y2]dy = 0.
Integrating, z + yF(c2) – y3 = c2 or z + yF(y2 + 2x) – y3 = c3. ...(10)
From (9) and (10), the required general solution is

z + yF(y2 + 2x) – y3 = G(y2 + 2x), F, G being arbitrary functions.
Ex. 5. Solve (b + cq)2r – 2(b + cq) (a + cp)s + (a + cp)2t = 0
Sol. Usual Monge’s subsidiary equations are (b + cq)2 dpdy + (a + cp)2 dqdx = 0.     ...(1)

and (b + cq)2 (dy)2 + 2(b + cq) (a + cp) dxdy + (a + cp)2 (dx)2 = 0. ...(2)
(2)  −        {(b + cq)dy + (a + cp)dx}2 = 0 ...(3)

or (b + cq)dy + (a + cp)dx = 0 or adx + bdy + c(pdx + qdy) = 0
or adx + bdy + cdz = 0,         as dz = pdx + qdy.

Integrating,        ax + by + cz = c1, c3 being an arbitrary constant ...(4)
From (3), (b + cq)dy = –(a + cp)dx. So (1) reduces to (b + cq)dp – (a + cp)dq = 0

or dp
a cp

dq
b cq#

∃
#

= 0 so that a cp
b cq

#
#

= c2 ...(5)

So the intermediate integral of the given equation is (a + cp)/(b + cq) = !1(ax + by + cz)
or cp – c!1(ax + by + cz)q = – a + b !1(ax + by + cz). ...(6)

Lagrange’s auxiliary equations are
dx
c = dy

c ax by cz∃ # #!1( )
= dz

a b ax by cz∃ # # #!1( )
. ...(7)

Using a, b, c as multipliers, each fraction of (7) = (adx + bdy + cdz)/0
+ adx + bdy + cdz = 0     so that            ax + by + cz = c3.     ...(8)
Using (8) and taking the first two ratios of (7), we get
dx = – dy/!1(c3) or dy + !1(c3)dx = 0.
Integrating, y + x!1(c3) = c4 or            y + x!1(ax + by + cz) = c4.     ...(9)
From (8) and (9), the required solution is

y + x!1(ax + by + cz) = !2(ax + by + cz), !1, !2 being arbitrary functions.
Ex. 6. Solve x2r – 2xs + t + q = 0.        [K.U. Kurukshetra 2004; Ravishankar 2005]
Sol. Usual Monge’s subsidiary equations are        x2dpdy + dqdx + qdxdy = 0 ...(1)

and x2(dy)2 + 2xdxdy + (dx)2 = 0. ...(2)
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Now,           (2) − (xdy + dx)2 = 0 − xdy + dx = 0 ...(3)
             (3) − (dx)/x + dy = 0 − y + log x = c1. ...(4)

Using (3), (1) reduces to x2dpdy + dq (–x dy) + q(– x dy)dy = 0

or dp – dq
x

qdx
x

∃FHG
I
KJ2 = 0 or d p q

x
∃FH IK = 0.

Integrating, p – (q/x) = c2, c2 being an arbitrary constant ...(5)
From (4) and (5), the intermediate integral of the given equation is
p – (q/x) – !1(y + log x) or xp – q = x!1(y + log x). ...(6)

Lagrange’s auxiliary equations for (6) are dx
x

= 
dy
∃1 = dz

x y x!1( log )#
. ...(7)

Taking the first two fractions of (7), (1/x)dx + dy = 0 −   y + log x = c3. ...(8)

Using (8), first and third fractions of (7) give dx
x

= dz
x c!1 3( )

= − z – x!1(c3) = c4

or z – x!1(y + log x) = c4, c4 being an arbitrary constant ...(9)
From (8) and (9) the required solution is

z – x!1(y + log x) = !2(y + log x), !1, !2 being arbitrary functions.
Ex. 7. Solve (y – x) (q2r – 2pqs + p2t) = (p + q)2 (p – q).
Sol. The usual Monge’s subsidiary equations are

(y – x) (q2dpdy + p2dqdx) – (p + q)2 (p – q)dxdy = 0 ...(1)
and q2(dy)2 + 2pqdxdy + p2(dx)2 = 0. ...(2)

(2) − (qdy + pdx)2 = 0                 or     qdy + pdx = 0.   ...(3)
dz = pdx + qdy and (3)             −              dz = 0           −             z = c1.   ...(4)
Using (3), (1) reduces to (y – x) (qdp – pdq) – (p2 – q2) (dx – dy) = 0

or q2d p
q
F
HG
I
KJ –(p2 – q2) 

d x y
y x

∃
∃
b g

= 0          or        
d x y

x y
d p q
p q

∃

∃
#

∃

b g b g/
( / )2 1

= 0

Integrating,    log (x – y) + 1
2 log ( / )

( / )
p q
p q

∃
#

1
1

= 1
2

log c2      or        (x – y)2 p q
p q

∃
#

= c2. ...(5)

From (4) and (5), the intermediate integral of the given equation is

(x – y)2 p q
p q

∃
#

= !1(z) or (x – y)2(p – q) = (p + q)!1(z)

or p{(x – y)2 – !1(z)} – q{(x – y)2 + !1(z)} = 0. ...(6)
Here Lagrange’s subsidiary equation for (6) are

dx
x y z( ) ( )∃ ∃2

1!
= dy

x y z∃ ∃ #{( ) ( )}2
1!

=
dz
0 . ...(7)

Now, the third fraction of (7) − dz = 0 so that       z = a,   ...(8)
where ‘a’ is an arbitrary constant.

Now, each fraction of (7) = dx dy
z

#
∃ 2 1! ( )

=
dx dy

x y
∃
∃2 2( )

   −  d(x + y) = – !9(a) d x y
x y
( )

( )
∃

∃ 2 , by (8).

Integrating it,  x + y – !1(a) (x – y)–1 = b   or  x + y – !1(z) (x – y)–1 = b, using (8).   ...(9)
From (8) and (9), the required general solution is

x + y – (x – y)–1 !1(z) = !2(z), !1, !2 being arbitrary functions.
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Ex. 8. Solve x2r + 2xys + y2t = 0.      [Meerut 2003, Garhwal 1993; Delhi Maths (H) 2001]
Sol. Comparing the given equation with Rr + Ss + Tt = V, we get
R = x2, S = 2xy, T = y2. Hence the usual Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0        and    R(dy)2 – S dxdy + T(dx)2 = 0

become          x2dpdy + y2dqdx = 0 ...(1)
and        x2(dy)2 – 2xydxdy + y2(dx)2 = 0. ...(2)

Now, (2) gives (xdy – ydx)2 = 0 so that xdy – ydx = 0. ...(3)
Re–writing (1),            (xdp) (xdy) + (ydx) (ydq) = 0

or (xdp)(xdy) + (xdy) (ydq) = 0 [�from (3), ydx = xdy]
or xdp + ydq = 0 or xdp + ydq + pdx + qdy = pdx + qdy
or d(xp) + d(yq) – dz = 0,                       as                    dz = pdx + qdy.

Integrating (1) xp + yq – z = c1, c1 being an arbitrary constant ...(4)
Now (3) gives (1/y)dy – (1/x)dx = 0.
Integrating, log y – log x = log c2 or y/x = c2. ...(5)
From (4) and (5), the intermediate integral of the given equation is
xp + yq – z = f(y/x)        or xp + yq = z + f(y/x),   ...(6)

where f is an arbitrary function. Lagrange’s subsidiary equation for (6) are
dx
x

= 
dy
y

= dz
z f y x# ( / ) . ...(7)

Taking the first two fractions of (7), (1/y)dy – (1/x)dx = 0.
Integrating, log y – log x = log a so that y/x = a. ...(8)

Taking the last two fractions of (7) and using (8), we get                   dz
z f a

dy
y#

∃
( )

= 0.

Integrating it, log [z + f(a)] – log y = log b, b being an arbitrary constant
so that [z + f(a)]/y = b             or                [z + f(y/x)]/y = b, using (8) ...(9)

From (8) and (9), the required solution is
[z + f(y/x)]/y = g(y/x)    or       z = yg(y/x) – f(y/x), where f and g are arbitrary functions.
Ex. 9. Solve r – 2s + t = sin (2x + 3y).
Sol. Comparing the given equation with Rr + Ss + Tt = V, we have
R = 1, S = –2, T = 1, V = sin (2x + 3y). So Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become           dpdy + dqdx – sin (2x + 3y)dxdy = 0. ...(1)
and                          (dy)2 + 2 dxdy + (dx)2 = 0. ...(2)

Now, (2) gives (dy + dx)2 = 0 so that dy + dx = 0. ...(3)
From (3), dy = – dx. Then, (1) becomes – dpdx + dqdx + sin (2x + 3y)dxdy = 0

or dp – dq + sin (2x + 3y)dy = 0, as dx 7 0. ...(4)
Now, integrating (3), x + y = c1, c1 being an arbitrary constant ...(5)
From (4), dp – dq + sin [2(x + y) + y]dy = 0    or    dp – dq + sin (2c1 + y)dy = 0, using (5).
Integrating,        p – q – cos (2c1 + y) = c2

or           p – q – cos(2x + 3y) = c2,  as  c1 = x + y ...(6)
From (5) and (6), an intermediate integral is
p – q – cos (2x + 3y) = f(x + y)     or         p – q = cos (2x + 3y) + f(x + y),  ...(7)

where f is an arbitrary function. Its Lagrange’s auxiliary equations are
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dx
1 = dy

∃1
= dz

x y f x ycos( ) ( )2 3# # #
. ...(8)

Taking the first two fractions of (8), dx + dy = 0 so that x + y = a ... (9)
Taking the last two fractions of (8) and using (9), we get

dy
∃1

=
dz

a y f acos( ) ( )2 # #
or dz + [cos (2a + y) + f(a)]dy = 0.

Integrating it, z + sin (2a + y) + y f(a) = b, b being an arbitrary constant
or z + sin (2x + 3y) + y f(x + y) = b, using (9). ...(10)

From (9) and (10) the required complete integral is
z + sin (2x + 3y) + y f(x + y) = g(x + y), f and g being an arbitrary functions.
Ex. 10. Solve q2r – 2pqs + p2t = pq2. [I.A.S. 1986]
Sol. Comparing the given equation with Rr + Ss + Tt = V, we have
R = q2, S = –2pq, T = p2, V = pq2. The Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0

become             q2dpdy + p2dqdx – pq2dxdy = 0 ...(1)
and q2(dy)2 + 2pqdxdy + p2(dx)2 = 0. ...(2)

Re–writing (2), (qdy + pdx)2 = 0 so that pdx + qdy = 0. ...(3)
Since dz = pdx + qdy, (3)  −   dz = 0    so that        z = c1. ...(4)
Re–writing (1), (qdy)(qdp) + (pdx)(pdq) – (qdy)(pqdx) = 0

or                      (qdy)(qdp) – (qdy)(pdq) – (qdy)(pqdx) = 0, as from (3), pdx = –qdy
or qdp – pdq – pqdx = 0         or (1/p)dp – (1/q)dq = dx.

Integrating, log p – log q – log c2 = x      or p/(c2q) = ex

or       (p/q)e–x = c2, c2 being an arbitrary constant ...(5)
From (4) and (5), the intermediate integral of the given equation is

(p/q)e–x = f(z) or px–x – f(z)q = 0. ...(6)

Lagrange’s auxiliary equations for (6) are dx
e x∃ = dy

f z∃ ( )
= dz

0
. ...(7)

The last fraction of (7) − dz = 0 so that       z = a. ...(8)
Taking the first fractions of (7) and using (8), we get

dx
e x∃ = dy

f a∃ ( )
or          exf(a)dx + dy = 0.

Integrating, exf(a) + y = b   or               exf(z) + y = b, as from (8), a = z ...(9)
From (8) and (9), the required complete integral is

exf(z) + y = g(z), where f and g are arbitrary functions.

Ex. 11. Solve 2 22 (1 ) (1 ) 0q r q p s p t∃ # # # )  by Monge’s method.

Sol. Given               2 22 (1 ) (1 ) 0q r q p s p t∃ # # # ) ... (1)

Comparing (1) with Rr Ss Tt V# # ) , here    ) ) ∃ #2, 2 (1 )R q S q p     and      2(1 )T p) # .

Hence Monge’s subsidiary equations

# ∃ ) 0Rdpdy Tdqdx Vdx dy   and              ∃ # )2 2( ) ( ) 0R dy Sdxdy T dx  become
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          2 2(1 ) 0q dpdy p dqdx# # ) ... (2)

and # # # # )2 2 2 2( ) 2 (1 ) (1 ) ( ) 0q dy q p dxdy p dx ... (3)

Rewriting (3), 2{ (1 ) } 0qdy p dx# # )      or         (1 ) 0qdy p dx# # ) ... (4)

From (4),       ( ) 0dx pdx qdy# # )   or    0dx dz# ) ,    as dz pdx qdy) #

Integrating, 1x z C# ) , C1 being an arbitrary constant ... (5)

Re–writing (2), ( ) ( ) [(1 ) } {(1 ) } 0qdy qdp p dx p dq# # / # )

or ( ) ( ) ( ) [(1 ) ] 0,qdy qdp qdy p dq# ∃ # )  using (4)

or (1 ) 0qdp p dq∃ # ) or {1/(1 )} (1/ ) 0p dp q dq# ∃ )

Integrating, 2log(1 ) log logp q C# ∃ ) or 2(1 ) /p q C# ) ... (6)
From (5) and (6), the intermediate integral of (1) is
(1 ) / ( )p q f x z# ) # or ( ) 1p q f x z∃ # ) ∃ ... (7)

which is of Lagrange’s form. Its Lagrange’s auxiliary equations are

1 ( ) 1

dx dy dz

f x z
) )

∃ # ∃ ... (8)

Taking the first and last ratios,    dx + dz = 0 − 3x z C# ) ... (9)
Using (9) and taking the first two ratios of (8), we get

3( ) 0dy f C dx# ) so that 3 4( )y xF C C# )

or      4( )y x f x z C# # ) , using (9) ... (10)
From (9) and (10), the required general solution is

( ) ( )y xf x z g x z# # ) # , f, g are arbitrary functions

Ex. 12. Solve 2 2( ) ( 2 ) 2 ( )x y x xys y t xy p q∃ ∃ # ) ∃ . [Delhi B.Sc. (Hons) 2011]

Sol. Given 2 2( ) 2 ( ) ( ) 2 ( )x x y r xy x y s y x y t xy p q∃ ∃ ∃ # ∃ ) ∃ ... (1)

Comparing (1) with Rr Ss Tt V# # ) , here 2( ),R x x y) ∃ S = –2xy (x – y), T = y2 (x – y) and
V = 2xy (p – q). Hence Monge’s subsidiars equations

0Rdpdy Tdqdx Vdxdy# ∃ ) and    ∃ # )2 2( ) ( ) 0R dy S dyxy T dx become

           2 2( ) 2 ( ) ( ) 0x x y dpdy xy p q dxdy y x y dqdx∃ ∃ ∃ # ∃ ) ... (2)

and 2 2 2 2( ){ ( ) 2 ( ) } 0x y x dy xy dx dy y dy∃ # # ) ... (3)

Since x y7 , (3) gives 2( ) 0xdy ydx# ) so that         ydx xdy) ∃    ... (4)

From (4), (1/ ) (1/ ) 0x dx y dy# ) so that             1xy C) ... (5)

Re–writing (2), ( ) ( ) 2( )( ) ( ) ( ) ( ) 0x x y dp xdy p q xdy ydx y x y dq ydx∃ ∃ ∃ # ∃ )

or ( ) ( ) 2( ) ( ) ( ) ( ) ( ), (4)x x y dp xdy p q xdy ydx y x y dq xdy by∃ ∃ ∃ # ∃ ∃

or         ( ) 2 ( ) ( ) ( ) 0x x y dp p q ydx y x y dq∃ ∃ ∃ ∃ ∃ )
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or ( ) ( ) 2 ( )x y xdp ydq y p q dx∃ ∃ ) ∃ or {2 ( ) }/( )xdp ydq y p q dx x y∃ ) ∃ ∃

or         ( ) ( ) {2 ( ) }/( )xdp pdx ydq qdy y p q dx x y pdx qdy# ∃ # ) ∃ ∃ # ∃

or       ∃ ) ∃ # ∃ ∃ ∃ ∃( ) ( ) {2( ) ( ) ( ) }/( )d xp d yq p q ydx x y pdx x y qdy x y

or ( ) ( ) 2 2x y d xp yq pydx qydx xpdx ypdx xqdy yqdy∃ ∃ ) ∃ # ∃ ∃ #

= 2pydx qydx xpdx qydx yqdy∃ # # #  = , (4)pxdy qydx xpdx yqdy by∃ ∃ # #

+ ( ) ( ) ( ) ( ) ( )( )x y d xp yq xp dx dy yq dx dy xp yq dx dy∃ ∃ ) ∃ ∃ ∃ ) ∃ ∃

or ( )d xp yq dx dy

xp yq x y

∃ ∃
)

∃ ∃
    or ( ) ( )

0
d xp yq d x y

xp yq x y

∃ ∃
∃ )

∃ ∃
.

Integrating, log 2( ) log( ) logxp yq x y C∃ ∃ ∃ ) or 2( ) /( )xp yq x y C∃ ∃ ) ... (6)
From (5) and (6), the intermediate integral of the given equation is

(xp – yq)/(x – y) = f (xy) or ( ) ( )xp yq x y f xy∃ ) ∃ , ... (7)

which is of Lagrange’s form. Its auxiliary equations are    
( ) ( )

dx dy dz

x y x y f xy
) )

∃ ∃
   ... (8)

Taking the first two fractions, (1/ ) (1/ ) 0x dx y dy# )     so that          3xy C) ... (9)

Now, each fraction of (8) =
( ) ( )

dx dy dz

x y x y f xy

#
)

∃ ∃

or ( ) ( )dz f xy d x y) # or 3( ) ( )dz f C d x y) # , by (9)

Integrating,   3 4( ) ( )z x y f C C∃ # )             or        4( ) ( )z x y f xy C∃ # )   ... (10)

From (9) and (10), the required solution is ( ) ( ) ( )z x y f xy g xy∃ # )

or ( ) ( ) ( )z x y f xy g xy) # # , f and g being arbitrary functions.
9.9 Type 4. When the given equation Rr + Ss + Tt = V fails to yield an intermediate
integral as in cases 1, 2 and 3.

Working rule for solving problems of type 4.
Suppose the R.H.S. of R(dy)2 – Sdxdy + T(dx)2 = 0 neither gives two factors nor a perfect

square (as in Types 1, 2 and 3 above). In such cases factors dx, dy, p, 1 + p etc. are cancelled as the
case may be and an integral of given equation is obtained as usual. This integral is then integrated
by methods explained in chapter 7.
9.10 SOLVED EXAMPLES BASED ON ART 9.9

Ex. 1. Solve (q + 1)s = (p + 1)t. [Agra 2009]
Sol. Given (q + 1)s – (p + 1)t = 0. ...(1)
Comparing (1) with Rr + Ss + Tt = V, we find R = 0, S = (q + 1). T = –(p + 1), V = 0....(2)
Monge’s subsidiary equations are Rdpdy + Tdqdx – Vdxdy = 0. ...(3)

and R(dy)2 – Sdxdy + T(dx)2 = 0. ...(4)
Using (2), (3) and (4) become    – (p + 1)dqdx = 0 ...(5)

and        –(q + 1)dxdy – (p + 1)(dx)2 = 0. ...(6)
Dividing (5) by – (p + 1)dx, we obtain dq = 0. ...(7)

and dividing (6) by – dx we get (q + 1) + (p + 1)dx = 0. ...(8)
From (8), dx + dy + pdx + qdy = 0 or dx + dy + dz = 0,      as dz = pdx + qdy
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Integrating it, x + y + z = c1, being an arbitrary constant ...(9)
Integrating (7),       q = c2, c2 being an arbitrary constant ...(10)
From (9) and (10), an integral of (1) is
q = f(x + y + z) or             �z/�y = f(x + y + z)  ...(11)
Integrating (11) partially w.r.t. y (treating x as constant), we find

z = F(x + y + z) + G(x), F, G being arbitrary functions.
Ex. 2. Solve pq = x(ps – qr). [Delhi. Maths (H) 2002, 08]
Sol. Given xqr – xps + 0.t = –pq. ...(1)
Comparing (1) with Rr + Ss + Tt = V, R = xq, S = xp, T = o and   V = –pq

Monge’s subsidiary equations Rdp dy + T dq dx – V dx dy = 0 and R(dy)2 – Sdxdy + T(dx)2 = 0
become xqdpdy + pqdxdy = 0. ...(2)
and xq(dy)2 + xpdxdy = 0. ...(3)

Dividing (2) by qdy we get xdp + pdx = 0 ...(4)
and   dividing (3) by xdy, we get             qdy + pdx = 0. ...(5)

Using dz = pdx + qdy, (5) gives dz = 0 so that z = c1 ...(6)
Integrating (4),     xp = c2, c2 being an arbitrary constant ...(7)
From (6) and (7), one integral of (1) is

xp = f(z) or x �
�

z
x = f(z) or 1

f z
z
x( )

�
� = 1

x .

Integrating it partially w.r.t. x, F(z) = log x + G(y), F, G being arbitrary functions.
Ex. 3. Solve pt – sqs = q3                 [MDU Rohtak 2004; Ravishankar 2004; Delhi Maths

(H) 2005;  Meerut 2005; 06 ; Rohilkhand 1994]
Sol. Given pt – qs = q3 ... (1)
Comparing (1) with Rr + Ss + Tt = V, here R = 0,   S = –q,    T = p,    V = q3.
+  Monge’s subsidiary equations Rdpdy + Tdqdx – Vdxdy = 0, R(dy)2 – Sdxdy + T(dx)2 = 0

become pdqdx – q3dxdy = 0 ...(2)
and  qdxdy + p(dx)2 = 0. ...(3)

Dividing (2) by dx, we get pdq – q3dy = 0 ...(4)
and   dividing (3) by dx, we get   pdx + qdy = 0. ...(5)

From (5), dy = – (pdx)/q. Putting this value of dy into (4) gives
pdq – q3(pdx/q) = 0         or (1/q2)dq + dx = 0.
Integrating it, –1/q + x = C1, C1 being an arbitrary constant ...(6)
Using dz = pdx + qdy, (5) gives    dz = 0                so that                  z = C2. ...(7)
From (6) and (7), one integral of (1) is

– 1
q

 + x = f(z)         or                     �
�
y
z = x – f(z),  as  zq

y
�

)
�

,

Integrating with respect to z partially (treat x as constant), we obtain

y = xz – F(z) + G(x), F, G being arbitrary functions, where F z f z dz( ) ( ) .) z
Ex. 4. Solve z(qs – pt) = pq2. [Delhi Maths (H) 1998; 2004, 11]
Sol. Given zqs – zpt = pq2. ...(1)
The usual Monge’s subsidiary equations are – zpdqdx – pq2dxdy = 0 ...(2)

and – zqdxdy – zp(dx)2 = 0. ...(3)
Dividing (2) by – pdx , we get zdq + q2dy = 0 ...(4)
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and   dividing (3) by –z dx we get      qdy + pdx = 0. ...(5)
Using dz = pdx + qdy, (5) gives dz = 0 so that              z = C1. ...(6)
Using (6) in (4), C1dq + q2dy = 0 or       (1/q2)dq + (1/C1)dy = 0.
Integrating it, –1/q + y/C1 = C2 or –1/q + y/z = C2, by (6) ...(7)
From (6) and (7), one integral of (1) is

∃ #1
q

y
z

= f(z) or
�
�

∃
y
z z

y1
= – f(z),      as 

yq
z

�
)

�
which is linear in variables y and z (treating x as constant).

Its integrating factor (I.F.)  = e–(1/z)dz = e–log z = z –1 and so its solution is

yz–1 = – z f z dz∃z 1 ( )  + G(x) or            yz–1 = F(z) + G(x),      where    F z f z dz( ) ( )) z
or  y = zF(z) + zG(x) or         y = H(z) + zG(x),
where H(z)[= zF(z)] and G(x) are arbitrary functions.

Ex. 5. Solve 2yq + y2t = 1.
Sol. Given equation is  0.r + 0.s + y2.t = 1 – 2yq. ...(1)
Comparing (1) with Rr + Ss + Tt = V, here   R = 0,       S = 0,         T = y2,      V = 1 – 2yq.
Hence the usual subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0   and R(dy)2 – Sdxdy + T(dx)2 = 0

become y2dqdx – (1 – 2yq)dxdy = 0 ...(2)
and            y2(dx)2 = 0. ...(3)

From (3),         dx = 0    so that x = c1.         ...(4)
From (2),        y2dq + 2yq dy – dy = 0          or d(y2q) – dy = 0.
Integrating it, y2q – y = c2, c2 being an arbitrary constant ...(5)
From (4) and (5), an intermediate integral is

y2q – y = f(x) or y2(�z/�y) – y = f(x)

or 2/ 1/ (1/ ) ( )z y y y f x� � ) # / ...(6)

Integrating (6) w.r. t. y, treating x as constant, we get
z = log y – (1/y) f(x) + g(x) or yz = y log y – f(x) + y g(x),

where f and g being arbitrary functions.
Ex. 6. Solve (ex – 1) (qr – ps) = pqex.
Sol. Given q(ex – 1)r – p(ex – 1)s = pqex. ...(1)
Comparing (1) with Rr + Ss + Tt = V,   R = q(ex – 1),     S = –p(ex – 1),      T = 0,     V = pqex.
Then the usual Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdxdy = 0 and        R(dy)2 – Sdxdy + T(dx)2 = 0

become q(ex – 1)dpdy – pqexdxdy = 0 ...(2)
and q(ex – 1)(dy)2 + p(ex – 1)dxdy = 0. ...(3)

Now, (3) − qdy + pdx = 0 − dz = 0,      as dz = pdx + qdy.
Integrating,        z = c1, c1 being an arbitrary constant ...(4)

Again, from (2), (ex – 1)dp – pexdx = 0 or dp
p

e
e

x

x∃
∃1

dx = 0

Integrating, log p – log (ex – 1) = log c2    or     p/(ex – 1) = c2. ...(5)
From (4) and (5), an intermediate integral is  p/(ex – 1) = f(z), f being an arbitrary function
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or �
�

z
x = (ex – 1)f(z), or 1

f z
z
x( )

�
� = ex – 1.

Integrating w.r.t. ‘x’, treating y as constant, we get
F(z) = ex – x + G(y) or x = ex + G(y) – F(z),

F and G being arbitrary functions, where 1 f z( )b gz dz = F(z).
Miscellaneous problems based on types 1, 2, 3 and 4

Solve the following partial differential equations by using Monge’s method:
1. x2r – y2t = xy. Ans. z = xy log x + x F (y/x) + G(xy)
2. (1 + pq + q2)r + s(q2 – p2) – (1 + pq + p2)t = 0    Ans. z{2 + (x + y)}1/2 = F(x + y) + G(x – y)
3. q (1 + q)r – (1 + 2q) (1 + p)s + (1 + p)2t = 0 Ans. x = F(x + y + z) + G(x + z)
4. x2r – y2t – xp + yq = xy. Ans. z = (xy/4) × {(log x)2 – (log y)2} + xyF(x/y) + G(xy)

9.11. Monge’s Method of integrating the equation Rr + Ss + Tt + U(rt – s2) = V,
where r, s, t have their usual meaning and R, S, T, U, V are functions of x, y, z.

Given Rr + Ss + Tt + U(rt – s2) = V. ...(1)

We have dp = ( / )p x� � dx + ( / )p y� � dy = rdx + sdy

and dq = ( / )q x� � dx + : ;/q y� � dy = sdx + tdy

which give r = (dp – sdy)/dx and t = (dq – sdx)/dy.
Putting these values in (1) and simplifying, we get
(Rdpdy + Tdqdx – Udpdq – Vdxdy) – s{R(dy)2 – Sdxdy + T(dx)2 + Udpdx + Udqdy} = 0.
Hence the usual Monge’s subsidiary equations are

L < Rdpdy + Tdqdx + Udpdq – Vdxdy = 0 ...(2)
and M < R(dy)2 – Sdxdy + T(dx)2 + Udpdx + Udqdy = 0. ...(3)

We cannot factorise M as we did before (see Art 9.1), on account of the presence of the
additional terms, Udpdx + Udqdy. Hence let us factorise M + =L, where = is some multiplier to be
determined later. Now, we have
M + =L < R(dy)2 + T(dx)2 – (S + =V)dxdy + Udpdx + Udqdy +  =Rdpdy + =Tdqdx + =Udpdq = 0. ...(4)

Factorising L.H.S. of (4), let k and m be constants such that

M + =L < (Rdy + mTdx + kUdp) dy
m

dx
k

dq# #FH IK1 = = 0. ...(5)

Comparing coefficients in (4) and (5), we get      R/m + mT = – (S + =V),   ...(6)
k = m and R=/k = U. ...(7)
Now, the two relations of (7) give         m = R=u
Putting this valus of m in (6) and simplifying, we get    =2(UV + RT) + =US + U2 = 0, ...(8)

which is quadratic in =. Let =1 and =2 be its roots.

When 1,= =)  (7)    −          1 /R k U= )         −        1 /k R U=)     −      1 /m R U=)

Hence (5) gives                     Rdy
R
U

Tdx R dp# #F
HG

I
KJ

=
=1

1 dy U
R

dx U
R

dq# #
F
HG

I
KJ=1

= 0

or    (Udy + =1Tdx + =1Udp) (Udx + =1Rdy + =1Udq) = 0. ...(9)
Similarly for = = =2, (5) gives

   (Udy + =2Tdx + =2 Udp) (Udx + =2Rdy + =2Udq) = 0. ...(10)

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



9.34 Monge’s Methods

Now one factor of (9) is combined with one factor of (10) to give an intermediate integral.
Exactly similarly, the other pair will give rise to another intermediate integral. In this connection
remember that we must combine first factor of (9) with the second factor of (10) and similarly the
second factor of (9) with the first factor of (10). Thus for the desired solution the proper method is
to combine the factors in the following manner :

Udy + =1Tdx + =1Udp = 0, Udx + =2Rdy + =2Udq = 0 ...(11)
Udy + =2Tdx + =2Udp = 0, Udx + =1Rdy + =1Udq = 0 ...(12)

Let equations (11) give two integrals u1 = c and v 1 = d1 so that one intermediate integral is
u1 = f1( v1), f1 being an arbitrary function ...(13)

Similarly, (12) gives second intermediate integral    u2 = f2( v 2), ...(14)
where f2 is an arbitrary function

We now solve (13) and (14) for p and q and substitute in dz = pdx + qdy, which after
integration gives the desired general solution.

Remark 1. There are in all four ways of combining factors of (9) and (10). By combining the
first factors in these equations, we would get u dy = 0 on substraction (after dividing equations by
=1 and =2 respectively) and this would not produce any solution. Similarly, combining the second
factors in these equations would give u dx = 0 and hence would produce no solution. Hence for
getting integrals of the given equation we must proceed as explained in (11) and (12).

Remark 2. In what follows we shall use the following two results of equation a=2 + b= + c = 0
(i) a = b = 0, i.e., the coefficients of =2 and = both equal to zero imply that both roots of the

equatin are equal to >
(ii) a = 0 but b 7 0, i.e., the coefficient of =2 is zero but that of = is non–zero imply that one

root of the equation is > and the other is –c/b.
Remark 3. When the two values of = are equal, we shall have only one intermediate integral

u1 = f(v1) and proceed as explained in solved examples of type 1 based on Rr + Ss + Tt + U(rt – s2)
= V given below.

An integral of a more general form can be obtained by taking the arbitrary function occuring
in the intermediate integral to be linear.

Let u1 = mv1 + n, where m and n are some constants. Then integrating it by Lagrange’s
method we find the solution of the given equation.

9.12. Type 1: When the roots of = –quadratic (8) of Art 9.11 are identical.
Solved examples of type 1 based on Rr + Ss + Tt + U(rt – s2) = V
Ex. 1. Solve 5r + 6s + 3t + 2(rt – s2) + 3 = 0. [I.A.S. 1973 ; Meerut 1998]
Sol. Given equation 5r + 6s + 3t + 2(rt – s2) = –3. ...(1)
Comparing the given equation with Rr + Ss + Tt + U(rt – s2) = V, we have R = 5, S = 6, T =

3, U = 2 and V = –3. Hence the =–quadratic =2(UV + RT) + =SU + U2 = 0
becomes  9=2 + 12= + 4 = 0 or  (3= + 2)2 = 0 so that =1 = =2 = –2/3.

There is only one intermediate integral given by the equations
Udy + =1Tdx + =1Udp = 0     and            Udx + =2Rdy + =2Udq = 0

or     2dy + (–2/3) × 3dx + (– 2/3) × 2dp = 0      and      2dx + (–2/3) × 5dy + (–2/3) × 2dq = 0
or     3dy – 3dx – 2dp = 0         and                             3dx – 5dy – 2dq = 0.

Integrating, 3y – 3x – 2p = c1 and 3x – 5y – 2q = c2. ...(2)
Hence here the only intermediate integral is

3y – 3x – 2p = f(3x – 5y – 2q), where f is an arbitrary function.                 ...(3)
Solving the two equations of (2) for p and q, we have
p = (1/2) × (3y – 3x – c1)       and          q = (1/2) × (3x – 5y – c2).
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Putting these values of p and q in dz = pdx + qdy, we have
dz = (1/2) × (3y – 3x – c1)dx + (1/2) × (3x – 5y – c2)dy

or 2dz = 3(ydx + xdy) – 3xdx – 5ydy – c1dx – c2dy.
Integrating, 2z = 3xy – (3x2/2) – (5y2/2) – c1x – c2y + c3,

which is the required complete integral, c1, c2 and  c3 being arbitrary constants.
Alternative solution. An integral of a more general form can be obtained by supposing the

arbitrary function f occuring in the intermediate integral (3) to be linear, giving
        3y – 3x – 2p = m(3x – 5y – 2q) + n, where m and n are arbitrary constants.  ...(4)

Re–writing (4), 2p – 2mq = 3y – 3x + 5my – 3mx – n. ...(5)

Lagrange’s auxiliary equations for (5) are    dx
2 = dy

m∃2
= dz

y x my mx n3 3 5 3∃ # ∃ ∃
.    ...(6)

Taking the first two fractions of (6), we have
dy + mdx = 0 so that y + mx = a. ...(7)

Now, each fraction of (6) = 3 5 2
6 10 6 6 10 6 2

xdx ydy dz
x my y x my mx n

# #
∃ # ∃ # ∃ ∃

...(8)

Hence taking first fraction of (6) and fraction (8), we have

dx
2

= 
3 5 2

6 6 2
xdx ydy dz

y mx n
# #
∃ ∃

or dx = 3 5 2
3 3

xdx ydy dz
y mx n

# #
∃ ∃

or 3xdx + 5ydy + 2dz = (3y – 3mx – n)dx
or 2dz + 3xdx + 5ydy = {3(a – mx) – 3mx – n}dx, using (7)
or                 2dz + 3xdx + 5ydy = (3a – 6mx – n)dx .

Integrating,                           2z + (3x2/2) + (5y2/2) = 3ax – 3mx2 – nx + b/2
or 4z + 3x2 + 5y2 = 6x(y + mx) – 6mx2 – 2xn + b, using (7)
or 4z – 6xy + 3x2 + 5y2 + 2nx = b. ...(9)

From (7) and (9), the required general solution is 4z – 6xy + 3x2 + 2nx = !(y + mx),
where ! is an arbitrary function and m and n are arbitrary constants.

Ex. 2. Solve 3r + 4s + t + (rt – s2) = 1.
Sol. Comparing the given equation with Rr + Ss + Tt + U(rt – s2) = V, we get R = 3, S = 4,

T = 1, U = 1, V = 1. Then, =–quadratic    =2(UV + RT) + =SU + U2 = 0
becomes 4=2 + 4= + 9 = 0 or (2= + 1)2 = 0 so that =1 = =2 = –1/2.

There is only one intermediate integral given by the equations
Udy + =1Tdx + =1Udp = 0 and Udx + =2Rdy + =2Udq = 0

or dy + (–1/2) × dx + (–1/2) × dp = 0 and      dx + (–1/2) × 3dy + (–1/2) × dq = 0
or   –2dy + dx + dp = 0 and     3dy – 2dx + dq = 0.  ... (1)

Integrating, –2y + x + p = c1 and     3y – 2x + q = c2.      ...(2)
Hence the only intermediate integral is

–2y + x + p = f(3y – 2x + q), where f is an arbitrary function. ...(3)
Solving (2) for p and q, p = 2y – x + c1              and q = –3y + 2x + c2.
Putting these values of p and q in dz = pdx + qdy, we get

dz = (2y – x + c1)dx + (–3y + 2x + c2)dy
or dz = 2(ydx + xdy) – xdx – 3ydy + c1dx + c2dy.

Integrating, z = 2xy – (x2/2) – (3y2/2) + c1x + c2y + c3,
which is the required complete integral, c1, c2, c3 being arbitrary constants.
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Alternative solution. In order to get the more general solution, we assume the arbitrary
function ! in (3) to be linear. Thus, we take

–2y + x + p = m(3y – 2x + q) + n, m, n being arbitrary constants
or p – mq = 2y – x + 3my – 2mx + n. ...(4)

Lagrange’s auxiliary equations for (4) are dx
1 = dy

m∃
= dz

y x my mx n2 3 2∃ # ∃ #
. ...(5)

Taking the first two fractions of (5), dy + mdx = 0     so that       y + mx = a.  ...(6)

Now, each fraction of (5) = xdx ydy dz
x my y x my mx n

# #
∃ # ∃ # ∃ #

3
3 2 3 2

...(7)

Taking the first fraction of (5) and the fraction (7), we have            dx
1 =

xdx ydy dz
y mx n

# #
∃ #

3
2 2

or xdx + 3ydy + dz = (2y – 2mx + n)dx
or xdx + 3ydy + dz = 2(a – mx)dx – 2mxdx + ndx, using (6)

Integrating, (x2/2) + (3y2/2) + z = 2ax – mx2 – mx2 + nx + b/2
or x2 + 3y2 + 2z – 2x(y + mx) + 2mx2 – nx = b, using (6) ...(8)

From (6) and (8), the required general solution is   x2 + 3y2 + 2z – 2xy – nx = !(y + mx),
where ! is an arbitrary function and m and n are arbitrary constants.

Ex. 3. Solve (q2 – 1)zr – 2pqzs + (p2 – 1)zt + z2(rt – s2) = p2 + q2 – 1.
Sol. Comparing the given equation with Rr + Ss + Tt + U(rt – s2) = V, we have R = z(q2 – 1),

S = –2pqz, T = z(p2 – 1), U = z2 and V = p2 + q2 – 1.
Hence the =–quadratic =2(UV + RT) + =US + U2 = 0 becomes
p2q2=2 – 2pqz + z2 = 0 or (pq= – z)2 = 0     so that =1 = =2 = z/pq.
There is only one intermediate integral given by equations
Udy + =1Tdx + =1Udp = 0 and Udx + =2Rdy + =2Udq = 0

or z2dy + 
z p

pq

2 2 1( )∃
dx + z

pq
3

dp = 0 and          z2dx + 
z q

pq

2 2 1( )∃
dy + z

pq
3

dq = 0

or pqdy + (p2 – 1)dx + zdp = 0 and pqdx + (q2 – 1)dy + zdq = 0
or p(qdy + pdx) – dx + zdp = 0 and q(pdx + qdy) – dy + zdq = 0
or pdz + zdp – dx = 0 and qdz + zdq – dy = 0, as dz = pdx + qdy
or d(pz) – dx = 0 and d(qz) – dy = 0.

Integrating, pz – x = c1 and qz – y = c2. ...(1)
Hence the only intermediate integral is pz – x = f(qz – y), f being an arbitrary function. ...(2)
Solving (1) for p and q, p = (c1 + x)/z and q = (c2 + y)/z.
Putting these values of p and q in dz = pdx + qdy, we get
dz = (1/z) × (c1 + x)dx + (1/z) × (c2 + y)dy   or       zdz = (c1 + x)dx + (c2 + y)dy.
Integrating, (1/2) × z2 = (1/2) × (c1 + x)2 + (1/2) × (c2 + y)2 + (1/2) × c30.

or z2 = x2 + y2 + 2c1x + zc2y + c3, where c3 = c1
2 + c2

2 + c30
which is the complete integral, c1, c2, c3 being arbitrary constants.

Alternative solution. To find the more general solution, we take the arbitrary function f in
(2) to be linear. So, let pz – x = m(qz – y) + n, m, n being arbitrary constants.
or                         pz – mqz = x – my + n. ...(3)

Lagrange’s auxiliary equation for (3) are dx
z

= dy
mz∃

= dz
x my n∃ #

. ...(4)

Taking the first two fractions of (4), dy + mdx = 0    so that        y + mx = a.    ...(5)
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Now, each fraction of (4) =
( / ) ( / )

( / ) ( / )
x z dx y z dy dz

z x z mz y z x my n
∃ ∃ #

/ ∃ ∃ / ∃ # ∃ #
. ...(6)

Taking the first fraction of (4) and fraction (6),            dx
z

=
∃ ∃ #( / ) ( / )x z dx y z dy dz

n
or – xdx – ydy + zdz = ndx           or             – 2zdz + 2xdx + 2ydy + 2ndx = 0.

Integrating, –z2 + x2 + y2 + 2nx = b, b being an arbitrary constant ...(7)
From (5) and (7), the required general solution is –z2 + x2 + y2 + 2nx = !(y + mx),

where ! is an arbitrary function and m, n are arbitrary constants.
Ex. 4. Solve 2s + (rt – s2) = 1. [Garwhal 1995; Meerut 2000]
Sol. Comparing the given equation with the equation         Rr + Ss + Tt + U(rt – s2) = V,

we get R = 0, S = 2, T = 0, U = 1, V = 1, so =–quardratic             =2 (UV + RT) + =SU + U2 = 0
becomes =2 + 2= + 1 = 0 so that =1 = =2 = –1.

Since we have equal values of l, there would be only one intermediate integral given by
Udy + =1Tdx + =1Udp = 0 and Udx + =2Rdy + =2Udq = 0

or   d y – dp = 0 and dx – dq = 0, using (1)
which give      y – p = c1, and        x – q = c2.

Solving these for p and q, p = y – c1     and        q = x – c2.
+ dz = pdx + qdy = (y – c1)dx + (x – c2)dy = (ydx + xdy) – c1dx – c2dy,

or dz = d(xy) – c1dx – c2dy.
Integrating, z = xy – c1x – c2y + c3, which is solution, c1, c2, c3 being arbitrary constants.
Ex. 5. z(1 + q2)r – 2pqzs + z(1 + p2)t + z2(s2 – rt) + 1 + p2 + q2 = 0.
Sol. Comparing the give equation with Rr + Ss + Tt + U(rt – s2) = V, we get
R = z(1 + q2), S = –2pqz, T = z(1 + p2), U = z2     and  V = –(1 + p2 + q2). ... (1)
Hence =–quadratic i.e. =2(RT + UV) + =US + U2 = 0 gives

=2(p2q2) – 2=zpq + z2 = 0 or (=pq – z)2 = 0.
Thus here we obtain =1 = =2 = z/pq. Hence there would be only one intermediate integral

which is given by
Udy + =1Tdx + =1Udp = 0. ...(2)

and Udx + =2Rdy + =2Udq = 0 ...(3)
        Using (1),         (2) becomes pq dy + (1 + p2)dx + zdp = 0 ...(4)

Using (1),          (3) becomes pqdx + (1 + q2)dy + zdq = 0 ...(5)
Now from (4), p(pdx + qdy) + dx + zdp = 0  or   pdz + dx + zdp = 0,   as     dz = pdx + qdy

or             d(zp) + dx = 0             so that  zp + x = c1. ...(6)
Similarly (5) gives                    zq + y = c2, c2 being an arbitrary constant ...(7)
Solving (6) and (7), we get p = (c1 – x)/z                 and     q = (c2 – y)/z.
+ dz = pdx + qdy = {(c1 – x)/z}dx + {(c2 – y)/z}dy    or    zdz = c1dx + c2dy – (xdx + ydy).
Integrating, (1/2) × z2 = c1x + c2y – (x2 + y2)/2 + c3/2    or    z2 = 2c1x + 2c2y – x2 – y2 + c3,

which is complete integral, c1, c2, c3 being arbitrary constants.
Ex. 6. Solve 2r + tex – (rt – s2) = 2ex.
Sol. Comparing the given equation with Rr + Ss + Tt + U(rt – s2) = V, we get

R = 2, S = 0, T = ex, U = –1 and V = 2ex. ... (1)
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Hence the =–quadratic =2(UV + RT) + =SU + U2 = 0    gives    =2(2ex – 2ex) + := × 0) + 1 = 0.
Since the coefficient of =2 and = in the above quadratic vanish, it follows from the theory of

equations that its both the roots must be infinite. Thus =1 = =2 = >. Since the two roots are equal
there would be only one intermediate integral which is given by

         Udy + =1Tdx + =1Udp = 0     and Udx + =2Rdy + =2Udq = 0,
i.e., by         (U/=1)dy + Tdx + Udq = 0           and (U/=2)dx + Rdy + Udq = 0,
i.e., by exdx – dp = 0  using (1)           and 2dy – dq = 0, using (1)
Integrating these         ex – p = c1           and      2y – q = c2.

Solving these,     p = ex – c1           and      q = 2y – c2.
Now,     dz = pdx + qdy = (ex – c1)dx + (2y – c2)dy.
Integrating, z = ex – c1x + y2 – c2y + c3,

which is complete integral, c1, c2, c3 being arbitrary constants.
Ex. 7. Solve r + t – (rt – s2) = 1.
Sol. Comparing the given equation with              Rr + Ss + Tt + U(rt – s2) = V,
     R = 1,           S = 0, T = 1,     U = –1,       V = 1. ...(1)

So =–quadratic =2(UV + RT) + =US + U2 = 0 becomes (0 × =2) + (0 × =; + 1 = 0. Since the
coeffieicnts of both =2 and = are zero, so both roots of this quadratic are equal to >. So 1 2λ = λ = >

Now, the only one intermediate integral is given by equations
    Udy + =9Tdx + =9Udp = 0       and =9Rdy + Udx + =9Udq = 0
On dividing each term by = 9as =9 is infinite, the above equations become

or (1/=9) × Udy + Tdx + Udp = 0 and        Rdy + (1/=9) × Udx + Udq = 0

or Tdx + Udp = 0,    as     1= ) >      and Rdy + Udq = 0, as =9 = >

or  dx – dp = 0 and dy – dq = 0, using (1)
Integrating, p – x = c1 and q – y = c2. ...(2)
Solving (2) for p and q, p = x + c1 and q = y + c2.
Putting these values of p and q in dz = pdx + qdy, we get       dz = (x + c1)dx + (y + c2)dy
Integrating, z = x2/2 + c1x + y2/2 + c2y + c3,

which is the required integral, c1, c2, c3 being arbitrary constants.
Ex. 8. Solve 2pr + 2qt – 4pq (rt – s2) = 1.
Sol. Comparing the given equation with Rr + Ss + Tt + U(rt – s2) = V, we have

R = 2p, S = 0,        T = 2q,       U = –4pq,         V = 1. ...(1)
Then the =–quadratic =2(UV + RT) + =SU + U2 = 0 becomes (0 × =2 )+ (0 × =; + 4p2q2 = 0.

Since the coefficients of both =2 and = are zero, so both roots of the =∃ quadratic are equal to >.
So 1 2λ = λ = .>

Now the only intermediate integral is given by the equation
Udy + =9Tdx + =9Udp = 0 and =9Rdy + Udx + =9Udq = 0
On dividing each term by =9 as =9 is infinite, the above equations become

(9/=9) × Udy + Tdx + Udp = 0 and Rdy + (9/=9)×Udx + Udq = 0
or 2qdx – 4pqdp = 0 and 2pdy – 4pqdq = 0, using (1)
or 2pdp – dx = 0 and 2qdq – dy = 0.
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Integrating, p2 – x = c1 and q2 – y = c2.
Hence p = ± (c1 + x)1/2 and q = ± (c2 + y)1/2

Putting values of p and q in dz = pdx + qdy gives dz = ± (c1+ x)1/2dx ± (c2 + y)1/2dy.
Integrating, z = ± (2/3) × (c1 + x)3/2 ± (2/3) × (c2 + y)3/2 + c3/2

or 3z = ± 2(c1 + x)3/2 ± 2(c2 + y)3/2 + c3,
which is the complete integral, c1, c2, c3 being arbitrary constants.

Ex. 9. Solve (1 + q2)r – 2pqs + (1 + p2)t + (1 + p2 + q2)–1/2 (rt – s2) = – (1 + p2 + q2)3/2.
Sol. Comparing the given equation with Rr + Ss + Tt + U(rt – s2) = V, we get

R = 1 + q2,      S = –2pq,    T = 1 + p2,      U = (1 + p2 + q2)–1/2,    V = – (1 + p2 + q2)3/2      ...(1)
Now, the =–quadratic =2(UV + RT) + =SU + U2 = 0 becomes
=2 {– (1 + p2 + q2) + (1 + q2)(1 + p2)}– 2pq (1 + p2 + q2)–1/2= + (1 + p2 + q2)–1 = 0

or p2q2(1 + p2 + q2)=2 – 2pq(1 + p2 + q2)1/2 = + 1 = 0
or {pq(1 + p2 + q2)1/2= – 1}2 = 0   so that =1 = =2 = 1/pq(1 + p2 + q2)1/2.

Here there is only intermediate integral given by equations
Udy + =1Tdx + =1Udp = 0 and Udx + =2Rdy + =2Udq = 0

or 1
1 2 2 1 2( ) /# #p q

dy + 
1

1

2

2 2 1 2
#

# #
p

pq p q( ) / dx + 
dp

pq p q( )1 2 2# #
= 0, by (1)

and 1
1 2 2 1 2( ) /# #p q

dx + 1
1

2

2 2 1 2
#

# #
q

pq p q( ) / dy + dq
pq p q( )1 2 2# #

= 0, by (1)

or pqdy + (1 + p2)dx + [1/(1 + p2 + q2)1/2]dp = 0 ...(2)
and pqdx + (1 + q2)dy + {1/(1 + p2 + q2)1/2}dq = 0. ...(3)

Eliminating dy between (2) and (3),  {(1 + p2)(1 + q2) – p2q2}dx + ( )
( ) /

1
1

2

2 2 1 2
# ∃

# #
q dp pqdq

p q
= 0

or (1 + p2 + q2)dx + 
( ) ( )

( ) /
1

1

2 2 2

2 2 1 2
# # ∃ #

# #
p q dp p dp pqdq

p q
= 0

or dx + dp
p q( ) /1 2 2 1 2# #

– p pdp qdq
p q2

2 2
1 2 2 3 2

#
# #( ) / = 0 or 2 2 1/ 2 0

(1 )
pdx d

p q
? %& &# )≅ ∋

# #& &Α (

Integrating,   x + p(1 + p2 + q2)–1/2 = a, where a is an arbitrary constant. ...(4)
Similarly, eliminating dx between (2) and (3), we have

   y + q(1 + p2 + q2)–1/2 = b, where b in an arbitrary constant. ...(5)
From (4) and (5), x – a = –p(1 + p2 + q2)–1/2,        y – b = –q(1 + p2 + q2)–1/2.

+
x a
y b

∃
∃

= p
q

so that          p = x a
y b

∃
∃

q.   ...(6)

Putting the above value of p in (4), we have

   x + q x a
y b

∃
∃

1 2
2

2
2

1 2

# ∃
∃

#
RST

UVW
∃

q x a
y b

q( )
( )

/

= a   or   (x – a) + x a
y b

∃
∃

q 1
2 2

2
2

1 2

# ∃ # ∃
∃

L
NM

O
QP

∃
( ) ( )

( )

/
x a y b

y b
q = 0

or 1 + ( ) ( )
( )

x a y b
y b

q∃ # ∃
∃

2 2

2
2 = q

y b

2

2( )∃
or (y – b)2 = q2[1 – {(x – a)2 + (y – b)2}].
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Thus, q = (y – b)/ 2 2 1/ 2[1 {( ) ( ) }]x a y b∃ ∃ # ∃ . ... (7)

Now,  (6) and (7) − p =
x a
y b

q
∃
∃

= x a
x a y b

∃
∃ ∃ # ∃[ {( ) ( ) }] /1 2 2 1 2 . ... (8)

+  dz = pdx + qdy = ( ) ( )
[ {( ) ( ) }] /

x a dx y b dy
x a y b
∃ # ∃

∃ ∃ # ∃1 2 2 1 2 , by (7) and (8)

Integrating, z = [1 – {(x – a)2 + (y – b)2}]1/2 + c or (z – c)2 = 1 – {(x – a)2 + (y – b)2}
+    (x – a)2 + (y – b)2 + (z – c)2 = 1 is the complete integral, a, b, c being arbitrary constants.
9.13 Type 2. When the roots of = –quadratic (8) of Art 9.11 are distinct.

Solved Examples of Type –2 based on Rr + Ss + Tt + U(rt – s2) = V
Ex. 1. Solve 3s + rt – s2 = 2.
Sol. Given 3s + (rt – s2) = 2. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, R = 0, S = 3, V = 0, U = 1, V = 2.     ...(2)
=–quadratic is         =2(UV + RT) + =US + U2 = 0 ...(3)
Using (2), (3) reduces to 2=2 + 3= + 1 = 0 so =1 = –1, =2 = –(1/2). ... (4)
Two integrals of (1) are given by the following sets

Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0.

... (5)

and Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0.

... (6)

Using (2) and (4), (5) and (6) respectively gives
dy – dp = 0 or  dp – dy = 0
dx – (1/2)dq = 0 or dq – 2dx = 0

... (5A)

and dy – (1/2)dp = 0 or dp – 2dy = 0
dx – dq = 0 or  dq – dx = 0.

... (6A)

Integration of (5A) and (6A) respectively gives
          p – y = c1,           q – 2x = c2 ...(5B)

and          p – 2y = c3,            q – x = c4, ...(6B)
where c1, c2, c3 and c4 are arbitrary constants.

From (5B) and (6B), two intermediate integrals of (1) are given by
p – y = f(q – 2x) and      p – 2y = F(q – x), ...(7)

where f and F are arbitrary functions.
Let q – 2x = Β, ...(8)

and q – x = Χ. ...(9)
Then from (7) p – y = f(Β), ...(10)

and p – 2y = F(Χ). ...(11)
[If we treat Β and Χ as constants, then solution of four simultaneous equation (8), (9), (10)

and (11) would show that x, y, p and q are all constants which is absurd. Hence Β and Χ will be
regarded as variables (parameters) and we will get the general solution in parametric form involving
Β and Χ as parameters].

Solving (8) and (9) for x and (10) and (11) for y, we have
x = Χ – Β ...(12)

and y = f(Β) – F(Χ). ...(13)
From (10)      p = y + f(Β). ...(14)

%
∋
(
%
∋
(

%
∋
(

%
∋
(
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From (9) q = x + Χ. ...(15)
From (12) and (13),         dx = dΧ – dΒ,     and  dy = f 0(Β)dΒ – F 0 (Χ)dΧ. ...(16)

+    dz = pdx + qdy = [y + f(Β)]dx + (x + Χ)dy, using (14) and (15)
or dz = ydx + xdy + f(Β)dx + Χdy = d(xy) + f(Β)(dΧ – dΒ) + Χ[f 0(Β)dΒ – F 0(Χ)dΧ], by (16)

   Thus, dz = d(xy) + [f(Β)dΧ + Χf 0 (Β)dΒ] – f(Β)dΒ – ΧF 0 (Χ)dΧ
or         dz = d(xy) + d[Χf(Β)] – f(Β)dΒ – ΧF 0(Χ)dΧ.

Integrating and using integration by parts in the last term on R.H.S. of the above equation,

we get z = xy + Χf(Β) – ( ) [ ( ) 1 ( ) ]f d F F dΒ Β ∃ Χ Χ ∃ ∆ Χ Χ8 8
or z = xy + Χ[f(Β) – F(Χ)] – f d F d( ) ( )Β Β Χ Χ# zz . ...(17)

Let f d( )Β Βz = !(Β) and F d( )Χ Χz = ∗(Χ) ...(18)

so that f(Β) = !0(Β) and F(Χ) = ∗0(Χ) ...(19)
Using (18) and (19), (12), (13) and (17) give

x = Χ – Β, y = !0(Β) – ∗0(Χ)            z =xy + Χ[!0(Β) – ∗0(Χ)] – !(Β) + ∗(Χ)
which is the required solution in parametric form, ! and ∗ being arbitrary functions and Β and Χ
being parameters.

Ex. 2. Solve r + 4s + t + rt – s2 = 2. [I.A.S. 1979]
Sol. Given                 r + 4s + t + (rt – s2) = 2. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V,  R = 1,  S = 4,   T = 1,  U = 1,  V = 2. ...(2)
=–quadratic is     =2(UV + RT) + =US + U2 = 0. ...(3)
Using (2), (3) reduces to 3=2 + 4= + 1 = 0 so =1 = –1,       =2 = –(1/3).
Two integrals of (1) are given by the following sets

Udy + =1Tdx + =2Udp = 0
Udx + =2Rdy + =2Udq = 0

... (5)

Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0 ... (6)

Using (2) and (4), (5) and (6) respectively gives
dy – dx – dp = 0 or  dp + dx – dy = 0
dx – (1/3) × dy – (1/3) × dq = 0 or dq + dy – 3dx = 0 ... (5A)

dy – (1/3) × dx – (1/3) × dp = 0 or dp + dx – 3dy = 0
dx – dy – dq = 0 or   dq + dy – dx = 0 ... (6A)

Integration of (5A) and (6A) respectively gives
p + x – y = c1, q + y – 3x = c2 ...(5B)

and p + x – 3y = c3, q + y – x = c4, ...(6B)
where c1, c2, c3 and c4 are arbitrary constants.
From (5B) and (6B), two intermediate integrals of (1) are given by

p + x – y = f(q + y – 3x) and p + x – 3y = F(q + y – x). ...(7)
Let q + y – 3x = Β, ...(8)

and q + y – x = Χ. ...(9)
Then from (7), p + x – y = f(Β), ...(10)

and p + x – 3y = F(Χ). ...(11)
Here Β and Χ are treated as parameters. Solving (8) and (9) for x and (10) and (11) for y gives
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9.42 Monge’s Methods

x = (Χ – Β)/2 ...(12)
and y = [f(Β) – F(Χ)]/2 ...(13)

From (10), p = y – x + f(Β) ...(14)
From (9), q = x – y + Χ ...(15)
From (12) and (13), dx = (1/2) × (dΧ – dΒ), dy =(1/2) × [f 0(Β)dΒ – F 0(Χ)dΧ].   ...(16)
+    dz = pdx + qdy = [y – x + f(Β)]dx + (x – y + Χ)dy, by (14) and (15)
           = ydx + xdy – xdx – ydy + f(Β)dx + Χdy
                = d(xy) – xdx – ydy + f(Β) × (1/2)×(dΧ – dΒ) + Χ × (1/2)×[f 0(Β)dΒ – F 0(Χ)dΧ], by (16)
          = d(xy) – xdx – ydy + (1/2) × [f(Β)dΧ + Χf 0(Β)dΒ] – (1/2) × f(Β)dΒ – (1/2) × ΧF 0(Χ)dΧ

or 2dz = 2d(xy) – 2xdx – 2ydy + d[Χf(Β)] – f(Β)dΒ – ΧF 0(Χ)dΧ.
Integrating and using integration by parts in the last term on R.H.S. of the above equation,

we get 2z = 2xy – x2 – y2 + Χf(Β) – ( ) [ ( ) 1 ( ) ]f d F F dΒ Β ∃ Χ Χ ∃ ∆ Χ Χ8 8
or 2z = 2xy – x2 – y2 + Χ[f(Β) – F(Χ)] – f d F d( ) ( )Β Β Χ Χz z# . ...(17)

Let f d( )Β Βz = !(Β) and F d( )Χ Χz = ∗(Χ) ...(18)

so that f(Β) = !0(Β) and F(Χ) = ∗0(Χ). ...(19)
Using (18) and (19), (12), (13) and (17) give

2x = Χ – Β,        2y = !0(Β) – ∗0(Χ),      2z = 2xy – x2 – y2 + Χ[!0(a) – ∗0(Χ)] – !(Β) + ∗(Χ)
which is the required solution in parametric form, Β and Χ being parameters and ! and ∗ being
arbitrary functions.

Ex. 3. Solve rt – s2 + 1 = 0
Sol. Given that         0.r + 0.s + 0.t + (rt – s2) = –1. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, R = 0, S = 0, T = 0, U = 1 and V = –1.  ...(2)
Here =–quadratic =2(UV + RT) + =US + U2 = 0 ...(3)

becomes =2 – 1 = 0 so that =1 = –1 and      =2 = 1.  ...(4)
Since the two values of = are distinct, we shall get two intermediate integrals which are given

by the following sets of equations
Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0 ... (5A)

Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0 ... (5B)

Using (2) and (4), equations (5) and (6) reduces to
dy – dp = 0 i.e., dp – dy = 0
dx + dq = 0 i.e., dq + dx = 0 ... (5A)
dy + dp = 0 i.e., dp + dy = 0
dx – dq = 0 i.e., dq – dx = 0 ... (6A)

Integrating of (5A) and (6A) respectively gives
p – y = c1, q + x = c2. ...(5B)

and p + y = c3, q – x = c4, ...(6B)
where c1, c2, c3 are c4 are arbitrary constants

From (5B) and (6B), two intermediate integrals are given by
p – y = f(q + x) and p + y = F(q – x), ...(7)
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where f and F are arbitrary functions.
Let q + x = Β ...(8)

and q – x = Χ. ...(9)
Then, from (7), p – y = f(Β) ...(10)

and p + y = F(Χ). ...(11)
In what follows Β and Χ will be regarded as parameters. Solving (8) and (9) for x and (10) and

(11) for y, we have
x = (Β – Χ)/2 ...(12)

and y = [F(Χ) – f(Β)]/2 ...(13)
From (10), p = y + f(Β) ...(14)
From (9), q = x + Χ. ...(15)
From (12) and (13),   dx = (1/2) × (dΒ – dΧ), dy = (1/2) × [F 0(Χ)dΧ – f 0(Β)dΒ].   ...(16)
+        dz = pdx + qdy = [y + f(Β)]dx + (x + Χ)dy, using (14) and (15)

= (ydx + xdy) + f(Β)dx + Χdy
= d(xy) + f(Β) × (1/2) × (dΒ – dΧ) + Χ × (1/2) × [F 0(Χ)dΧ – f 0(Β)dΒ], by (16)
= d(xy) + (1/2) × f(Β)dΒ – (1/2) × [f(Β)dΧ + Χf 0(Β)dΒ] + (1/2) × ΧF 0(Χ)dΧ

or         2dz = 2d(xy) + f(Β)dΒ – d[Χf(Β)] + ΧF 0(Χ)dΧ.
Integrating both sides and using integration by parts in the last term on the R.H.S., we obtain

2z = 2xy + f d f F F d( ) ( ) ( ) ( )Β Β Χ Β Χ Χ Χ Χ# # ∃ zz . ...(17)

Let f d( )Β Βz = !(Β) and     F d( )Χ Χz = ∗(Χ) ...(18)

so that f(Β) = !0(Β) and      F(Χ) = ∗0(Χ). ...(19)
Using (18) and (19), (12), (13) and (17) may be re–written as

2x = (Β – Χ),          2y = ∗0(Χ) – !0(Β),     2z = 2xy – !(Β) + Χ{!0(Β) + ∗0(Χ)} – ∗(Χ)
which is the required solution in parametric form, Β and Χ being parameters and ! and ∗ being
arbitrary functions.

Ex. 4. Solve r + 3s + t + (rt – s2) = 1. [Rohilkhand 1995]
Sol. Given r + 3s + t + (rt + s2) = 1 ... (1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V,    R = 1, S = 3, T = 1, U = 1, V = 1. ...(2)
Now, =–quadratic is =2(UV + RT) + =US + U2 = 0 ...(3)

or     2=2 + 3= + 1 = 0          so that   = = –1,     –1/2. Here   =1 = –1,     =2 = –1/2. ...(4)
Two intermediate integrals of (1) are giving by the following sets

Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0 ... (5)

Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0 ... (6)

Using (2) and (4), equations (5) and (6) reduces to
dy – dx – dp = 0 i.e.,          dp + dx – dy = 0
dx – (1/2) × dy – (1/2) × dq = 0 i.e.,               dq – 2dx + dy = 0    

... 5(A)

and dy – (1/2) × dx – (1/2) × dp = 0 i.e.,         dp + dx – 2dy = 0
dx – dy – dq = 0 i.e.,            dq – dx + dy =0     

...(6A)
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9.44 Monge’s Methods

Integrating of (5A) and (6A) respectively gives
p + x – y = c1, q – 2x + y = c2 ...(5B)

and p + x – 2y = c3, q – x + y = c4, ...(6B)
where c1, c2, c3 and c4 are arbitrary constants

From (5B) and (6B), two intermediate integrals are given by
p + x – y = f(q – 2x + y) and p + x – 2y = F(q – x + y), ...(7)

where f and F are arbitrary functions
Let q – 2x + y = Β ...(8)

and q – x + y = Χ. ...(9)
Then, from (7) p + x – y = f(Β) ...(10)

and p + x – 2y = F(Χ). ...(11)
In what follows, Β and Χ will be regarded as parameters. Solving (8) and (9) for x and (10) and

(11) for y, we have
x = Χ – Β ...(12)

and y = f(Β) – F(Χ). ...(13)
From (10), p = y – x + f(Β) ...(14)
From (9), q = x – y + Χ. ...(15)
From (12) and (13), dx = dΧ – dΒ, dy = f 0(Β)dΒ – F 0(Χ)dΧ. ...(16)
+         dz = pdx + qdy = [y – x + f(Β)]dx + [x – y + Χ]dy, using (14) and (15)

= –(x – y) (dx – dy) + f(Β)dx + Χdy
= –(x – y) d(x – y) + f(Β) (dΧ – dΒ) + Χ[f 0(Β)dx – F 0(Χ)dΧ], by (16)
= –(x – y) d(x – y) – f(Β) dΒ + {f(Β)dΧ + Χf 0(Β)dΒ} – ΧF 0(Χ)dΧ

or         dz = –(x – y) d(x – y) – f(Β) dΒ + d[Χf(Β)] – ΧF 0(Χ)dΧ.
Integrating both sides and using integration by parts in the last term on the R.H.S., we obtain

z = –(1/2) × (x – y)2 – f d f F F d( ) ( ) ( ) ( )Β Β Χ Β Χ Χ Χ Χz z# ∃ ∃L
NM

O
QP . ...(17)

Let f d( )Β Βz = !(Β) and                F d( )Χ Χz = ∗(Χ)  ...(18)
so that    f(Β) = !0(Β) and              F(Χ) = ∗0(Χ).  ...(19)

Using (18) and (19), (12), (13) and (17) may be written as
x = Χ – Β,         y = !0(Β) – ∗0(Χ),      z = – (1/2)× (x – y)2 – !(Β) + ∗(Χ) + Χ[!0(Β) – ∗0(Χ)]
which is the required solution in parametric form, Β and Χ being parameters, and ! and ∗ being
arbitrary functions.

Ex. 5. Solve rt – s2 + a2 = 0. [Rohilkhand 1993]
Sol. Given that 0.r + 0.s + 0.t + (rt – s2) = –a2. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, R = 0, S = 0, T = 0, U = 1, V = –a2.    ...(2)
Then, the =–quadratic =2(UV + RT) + =SU + U2 = 0 ...(3)

becomes –=2a2 + 1 = 0 or = = ± 1/a. So =1 = 1/a, =2 = –1/a.   ...(4)
Two intermediate integrals of (1) are given by the following two sets

Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0

... (5)

and Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0

... (6)
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Using (2) and (4), equations (5) and (6) reduce to
dy + (1/a) × dp = 0 i.e.,  dp + ady = 0
dx – (1/a) × dq = 0 i.e., dq – adx = 0

... (5A)

and dy – (1/a) × dp = 0 i.e., dp – ady = 0
dx + (1/a) × dq = 0 i.e.,              dq + adx = 0. ... (6A)

Integration of (5A) and (6A) respectively gives
p + ay = c1, q – ax = c2 ...(5B)

and p – ay = c3, q + ax = c4. ...(6B)
where c1, c2, c3 and c4 are arbitrary constants

From (5B) and (6B), two intermediate integrals are given by
p + ay = f(q – ax)     and                    p – ay = F(q + ax). ...(7)

where f and F are arbitrary functions
Let q – ax = Β ...(8)

and q + ax = Χ. ...(9)
Then, from (7) p + ay = f(Β) ...(10)

and p – ay = F(Χ). ...(11)
In what follows, Β and Χ will be regarded as parameters. Solving (8) and (9) for x and (10)

and (11) for y, we have
x = (1/2a) × (Χ – Β) ...(12)

and y = (1/2a) × [f(Β) – F(Χ)]. ...(13)
From (10), p = f(Β) – ay. ...(14)
From (9), q = Χ – ax. ...(15)
From (12) and (13),   dx = (1/2a) × (dΧ – dΒ),  dy = (1/2a) × [f 0(Β)dΒ – F 0(Χ)dΧ] ...(16)
+ dz = pdx + qdy = [f(Β) – ay]dx + (Χ – ay)dy, using (14) and (15)

= f(Β)dx + Χdy – a(ydx + xdy)
= f(Β) × (1/2a) × (dΧ – dΒ) + Χ × (1/2a) × [f 0(Β)dΒ – F 0(Χ)dΧ] – ad(xy), by (16)

or 2adz = {f(Β)dΧ + Χf 0(Β)dΒ} – f(Β)dΒ – 2a2d(xy) – ΧF 0(Χ)dΧ.
Integrating both sides and using the formula for integration by parts in the last term on R.H.S.,

we have

2az = Χf(Β) – f d a xy F F d( ) ( ) ( )Β Β Χ Χ Χ Χ∃ ∃ ∃ zz 2 2 . ...(17)

Let f d( )Β Βz = !(Β)       and               F d( )Χ Χz = ∗(Χ)  ...(18)
so that f(Β) = !0(Β)       and                     F(Χ) = ∗0(Χ). ...(19)

Using (18) and (19), (12), (13) and (17) reduces to
2ax = Χ – Β,             2ay = !0(Β) – ∗0(Χ),        2az = Χ[!0(Β) – ∗0(Χ)] – !(Β) – 2a2xy + ∗(Χ).
which is the required solution in parametric form, Β, Χ, being parameters and !(Β) and ∗(Χ) being
arbitrary functions.

Ex. 6. Solve 7r – 8s – 3t + (rt – s2) = 36.
Sol. Given that 7r – 8s – 3t + (rt – s2) = 36. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, R = 7, S = –8, T = –3, U = 1, V = 36.   ...(2)
The =–quadratic                               =2(UV + RT) + =US + U2 = 0 ...(3)

becomes 15=2 – 18= + 1 = 0 or   (5= – 1)(3= – 1) = 0. So =1 = 1/5,  =2 = 1/3.    ...(4)
Two intermediate integrals of (1) are given by the following sets
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Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0

... (5)

Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0 ... (6)

Using (2) and (4), equations (5) and (6) reduce to
 dy + (1/5) × (–3)dx + (1/5) × dp = 0 i.e.,      dp – 3dx + 5dy = 0
   dx + (1/3) × 7 dy + (1/3) × dq = 0             i.e.,      dq + 7dy + 3dx = 0

... (5A)

 dy + (1/3) × (–3)dx + (1/3) × dp = 0 i.e.,      dp – 3dx + 3dy = 0
    dx + (1/5) × 7dy + (1/5) × dq = 0 i.e.,      dq + 7dy + 5dx = 0

... (6A)

Integrating of (5A) and (6A) respectively, gives
p – 3x + 5y = c1, q + 7y + 3x = c2 ...(5B)

and p – 3x + 3y = c3, q + 7y + 5x = c4, ...(6B)
where c1, c2 c3 and c4 are arbitrary constants

From (5B) and (6B), two intermediatre integrals are given by
p – 3x + 5y = f(q + 7y + 3x) and p – 3x + 3y = F(q + 7y + 5x)   ...(7)

where f and F are arbitrary functions
Let q + 7y + 3x = Β ...(8)

and q + 7y + 5x = Χ. ...(9)
Then, from (7) p – 3x + 5y = f(Β) ...(10)

and p – 3x + 3y = F(Χ). ...(11)
In what follows, Β and Χ will be regarded as parameters. Solving (8) and (9) for x and (10)

and (11) for y, we have
x = (Χ – Β)/2 ...(12)

and y = [f(Β) – F(Χ)]/2 ...(13)
From (10), p = f(Β) + 3x – 5y. ...(14)
From (9), q = Χ – 7y – 5x. ...(15)
From (12) and (13), dx = (1/2) × (dΧ – dΒ),  dy = (1/2) × {f 0(Β)dΒ – F 0:Χ; dΧ}.  ...(16)
+   dz = pdx + qdy = {f(Β) + 3x – 5y}dx + {Χ – 7y – 5x)dy, using (14) and (15)

      = 3xdx – 7ydy – 5(ydx + xdy) + f(Β)dx + Χdy
      = 3xdx – 7ydy – 5d(xy) + f(Β) × (1/2) × (dΧ – dΒ) + Χ × (1/2) × {f 0(Β)dΒ – F 0(Χ)dΧ}

or                   2dz = 6xdx – 14ydy – 10d(xy) + {f(Β)dΧ + Χf 0(Β)dΒ} – f(Β)dΒ – ΧF 0(Χ)dΧ
or                   2dz = 6xdx – 14ydy – 10d(xy) + d{Χf(Β)} – f(Β)dΒ – ΧF 0(Χ)dΧ.

Integrating both sides and using the formula for integrating by parts in the last term on R.H.S.,
we have

2z = 3x2 – 7y2 – 10xy + Χf(Β) – f d( )Β Βz – [ΧF(Χ) – F d( )Χ Χz ]

or 2z = 3x2 – 7y2 – 10xy + Χ[f(Β) – F(Χ)] – f d F d( ) ( )Β Β Χ Χ# zz . ...(17)

Let f d( )Β Βz = !(Β) and F d( )Χ Χz = ∗(Χ) ...(18)
so that f(Β) = !0(Β) and F(Χ) = ∗0(Χ) ...(19)

Using (18) and (19), relation (12), (13) and (17) become
x = (1/2) × (Χ – Β), y = (1/2) × [!0(Β) – ∗0(Χ)], 2z = 3x2 – 7y2 – 10xy + Χ[!0(Β) – ∗0(Χ)] – !(Β) + ∗(Χ).
which is required solution in parametric form, Β and Χ being parameters and !(Β) and ∗(Χ) being
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arbitrary functions.
9.14 Miscellaneous examples on Rr + Ss + Tt + U(rt – s2) = V.

In some problems only one intermediate integral is possible. Sometimes even after getting
two intermediate integrals, it may not be possible to get p and q from those intermediate integrals.
In such problems, final solution is obtained by integrating only one intermediate integral by the
methods of solution of first order equation, for example, Charpit’s method. Again, we can avoid
Charpit’s method by taking u1 = !1(v1) and u2 = constant = = (say) to obtain final solution. [Here
we have assumed that u1 = !1(v1) and u2 = !2(v2) are two intermediate integrals]. Since an arbitrary
constant can be regarded as a particular case of an arbitrary function, the values of p and q derived
from u1 = !1(v1) and u2 = = will make dz = pdx + qdy integrable. The complete integral so obtained
will involve one arbitrary funtion !1 and two arbitrary constants, namely, = and the constant of
integration. To obtain the general integral, express one of the arbitrary constant as an arbitrary
function of the other and eliminate this remaining constant between the equation so obtained and
that deduced from it by differentiation with respect to that constant.

Ex. 1. Obtain the intermediate integral of 2yr + (px + qy)s + xt – xy(rt – s2) = 2 – pq.
[Rohilkhand 1992]

Sol. Given 2yr + (px + qy)s + xt – xy(rt – s2) = 2 – pq. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, we have
R = 2y,       S = px + qy,            T = x,            U = –xy,         V = 2 – pq.   ...(2)
Now,  =–quadratic =2(UV + RT) + =US + U2 = 0 ...(3)

reduces to =2[2yx – xy(2 – pq)] + =[–xy(px + qy)} + x2y2 = 0
or =2pq – =(px + qy) + xy = 0 or        (=p – y)(=q – x) = 0
or       = = y/p, x/p           so that    =1 = y/p and       =2 = x/q.  ...(4)

Two intermediate integrals are given by the following sets
Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0

... (5)

Udy + =2Tdx + =2Udp = 0
Udx + =1Rdy + =1Udq = 0.

... (6)

Using (2) and (4), equations (5) and (6) reduce to
    –xydy + (y/p)xdx + (y/p)(–xy)dp = 0 i.e.,          (pdy + ydp) – dx = 0

and    –xydx + (x/q)(2y)dy + (x/q)(–xy)dq = 0 i.e.,        (qdx + xdq) – 2dy = 0.
... (5A)

     –xydy + (x/q)xdx + (x/q)(–xy)dp = 0 i.e.,     –qydy + xdx – xydp = 0
and     –xydx + (y/p)(2y)dy + (y/p)(–xy)dq = 0 i.e.,    –pxdx + 2ydy – xydq = 0 ...(6A)

Integrating (5A), py – x = c1        and                  qx – 2y = c2
Hence one intermediate integral is        py – x = !(qx – 2y). ...(7)
Note, the equation (6A) cannot be integrated. Hence in this problem we can obtain only one

intermediate integral, i.e., (7). Here !  is an arbitrary function.
Ex. 2. Solve qr + (p + x)s + yt + y(rt – s2) + q = 0. [Rohilkhand 1992]
Sol. Given qr + (p + x)s + yt + y(rt – s2) = –q. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, we have
R = q, S = p + x, T = y, U = y           and T = –q.       ...(2)

Now, the =–quadratic =2(UV + RT) + =SU + U2 = 0 ...(3)
reduces to (0 × =2) + =y(p + x) + y2 = 0. Since coefficient of =2 is zero, it follows that its one root
is >. The other root is –y/(p + x).

Let =1 = –y/(p + x)    and            =2 = >. ...(4)
One intermediate integral is given by the following sets
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9.48 Monge’s Methods

Udy + =1Tdx + =1Udp = 0 ,i.e., Udy + =1Tdx + =1Udp = 0
Udx + =2Rdy + =2Udq = 0         (1/=2)×Udx + Rdy + Udq = 0.

... (5)

Using (2) and (4), equations of (5) reduce to

ydy – y
p x

dx y
p x

2 2

#
∃

#
dp = 0           i.e.         dp dx

p x
dy
y

#
#

∃ = 0
... (5A)

and                 qdy + ydq = 0           i.e.,                   d(yq) = 0
Integrating (5A), log (p + x) – log y = log c1    or        (p + x)/y = c1  ...(6)

and                                      yq = c2, c2 being an arbitrary constant ...(7)

From (6) and (7), an intermediate integral is given by qy = f p x
y
#F
HG
I
KJ . ...(8)

Charpit’s auxiliary equations for (8) are  dx

y
f ' p x

y
∃ #F
HG
I
KJ

1
=

dy
y

=
dp

y f ' p x
y

1 #F
HG
I
KJ

. ...(9)

Taking the first and third fractions of (9), we have
               dx + dp = 0     so that        x + p = c, where c is an arbitrary constant.   ...(10)

Solving (8) and (10) for p and q, p = c – x   and      q = (1/y) × f(c/y).
Putting these values of p and q in dz = pdx + qdy,       dz = (c – x)dx + (1/y) × f(c/y)dy.
Integrating,     z = cx – x2/2 + F(c/y) + G(=),

which is the complete integral, F and G being arbitrary functions.
Ex. 3. Solve qxr + (x + y)s + pyt + xy (xt – s2) = 1 – pq.
Sol. Given qxr + (x + y)s + pyt + xy(rt – s2) = 1 – pq. ...(1)
Comparing (1) with Rs + Ss + Tt + U(rt – s2) = V, we have
R = qx, S = x+y, T = py, U = xy       and   V = 1– pq ...(2)
Now, the =–qaudratic =2(UV+RT) + =US + U2 = 0 ...(3)

reduces to =2 [qxpy+xy (1 – pq)] + =xy (x + y) + x2y2 = 0
or =2+ (x + y)= + xy = 0 or (= + x) (= + y) = 0      so that = = –x , – y.

Let =1 = –x and =2 = –y. ...(4)
Two intermediate integrals are given by the following two sets :

Udy + =1T dx + =1Udp = 0 ...(5)
Udx + =2 Rdy + =2Udq = 0

and Udy + =2Tdx + =2Udp = 0 ...(6)
Udx + =1 Rdy + =1Udq = 0.

Using (2) and (4), equation (5) and (6) reduce to
xydy – xpydx – x2 ydp = 0 i.e.,        (xdp + pdx) – dy = 0 ...(5A)

and xydx – yqxdy – yxydq = 0 i.e.,        (ydq + qdy) – dx = 0
xydy – ypydx – y xy dp = 0 i.e.,     xdy – pydx – xydp = 0 ...(6A)

and xydx – xyqdy – x2 ydq = 0            i.e.,     ydx – qxdy – xydq = 0
We observe that (5A) can be integrated whereas (6A) cannot the integrated. So we shall

obtain only one intermediate integral with help of (5A) :
Integrating (5A), px – y = c1 and qy – x = c2
Hence the only intermediate integral of (1) is given by

px – y = f(qy – x), where f is an arbitrary function. ...(7)
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Monge’s Methods 9.49

A general solution of (1) can be obtained by supposing the arbitrary function f occuring in
the intermediate integral (7) to be linear, giving

px – y = m(qy – x) + n, where m and n are arbitrary constants
or xp – myq = y – mx + n, which is in Lagrange’s form

Hence here Lagrange axuiliary equations are dx
x

= dy
my∃

= dz
y mx n∃ #

...(8)

From first and second fractions of (8), m(1/x)dx + (1/y)dy = 0
Integrating, m log x + log y = log a or xmy = a. ...(9)
Chossing m, 1/m, 1 as multipliers, each fraction of (8)

     = mdx m dy dz
mx m my y mx n

mdx m dy dz
n

# #
# ∃ # ∃ #

) # #( / )
( / ) ( )

( / )1
1

1 ...(10)

Taking first fraction of (8) and (10), we have
dx
x

mdx m dy dz
n

) # #( / )1 or dz
m

dy mdx n
x

dx# # ∃1 = 0.

Integrating,    z + (1/m)y + mx – n log x = b, b being an arbitrary constant ...(11)
From (9) and (11) the required general solution in

z + (1/m)y + mx – log xn = ∗(xmy), ∗ being an arbitrary function
Ex. 4. Solve (rt – s2) – s(sin x + sin y) = sin x sin y. [Meerut 1999]
Sol. Given 0.r – s(sin x + sin y) + 0.t + (rt – s2) = sin x sin y. ...(1)
Comparing (1) with Rr + Ss + Tt + U(rt – s2)= V, we have
R = 0, S = – (sin x + sin y), T = 0 , U = 1, V = sin x sin y. ...(2)
Now, the =–quadratic =2(UV + RT) + =US + U2 = 0. ...(3)

reduces to sin x sin y =2 – (sin x + sin y) = + 1 = 0
or (=sin x ∃ 1)(= sin y – 1) = 0 so that = = cosec x        or         cosec y.

Let          =1 = cosec x and       =2 = cosec y. ...(4)
Two intermediate integral are given by the following two sets :

Udy + =1Tdx + =1Udp = 0 ...(5)
Udx + =2 Rdy + =2Udq = 0

and Udy + =2 Tdx + =2Udp = 0 ...(6)
Udx + =1 Rdy + =1Udq = 0

Using (2) and (4), equations (5) and (6) reduce to
dy + cosec x dp = 0
dx + cosec y dq = 0 ...(5A)

dy + cosec y dp = 0 i.e.,  dp +sin y dy = 0 ...(6A)
and dx + cosec x dq = 0 i.e., dq + sin x dx = 0

We observe that (5A) cannot be integrated where as (6A) can be integrated. So we shall
obtain only one intermediate integral with help of (6A).

Integrating (6A) , p – cos y = c1 and q – cos x = c2.
Hence the only intermediate integral of (1) is given by

p – cos y = f(q – cos x), f being an arbitrary function. ...(7)
A general solution of (1) can be obtained by supposing the arbitrary function f occuring in

the the intermediate integral (7) to be linear, giving
p – cos y = m[q – cos x] + n, m, n being arbitrary constants

or p – mq = cos y – m cos x + n, which is in Lagrange’s from.

Its Lagrange’s auxiliary equations are    dx
1 =

dy
m∃ = dz

y m x ncos cos∃ #
. ...(8)

%
∋
(
%
∋
(

%
∋
(

%
∋
(

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



9.50 Monge’s Methods

From the first two fractions of (8), dy + mdx = 0 so that y + mx = a. ...(9)
Again, taking the first and third fractions of (8), we have
dz = (cos y – m cos x + n)dx = [cos (a – mx) – m cos x + n]dx, as from (9),      y = a – mx
Intergrating, z = – (1/m) × sin (a – mx) – m sin x + nx + (1/m) × b

or                 mz + sin y + m2 sin x – mnx = b, b being an arbitrary constants ...(10)
From (9) and (10), the required general solution of (1) is

mz + sin y + m2 sin x – mnx = !(y + mx),!  being an arbitrary function.
Ex. 5. Solve xqr + (p + q)s + ypt + (xy – 1) (rt – s2) + pq = 0.

Ans. z – log (x – m)n = !{(x – m)n (1 – my)
Ex. 6. Solve 2yr + (px + qy)s + xt – xy(rt – s2) = 2 – pq.

Ans. z + (1/m) × (a2 – mx2)1/2 + ( / )x m × sin–1( / )x m a  + 2mx = !(mx2 + y2)
Ex. 7. Solve ar + bs + ct + e(rt – s2) = h, where a, b, c, e and h are constants.
Sol. Comparing with Rr + Ss + Tt + U(rt – s2) = V, here R = a, S = b, T = c, U = e, V = h.
The =–quadratic =2 (UV + RT) + =SU + U2 = 0 gives (ac + eh)=2 + =be + e2 = 0.     ...(1)
Let = = –e/m. ...(2)

+ (1) reduces to m2 – bm + (ac + eh) = 0. ...(3)
Let m1 and m2 be the roots of (3). The first intermediate integral is given by

Udy + =1Tdx + =1Udp = 0 , where =1= –e/m1
and Udx + =2Rdy + =2Udq = 0 , where =2 = – e/m2
i.e., e dy – (e/m1)× c dx – (e/m1) × e dp    and   ex – (e/m2) × a dy – (e/m2) × e dq = 0
i.e., c dx + edp – m1 dy = 0        and          ady + edq – m2dx = 0.

Integrating, cx + ep – m1y = c1   and ay + eq – m2 x = c2.
So the first intermediate integral is                   cx + ep – m1y = !1(ay + eq – m2x). ...(4)
Proceding as before, the second intermediate integral is

cx + cp – m2y = !2(ay + eq – m1x). ...(5)
Notice that p and q cannot be determined from (4) and (5). Hence we proced as follows :
We also have,                cx + ep – m2y = c3 ...(6)
From (4) and (6), (m2 – m1)y = !1(ay + eq – m2x) – c3

+ ay + eq – m2x = ∗ 1{(m2 – m1)y + c3}] ...(7)
where ∗1 is the inverse function of !1.

From (7). q = (1/e) × [– ay + m2x + !1{(m2 – m1)y + c3}]
and from (6) p = (– cx + m2y + c3)/e.

Putting these values in dz = pdx + qdy, we get
edz = – (xdx – aydy + m2(xdy + ydx) + c3dx + !1{(m2 – m1)y + c3}dy

Integrating, ez = – (1/2) × cx2– (1/2) × ay2 + m2xy + c3x + F{(m2 – m1)y + c3} + k.

EXERCISE
Solve the following partial differential equation:
1. 3r + s + t + (rt – s2) = –9 [K.U. Kurukshetra 2004]
2. 3s – 2(rt – s2) = 2 3. 2r – 6s + 2t + (rt – s2) = 4

Objective problems
1. The equations R dpdy + T dqdx – V dxdy = 0 and Rdy2 – S dxdy + T dx2 = 0 are called

        Sol. Ans. Monge’s subsidiary equations. Refer Art. 9.2. [Meerut 2003].
2. Monge’s method is used to solve a partial differential equation of
    (a) nth order        (b) first order     (c) second order     (d) none of these [Agra 2007]

              Sol.  Ans. (c). Refer Art 9.2
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10
Transport Equation

10.1 INTRODUCTION
The hyperbolic character of a system of first order differential equations exhibits in the fact

that it is possible to have solutions whose derivatives are discontinuous and these discontinuities
propagate along the characteristic curves. In this chapter we propose to use the above fact and
derive a system of linear homogeneous ordinary differential equations  known as transport equation.
10.2 An IMPORTANT THEOREM

If the first order partial derivatives of a continuous function U (x, t), satisfying a system of
quasi-linear equations of first order on both sides of a curve C in xt-plane, are discontinuous
across a curve C, then the curve C must be a characteristic curve of the system of equations.

Proof : Suppose that the given first-order system of n quasi-linear partial differential differential
equations be given by

or
( / ) ( / ) 0, 1, 2, ..., ; 1, 2, ...,

( / ) ( / ) 0,
ij j ij j iA u t B u x C i n j n

A U t B U t C

! ! � ! ! � # # # ∃%
&

! ! � ! ! � # %∋
...(1)

where the n components u1, u2, ..., un of the column vector
U are dependent variables, A and B are n × n matrices and
C is a n × 1 column vector.

Let D be a domain in the xt-plane and let D1 and D2
be two portions of D separated by a curve C such that D1 is
on the left and D2 on the right of C as shown in the adjoining
figure. Let U1 be the genuine solution of (1) in the domain
D1 and U2 that in the domain D2. Suppose that the limiting
value Ul of U1 as we approach a point P on C from the
domain D1 and the limiting value Ur as we approach P from
the domain D2 exist and are such that Ul = Ur at every point
of the curve C. Let a function U be defined in the domain
D such that

1 1

2 2

in
in

U D
U

U D
(

# )
∗

...(2)

The function U given by (2) is a genuine solution of (1) in D1 and D2 respectively. The
function U is continuous in D but its derivatives may be discontinuous across the curve C. Suppose
that the limiting values of the derivatives of U as we approach P on the curve C from the two
domains D1 and D2 exist. Also assume that these derivative, if discontinuous across the curve C,
have only a finite jump across the curve C.

Let the equation of the curve C be ( , ) 0=x t+ and let η( , )x t be any other function independent
of +  such that +  and η  are sufficiently smooth and the Jacobian ( , η)/ ( , ) 0x t! ! ,+  in the domain
D. Therefore, if we can introduce a new set of independent variables ( , η)+ in place of (x, t), then
U+ represents an exterior derivative and ηU  is a tangential derivative along the curve C.

10.1
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O x

Ul

Pl Pr

Ur

U = U (x, t)1

U = U (x, t)2
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t

C

Created with Print2PDF. To remove this line, buy a license at: http://www.software602.com/



10.2 Origin of partial differential equations

x x x

t t t

U UU U U
x x

U UU U U
t t

+ −

+ −

! !+ ! !− ∃# � # + � − %!+ ! !− ! %
&! !+ ! !− %# � # + � −
%!+ ! !− ! ∋

...(3)

Let us now assume that the first order partial derivatives Ux and Ut are discontinuous across
the curve C. Since the function U is continuous across C, its tangential derivative U− is also
continuous across C. Hence from the above two relations (3), it follows that the exterior  derivative
U+  must be discontinuous across C. Let ( )rU+  and ( )lU+  be the limiting values of U+  across C,

as we approach a point P on C from the domains D1 and D2 respectively. Then, the jump [ ]U+  in

U+  across C is given by

[ ] ( ) – ( )r lU U U+ + +# ....(4)

Since U− is continuous across the curve C, hence from (3), the jumps in the first order

derivatives xU  and tU  are related to [ ]U+  by the relations

[ ] [ ]x xU U+# + and        [ ] [ ]t tU U+# + ...(5)
The quasi-linear equation (1) is valid everywhere in D except at the points on the curve C.

Since all the terms appearing in it other than the first order derivatives are continuous across the
curve C, hence taking the limit of (1) as we move from the region D1 to P and again as we more
from the region D2 to P and then subtracting the equations so obtained, we obtain

( ) [ ] 0t x at PA B U++ � + # ...(6)

Since [ ]U+  is not a zero vector, the matrix t xA B+ � +  must be singular on the curve C, i.e.,
at every point of the curve C, we have

or
det ( ) 0
det(– ) 0, where – /

t x

t x

A B
A B
+ � + # ∃

&. � # . # + + ∋
...(6)

Hence, it follows that C is a characteristic curve.
Note 1. In (6), det X stands for determinant of the matrix X.

Note 2. If the derivatives of a solution U of system (1) upto order ( 1)r / are continuous
across a curve C and the (r + 1) th derivatives are discontinuous across C, then differentiating (1)
r times and then proceeding as discussed above, we can show that C is necessarily a characteristic
curve.
10.3 GENERALISED OR WEAK SOLUTION

[Allahabad 2003; G.N.D.U. Amritsar 2004; Kanpur 2003, 05)
Consider a general first order quasi-linear hyperbolic system of first order equations

( , ) ( , ) ( , ) ( , ) 0,t xA x t U B x t U H x t J x t� � # ...(1)
where the elements of matrices A, B and H (each of order n × n) and column vector J (of order
n × 1) are functions of x and t only. Also note that /tU U t# ! !  and / .xU U x# ! !  Let D be a
domain in the xt-plane and let D1 and D2 be two portions of D separated by a curve C.

We have

and
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Origin of partial differential equations 10.3

Suppose we have a solution U which satisfies (1) in D1 and D2 separately but is itself
discontinuous across C. It has been established that discontinuities in the solution cannot be discussed
for every function U satisfying (1) in D1 and D2. However, such discontinuities can be discussed
for a ‘‘generalised’’ or ‘weak’’ solution.

To end, we first reduce the system (1) to the characteristic canonical form and note that
( / ) ( , ) ( / )Mt x t x! ! � . ! !  represents the directional derivatives along the characteristics of the Mth

field. Integrating it from a point PM to a point ( , ),0 1  both lying on a characteristic of the Mth
field, we obtain.

          ( , ) – [ { ( , , ), } { ( , , ), }]
i

M

P
M M M i M

P
W H x t t W x t t dt0 1 # 0 1 0 12

   ( ) { ( , , ), } ,
M

M

P
M at P M MP

W J x t t dt� 0 12  for M = 1, 2, ... n ...(2)

where ( ) ( ) ( ) ( ) ( ) ( ) ( )[ { / ( / )} ( )] /( )
i

M i i M i M M
M MH l A r t r x l H r l Ar# ! ! � . ! ! � ...(3)

and        ( ) ( ) ( )( ) /( )M M M
MJ l J l A r# ...(4)

with no sum over M in these expressions and x = xM (t, 0 , 1 ) is the characteristic of Mth field
through the point P.

We can rewrite in compact form the expression for iMH  in terms of the operator

( / ) ( / ) .A t B x H1 3 ! ! � ! ! �  Thus, (3) takes the form

( ) ( ) ( ) ( )[ ] /[ ]
i

M i M M
MH l r l A r# 1 ...(5)

We now define a generalised or weak solution of (1) to be a function U(x, t) obtained from

1 2, ,..., nW W W  which satisfy the system of equations (2).

10.4 TRANSPORT EQUATION FOR A LINEAR-HYPERBOLIC SYSTEM
[Calicut 2003 G.N.D.U. (Amritsar 2005; Kanpur 2004; Meerut 2005, 06, 10, 11]

Consider a general first order quasi-linear hyperbolic system of first order equations

          ( , ) ( , ) ( , ) ( , ) 0,t xA x t U B x t U H x t J x t� � # ...(1)
where the elements of matrices A, B and H(each of order n × n) and column vector J (of order
n × 1) are functions of x and t only. Also note that /tU u t# ! !  and / .xU U x# ! !  Let D be a
domain in the xt-plane and let D1 and D2 be two portions of D separated by a curve C. Suppose

( , )U x t  is a weak solution of (1) which is continuous in the domain D except on the curve C and
is a genuine solution of (1) in the domains D1 and D2. We also suppose that the function U has a
jump discontinuity across C.

We now reduce the system (1) to the characteristic canonical form and note that
( / ) ( , ) ( / )Mdt x t x! � . ! !  represents the directional derivatives along the characteristics of the Mth

field. Integrating it from a point PM to a point ( , ),0 1  both lying on a characteristic of the Mth field,
we have

( , ) – [ { ( , , ), } { ( , , ), ]
i

M

P
M M M i M

P
W H x t t W x t t dt0 1 # 0 1 0 12

( ) – [ { ( , , ), } ,
M

M

P
M at P M M

P
W J x t t dt� 0 12  for M = 1, 2, ... n ...(2)
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10.4 Origin of partial differential equations

where            ( ) ( ) ( ) ( ) ( ) ( ) ( )[ { / ( / )} ] /[ ]
i

M i i M i M M
M MH l A r t r x l Hr l Ar# ! ! � . ! ! � ...(3)

and ( ) ( ) ( )( ) /[ ]M M M
MJ l J l A r# ...(4)

with no sum over M in these expressions and ( , , )Mx x t# 0 1 is the characteristic of Mth field
through the point P.

In the case when the function U has a jump discontinuity
across the curve C, the integrands on the right hand side of
(2) are continuous functions of t except for a finite jump across
C. On performing the integration in (2) along a characteristic
of the Mth family, we find that the characteristic variable WM
is given by a continuous function of this curve. If a curve C is
not tangential to a characteristic of the Mth family, WM must
be continuous across the curve C. However, according to our
assumption at least one of W1, W2, ..., Wn must be
discontinuous across the curve C. Therefore, it follows that
C, the curve of discontinuity, must be a characteristic curve
of jth family (say), and the jump in all characteristic variables
Wi, ,i j, must be zero across the carve C.

Now, suppose that the curve of discontinuity C is a characteristic curve of the jth family then,
the jump [Wi] in Wi satisfies

[ ] 0, foriW i j# # and         [ ] 0jW # ...(5)

Again, we have    ( )[ ] [ ],j
jU r W#  on sum over j ...(6)

Re-writing the equation, we have

               1( / ) ( / )M M MW t W x C! ! � . ! ! � 0,i i MM W J� #          M = 1, 2, ..., n ...(7)
Consider two points Pl and  Pr on the two sides of C in the regions D1 and D2 respectively as

shown in the figure. Taking limit as both these points tend to P on the curve C and substracting the
results so obtained we obtain

                                         – [ ],j j j j
d W H W
dt
4 5 #6 7  no sum over j ...(8)

where                                            / ( / ) ( )( / )jd dt t x3 ! ! � . ! ! ...(9)

The above equation (8) is known as the transport equation.
Along a given characteristic curve x = xj (t) of the j the family, the function

( , ) ( ( ), )j j j j jH x t H x t t#  is a function of t only..

Thus, the transport equation (8) is a linear homogeneous ordinary differential equation of

first order and determines the vibration of [ ],jW  jump in jW  along a characteristic curve of the jth
family. From the properties of solutions of linear homogeneous ordinary differential equations, it
follows that if there is a discontinuity in U at some point of a characteristic curve C, the discontinuity
in U remains non-zero at every point on the curve.

Note. In order to obtain the transport equation for the discontinuities in the derivatives of U
of order ( 1),n n / differentiate (7) ( 1)n n / times and proceed in exactly same manner as above.
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Origin of partial differential equations 10.5

EXERCISE
1. Write short note on the transport equation for a linear hyperbolic system of first order

equations. (Calicut 2003; Meerut 2005; 06)

2. When all the characteristic velocities i. are different from zero, prove that the first order
quasi-linear hyperbolic system

( , , )A x t U ( / ) ( , , )U t B x t U! ! � ( / ) ( , , ) 0U x C x t U! ! � #

can be reduced to a diagonal canonical system of 2n equations ( / ) – 0U t RW! ! # and

( / ) ( / ) 0,U t A W x F! ! � ! ! � #  where the coefficients A, R and F are functions of x, t, U and W

3. Consider the hyperbolic system               ( ) 0,t xu x t� � #v                       ( ) 0t xx t u� � #v

Show that the variation in jump [ ]v along the characteristic curve ( – )x t C#  (C = constant)
is given by

            1/ 2[ ] /(2 ) ,A t c# �v  A being a constant.

Derive also the transport equation of discontinuities in the first order partial derivatives of u
and v.
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MISCELLANEOUS PROBLEMS BASED ON THIS PART OF THE BOOK
Ex. 1. The solution of xux + yuy = 0 is of the form
(a) f(y/x)             (b) f (y + x)            (c) f (x – y)           (d) f (xy) [GATE 2008]
Sol. Ans. (a). Given                              xux + yuy = 0 …(1)

which is in the form of Lagrange equation Pp + Qq = R, with u in place z. Hence, the Lagrange’s
auxiliary equations for (1) are given by

(dx)/x = (dy)/y = du/0 …(2)
Taking the first two fractions of (2), (1/y) dy – (1/x) dx = 0
Integrating,             log y – log x = log c1               or                    y/x = c1 …(3)
Again, the last fraction of (2) yields            du = 0             so that       u = c2 …(4)
From (3) and (4), the required solution is u = f (y/x).
Ex. 2. Solve       x(y2 + z)p + y(z + x2)q = z(x2 – y2) [Madurai Kamraj 2008]
Sol. Do like Ex. 6, page 2.10. Here Lagrange’s auxiliary equations are

or
2 2 2 2( ) ( ) ( )
dx dy dz

x y z y z x z x y
! !

� � #
… (1)

Choosing 1/x, – (1/y), 1/z  as multipliers, each fraction of (1)

= 2 2 2 2
(1/ ) (1/ ) (1/ ) (1/ ) (1/ ) (1/ )

0( )
x dx y dy z dz x dx y dy z dz

y z z x x y
# � # �

!
� # � � #

∃    (1/x) dx – (1/y) dy + (1/z) dz = 0         so that         log x – log y + log z = log c1

or                       log (xz/y) = log c1                    or                      (xz)/y = c1 …(2)
Choosing x, – y, – 1 as multipliers each fraction of (1)

= 2 2 2 2 2 2 0( ) ( ) ( )
xdx ydy dz xdx ydy dz

x y z y z x z x y
# # # #

!
� # � # #

∃ xdx – ydy – dz = 0               or                  2xdx – 2ydy – 2dz = 0

Integrating,            x2 – y2 – 2z = c2,  c2 being an arbitrary constant …(3)
From (2) and (3), the required solution is given by

(xz)/y = %  (x2 – y2 – 2z), %  being an arbitrary function

Ex. 3. If the partial differential (x – 1)2 uxx – (y – 2)2 uyy + 2xux + 2yuy + 2xyu = 0 is

parabolic in 2S R&  but not in 2 \ ,R S  then S is

(a) ∋ (2( , ) : 0 2x y R x or y) ! ! (b) ∋ (2( , ) : 1 and 2x y R x y) ! !

(c) ∋ (2( , ) : 1x y R x) !            (d) ∋ (2( , ) : 2x y R y) ! [GATE 2008]

Sol. Ans. (a). Refer Art. 8.1. Here R is the set of all real numbers
Ex. 4. Find the complete integral of xp + 3yq = 2(z – x2q2) [Delhi Maths (H) 2008]

Sol. Here given equation is        f (x, y, z, p, q) = xp + 3yq – 2z + 2x2q2 = 0 … (1)

Charpit’s auxiliary equations are        
x z y z p q p q

dp dq dz dx dy
f p f f q f p f q f f f

! ! ! !
� � # # # #
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M.2 Miscellaneous problems based on this part of the book

i.e.,     2 2 2 ,
3 24 2 (3 4 ) (3 4 )

dp dq dz dx dy
q q xp xq p px q y x q y x q

! ! ! !
# #� # # # � # �

 using (1) …(2)

Taking the second and fourth fractions of (2), we have
(1/q) dq + (1/x) dx = 0                         so that                     log q + log x = log a, giving

qx = a                          so that            q = a/x, a being an arbitrary constant …(3)
Substituting the value of q given by (3) in (1), we have

xp + (3ya)/x – 2z + 2a2 = 0                  or                         xp = 2(z – a2) – (3ya)/x
Thus,                p = 2(z – a2)/x – (3ya)/x2. …(4)
Substituting values of q and p given by (3) and (4) in dz = pdx + qdy, we get

dz = {2(z – a2)/x – (3ya)/x2}dx + (a/x) dy         or          x2dz = 2x (z – a2) dx – 3yadx + axdy
or   x2dz – 2x(z – a2) dx = axdy – 3yadx   or    [x2dz – 2x (z – a2)dx]/x4 = ax–3dy – 3ayx–4 dx
or                                    d{(z – a2)/x2} = d (ayx–3)

Integrating,                  (z – a2)/x2 = (ay)/x3 + b, b being an arbitrary constant
or      z = a(a + y/x) + bx2, which is the required solution.

Ex.5. Find the general integral of the partial differential equation px(z – 2y2)
= (z – qy) (z – y2 – 2x3). Also, find the particular integral which passes through the straight
line x = –1, z = 1. (Delhi B.A. (Prog.) 2009)

Sol. Re-writing the given partial differential equation, we have
                   px (z – 2y2) + qy(z – y2 – 2x3) = z (z – y2 – 2x3) ... (1)
Hence the usual Lagrange’s, subsidiary equations are given by

   2 2 3 2 3( 2 ) ( 2 ) ( 2 )
dx dy dz

x z y y z y x z z y x
! !

# # # # # …(2)

Taking the last two fractions of (1), we get                        (1/y)dy = (1/z)dz
Integrating,                      log y = log z + log c1, c1 being an arbitrary constant
Thus,                                        y = c1z.       ...(3)
Next, taking the first and third fractions of (2) and using (3), we obtain

2 2
1( 2 )

dx
x z c z# = 2 2 3

1( 2 )# #
dz

z z c z x                or                     
2 2 3
1

2
1

2
(1 2 )

z c z xdz
dx x c z

# #
!

#

Re-writing it,                2
1(1 2 ) ( / )c z dz dx#  – 2 2 2

1( ) (1/ ) 2z c z x x# ∗ ! # …(4)

Putting 2 2
1z c z# ! v       so that        2

1(1 2 )( / ) / ,c z dz dx d dx# ! v  (4) reduces to

                                        2( / ) (1/ ) 2d dx x x# ! #v v …(5)

whose integrating factor is ( 1/ )x dxe+ # =
log xe#

= x–1 and hence solution of (5) is

v  × x–1 = 2 1
2{( 2 ) }x x dx c## ∗ �+ = –x2 + c2, c2 being an arbitrary constant

or     2 2 2
1 2( ) /z c z x x c# � !                 or                 (z – y2)/x + x2 = c2, using (3) …(6)

The required general integral is given by (3) and (6).
We now find the required particular integral. To this end, replacing x by –1 and z by 1 in (3)

and (6), we obtain
                 y = c1                            and                      – (1 – y2) + 1 = c2    ...(7)
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Eliminating y between two relations of (7), we have                     2
1 2c c! …(8)

Substituting the values of c1 and c2 given by (3) and (6) in (8), the required particular integral
is given by

             y2/z2 = (z – y2) / x + x2         or                y2x = z2(z – y2 + x3)
Ex.6. Solve the partial differential equation z = px + qy + 3p – 2q by Lagrange’s method as

well as Charpit’s method. Hence or otherwise give two different solutions of the above partial
differential equation passing through (–3, 2, 0). (Delhi B.A. (Prog). II 2009)

Sol. Solution of the given equation by Lagrange’s method:
Re-writing the given equation,                 (x + 3)p + (y – 2)q = z …(1)
Here the usual Lagrange’s subsidiary equations are given by

(dx)/(x + 3) = (dy)/(y – 2) = (dz) / z …(2)
Taking the first two fractions of (2),                  (dx)/(x + 3) = (dy)/(y – 2)
Integrating,       log(x + 3) = log(y – 2) + log a         or        (x + 3) = a (y – 2) …(3)
Next, taking the last two fractions of (2),           (dy)/(y – 2) = (dz)/z
Integrating,       log (y – 2) + log b = log z               or               b (y – 2) = z ...(4)
From (3) and (4),             (x + 3)/a = (y – 2)/1 = (z – 0)/b, a and b being arbitrary constants …(5)

which is the required solution of the given equation passing through (–3, 2, 0).
Solution of the given equation by Charpit’s method:
Let                        f(x, y, z, p, q) = (x + 3)p + (y – 2)q – z = 0 …(6)

Here Charpit’s auxiliary equations  
x z

dp
f pf� =

y z

dq
f qf� =

p q

dz
pf qf# # =

p

dx
f# =

q

dy
f#

yield                     
0 0

dp dq
! = ( 3) ( 2)

dz
p x q y# � # # = ( 3)

dx
x# � = ( 2)

dy
y# #

Hence,            dp = 0        so that         p = c1, c1 being an arbitrary constant …(7)
From (6) and (7), (x + 3)c1 + (y – 2)q – z = 0    ∃   q = {z – (x + 3)c1}/(y – 2) …(8)
Substituting the values of p and q given by (7) and (8), we have
                         dz = pdx + qdy = c1dx + [{z – (x + 3)c1}/(y – 2)]dy

or       1
1

( 3)
2 2

x c dyz
dz dy c dx

y y
�

# ! #
# #

     or      1 1
2 2

( 2) ( 3)( 2)
( 2) ( 2)

c y dx c x dyy dz z dy
y y

# � �# #
!

# #

or                 1( 3)
2 2

c xz
d d

y y
, − , −�

!. / . /0 # 1 0 # 1
               giving                   1

2
( 3)

2 2
c xz

c
y y

�
! �

# #

Thus,                                    z = c1(x + 3) + c2 (y – 2),
which is the required second solution of the given equation passing through (–3, 2, 0).

Ex. 7. Define the singular integral of first order partial differential equation. Is it true that
singular integral always exists? Justify your answer. [Delhi Math (Hons.) 2009]

Hint: Refer Art. 3.1.
Ex. 8. Write the form of the solution of the equation F (D, D’) = 0, where F (D, D’) is not

reducible. [Delhi Math (Hons). 2009]
Sol. Let z = ehx + ky be a trial solution of the given equation. Then, the required solution is
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M.4 Miscellaneous problems based on this part of the book

z = ,i ih x k y
i

i
A e �2  where Ai, hi and ki are arbitrary constants,

and hi, ki are connected by the relation                F(hi, ki) = 0.
Ex. 9. Solve z = px + qy + p2 + q2. [Kanpur 2009]
Sol. Refer Art 3.12. The complete integral is                    z = ax + by + a2 + b2 … (1)
Singular integral. Differentiating (1) partially w.r.t. ‘a’ and ‘b’, we get

0 = x + 2a                  and                        0 = y + 2b …(2)
From (2), a = – (x/2) and b = –(y/2). Substituting these values of a and b in (1), we get
              z = – (x2/2) – (y2/2) + x2/4 + y2/4          or          4z + x2 + y2 = 0.

General integral Take ( ),b a! %  where %  is an arbitrary function

Then, (1) yields                          z = ax + y % (a) + a2 + [ % (a)]2 …(3)

Differentiating (3) partially w.r.t. ‘a’,               0 ( ) 2 2 ( ) ( )x y a a a a! � % � � % %3 3 …(4)
The general integral is obtained by eliminating a between (3) and (4).
Ex. 10. Classify the following partial differential equation into elliptic, parabolic or hyperbolic

and find its degree and order                   x (y – x) r – (y2 – x2)s + y(y – x) t + (y + x) (p – q) = 0.
Hint. Use Art 1.3, 1.4 and 8.1. [Delhi BA (Prog.) II 2009]
Ans. The given equation is hyperbolic, its degree is one and its order is two.
Ex. 11. Find the characteristic strips of the equation xp + yq – pq = 0 and then find the

equation of the integral surface through the curve z = x/2, y = 0 [Meerut 2011]
Sol. Given equation is                         xp + yq – pq = 0 ...(1)
We are to find its integral surface passing through the given curve, namely

z = x/2,                                     y = 0 …(2)
Re-writing (2) in parametric form, we have

x ! 4 ,          y = 0,                z = / 2;4             4  being a parameter …(3)
Let the initial values of x0, y0, z0, p0 and q0 of x, y, z, p and q be taken as

x0 = x0 ( 4 ) = 4             y0 = 0 ( ) 0,y 4 !                  0 0 ( ) / 2z z! 4 ! 4 …(4 A)
Let p0 and q0 be the initial values of p and q corresponding to the initial values of x0, y0, z0.

Since the initial values x0, y0, z0, p0 and q0 satisfy (1), we have

x0p0 + y0q0 – p0q0 = 0       or     0 0 0 0p p q4 # !      or       0 ,q ! 4  using (4A) …(5)

Also, we have            0 ( )z 43 = 0 0 0 0( ) ( )p x q y3 34 � 4

so that              1/2 = p0 + 0                giving       p0 = 1/2, using (4A) …(6)
Thus, from (5) and (6), p0 = 1/2              and        q0 = 4 …(4 B)
Collecting relations (4 A) and (4 B) together, initial values are given by

x0 = 4 ,  y0 = 0,     z0 = / 2,4 p0 = 1/2    and    q0 = 4 , when t = t0 = 0 …(7)
Re-writing (1), let               f(x, y, z, p, q) = xp + yq – pq = 0 …(8)
The usual characteristic equations of (8) are given by

dx/dt = /f p5 5 = x – p …(9)

/dy dt = /f q5 5 = y – p …(10)

               dz/dt = ( / ) ( / )p f p q f q5 5 � 5 5 = p(x – q) + q (y – p) = –pq, using (1) …(11)
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Miscellaneous problems based on this part of the book M.5

                       dp/dt = ( / ) ( / )f x p f z# 5 5 # 5 5 = –p – (p × 0) = –p …(12)

                     dq/dt =  ( / ) ( / )f y q f z# 5 5 # 5 5 = –q – (q × 0) = – q …(13)
From (12),             (1/p)dp = –dt         so that             log p – log c1 = – t
Thus,                           p = c1e

–t, c1 being an arbitrary constant …(14)
Similarly, (13) yields        q = c2e

–t, c2 being an a arbitrary constant …(15)

Using initial values (7), (14) yields           p0 = 0
1

tc e#    giving      c1 = 1/2

Hence, (14) reduces to                       p = (1/2) × e–t …(16)

Using initial values (7), (15) yields           q0 = 0
2

tc e#     giving       c2 = 4

Hence, (15) reduces to q = 4 e–t ...(17)

From (9) and (17),            dx/dt =
tx e## 4            or                dx/dt – x = ,te##4

whose integrating factor  = ( 1)dt te e+ # #!  and hence its solution is given by

                          txe# = 3 {( ) } ,t tc e e dt# #� #4 ∗+ c3 being an arbitrary constant

or                                    txe# = 6 7 2
3 / 2 tc e#� 4 ∗ …(18)

Using initial values (7), (18) yields                             0
0

tx e# = c3 + 02( / 2) te#4 ∗

or                      4 = c3 + / 24         so that           c3 = / 2.4

Hence, (18) yields                             2( / 2) (1 )t txe e# #! 4 ∗ �

or                                           x = 2( / 2) (1 )t te e#4 ∗ � …(19)

Now, from (10) and (16),                dy/dt = y – (e–t)/2        or        dy/dt – y = –(e–t)/2

whose integrating factor = ( 1)dt te e+ # #!   and hence its solution is given by

        ye–t = c4 + {( / 2) } ,t te e dt# ## ∗+   c4 being an arbitarary constant

or                                     ye–t = c4 + (1/4) × e–2t ... (20)

Using initial values (7), (20) yields                0
0

ty e#
= c4 + (1/4) × 02te#

or                      0 = c4 + 1/4              so that               c4 = – (1/4)
Hence, (20) reduces to ye–t = (1/4) × (e–2t – 1)
Thus,                                   y = (1/4) × et ( e–2t – 1) …(21)

From (11), (16) and (17),                    dz/dt = ( / 2) ( )t te e# ## ∗ 4 = – 2( / 2) te#4 ∗

Thus,                                              (1/z)dz = 2( / 2) te dt## 4 ∗

Integrating,                       z = 2
5 5( / 4) ,te c c#4 ∗ � being an arbitrary constant …(22)

Using initial values (7), (22) yields                z0 = 02
5( / 4) te c#4 ∗ �

or      / 24 = ( / 44 ) × e0 + c5                 so that                     c5 = / 4.4

Hence, (22) reduces to                z = 2( / 4) ( 1)te#4 ∗ � …(23)
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The required characteristics of (1) are given by (19), (21) are (23)
In order to obtain the desired integral surface of (1), we now proceed to eliminate two

parameters t and 4   from (19), (21) and (23).
From (19) and (23), we have      x/z = 2et              giving              et = x/2z. …(24)
From (21),                       y = (1/4) × (1/et – et) = (1/4) × (2z/x – x/2z), using (24)

or                       8xyz = 4z2 – x2, which is the required integral surface of (1).
Ex.12. Prove that for the equation z + px + qy – 1 – pq x2y2 = 0 the characteristic strips are

given by x = (B + Ce– t)–1, y = (A + De– t)–1, z = E – (AC + BD)e– t, p = A(B + Ce– t)2,
q = B(A+ De– t)2, where A, B, C, D and E are arbitrary constants. Hence, find the integral surface
which passes through the line z = 0, x = y. [I.A.S 2001]

Sol. The given equation is                      z + px + qy – 1 – pq x2y2 = 0 …(1)
Let                   f(x, y, z, p, q) = z + px + qy – 1 – pq x2y2 …(2)
Then, the characteristic equations of (1) are given by

         dx/dt = 2 2/f p x qx y5 5 ! # …(3)

                                  dy/dt = 2 2/f q y px y5 5 ! # …(4)

dz/dt =
2 2 2 2( / ) ( / ) ( ) ( )p f p q f q p x qx y q y px y5 5 � 5 5 ! # � # = px + qy – 2pqx2y2 …(5)

dp/dt = ( / ) ( / )f x p f z# 5 5 # 5 5 = –(p – 2 pqxy2) – p = –2p(1 – qxy2) …(6)

dq/dt = ( / ) ( / )f y q f z# 5 5 # 5 5 = –(q – 2pqx2y) – q = –2q (1 – px2y) …(7)
From (3) and (6),       (1/x) (dx/dt) = –(1/2p) (dp/dt)        or       (2/x) dx + (1/p) dp = 0
Integrating, 2 log x + log p = log A      or     x2p = A, A being an arbitrary constant …(8)
From (4) and (7),         (1/y) (dy/dt) = (–1/2q) (dq/dt)      or         (2/y)dy + (1/q)dq = 0
Integrating as before,                  y2q = B, B being an arbitrary constant …(9)
From (3) and (9),           dx/dt = x – Bx2          or         x–2(dx/dt) – x–1 = –B …(10)

Putting x–1 = v  and –x–2(dx/dt) = / ,d dtv  (10) reduces to

( / )d dt B# # ! #v v                              or                       / ,d dt B� !v v

whose integrating factor is ,dte+  i.e., et and hence its solution is given by

   tev = C + ,tBe dt+ C being an arbitrary constant

/t te x c Be! �         or         1/x = Ce–t + B        or      x = (B + Ce–t)–1 …(11)
Similarly, (4) and (8) yield  dy/dt = y – Ay2        or      y–2(dy/dt) – y–1 = –A …(12)
Putting y–1 = u and –y–2(dy/dt) = du/dt, (12) yields

– (du/dt) – u = – A                   or                        du/dt + u = A

whose integrating factor is dte+ , i.e., et and hence its solution is given by

uet = ,tD Ae dt� +  D being an arbitrary constant

or          /t te y D Ae! �         or       1/y = De–t + Aor y = (A + De–t)–1 …(13)
Using (8) and (9), (5) yields                        dz/dt = A/x + B/y – 2AB

or      dz/dt = A(B + Ce–t) + B(A + De–t) –2AB, using (11) and (13)
or         dz/dt = (AC + BD)e–t                   or                dz = (AC + BD) e–t dt

Integrating,                     z = E – (AC + BD)e–t, E being an arbitrary constant …(14)
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From (8) and (11),                     p = Ax–2 = A(B + C e–t)2 …(15)
From (9) and (13),                     q = By–2 = B(A + De–t)2 …(16)
The required characteristics are given by (11), (13), (14), (15) and (16). We now proceed to

find the required integral surface passing through the line given by
                                   z = 0                   and                 x = y …(17)

Re-writing (17),               x = ,4          y = ,4          z = 0,      4 being a parameter  …(18)
Let the initial values x0, y0, z0, p0, q0 of x, y, z, p, q be taken as

x0 = 0 ( ) ,x 4 ! 4               0 0 ( ) ,y y! 4 ! 4               0 0 ( ) 0z z! 4 ! …(19)
Let p0, q0 be the initial values of p, q corresponding to the initial values x0, y0, z0. Since the

initial values statisfy (1), we have
2 2

0 0 0 0 0 0 0 0 01 0z p x q y p q x y� � # # !          or        4
0 0 0 01 0,p q p q4 � 4 # # 4 !  using (19)

Thus,                  
4

0 0 0 0( ) 1p q p q4 � ! 4 � …(20)

Also, we have              0 ( )z 43 = 0 0 0 0( ) ( )p x q y3 34 � 4

so that,                     0 = p0 + q0           giving             q0 = –p0, using (19) …(21)

Using (21), (20) yields 4
0 0 1 0p q 4 � !           giving          2 4

0 1 0p# 4 � ! , using (21)

Thus, p0 = 21/ 4  so that      q0 = 2(1/ )# 4 , using (21) …(22)

Using initial values x = x0 = 4 , t = t0 = 0, (11) reduces to

4 = (B + C)–1           so that               B + C = 1/ 4 …(23)

Using initial values y = y0 = 4 , t = t0 = 0, (13) reduce to

4 = (A + D)–1           so that     A + D = 1/ 4 …(24)

Using initial values p = p0 = 21/ ,4 t = t0 = 0, (15) reduces to

p0 = A(B + C)2 or 2 21/ (1/ ) ,A4 ! ∗ 4  by (23) so that A = 1 …(25)

Using initial values q = q0 = 2(1/ )# 4 , t = t0 = 0, (16) reduces to

        q0 = B (A + D)2       or    2(1/ )# 4 = B × 2(1/ )4 , by (24)     so that    B = –1 …(26)

From (23) and (26),           –1 + C = 1/ 4        so that          C = 1 + 1/ 4 …(27)

From (24) and (25),  1 + D = 1/ 4        so that D = (1/ 4 ) – 1 …(28)
Using the initial values z = z0 = 0, t = t0 = 0, (14) reduces to

0 = E – (AC + BD)        or     1 1/ (1/ 1)E ! � 4 # 4 #          or           E = 2 …(29)
Substituting the values of A, B, C, D and E given by (25), (26), (27), (28) and (29) in (11), (13)

and (14), we obtain
1{ 1 (1/ 1) }tx e# #! # � 4 � …(30)

1{1 (1/ –1) }ty e# #! � 4 …(31)

2 {1 1/ (1/ 1)} tz e#! # � 4 # 4 # = 2(1 )te## …(32)

In order to obtain the required surface, we now eliminate 4  from (30), (31) and (32).
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From (30),        x–1 = 1 (1/ 1) te## � 4 �      so that        1/x + 1 = (1/ 1) te#4 � …(33)

From (31),        y–1 = 1 + (1/ 1) te#4 #       so that        1/y – 1 = (1/ 1) te#4 # …(34)

Subtracting (34) from (33), 1/x – 1/y + 2 = 2e–t      or     1/x – 1/y = –2(1 – e–t) …(35)
From (32) and (35), we get 1/x – 1/y = –z which is the required integral surface.

Ex. 13. The general solution of the partial differential equation 2 /z x y x y5 5 5 ! �  is of the

form (a) (1/ 2) ( ) ( ) ( )xy x y F x G y∗ � � �        (b) (1/ 2) ( ) ( ) ( )xy x y F x G y∗ # � �

(c) (1/ 2) ( ) ( ) ( )xy x y F x G y∗ # � (d) (1/ 2) ( ) ( ) ( )xy x y F x G y∗ � �         (GATE 2010)
Sol. Ans. (a). Integrating the give equation w.r.t ‘x’, we get

2/ / 2 ( ), ( )z y x xy g y g y5 5 ! � �  being an arbitrary function of y.

Integrating the above equation w.r.t. ‘y’, we get

2 2( ) / 2 ( ) / 2 ( ) ( )z x y xy G y F x! � � � ,      where      ( ) ( )G y g y dy! +
Ex. 14. Find whether the following is hyperbolic, parabolic or elliptic :

(i)  2 2 2x r y t px qy x# # # ! [Delhi B.A. (Prog) II 2010, 11]

(ii)  2 2(5 / 2) 0x r xys y t xp yq� ∗ � � � ! [Delhi B.A. (Prog) II 2010]

(iii)  2 2 2 2 2/ / / 0u t u x t u x5 5 � 5 5 5 � 5 5 ! [Meerut 2010]

(iv) 2(1/ ) ( / )xx yy zzu u u c u t� � ! ∗ 5 5 [Meerut 2007, 10]

(v) 2 2 2(1 ) 2 (1 ) 3 0x r xys y t xp x yq# # � # � � ! [Ravishankar 2010]

(vi) 2 2 2 2 2/ ( / )z x x z y5 5 ! 5 5 [Bhopal 2010]

(vii) 2 2 2 2/ ( / ) ( / ) / 0u t u x u t u t5 5 � 5 5 5 5 � 5 5 ! [Meerut 2011]

Hint. Use Articles 8.1, 8.2 and 8.2A.
Ans. (i) Hyperbolic (ii) Hyperbolic (iii) Elliptic (iv) Parabolic (v) Hyperbolic if x2 + y2 > 1,

parabolic if x2 + y2 = 1, elliptic if x2 + y2 < 1 (vi) Hyperbolic  (vii) Elliptic

Ex. 15. The  partial  differential  equation  2 2 2 2 2( / ) ( 1) ( / )x z x y x z x y5 5 # # 5 5 5

2( 1)y y� # 2 2( / ) ( ) ( / ) 0z y x z x y z y5 5 � 5 � 5 � 5 5 !  is hyperbolic in a region in xy–plane if

(a) 0x 8 and y = 1 (b) x = 0 and 1y 8  (c) 0,x 8 and 1y 8  (d) x = 0 and y = 1.[GATE 2011]
Sol. Ans (c) The given can be re-written as

                       2 2 2( 1) ( 1) 0x r x y s y y t xp yq# # � # � � ! ... (1)

Comparing (1) with Rr + Ss + Tt + f (x, y, z, p, q) = 0, we have R = x2, 2( 1)S x y! # #

and 2( 1) .T y y! #  Now, in order that (1) may be hyperbolic we must have 2 0,S rRT# 9  i.e.,

   2 2 2 2 2( 1) 4 ( 1) 0x y x y y# # # 9            or         2 2 2 2 2( 1) ( 1) 4 ( 1) 0x y y x y y# � # # 9
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or         2 2 2( 1) {( 1) 4 } 0x y y y# � # 9                or              2 2 2( 1) ( 1) 0,x y y# # 9 ... (2)

Which is true when 0 and 1.x y8 8

Ex. 16. The integral surface for the Cauchy problem / / 1z x z y5 5 � 5 5 ! which passes through
the circle z = 0, x2 + y2 = 1 is

(a) 2 2 22 2 2 2 1 0x y z zx yx yz� � � # # # ! (b) 2 2 22 2 2 1 0x y z zx yz� � � # # !

(c) 2 2 22 2 2 1 0x y z zx yz� � # # # !    (d) 2 2 22 2 2 1 0x y z zx yz� � � � # ! [GATE 2011]

Sol. Ans. (c) In usual symbols, the given equation is p + q = 1 ... (1)

Lagrange’s auxiliary equation of (1) are                         ( ) /1 ( ) /1 ( ) /1dx dy dz! ! ... (2)
Taking the first two fractions of (2), we get                      dx – dy = 0 ... (3)
Integrating (3),                                  x – y = c–1, c1 being an arbitrary constant ... (4)
Next, taking the first and third fractions of (2), we get               dx – dz = 0 ... (5)
Integrating (5),                            x – z = c2, c2 being an arbitrary constant ... (6)
The given curve is defined by                     x2 + y2 = 1,  z = 0 ... (7)
Putting z = 0 in (6), we have                              x = c2, ... (8)
Now, from (4) and (8), we have                          c2 – y = c1    so that    y = c1 – c2 ... (9)
Substituting the values of x and y given by (8) and (9) in (7), we obtain

2 2
2 2 1( ) 1c c c� # !                 or           2 2( ) ( ) 1,x z y z# � # !            using (4) and (6)

or                                   2 2 22 2 2 1 0.x y z zx yz� � # # # !

Ex. 17. The integral surfaces satisfying the partial differential equation
2( / ) ( / ) 0z y z z y5 5 � 5 5 !  and spassing through the straight line x = 1, y = z is

(a)  2 2( 1)x z z y# � !                            (b) 2 2 2 1x y z� # !

(c) 2( ) 1y z x x# � !                               (d) 2( 1)x z z y# � !                     [GATE 2012]

Sol. Ans. (d). Given  p + z2q = 0, where           / , /p z x q z y! 5 5 ! 5 5 ... (1)

Lagrange’s auxiliary equation (1) are                2( ) /1 ( ) / ( ) / 0dx dy z z! ! 5 ... (2)

From third fraction of (1),                             dz = 0         so that       z = c1 ... (3)

Using (3), from first and second fractions of (2),   2 2
1 1( ) /1 ( ) / or 0dx dy c c dx dy! # !

Integrating,                   2 2
1 2 2 1or ,c x y c z x y c as c z# ! # ! ! ... (4)

In order to get the required integral surfaces, we shall use method II given on page 2.28.
The given straight line is represented by                         x = 1,      y = z ... (5)

Using (5) in (3) and (4), we get                      2
1 2andy c y y c! # ! ... (6)

Eliminating y from the two equation of (6), we get               2
1 1 2c c c# ! ... (7)

Substituting the values of c1 and c2 given by (3) and (4) in (7), we get
2 2z z z x y# ! #        or       2 2( 1)x z z y# � ! , which is the required integral surface
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Ex.18. The expression 2 2
1 sin( )

x y

x y
D D

#
#  is equal to

(a) ( / 2) cos( )x x y# ∗ # (b) ( / 2) sin( ) cos( )x x y x y# ∗ # � #

(c) ( / 2) cos( ) sin( )x x y x y# ∗ # � # (d) (3 / 2) sin( )x x y∗ # [GATE  2012]

Sol. Ans. (a). Here note that Dx and Dy stand for D and D3  respectively. For solution,
processd as in Ex. 7(d). Here, we wish to find only P.I. Thus,

2 2 2 2
1 1 1 1sin( ) sin( ) sin( )

x y

x y x y x y
D D D DD D D D

# ! # ! #
3 3� #3# #

         =
1 1

sin , where
1 ( 1))

v dv v x y
D D

! #
3# # # +                    [Using formula (i) page 4.9]

        = 1
1 1 1 1 1[ cos( )] cos( ) cos ( )
2 2 ( 1) (1) 2 ( 1) 1!

xx y x y x y
D D D D

# # ! # ! ∗ #
3� # # ∗ # ∗

[Using formula (ii), page 4.9]

        ( / 2) cos( )x x y! # ∗ #
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